
And/Or Programs: A New Approach
to Structured Programming

DAVID HAREL

IBM Thomas J. Watson Research Center

A simple tree-like programming/specification language is presented. The central idea is the dividing
of conventional programming constructs into the two classes of and and or subgoaling, the subgoal
tree itself constituting the program. Programs written in the language can, in general, be both
nondeterministic and parallel. The syntax and semantics of the language are defined, a method for
verifying programs written in it is described, and the practical significance of programming in the
language assessed. Finally, some directions for further research are indicated.

Key Words and Phrases: alternation, and/or program, program verification, structured programming,
textual complexity
CR Categories: 4.2, 5.24

One of our aims is to make such well-structured programs
t h a t t he in te l l ec tua l e f f o r t . . , n e e d e d to u n d e r s t a n d t h e m is
p ropo r t i ona l to p r o g r a m l eng th

--E.W. Dijkstra

We do not know whether alternation will find its way into
p r o g r a m m i n g languages , or h a v e a role to p lay in s t r u c t u r e d
p rog ramming .

- - A . K . C h a n d r a a n d L.J. S t o c k m e y e r

1. INTRODUCTION

In this paper we present a programming/spec i f ica t ion language based on the
concept of a l ternat ing a n d and or subgoals. The general notion of a n d / o r
a l ternat ion is well known and occurs in ma themat i ca l logic (al ternation of
quantifiers, cf. [16]), game theory (and/or game trees, cf. [17]}, and artificial

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
This research was supported in part by the National Science Foundation under Grants MCS77-19754
and MCS76-18461.
A version of this paper appeared in the Proc. IEEE Specifications of Reliable Software Conf.,
Cambridge, Mass., April 1979.
Author's address: IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598.
© 1980 ACM 0164-0925/80/0100-0001 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 1, January 1980, Pages 1-17.

2 David Harel

intelligence (and/or problem solving trees, etc., cf. [18]). Recently, in [3] and
[13], alternation was introduced into theoretical computer science as a powerful
tool in classifying the computational complexity of classes of problems, and
applications of it were illustrated and envisioned. It is from [3] that our second
quotation above is taken. The language proposed here serves as a natural
application of this concept to the discipline of structured programming (cf. [4])
from which the first quotation is taken.

It is commonly claimed that as much as the efficiency of a program is important
(e.g., in terms of its consumption of resources such as time or space), its clarity,
readability, and manageability are also to be a major concern of its author. To
this end various disciplines have been advocated, including the use of structured
programming and flowcharting. The former is an aid in synthesizing the program
in a stepwise top-down fashion, and the latter is a tool for pictorially describing
it.

One of the apparent problems with structured programming as it stands is in
the fact that the history of the subgoaling process which produced the final
program is not captured by the final text. Except for some consistent indenting
of the program text (e.g., in Algol or PL/I) no "information-at-a-glance" pictorial
description of the design structure of the program is present. Consequently, it is
not always easy to carry out a modification without a considerable amount of
insightful preparation. Thus, for example, if the first step of synthesizing a simple
compiler was in refining the compilation process into the two subgoals of parsing
and coding, this fact will not always be obvious from glancing at the final program
text of the compiler; not until the text has been appropriately partitioned in a
visual way, say by circling the two components. A complete logical structuring of
the program text will consist typically of a nested set of such circles. In other
words, the depth and structure of the stepwise composition of the program are
not visible in the final product.

Similarly, the virtues of the visual representation supplied by flowcharts, while
illustrating the flow of control, are of little help in capturing the structure of the
logical design even when so-called "structured flowcharts" are employed {these
corresponding essentially to indented textual programs), and a similar process of
nested encircling has to be carried out. This situation is most problematic at later
stages, i.e., when the program is to be constantly maintained and often modified.
Cumbersome documentation then becomes a necessity.

The and/or programming language described in Section 3 is designed with this
problem in mind; i.e., in the final tree-like progam the flow of control of a
particular implementation of that program is secondary to its logical structure. It
is precisely the structure of this natural stepwise synthesis of the algorithm that
the tree captures. Each node of the tree represents the program consisting of the
subtree rooted in that node, with its immediate descendants representing its
decomposition into subgoals. Thus, in the above example, parse and code would
be natural choices for the offspring of the node (in this case the root of the tree}
denoted by compile. As will become clear, the "layers" in which the program is
arranged, these being in the heart of the idea of structured programming (cf. [4,
pp. 48-49]), correspond to the levels of the tree.

The resulting language possesses such pragmatic niceties as readability and
ease of modification as well as considerable flexibility in choosing an implemen-

ACM Transactions on Programming Languages and Systems, Vol. 2, No. l, January 1980.

And/Or Programs: A New Approach to Structured Programming 3

tation. This flexibility will be seen also to be the main drawback of our language;
the flow of control can be obtained from the program text only by some moderate
amount of analysis. Also, the language gives rise to rather natural versions of
some of the standard methods for proving the correctness of programs. The
programs, in general, admit both nondeterminism and a kind of parallelism,
features which are lately being considered essential in many types of program-
ming.

Section 2 contains an informal introduction to the language, and Section 3
presents the syntax and semantics. In Section 4 we illustrate how and/or programs
are to be verified, while Section 5 is devoted to discussing the advantages the
language offers the implementer and programmer. Some directions for future
work are discussed in Section 6.

2. AND/OR SUBGOALING

Consider the following example in which a cake is to be baked from some
ingredients. Similarly to the line taken in [4, pp. 27], if baking cakes is a known
primitive ("an instruction from a well-understood repertoire" [4]), then the one-
node tree

cake = bake (ingredients) (1)

completely solves the problem. If, on the other hand, we do no have bake in our
repertoire, then the following are two suggestive ways of refining the main goal
into subgoals:

cake = bake (ingredients)

(2)

cake = heat-in-oven (batter) batter -- mix (ingredients)

cake = bake (ingredients)

(3)

cake = bake-regular-cake (ingredients) cake = bake-sponge-cake (ingredients)

Tree (2) replaces bake by two subgoals, both of which are to be achieved for it to
be completed, and (3) replaces it by two subgoals, one of which is to be achieved.
We might want to restrict the choice of the sponge-cake alternative in (3) to the
case in which the ingredients include at least five eggs, in which case we allow the
attachment of this condition as a "guard" [5] on the appropriate edge, obtaining

cake = bake (ingredients)

~ ~ [# eggs (ingredients) >_ 5] (4)

cake = bake-regular-cake (ingredients) cake = bake-sponge-cake (ingredients)

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 1, January 1980.

4 David Harel
The decomposition then resumes, regarding each of the descendants as a root.
The process gives rise to a tree with and and or nodes, and the decision as to
where the decomposition stops depends upon the primitive operations at hand.
In our example, the operation of adding a little sugar to the mixture might be
primitive, and accordingly it is conceivable that

new-mixture = add-sugar {mixture, sugar)

will be one of the leaves of the tree. The power of iteration will be obtained by
allowing leaves to be labeled not only with primitive operations but also with
labels labeling (not necessarily immediate) ancestors, thus modeling procedure
calls. For example, sweetening a mixture might be achieved by the following

subtree:

new-mixture = sweeten (mixture, sugar)

[mixture is swee ixture is not sweet]
I "

/" (5)
new-mixture = mixture new-mixture = s w e e ~ e r (mixture, sugar)

a ~ ~

new-mixture = sweeten (int.-mixture, sugar) int.-mixture = add-sugar (mixture, sugar)
b e

in which leaves a and c represent primitives and leaf b a recursive call to the root
of the subtree. Clearly (5) is to act simply as a whi le statement; adding sugar is
to be repeated as long as the mixture is not sweet. Note that on account of the
oUtcome of an operation being different from its input (i.e., "=" denotes a
definition, not an assignment) we do not write

mixture = add-sugar (mixture, sugar),

but rather introduce an intermediate variable, int.-mixture. Note also that just as
the or node in (3) represents a nondeterministic choice but can be restricted (in
the spirit of (5)) to be more like a deterministic i f t hen else, so does an and node
represent a clean parallel construct but can be restricted to be sequential as in
(2). It will be perfectly legal to have a subtree of the form

(mixture, whites) = prepare (some-things, eggs)

A ~ (6)

mixture = mix (some-things) whites = separate-yolks (eggs)

in which clearly no ordering on the descendants is forced by the input-output
pairs (as was the case in (2)). Still, (2) and (6) have in common the property that
achievement of the goal in the root of the subtree is dependent upon achieving
both subgoals in its descendants.

It will become evident that and nodes subsume sequential composition and
parallel constructs (e.g., A;B, AII B) and or nodes subsume nondeterministic
choice and various versions of conditionals (e.g., A U B, i f P t hen A else B, IF

ACM Transact ions on Programming Languages and Systems, Vol. 2, No. l, J a n u a r y 1980.

And/Or Programs: A New Approach to Structured Programming 5

Q --* B F I of [5], etc.). The point is tha t in the former cases both A and B are
executed and in the lat ter only one is. The power obtained by leaves such as b in
(5) will be the power of general, possibly mutual recursive calls and thus will be
seen to subsume versions of the repeti t ive construct (e.g., w h i l e P d o A, r e p e a t
A until P, DO P --) A [:] Q --~ B OD of [5], etc.).

We now turn to providing a more rigorous definition of the syntax and
semantics of the language.

3. THE AND/OR LANGUAGE

We define a ra ther strict syntax for our language but later relax it somewhat by
employing some helpful abbreviations. Our intent is to keep the basic constructs
in the definition few and clear in order to simplify the semantics and later
discussions.

Syntax

We have sets E, A, and H of variable, action, and test, symbols, respectively. A
node-i.d, s is a triple (f, a, b) where f E h is the label of s, and a and b, called,
respectively, the output and input lists of s, are finite tuples of elements of E.
Similarly, an edge-i.d, t is a pair (p, a) where p E H is the test of t, and a, the
argumen t l ist of t, is also a finite tuple over Z.

We now consider finite binary trees in which each node u is marked with a
node-i.d., s,, and each edge e with an edge-i.d., te. In addition, every internal (i.e.,
nonleaf) node carries an indication as to whether it is an a n d or an or node. The
components of s, and te are appropriately denoted by lab,, out,, in,, teste, and
arge. In our examples we write a node-i.d. (f, a, b) as a = f (b) and an edge-i.d.
(p, a) as p(a).

We freely use conventional terms for talking about trees, such as root, leaf,
pa th , ancestor, and descendant . In addition, an immediate descendant (ancestor)
of a node is called its offspring (parent), and the two offspring of an internal a n d
(respectively or) node are and-s ibl ings (respectively, or-siblings). When no
confusion can arise we will apply set- theoret ic operations to input and output
lists, regarding them as multisets of the variables occurring in them. Thus,
in , = O means tha t the input list of node u is the empty tuple.

A tree T is a legal and~or program, or program for short, if it satisfies the
following requirements:

R1. One or more leaves and one internal node can have a common label, and in
this case these leaves will be called call leaves. Every other leaf is a pr imi t i ve
one. Primitive leaves may also have common labels. No other pairs of nodes
may have common labels. Any pair of nodes u and u' having a common label
must satisfy I in , I = I inu, I and I out , I = I out , ' I . 1
For any variable x E E appearing in an input list in,, exactly one of the
following holds:
(a) u is the root of T,
(b) x ~ in,., where u' is the parent of u,

R2.

Our intention here is that any number of such sets (of leaves and internal node having a common
label) is allowed. "Call leaf" is the general name we give a leaf in any one of these sets.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 1, January 1980.

6 David Harel

(c) x E out,,,, where u' is the sibling of u, their (common) parent u" is an
and node, and in,, C in,,,.

R3. For any variable x E E appearing in an output list out,, exactly one of the
following holds:
(a) u is a leaf of T,
(b) u is an or node and x appears in the output lists of both of the offspring

o f U,
(c) u is an and node and x appears in the output list of exactly one of the

offspring of u.
R4. For any edge e leading from node u to (its offspring) u', arge C in, .

Furthermore, for any two edges e and e', if teste = teste,, then]arge] =

] arg~,].
R5. For any node u, in, n out,, = ~.

Requirement R1 specifies that each node is to represent a unique action labeled
with that node's label. The exceptions are primitive actions which can occur in
more than one place and the "procedure calls" which are modeled by call leaves.
Two nodes having the same label are called similar. The pairs of input and
output lists of similar nodes must agree in length.

Requirements R2, R3, and R4 formalize the ways in which inputs and outputs
flow through the tree. By R2, inputs are handed down from parent to offspring
but can also be produced (as an output) and handed over by an and-sibling. In
the latter case, however, the sibling must be executable independently of the node
in question. This situation then induces an ordering on the two siblings, thus
making the and node a sequential one. By R3, outputs are initially produced by
leaves and are handed up from offspring to parent. By R4, inputs are also handed
down from parents to tests guarding their offspring. The way in which the inputs
inrof the root of the tree flow down through the tree to produce the final outputs
OUtr should now be quite clear.

A word about R5. Our language is not to be thought of as a conventional
programming language in which the values of variables representing memory
locations are modified; we do not allow "changing" the value of x as in x = f(x).
Indeed, the meaning of x = f(y) is that (the unique value of) x is to be equal to
that of f ai~plied to y. Thus, our variables are not really variables at all but rather
represent concrete, fixed data, much like the wires in a network. Our method of
imposing this interpretation is to require that input and output lists be disjoint.

The following lemma, which can be proved easily from the definitions, shows
that an and node is well behaved in the sense that its inputs are sufficient for the
requirements of its offspring and its offspring in return loyally produce its outputs.
(In the following we constantly assume that all trees are legal programs.)

LEMMA 1. For any and node u with offspring u' and u", the following hold:
(i) either in,, C in, or in,- C in,;

(ii) OUtu C (out,, U out,,,).

Similarly, the inputs of both offspring of an or node are supplied by the parent
and the parent's outputs are supplied in return by each of the offspring.
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 1, January 1980.

And/Or Programs: A New Approach to Structured Programming 7

LEMMA 2. For any or node u with offspring u' and u", the following hold:
(i) (in., U in.,,) C in. ,

(ii) out. C (out., n out.,,).

It is impor tant to observe that a tree can be easily checked for legality;
properties R2-R5 suggest a straightforward linear algorithm, whereas R1 can
easily be tested in t ime proportional to the square of the number of nodes in the
tree. Two examples of legal nodes are (7) and (8) below, and an example of a legal
program appears in the appendix.

Semantics

(This is a semiformal definition only.) A program T obtains a well-defined
meaning relative to an interpretation I. Each variable x E Z is in terpreted in I as
ranging over a certain domain Dx. Some typical domains are the integers, the
natural numbers, sets of numbers, character-strings, arrays, and lists of numbers
or strings.

Let ho C h be the set of action symbols labeling primitive leaves. By require-
ment R1, the number of inputs and the number of outputs in any node-i.d, of
which a given f E ho is a label, are fixed. The interpretat ion I assigns to each
f @ A0 a (linu I + I out, l)-ary relation, where u is some primitive leaf with lab, =
f, in the obvious way; each component is an e lement of the domain corresponding
to the variable in tha t position. Certainly then, for the interpretat ion to be "good"
we require tha t two variables appearing in the same position in the input (or
output) lists of two similar nodes have to range over the same domain. By
convention, whenever the conditions imposed on an interpretat ion I are not met,
we assign the empty relation as the meaning of T in I. For example, if we have
two primitive leaves l and l' with i.d.'s (f, (x, y), (a)) and (f, (v, w), (d)) then (for
an interpretat ion to be good) we must have Dx = Dr, Dy = Dw, and Da = D4. The
action symbol f is then assigned a subset of D= x Dy x Da.

As a notat ional convenience, the meaning of a primitive leaf l, which we denote
re(l), is regarded as a binary relation over the ou tpu t / inpu t components, using a
semicolon for separation. Thus, in the example above we write (x, y; a) E m(l),
and re(l) is thought of as a subset of (Dx x Dy) x D~. The intuit ion is tha t
(x, y; a) E m(l) if and only if I can produce (x, y) as an output list from the input
list (a).

An interpretat ion I also assigns an large I-arY predicate to each test p E II
appearing in T, where e is an edge of which p is the test. Here too, when two
edges have common tests, we adopt a condition for I to be "good," analogous to
the one for node-i.d.'s with common labels.

We can now extend the above definition to give the meaning, under I, of any
node u in T. In other words, I fixes domains and meanings for primitive actions
and tests, and our semantics extends these to provide a meaning for T. First,
consider the case in which T is free of call leaves. In this case it suffices to show
how to obtain the meanings of and and or nodes given the meanings of their
offspring. The meaning re(T) of a program T is then taken to be the meaning
m(r) of the root of T. Thus, our semantics "extends I upward" in the tree.

We omit a detailed general definition in favor of the definition for the following

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 1, January 1980.

8 David Harel

representat ive examples of and and or nodes. (Note: We use r e (f) and m(u)
interchangeably to denote the meaning of a node u labeled by f.)

(x, y) = f(a, b, c, d)

[p (a , b)] ~ V ~ (b , d)]

(7) / \
(w, x, y) = h(a, c, d) (x, y, v) = g(a, b)

re(f) = {(x, y; a, b, c, d)[(3v)(3w)(((b, d) E re(q)/~ (x, y, v; a, b)E re(g))
V ((a, b) E re (p) /~ (w, x, y; a, c, d) E re(h)))}.

(x, y) = f(a, b, c)

[p(a, ~ (b , c)]

(8)
(w, y) = h(t, c, b) (x, t, v) = g(a, b)

re(f) = {(x, y; a, b, c) I (3t)(3v)(3w)(((b, c) E re(q)/~ (x, t, v; a, b) E re(g))
A ((a, b) ~ re(p) A (w, y; t, c, b) E re(h)))}.

These can be seen to be very natural definitions if v, w, and t are thought of as
being local to the tree, since they do not appear in the node-i.d, off . Th e s t ructure
of the definition for a node of the form

U

then becomes

lab,, can produce out,, from in,,

iff
(there exist locals)((guard for u' ok /k lab., produces out., from in.,)

® (guard for u" ok/~ lab.- produces out.- from in.,,))

(9)

where ® can be /~ or V.
Considering now the general case in which call leaves are present, the s tandard

least-fixpoint semantics [2, 14, 15] is adopted. In our f ramework this can be
described as follows: First, let T be a program in which all call leaves happen to
be labeled with the label, labr, of the root of T. Le t T ' be T with all those leaves
relabeled with some new symbol, say f. Note tha t T ' is free of call leaves. Now,
given a relat ion R of appropriate ar i ty and structure, we obtain I' f rom an
in terpreta t ion I by having I' assign R to the new symbol f R is said to be a
f ixpoint of T if m'(r) -- R, where m'(r) is the meaning of the root of T ' under I'.
The meaning of r under I is now defined to be the set- theoret ical ly smallest
(appropriately typed) relation R which is a fixpoint of T. By a well-known
theorem due to Knaster and Tarski (cf. [14]) this least-fixpoint exists, and in fact

ACM Transact ions on Programming Languages and Systems, Vol. 2, No. 1, J anua ry 1980.

And/Or Programs: A New Approach to Structured Programming 9

is unique, when certain conditions {entailing the property of continuity) are met
by the primitive operations of I. In particular, conventional primitive operations
on numbers, character-strings, etc., all fall within this category. Again, whenever
the conditions are not met, we let m(r) = ~. Thus, the relation defined by a node
which calls itself recursively is the least defined relation which is produced when
it itself is taken as the relation achieved by the recursive calls.

For the more general case where call leaves correspond to arbitrary internal
nodes, the slightly more complex notion of simultaneous fixpoints is used. Here,
briefly, the set of k subtrees whose roots correspond to the k different labels on
the call leaves of the program are considered simultaneously. One then obtains
fixpoints consisting of k relations RI , Rk such that, for each i, interpreting
the occurrences (including internal ones) of the k labels as R1 Rk in the ith
subtree results in the root of that subtree being assigned Ri as its meaning when
the usual propagation process is carried out. Then the least such fixpoint, in the
appropriate extension of the subset ordering to tuples of relations, is adopted as
the meaning of the k kinds of call leaves. More details about least-fixpoint
semantics can be found in the references. It is worth noticing that a call leaf can
be viewed as an abbreviation of the infinite tree obtained by repeatedly copying
the subtree of its similar ancestor using fresh variables whenever necessary. This
remark in fact illustrates the correspondence between least-fLxpoint semantics
and the copy-rule of [1].

Note that nonrecursive subroutines are a special case of call leaves: A subrou-
tine S can be modeled by a subtree which is then attached to an or-node
(anywhere in the tree) with guard false, so that it does not get executed except
as a result of the occurrence of an appropriate call leaf. Note also that, since the
value of a variable is not modified at all, our "parameter-passing mechanism,"
which is the term one might use to describe the process of associating the input
and output lists in a call leaf to those of its corresponding similar internal node,
can be thought of as call by value-result.

A general correspondence between context-free grammers and and/or graphs,
of which our language can be seen to be a refinement and an application, has
been pointed out by Hall [7]. Also, a similarly motivated method of writing
programs dominated, as is ours, by subgoaling using recursive calls, has been
described recently by Hehner [11].

Abbreviations

We discuss some abbreviations useful in writing real and/or programs. We allow
the omission of edge-i.d.'s; an edge without one is treated as being labeled with
the test t rue, which has a fixed interpretation as the constantly true predicate.
(In practice it turns out that tests are invariably attached to edges leading from
or-nodes, in which case they act like conditionals or guards [5].}

We also allow tests to involve standard, say first-order, logical symbols with
the understanding that interpretations are forced to interpret them in the stan-
dard way. For example, -~P is to be interpreted as the predicate which is the
appropriate complement of P.

We allow using k-ary trees for k _> 2, and the way in which nodes of out-degree

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 1, January 1980.

10 David Harel

>2 are introduced is by abbreviating subtrees of the form

U U

v u' and u' v (10)

V p V H V p O ~

by the 3-ary and-nodes

U U

U p V pr U p U ~ V p V"

and similarly for or-nodes. This can be done whenever the tree does not have a
call leaf similar to v. Also, when the and nodes in (10) are of degree _>2 they too
can be collapsed (when no such call leaves are present) from, say

U U

v ul Uk to Vl V, Ul Uk (12)

Vl V2 Vn

This way and and or nodes of arbi t rary finite out-degree are obtained. One can
easily prove the following result which confirms tha t these abbreviations are
justified, in the sense tha t no semantic information is lost by adopting them.

LEMMA 3. Let T be a tree which can be obtained from each of the legal
and/or programs T' and T" by abbreviating parts o[them as k-ary nodes in the
above manner. Then for any interpretaion L m(T') = ra(T").

This is as far as we go in providing "official" shortcuts. However, for ease in
writing a nd /o r programs one might introduce additional ones such as abbreviating
long lists of inputs by single symbols.

4. VERIFICATION OF AND/OR PROGRAMS

We describe the classical F loyd /Hoa re invariant-assert ion me thod [6, 12] as
applied to and /o r programs. The way in which partial correctness is established
using this method is completely analogous to the calculation of the meaning of a
program described in Section 3. As such, the method seems to render the an d /o r
language a good tool for explaining the principles of program verification to the
unknowing.

In the following, assume we are given a program T with root r labeled x = f (y) ,
and a fixed legal in terpreta t ion I. The partial correctness of T in I is defined with

A C M T r a n s a c t i o n s on P r o g r a m m i n g Languages and Sys tems , Vol. 2, No. 1, J a n u a r y 1980.

And/Or Programs: A New Approach to Structured Programming 11

respect to an assertion Pr(x; y), to hold if and only if

(VxVy)((x; y) E m(r) D Pr(x; y)). (13)

This can be viewed as asserting tha t m(r) C Pr for the relat ions m(r) and P~.
(Note: The conventional definition of partial correctness with respect to a
precondit ion R and a postcondition Q (cf. [12, 14]) is a special case, as observed
by taking Pr(x; y) to hold iff R(y) D Q(x)).

Thus one can think of proving the partial correctness of a program as showing
tha t what indeed happens, i.e., m(r), is at least as much as what we th ink happens,
i.e., P~. One can now conceive of a method in which every node u is annota ted
with an assertion P , which is a relation of appropriate ari ty and type, and which
captures our idea as to what u accomplishes. If we can then show m(u) C P , for
every node u, the proof would be complete. Say P , is a good assert ion at u if
m(u) C P . .

Assume now that, having P., and P.,. a t tached to the offspring u ' and u" of a
node u, we can calculate an assertion P . which is good if P., and P.,, are. Clearly,
if the tree is free of call leaves it would suffice to somehow annota te the leaves
(all of which are primitive) and verify, appealing to m(l) for this, tha t Pt is good
for every leaf 1. Then the method postulated above would be used to propagate
good assertions up the tree until Pr is obtained, By our assumption this would
establish tha t Pr is good, i.e., tha t T is partially correct with respect to Pr.

Before dealing with call leaves, we show tha t this goodness-preserving propa-
gation is indeed possible, and is in fact completely analogous to the me thod for
calculating the meaning of a node u given the meanings of its offspring. We
describe it for the example nodes (7) and (8) of Section 3. Using P[and P .
interchangeably to denote the assertion a t tached to a node u labeled with f, and
assuming the offspring are labeled with Ph and P~, we define, for cases (7) and
(8), respectively,

Pf(x, y; a, b, c, d) iff (3v)(3w)(((b, d) E m(q) A Pg(x, y, v; a, b))
(7')

V ((a, b) E re(p) A Ph(w, x, y; a, c, d))).

Pf(x, y; a, b, c) iff (3t)(3v)(3w)(((b, c) E re(q) A P~(x, t, v; a, b))
(8')

A ((a, b) E re(p) A Ph(w, y; t, c, b))).

I t is trivial to show tha t in both cases Pf is good whenever Pg and Ph are.
Fur thermore , this proper ty is retained even when any assertion weaker than Pf
of (7') or (8') is used. Thus, for example, if (7') produces the assertion x = a! A y
= 0, we might equally well use x = a! alone for the annotation.

Turning to call leaves, since the relation we assign as a meaning to a node u
with call leaves similar to itself is the least fLxpoint, it is obvious tha t every
fixpoint, when a t tached to u as an assertion, is a good assertion at u. Th e intuit ion
is simple; a call leaf with the same label as u is asserted to behave on its inputs
exactly as u would have behaved on the same inputs. I t follows tha t the annotat ion
me thod described above for trees free of call leaves extends to the general case:
a t tach assertions to call leaves as well as to primitive ones, and propagate all
assertions upward through the tree, making sure tha t when a node u which is
similar to a call leaf l is reached, P , and Pt are equal.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 1, January 1980.

12 David Harel

The method exhibited above can also be described as follows: A full annotation
of a program T with respect to an interpretation I is one in which each node u is
annotated with an assertion P,, of appropriate arity and type. A full annotation is
said to be good if the following hold:

(a) For every primitive leaf l, m(l) C Pl.
(b) For every call leaf I with similar internal node u, P, = Pi.
(c) For every node u of the form

U

U' U"

the implication suggested by the following scheme holds:

(there exist locals) ((guard for u' ok/~ assertion for u' holds)

® (guard for u" ok A assertion for u" holds))

implies

assertion for u holds

where ® can be/~ or V. One can then easily prove the following theorem, which
amounts to the soundness of this proof method.

THEOREM 1. A good annotation satisfies re(u) C P, for every node u. In
particular, T is partially correct with respect to Pr.

We remark that the assertions attached to call leaves are the inductive assertions
of the Floyd/Hoare method, and their invariance is precisely the property
required in (b) above. The reader familiar with the literature on logics of programs
and program verification will notice that not treating the issue of the language in
which the assertions are written permits us to work freely with relations and, for
example, to use the term "equal" for assertions without having to define concepts
such as logical equivalence and syntactic substitution in some formal logic. The
question of completeness of the method (the formulation of which requires the
notion of assertion language anyway) is avoided in this paper, as is the problem
of specifying the restrictions on interpretations to be amenable to the least-
fixpoint definition.

Notice that the frequently recommended discipline of developing program and
proof simultaneously becomes very natural in the and/or language; a description
of the intended behavior of each node can be given at the time of its construction,
thus providing a full annotation which, if correct, should also be good in the sense
of the above definition.

Similarly, modular or hierarchical verification, in which large components of
a program are verified pending verification of smaller ones, is naturally carried
out. Assumptions about the behavior of subtrees can be incorporated as assertions
attached to the roots of those subtrees, and based upon this the larger tree can be

ACM Transactions on Programming Languages and Systems, Vol. 2, No. l, January 1980.

And/Or Programs: A New Approach to Structured Programming 13

annotated and verified. Later the subtrees themselves can be reconsidered and
their assertions verified independently.

These remarks, coupled with the simple analogy between (7), (8) and (7'), (8'),
seem to indicate that the and/or language is a natural one for introducing the
basic principles of program verification to a person with no prior knowledge of
them. We will not go into known methods for proving total correctness, absence
or presence of infinite loops, etc., but urge the reader familiar with such methods
to observe the naturalness with which they too can be embedded within this
framework.

The appendix contains an example of a program and a good annotation.

5. PRACTICALITY

In this section we comment on the virtues and limitations of our language from
the viewpoints of the programming language designer and implementer, and the
writer of large programs.

The two main drawbacks of the language seem to be its nontextual form and
its rather unconventional control-flow-obscuring structure. The latter problem,
discussed somewhat further in Section 6, is closely related to that of constructing
a compiler or interpreter for the language. The former though, is merely technical
and can be eliminated in a variety of popular ways, incorporating recent devel-
opments in the area of visual representation and text and data-structure editing.

A strange mixture of flexibility and restriction can be found in the language.
On the one hand, we are given a rather large amount of freedom in choosing an
implementation, as is evident, for example, from the fact that nonsequential and-
siblings can be executed in parallel (and more generally, so can any two "inde-
pendent" nodes). This though, as mentioned, places a larger burden on the
implementer. On the other hand, the restrictions on the input and output lists
eliminate many of the intricate and subtle problems with modern high-level
programming languages, such as aliasing, scope and binding problems, parameter-
passing mechanisms, and storage allocation. Again, this is at the expense of the
implementer of the language and, if one wants, can be attributed to the inherent
difference between a programming/specification language and a computer lan-
guage (which is what the former becomes once implemented).

We now take the liberty of reporting some pleasant properties of the proposed
language, encountered by the author (albeit subjectively) when writing a large
and/or program. The program, a flowcharter capable of accepting inputs from
many programming languages, is described in [9] and its details are unimportant
here. The and/or tree itself appears in [10, app. II-5] and is of restricted form; or
nodes are used only as i f P t hen else (i.e., with P and -~P labeling its outgoing
edges), and nodes are not used for nontrivial parallelism, and call leaves are used
only for simulating iterative loops (such as that in tree (5) of Section 2). In the
terminology of programming theory, our program is deterministic, sequential,
and regular.

Nevertheless, even with this restrictive language, we experienced considerable
ease in designing the program. The requirement of having to label each node
with a different action symbol quickly became an aid instead of a burden; the
names we used proved valuable in remembering the functions that various

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 1, January 1980.

14 David Harel

subtrees performed. Some examples are add-one, advance, analysis, collate,
count, finish, modify, next, parse, prepare, reduce, spread, and update. Similarly,
names for variables were chosen quite carefully, introducing multiply primed
versions of them when needed.

As it turned out, the program, in each stage of its preparation, was extremely
readable. The fact that at each stage the unfinished product looks just like a
finished one, except that the primitive leaves are not yet primitive enough, helps
considerably in the writing process. At various stages misjudgments were made
as to how primitive to make the leaves, but the effort involved in, say, eliminating
redundant subgoaling (for instance, when deciding that finding the first blank in
a character string can be primitive, and that there is no need to subgoal down
further) was negligible; all that was needed was to prune the subtree under the
node find-blank.

Similarly, the effort involved in modifying a part of the program was not
increased by having to worry about ruining other parts; subtrees can be removed
and inserted, and it is only important to keep the input and output lists of the
root of the subtree fixed. For example, suppose a change in the form of some
output table is required. In most conventional programming languages, if the
preparation of that table was not coded into an isolated subroutine, many
problems can occur when attempting to modify some of the program text. In
contrast, in an and/or program chances are that one will find a node labeled, say,
output = tabulate (data). The subtree rooted in this node can then be modified
without concern. In other words, in the and/or language "subroutines" are the
rule and not the exception.

It was our pleasant (but again, subjective) experience to find that, in contrast
to previous experience with conventional languages in which quite the opposite
was true, months after the program was completed we were able to recomprehend
any given part of it virtually at a glance. We are not claiming that these virtues
are unique to our particular language. Certainly, employing any careful discipline
of structured programming with stepwise refinement can produce the same
pleasant results. Our point though is that the present language seems to impose
this kind of discipline, and with a minimal amount of extra documentation,
external devices, and programming aids.

We found, though, that at certain levels the and/or style became somewhat
artificial and cumbersome when compared with conventional alternatives. For
example, in our opinion, the and/or equivalent of a simple do-loop (say in PL/I)
for finding the first blank character in a string is quite undesired. However, the
and/or subgoaling process can be stopped whenever a node can be more succinctly
and clearly defined in one's favorite programming language. That node can then
be left as a primitive leaf in the and/or program and can be further specified
elsewhere. Personally, in writing the flowcharter of [9, 10], and in further exper-
iments, we acquired a reasonable sense of the level at which and/or programming
was no longer appropriate for us. It seems that for any combination of program-
mer/large-program such a level exists and can be sensed by the programmer in
the process of writing the large and/or program. We are confident that despite
the inconvenience of having to write programs in treelike form (and having,
therefore, to measure their size in square feet, or sometimes acres, instead of
number of lines of code.. .) , the task of producing the large program by the

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 1, January 1980.

And/Or Programs: A New Approach to Structured Programming 15

programmer can be greatly eased by appealing to and/or programs until the level
discussed above is reached.

We would also venture the opinion that and/or programs can be beneficially
used to teach the basic principles of programming to students. The concepts of
and and or subgoaling seem natural enough for even nonmathematically-inclined
people to comprehend, thus capturing, as a bonus, the concepts of nondetermin-
ism and a straightforward kind of parallelism. Also, the way in which recursion
is embedded in the trees seems to give rise to a natural way of describing this,
otherwise quite difficult, concept.

6. DIRECTIONS FOR FUTURE WORK

The most obvious project to be carried out is the implementation of a language
such as this. As hinted earlier, such a task would obviously involve either a
textual linear representation for the input tree or a two-dimensional method of
entering it directly. Perhaps more substantially, a decent implementation will
have to decide upon the sequence(s) of operations to be performed, i.e., the
control flow of such a program. Note that while in conventional languages the
control flow is usually given and is transparent to the compiler/interpreter but
the data flow is obtained by some kind of analysis, here the situation is dual. The
way in which the data flows through an and/or tree is more transparent than
that of the control. Methods for optimizing and/or programs (in the sense, say, of
using a small number of "real" variables to contain in succession the values of a
large number of variables) should be developed. It might also be possible to
develop a smooth interface with a mechanism enabling the programmer to define
his own (abstract) data types.

Some comparative research is lacking in the present paper, comparing and/or
programs with data flow procedures, applicative languages such as Lisp, parallel
programming languages, networks, and decision trees. Some observations on the
connection with the latter two will appear in a subsequent paper.

On a more theoretical level, there are questions which can be asked concerning
the power of uninterpreted and/or schemes compared to various classes of
program schemes considered in the literature. Also, various interesting measures
of the textual complexity of and/or programs seem to justify investigation, such
as the depth, width, and size of the tree. In this context, one can define the
and/or depth of a tree as the maximal number of alternations of and and or
nodes on paths from the root to a leaf, this measure having well-known counter-
parts in the other applications of alternation mentioned in Section 1. As a first
result in this direction, we can show that with the addition of auxiliary variables,
every and/or program can be equivalently written as one with and/or depth 1.
Equivalently, that is, in the uninterpreted sense of having the same effect in all
interpretations. This result too will appear in a subsequent paper.

However, the most important question in our opinion is whether and/or
programs will turn out in practice to be a real help to the everyday designer and
writer of large programs.

APPENDIX

As claimed in the text, the virtues of and/or programs are not apparent in small
toy programs, and only an example of a large real program could illustrate the

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 1, January 1980.

16 David Harel

points we make. However, since a programming language cannot be introduced
without at least one example of a program, and since we obviously cannot exhibit
a large one here, we present the and /o r t ree of a simple recursive program for
computing the factorial of a nonnegative integer, together with a good annotation.
The reader is requested to view the example accordingly, i.e., as an illustration of
some of the definitions, and not compare it with his own, simpler-looking version
of a factorial progTam.

In the example, the interpreta t ion consists of the domain of the natural
numbers, and 1, m u l t , p r e d , and =0 are in terpreted respectively as the number
"one," the functions of multiplication and subtract ion of 1, and the test "equal to
zero." I t is trivial to check the goodness of the annota t ion and hence the partial
correctness of the .program. The assertions a t tached to the nodes are parenthe-
sized:

y = factorial(x) (x >_ 0 A y = x!)

[x ~ l = o] [~x = o]

t = (y = 1) y = 1() y = factoria -of-posi ive(x) (x > 0 A y x!)

y = mul t (y" , x)

(y = y".x)

y" = factor ia l (y ') y ' ffi pred(x)

(y'_> 0 A y" = y'!) (y' = x - 1)

ACKNOWLEDGMENT

The research repor ted here was st imulated by, and to an extent is derived from,
ideas implicit in a specification method which was described in Hamil ton and
Zeldin [8], and which is current ly practiced on a commercial basis at Higher
Order Software, Inc., Cambridge, Mass. T h e au thor is grateful for discussions
with the staff members of H.O.S. The comments of the referees were most helpful.

REFERENCES

1. P. Naur, Ed. Revised report on the algorithmic language ALGOL 60, Commun. ACM 6, 1 (Jan.
1963), 1-17.

2. DEBAKKER, J.W., AND SCOTT, D. A theory of programs. Unpublished notes, 1969.
3. CHANDRA, A.K., AND STOCKMEYER, L.J. Alternation. In Proc. 17th IEEE Syrup. on Foundations

of Computer Science, 1976.
4. DAHL, O.J., DIJKSTRA, E.W., AND HOARE, C.A.R. Structured Programming. Academic Press,

New York, 1972.
5. DIJKSTRA, E.W. A Discipline of Programming. Prentice-HaU, Englewood Cliffs, N.J., 1976.
6. FLOYD, R.W. Assigning meaning to programs. In Mathematical Aspects of Computer Science

(J.T. Schwartz, Ed.), Proc. Syrup. in Applied Mathematics, Vol. 19, American Math. Soc.,
Providence, R.I., 1967, pp. 19-32.

7. HALL, P.A.V. Equivalence between AND/OR graphs and context-free grammers. Commun.
ACM 16, 7 (July 1973), 444-445.

8. HAMILTON, M., AND ZELDIN, S. Higher order software--A methodology for defining software.
IEEE Trans. Softw. Eng. SE-2, 1 (March 1976), 9-32.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. I, January 1980.

And/Or Programs: A New Approach to Structured Programming 17

9. HAREL, D., NORVm, P., ROOD, J., AND TO, T. A universal flowcharter. In Proc. AIAA Computers
in Aerospace Conf. II, Los Angeles, Calif., Oct. 1979.

10. HAREL, D., AND PANKIEWICZ, R. A universal flowcharter. Tech. Rep. 11, Higher Order Software,
Inc., Cambridge, Mass., Nov. 1977.

11. HEHNER, E.C.R. do considered od: A contribution to the programming calculus. Acta Inform.
11 (1979), 287-304.

12. HOARE, C.A.R. An axiomatic basis for computer programming. Commun. ACM 12, 10 (Oct.
1969), 576-580.

13. KOZEN, D. On parallelism in Turing machines. In Proc. 17th IEEE Symp. on Foundations of
Computer Science, 1976.

14. MANNA, Z. Mathematical Theory of Computation. McGraw-Hill, New York, 1974.
15. PARK, D. Fixpoint induction and proofs of program properties. In Machine Intelligence 5,

Edinburgh Press, Scotland, 1970.
16. SHOENFIELD, J.R. Mathematical Logic, Addison-Wesley, Reading, Mass., 1967.
17. VON NEUMANN, J., AND MORGENSTERN, O. Theory of Games and Economic Behavior. Prince-

ton Univ. Press, Princeton, N.J., 1953.
18. WINSTON, P.H. Artificial Intelligence. Addison-Wesley, Reading, Mass., 1977.
19. WIRTH, N. Systematic Programming: An Introduction. Prentice-Hall, Englewood Cliffs, N.J.,

1973.

Received January 1979; revised October 1979

ACM Transactions on Programming Languages and Systems, Voi. 2, No. 1, January 1980.

