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One of our aims is to make such well-structured programs 
t h a t  t he  in te l l ec tua l  e f f o r t . . ,  n e e d e d  to u n d e r s t a n d  t h e m  is 
p ropo r t i ona l  to  p r o g r a m  l eng th  . . . .  

--E.W. Dijkstra 

We do not know whether alternation will find its way into 
p r o g r a m m i n g  languages ,  or h a v e  a role to p lay  in s t r u c t u r e d  
p rog ramming .  

- - A . K .  C h a n d r a  a n d  L.J. S t o c k m e y e r  

1. INTRODUCTION 

In this paper  we present  a programming/spec i f ica t ion  language based on the 
concept  of a l ternat ing a n d  and or  subgoals. The  general notion of a n d / o r  
a l ternat ion is well known and occurs in ma themat i ca l  logic (al ternation of 
quantifiers, cf. [16]), game theory  (and/or  game trees, cf. [17]}, and artificial 
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2 David Harel 

intelligence (and/or problem solving trees, etc., cf. [18]). Recently, in [3] and 
[13], alternation was introduced into theoretical computer science as a powerful 
tool in classifying the computational complexity of classes of problems, and 
applications of it were illustrated and envisioned. It is from [3] that our second 
quotation above is taken. The language proposed here serves as a natural 
application of this concept to the discipline of structured programming (cf. [4]) 
from which the first quotation is taken. 

It is commonly claimed that as much as the efficiency of a program is important 
(e.g., in terms of its consumption of resources such as time or space), its clarity, 
readability, and manageability are also to be a major concern of its author. To 
this end various disciplines have been advocated, including the use of structured 
programming and flowcharting. The former is an aid in synthesizing the program 
in a stepwise top-down fashion, and the latter is a tool for pictorially describing 
it. 

One of the apparent problems with structured programming as it stands is in 
the fact that the history of the subgoaling process which produced the final 
program is not captured by the final text. Except for some consistent indenting 
of the program text (e.g., in Algol or PL/I)  no "information-at-a-glance" pictorial 
description of the design structure of the program is present. Consequently, it is 
not always easy to carry out a modification without a considerable amount of 
insightful preparation. Thus, for example, if the first step of synthesizing a simple 
compiler was in refining the compilation process into the two subgoals of parsing 
and coding, this fact will not always be obvious from glancing at the final program 
text of the compiler; not until the text has been appropriately partitioned in a 
visual way, say by circling the two components. A complete logical structuring of 
the program text will consist typically of a nested set of such circles. In other 
words, the depth and structure of the stepwise composition of the program are 
not visible in the final product. 

Similarly, the virtues of the visual representation supplied by flowcharts, while 
illustrating the flow of control, are of little help in capturing the structure of the 
logical design even when so-called "structured flowcharts" are employed {these 
corresponding essentially to indented textual programs), and a similar process of 
nested encircling has to be carried out. This situation is most problematic at later 
stages, i.e., when the program is to be constantly maintained and often modified. 
Cumbersome documentation then becomes a necessity. 

The and/or programming language described in Section 3 is designed with this 
problem in mind; i.e., in the final tree-like progam the flow of control of a 
particular implementation of that program is secondary to its logical structure. It 
is precisely the structure of this natural stepwise synthesis of the algorithm that 
the tree captures. Each node of the tree represents the program consisting of the 
subtree rooted in that node, with its immediate descendants representing its 
decomposition into subgoals. Thus, in the above example, parse and code would 
be natural choices for the offspring of the node (in this case the root of the tree} 
denoted by compile. As will become clear, the "layers" in which the program is 
arranged, these being in the heart of the idea of structured programming (cf. [4, 
pp. 48-49]), correspond to the levels of the tree. 

The resulting language possesses such pragmatic niceties as readability and 
ease of modification as well as considerable flexibility in choosing an implemen- 
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tation. This flexibility will be seen also to be the main drawback of our language; 
the flow of control can be obtained from the program text only by some moderate 
amount of analysis. Also, the language gives rise to rather natural versions of 
some of the standard methods for proving the correctness of programs. The 
programs, in general, admit both nondeterminism and a kind of parallelism, 
features which are lately being considered essential in many types of program- 
ming. 

Section 2 contains an informal introduction to the language, and Section 3 
presents the syntax and semantics. In Section 4 we illustrate how and/or programs 
are to be verified, while Section 5 is devoted to discussing the advantages the 
language offers the implementer and programmer. Some directions for future 
work are discussed in Section 6. 

2. AND/OR SUBGOALING 

Consider the following example in which a cake is to be baked from some 
ingredients. Similarly to the line taken in [4, pp. 27], if baking cakes is a known 
primitive ("an instruction from a well-understood repertoire" [4]), then the one- 
node tree 

cake = bake (ingredients) (1) 

completely solves the problem. If, on the other hand, we do no have bake in our 
repertoire, then the following are two suggestive ways of refining the main goal 
into subgoals: 

cake = bake (ingredients) 

(2) 

cake = heat-in-oven (batter) batter -- mix (ingredients) 

cake = bake (ingredients) 

(3) 

cake = bake-regular-cake (ingredients) cake = bake-sponge-cake (ingredients) 

Tree (2) replaces bake by two subgoals, both of which are to be achieved for it to 
be completed, and (3) replaces it by two subgoals, one of which is to be achieved. 
We might want to restrict the choice of the sponge-cake alternative in (3) to the 
case in which the ingredients include at least five eggs, in which case we allow the 
attachment of this condition as a "guard" [5] on the appropriate edge, obtaining 

cake = bake (ingredients) 

~ ~ [ #  eggs (ingredients) >_ 5] (4) 

cake = bake-regular-cake (ingredients) cake = bake-sponge-cake (ingredients) 
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4 David Harel 
The decomposition then resumes, regarding each of the descendants as a root. 
The process gives rise to a tree with and  and or nodes, and the decision as to 
where the decomposition stops depends upon the primitive operations at hand. 
In our example, the operation of adding a little sugar to the mixture might be 
primitive, and accordingly it is conceivable that  

new-mixture = add-sugar {mixture, sugar) 

will be one of the leaves of the tree. The power of iteration will be obtained by 
allowing leaves to be labeled not only with primitive operations but also with 
labels labeling (not necessarily immediate) ancestors, thus modeling procedure 
calls. For example, sweetening a mixture might be achieved by the following 

subtree: 

new-mixture = sweeten (mixture, sugar) 

[mixture is swee ixture is not sweet] 
I "  

/" (5) 
new-mixture = mixture new-mixture = s w e e ~ e r  (mixture, sugar) 

a ~ ~ 

new-mixture = sweeten (int.-mixture, sugar) int.-mixture = add-sugar (mixture, sugar) 
b e 

in which leaves a and c represent primitives and leaf b a recursive call to the root 
of the subtree. Clearly (5) is to act simply as a whi le  statement; adding sugar is 
to be repeated as long as the mixture is not sweet. Note that on account of the 
oUtcome of an operation being different from its input (i.e., "=" denotes a 
definition, not an assignment) we do not write 

mixture = add-sugar (mixture, sugar), 

but rather introduce an intermediate variable, int.-mixture. Note also that just as 
the or node in (3) represents a nondeterministic choice but can be restricted (in 
the spirit of (5)) to be more like a deterministic i f  t hen  else, so does an and  node 
represent a clean parallel construct but can be restricted to be sequential as in 
(2). It will be perfectly legal to have a subtree of the form 

(mixture, whites) = prepare (some-things, eggs) 

A ~  (6) 

mixture = mix (some-things) whites = separate-yolks (eggs) 

in which clearly no ordering on the descendants is forced by the input-output 
pairs (as was the case in (2)). Still, (2) and (6) have in common the property that  
achievement of the goal in the root of the subtree is dependent upon achieving 
both subgoals in its descendants. 

It will become evident that  and  nodes subsume sequential composition and 
parallel constructs (e.g., A;B, AII B) and or nodes subsume nondeterministic 
choice and various versions of conditionals (e.g., A U B, i f  P t hen  A else B, IF 
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Q --* B F I  of [5], etc.). The  point  is tha t  in the former  cases both A and B are 
executed and in the lat ter  only one is. The  power obtained by leaves such as b in 
(5) will be the power of general, possibly mutual  recursive calls and thus will be 
seen to subsume versions of the repeti t ive construct  (e.g., w h i l e  P d o  A, r e p e a t  
A until P, DO P --) A [:] Q --~ B OD of [5], etc.). 

We now turn to providing a more rigorous definition of the syntax and 
semantics of the language. 

3. THE AND/OR LANGUAGE 

We define a ra ther  strict syntax for our language but  later  relax it somewhat  by 
employing some helpful abbreviations. Our intent  is to keep the basic constructs 
in the definition few and clear in order to simplify the semantics and later  
discussions. 

Syntax 

We have sets E, A, and H of variable, action, and test, symbols, respectively. A 
node-i.d, s is a triple (f, a, b) where f E h  is the label  of s, and a and b, called, 
respectively, the output  and input  lists of s, are finite tuples of elements  of E. 
Similarly, an edge-i.d, t is a pair (p, a) where p E H is the test of t, and a, the 
argumen t  l ist  of t, is also a finite tuple over Z. 

We now consider finite binary trees in which each node u is marked with a 
node-i.d., s,, and each edge e with an edge-i.d., te. In addition, every internal  (i.e., 
nonleaf) node carries an indication as to whether  it is an a n d  or an or node. The  
components  of s, and te are appropriately denoted by lab,, out,,  in,,  teste, and 
arge. In our examples we write a node-i.d. (f, a, b) as a = f (b)  and an edge-i.d. 
(p, a) as p(a). 

We freely use conventional  terms for talking about  trees, such as root, leaf, 
pa th ,  ancestor,  and descendant .  In addition, an immediate  descendant  (ancestor) 
of a node is called its offspring (parent),  and the two offspring of an internal  a n d  
(respectively or) node are and-s ibl ings  (respectively, or-siblings). When no 
confusion can arise we will apply set- theoret ic  operations to input and output  
lists, regarding them as multisets of the variables occurring in them. Thus,  
in ,  = O means  tha t  the input list of node u is the empty  tuple. 

A tree T is a legal and~or  program,  or program for short,  if it satisfies the 
following requirements:  

R1. One or more leaves and one internal node can have a common label, and in 
this case these leaves will be called call  leaves. Every  other  leaf is a pr imi t i ve  
one. Primitive leaves may  also have common labels. No other  pairs of nodes 
may have common labels. Any pair of nodes u and u' having a common label 
must  satisfy I in ,  I = I inu, I and I out ,  I = I out ,  ' I . 1 
For any variable x E E appearing in an input list in,,  exactly one of the 
following holds: 
(a) u is the root  of T, 
(b) x ~ in,., where u' is the parent  of u, 

R2. 

Our intention here is that  any number  of such sets (of leaves and internal node having a common 
label) is allowed. "Call leaf" is the general name we give a leaf in any one of these sets. 
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(c) x E out,,,, where u' is the sibling of u, their (common) parent u" is an 
and node, and in,, C in,,,. 

R3. For any variable x E E appearing in an output list out,,  exactly one of the 
following holds: 
(a) u is a leaf of T, 
(b) u is an or node and x appears in the output lists of both of the offspring 

o f  U, 
(c) u is an and node and x appears in the output list of exactly one of the 

offspring of u. 
R4. For any edge e leading from node u to (its offspring) u', arge C in, .  

Furthermore, for any two edges e and e', if teste = teste,, then ]arge ] = 

] arg~, ]. 
R5. For any node u, in, n out,, = ~. 

Requirement R1 specifies that  each node is to represent a unique action labeled 
with that node's label. The exceptions are primitive actions which can occur in 
more than one place and the "procedure calls" which are modeled by call leaves. 
Two nodes having the same label are called similar. The pairs of input and 
output lists of similar nodes must agree in length. 

Requirements R2, R3, and R4 formalize the ways in which inputs and outputs 
flow through the tree. By R2, inputs are handed down from parent to offspring 
but can also be produced (as an output) and handed over by an and-sibling. In 
the latter case, however, the sibling must be executable independently of the node 
in question. This situation then induces an ordering on the two siblings, thus 
making the and node a sequential one. By R3, outputs are initially produced by 
leaves and are handed up from offspring to parent. By R4, inputs are also handed 
down from parents to tests guarding their offspring. The way in which the inputs 
inrof the root of the tree flow down through the tree to produce the final outputs 
OUtr should now be quite clear. 

A word about R5. Our language is not to be thought of as a conventional 
programming language in which the values of variables representing memory 
locations are modified; we do not allow "changing" the value of x as in x = f(x). 
Indeed, the meaning of x = f(y) is that  (the unique value of) x is to be equal to 
that of f ai~plied to y. Thus, our variables are not really variables at all but rather 
represent concrete, fixed data, much like the wires in a network. Our method of 
imposing this interpretation is to require that input and output lists be disjoint. 

The following lemma, which can be proved easily from the definitions, shows 
that  an and node is well behaved in the sense that  its inputs are sufficient for the 
requirements of its offspring and its offspring in return loyally produce its outputs. 
(In the following we constantly assume that all trees are legal programs.) 

LEMMA 1. For any and node u with offspring u' and u", the following hold: 
(i) either in,, C in, or in,- C in,; 

(ii) OUtu C (out,, U out,,,). 

Similarly, the inputs of both offspring of an or node are supplied by the parent 
and the parent's outputs are supplied in return by each of the offspring. 
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LEMMA 2. For any or node u with offspring u' and u", the following hold: 
(i) (in., U in.,,) C in. ,  

(ii) out. C (out., n out.,,). 

It  is impor tant  to observe that  a tree can be easily checked for legality; 
properties R2-R5 suggest a straightforward linear algorithm, whereas R1 can 
easily be tested in t ime proportional  to the square of the number  of nodes in the 
tree. Two examples of legal nodes are (7) and (8) below, and an example of a legal 
program appears in the appendix. 

Semantics  

(This is a semiformal definition only.) A program T obtains a well-defined 
meaning relative to an interpretation I. Each variable x E Z is in terpreted in I as 
ranging over a certain domain Dx. Some typical domains are the integers, the 
natural  numbers,  sets of numbers,  character-strings, arrays, and lists of numbers  
or strings. 

Let  ho C h be the set of action symbols labeling primitive leaves. By require- 
ment  R1, the number  of inputs and the number  of outputs  in any node-i.d, of 
which a given f E ho is a label, are fixed. The  interpretat ion I assigns to each 
f @ A0 a (linu I + I out, l)-ary relation, where u is some primitive leaf with lab, = 
f, in the obvious way; each component  is an e lement  of the domain corresponding 
to the variable in tha t  position. Certainly then, for the interpretat ion to be "good" 
we require tha t  two variables appearing in the same position in the input  (or 
output)  lists of two similar nodes have to range over the same domain. By 
convention, whenever  the conditions imposed on an interpretat ion I are not  met,  
we assign the empty  relation as the meaning of T in I. For  example, if we have 
two primitive leaves l and l' with i.d.'s (f, (x, y), (a)) and (f, (v, w), (d))  then  (for 
an interpretat ion to be good) we must  have Dx = Dr, Dy = Dw, and Da = D4. The  
action symbol f is then assigned a subset of D= x Dy x Da. 

As a notat ional  convenience, the meaning of a primitive leaf l, which we denote  
re(l), is regarded as a binary relation over the ou tpu t / inpu t  components,  using a 
semicolon for separation. Thus,  in the example above we write (x, y; a) E m(l),  
and re(l) is thought  of as a subset of (Dx x Dy) x D~. The  intuit ion is tha t  
(x, y; a) E m(l)  if and only if I can produce (x, y) as an output  list from the input  
list (a). 

An interpretat ion I also assigns an large I-arY predicate to each test  p E II 
appearing in T, where e is an edge of which p is the test. Here  too, when two 
edges have common tests, we adopt  a condition for I to be "good," analogous to 
the one for node-i.d.'s with common labels. 

We can now extend the above definition to give the meaning, under  I, of  any 
node u in T. In other  words, I fixes domains and meanings for primitive actions 
and tests, and our semantics extends these to provide a meaning for T. First, 
consider the case in which T is free of call leaves. In this case it suffices to show 
how to obtain the meanings of and and or nodes given the meanings of their  
offspring. The  meaning re(T) of a program T is then taken to be the meaning 
m(r) of the root  of T. Thus,  our semantics "extends I upward"  in the tree. 

We omit  a detailed general definition in favor of the definition for the following 
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representat ive examples of and and or nodes. (Note: We use r e ( f )  and m(u) 
interchangeably to denote the meaning of a node u labeled by f.) 

(x, y) = f(a, b, c, d ) 

[ p ( a , b ) ] ~  V ~ ( b , d ) ]  

(7) / \ 
(w, x, y) = h(a, c, d ) (x, y, v) = g(a, b) 

re(f) = {(x, y; a, b, c, d)[ (3v)(3w)(((b, d) E re(q)/~ (x, y, v; a, b)E re(g)) 
V ((a, b) E re (p) /~  (w, x, y; a, c, d) E re(h)))}.  

(x, y) = f(a, b, c) 

[p(a, ~ ( b ,  c)] 

(8) 
(w, y) = h(t, c, b) (x, t, v) = g(a, b) 

re(f) = {(x, y; a, b, c) I (3t)(3v)(3w)(((b, c) E re(q)/~ (x, t, v; a, b) E re(g)) 
A ((a, b) ~ re(p) A (w, y; t, c, b) E re(h)))}. 

These  can be seen to be very natural  definitions if v, w, and t are thought  of as 
being local to the tree, since they do not  appear  in the node-i.d, off .  Th e  s t ructure  
of the definition for a node of the form 

U 

then  becomes 

lab,, can produce out,, from in,, 

iff 
(there exist locals)((guard for u' ok /k  lab., produces out., from in.,) 

® (guard for u" ok/~  lab.- produces out.- from in.,,)) 

(9) 

where ® can be /~  or V. 
Considering now the general case in which call leaves are present,  the s tandard 

least-fixpoint semantics [2, 14, 15] is adopted.  In our  f ramework this can be 
described as follows: First, let T be a program in which all call leaves happen  to 
be labeled with the label, labr, of the root  of T. Le t  T '  be T with all those leaves 
relabeled with some new symbol, say f. Note  tha t  T '  is free of call leaves. Now, 
given a relat ion R of appropriate  ar i ty and structure,  we obtain I' f rom an 
in terpreta t ion I by having I' assign R to the new symbol f R is said to be a 
f ixpoint of T if m'(r) -- R, where m'(r) is the meaning of the root  of T '  under  I'. 
The  meaning of r under  I is now defined to be the set- theoret ical ly smallest 
(appropriately typed) relation R which is a fixpoint of T. By a well-known 
theorem due to Knaster  and Tarski  (cf. [14]) this least-fixpoint exists, and in fact 
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is unique, when certain conditions {entailing the property of continuity) are met 
by the primitive operations of I. In particular, conventional primitive operations 
on numbers, character-strings, etc., all fall within this category. Again, whenever 
the conditions are not met, we let m(r) = ~. Thus, the relation defined by a node 
which calls itself recursively is the least defined relation which is produced when 
it itself is taken as the relation achieved by the recursive calls. 

For the more general case where call leaves correspond to arbitrary internal 
nodes, the slightly more complex notion of simultaneous fixpoints is used. Here, 
briefly, the set of k subtrees whose roots correspond to the k different labels on 
the call leaves of the program are considered simultaneously. One then obtains 
fixpoints consisting of k relations RI . . . .  , Rk such that, for each i, interpreting 
the occurrences (including internal ones) of the k labels as R1 . . . . .  Rk in the ith 
subtree results in the root of that subtree being assigned Ri as its meaning when 
the usual propagation process is carried out. Then the least such fixpoint, in the 
appropriate extension of the subset ordering to tuples of relations, is adopted as 
the meaning of the k kinds of call leaves. More details about least-fixpoint 
semantics can be found in the references. It is worth noticing that a call leaf can 
be viewed as an abbreviation of the infinite tree obtained by repeatedly copying 
the subtree of its similar ancestor using fresh variables whenever necessary. This 
remark in fact illustrates the correspondence between least-fLxpoint semantics 
and the copy-rule of [1]. 

Note that nonrecursive subroutines are a special case of call leaves: A subrou- 
tine S can be modeled by a subtree which is then attached to an or-node 
(anywhere in the tree) with guard false, so that it does not get executed except 
as a result of the occurrence of an appropriate call leaf. Note also that, since the 
value of a variable is not modified at all, our "parameter-passing mechanism," 
which is the term one might use to describe the process of associating the input 
and output lists in a call leaf to those of its corresponding similar internal node, 
can be thought of as call by value-result. 

A general correspondence between context-free grammers and and/or graphs, 
of which our language can be seen to be a refinement and an application, has 
been pointed out by Hall [7]. Also, a similarly motivated method of writing 
programs dominated, as is ours, by subgoaling using recursive calls, has been 
described recently by Hehner [11]. 

Abbreviations 

We discuss some abbreviations useful in writing real and/or programs. We allow 
the omission of edge-i.d.'s; an edge without one is treated as being labeled with 
the test t rue,  which has a fixed interpretation as the constantly true predicate. 
(In practice it turns out that tests are invariably attached to edges leading from 
or-nodes, in which case they act like conditionals or guards [5].} 

We also allow tests to involve standard, say first-order, logical symbols with 
the understanding that interpretations are forced to interpret them in the stan- 
dard way. For example, -~P is to be interpreted as the predicate which is the 
appropriate complement of P. 

We allow using k-ary trees for k _> 2, and the way in which nodes of out-degree 
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>2 are introduced is by abbreviating subtrees of the form 

U U 

v u' and u' v (10) 

V p V H V p O ~ 

by the 3-ary and-nodes  

U U 

U p V pr U p U ~ V p V" 

and similarly for or-nodes. This  can be done whenever  the tree does not  have a 
call leaf similar to v. Also, when the and nodes in (10) are of degree _>2 they too 
can be collapsed (when no such call leaves are present) from, say 

U U 

v ul Uk to Vl V, Ul Uk (12) 

Vl V2 Vn 

This  way and and or nodes of arbi t rary  finite out-degree are obtained. One can 
easily prove the following result  which confirms tha t  these abbreviations are 
justified, in the sense tha t  no semantic information is lost by adopting them. 

LEMMA 3. Let T be a tree which can be obtained from each of the legal 
and/or programs T' and T" by abbreviating parts o[ them as k-ary nodes in the 
above manner. Then for any interpretaion L m(T') = ra(T"). 

This  is as far as we go in providing "official" shortcuts.  However,  for ease in 
writing a nd /o r  programs one might  introduce additional ones such as abbreviating 
long lists of inputs by single symbols. 

4. VERIFICATION OF AND/OR PROGRAMS 

We describe the classical F loyd /Hoa re  invariant-assert ion me thod  [6, 12] as 
applied to and /o r  programs. The  way in which partial  correctness is established 
using this method  is completely analogous to the calculation of the meaning of a 
program described in Section 3. As such, the method  seems to render  the an d /o r  
language a good tool for explaining the principles of program verification to the 
unknowing. 

In the following, assume we are given a program T with root  r labeled x = f (y) ,  
and a fixed legal in terpreta t ion I. The  partial correctness of T in I is defined with 
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And/Or Programs: A New Approach to Structured Programming 11 

respect to an assertion Pr(x; y), to hold if and only if 

(VxVy)((x; y) E m(r) D Pr(x; y)). (13) 

This  can be viewed as asserting tha t  m(r)  C Pr for the relat ions m(r) and P~. 
(Note: The  conventional  definition of partial correctness with respect  to a 
precondit ion R and a postcondition Q (cf. [12, 14]) is a special case, as observed 
by taking Pr(x; y) to hold iff R(y) D Q(x)). 

Thus  one can think of proving the partial  correctness of a program as showing 
tha t  what  indeed happens, i.e., m(r),  is at least as much as what  we th ink  happens, 
i.e., P~. One can now conceive of a method  in which every node u is annota ted  
with an assertion P ,  which is a relation of appropriate  ari ty and type, and which 
captures our idea as to what  u accomplishes. If  we can then  show m(u) C P ,  for 
every node u, the proof  would be complete.  Say P ,  is a good  assert ion at  u if  
m(u) C P . .  

Assume now that,  having P., and P.,. a t tached to the offspring u '  and u" of a 
node u, we can calculate an assertion P .  which is good if P., and P.,, are. Clearly, 
if the tree is free of call leaves it would suffice to somehow annota te  the leaves 
(all of which are primitive) and verify, appealing to m(l)  for this, tha t  Pt is good 
for every leaf 1. Then  the method  postulated above would be used to propagate 
good assertions up the tree until  Pr is obtained, By our assumption this would 
establish tha t  Pr is good, i.e., tha t  T is partially correct  with respect  to Pr. 

Before dealing with call leaves, we show tha t  this goodness-preserving propa- 
gation is indeed possible, and is in fact completely analogous to the me thod  for 
calculating the meaning of a node u given the meanings of its offspring. We 
describe it for the example nodes (7) and (8) of Section 3. Using P[ and P .  
interchangeably to denote  the assertion a t tached to a node u labeled with f, and 
assuming the offspring are labeled with Ph and P~, we define, for cases (7) and 
(8), respectively, 

Pf(x, y; a, b, c, d) iff (3v)(3w)(((b, d) E m(q) A Pg(x, y, v; a, b)) 
(7') 

V ((a, b) E re(p) A Ph(w, x, y; a, c, d))). 

Pf(x, y; a, b, c) iff (3t)(3v)(3w)(((b, c) E re(q) A P~(x, t, v; a, b)) 
(8') 

A ((a, b) E re(p) A Ph(w, y; t, c, b))). 

I t  is trivial to show tha t  in both  cases Pf is good whenever  Pg and Ph are. 
Fur thermore ,  this proper ty  is retained even when any assertion weaker  than  Pf 
of (7') or (8') is used. Thus,  for example, if (7') produces the assertion x =  a! A y 
= 0, we might equally well use x = a! alone for the annotation.  

Turning  to call leaves, since the relation we assign as a meaning to a node u 
with call leaves similar to itself is the least  fLxpoint, it is obvious tha t  every 
fixpoint, when a t tached to u as an assertion, is a good assertion at u. Th e  intuit ion 
is simple; a call leaf with the same label as u is asserted to behave on its inputs 
exactly as u would have behaved on the same inputs. I t  follows tha t  the annotat ion 
me thod  described above for trees free of call leaves extends to the general case: 
a t tach  assertions to call leaves as well as to primitive ones, and propagate  all 
assertions upward through the tree, making sure tha t  when a node u which is 
similar to a call leaf l is reached, P ,  and Pt are equal. 
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The method exhibited above can also be described as follows: A full annotation 
of a program T with respect to an interpretation I is one in which each node u is 
annotated with an assertion P,, of appropriate arity and type. A full annotation is 
said to be good if the following hold: 

(a) For every primitive leaf l, m(l) C Pl. 
(b) For every call leaf I with similar internal node u, P,  = Pi. 
(c) For every node u of the form 

U 

U' U" 

the implication suggested by the following scheme holds: 

(there exist locals) ((guard for u' ok/~ assertion for u' holds) 

® (guard for u" ok A assertion for u" holds)) 

implies 

assertion for u holds 

where ® can be/~ or V. One can then easily prove the following theorem, which 
amounts to the soundness of this proof method. 

THEOREM 1. A good annotation satisfies re(u) C P,  for every node u. In 
particular, T is partially correct with respect to Pr. 

We remark that the assertions attached to call leaves are the inductive assertions 
of the Floyd/Hoare method, and their invariance is precisely the property 
required in (b) above. The reader familiar with the literature on logics of programs 
and program verification will notice that  not treating the issue of the language in 
which the assertions are written permits us to work freely with relations and, for 
example, to use the term "equal" for assertions without having to define concepts 
such as logical equivalence and syntactic substitution in some formal logic. The 
question of completeness of the method (the formulation of which requires the 
notion of assertion language anyway) is avoided in this paper, as is the problem 
of specifying the restrictions on interpretations to be amenable to the least- 
fixpoint definition. 

Notice that  the frequently recommended discipline of developing program and 
proof simultaneously becomes very natural in the and/or  language; a description 
of the intended behavior of each node can be given at the time of its construction, 
thus providing a full annotation which, if correct, should also be good in the sense 
of the above definition. 

Similarly, modular or hierarchical verification, in which large components of 
a program are verified pending verification of smaller ones, is naturally carried 
out. Assumptions about the behavior of subtrees can be incorporated as assertions 
attached to the roots of those subtrees, and based upon this the larger tree can be 
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annotated and verified. Later the subtrees themselves can be reconsidered and 
their assertions verified independently. 

These remarks, coupled with the simple analogy between (7), (8) and (7'), (8'), 
seem to indicate that the and/or language is a natural one for introducing the 
basic principles of program verification to a person with no prior knowledge of 
them. We will not go into known methods for proving total correctness, absence 
or presence of infinite loops, etc., but urge the reader familiar with such methods 
to observe the naturalness with which they too can be embedded within this 
framework. 

The appendix contains an example of a program and a good annotation. 

5. PRACTICALITY 

In this section we comment on the virtues and limitations of our language from 
the viewpoints of the programming language designer and implementer, and the 
writer of large programs. 

The two main drawbacks of the language seem to be its nontextual form and 
its rather unconventional control-flow-obscuring structure. The latter problem, 
discussed somewhat further in Section 6, is closely related to that of constructing 
a compiler or interpreter for the language. The former though, is merely technical 
and can be eliminated in a variety of popular ways, incorporating recent devel- 
opments in the area of visual representation and text and data-structure editing. 

A strange mixture of flexibility and restriction can be found in the language. 
On the one hand, we are given a rather large amount of freedom in choosing an 
implementation, as is evident, for example, from the fact that nonsequential and- 
siblings can be executed in parallel (and more generally, so can any two "inde- 
pendent" nodes). This though, as mentioned, places a larger burden on the 
implementer. On the other hand, the restrictions on the input and output lists 
eliminate many of the intricate and subtle problems with modern high-level 
programming languages, such as aliasing, scope and binding problems, parameter- 
passing mechanisms, and storage allocation. Again, this is at the expense of the 
implementer of the language and, if one wants, can be attributed to the inherent 
difference between a programming/specification language and a computer lan- 
guage (which is what the former becomes once implemented). 

We now take the liberty of reporting some pleasant properties of the proposed 
language, encountered by the author (albeit subjectively) when writing a large 
and/or program. The program, a flowcharter capable of accepting inputs from 
many programming languages, is described in [9] and its details are unimportant 
here. The and/or tree itself appears in [10, app. II-5] and is of restricted form; or 
nodes are used only as i f  P t hen  else (i.e., with P and -~P labeling its outgoing 
edges), and nodes are not used for nontrivial parallelism, and call leaves are used 
only for simulating iterative loops (such as that in tree (5) of Section 2). In the 
terminology of programming theory, our program is deterministic, sequential, 
and regular. 

Nevertheless, even with this restrictive language, we experienced considerable 
ease in designing the program. The requirement of having to label each node 
with a different action symbol quickly became an aid instead of a burden; the 
names we used proved valuable in remembering the functions that various 
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subtrees performed. Some examples are add-one, advance, analysis, collate, 
count, finish, modify, next, parse, prepare, reduce, spread, and update. Similarly, 
names for variables were chosen quite carefully, introducing multiply primed 
versions of them when needed. 

As it turned out, the program, in each stage of its preparation, was extremely 
readable. The fact that at each stage the unfinished product looks just like a 
finished one, except that the primitive leaves are not yet primitive enough, helps 
considerably in the writing process. At various stages misjudgments were made 
as to how primitive to make the leaves, but the effort involved in, say, eliminating 
redundant subgoaling (for instance, when deciding that finding the first blank in 
a character string can be primitive, and that there is no need to subgoal down 
further) was negligible; all that was needed was to prune the subtree under the 
node find-blank. 

Similarly, the effort involved in modifying a part of the program was not 
increased by having to worry about ruining other parts; subtrees can be removed 
and inserted, and it is only important to keep the input and output lists of the 
root of the subtree fixed. For example, suppose a change in the form of some 
output table is required. In most conventional programming languages, if the 
preparation of that table was not coded into an isolated subroutine, many 
problems can occur when attempting to modify some of the program text. In 
contrast, in an and/or program chances are that one will find a node labeled, say, 
output = tabulate (data). The subtree rooted in this node can then be modified 
without concern. In other words, in the and/or language "subroutines" are the 
rule and not the exception. 

It was our pleasant (but again, subjective) experience to find that, in contrast 
to previous experience with conventional languages in which quite the opposite 
was true, months after the program was completed we were able to recomprehend 
any given part of it virtually at a glance. We are not claiming that these virtues 
are unique to our particular language. Certainly, employing any careful discipline 
of structured programming with stepwise refinement can produce the same 
pleasant results. Our point though is that the present language seems to impose 
this kind of discipline, and with a minimal amount of extra documentation, 
external devices, and programming aids. 

We found, though, that at certain levels the and/or style became somewhat 
artificial and cumbersome when compared with conventional alternatives. For 
example, in our opinion, the and/or equivalent of a simple do-loop (say in PL/I) 
for finding the first blank character in a string is quite undesired. However, the 
and/or subgoaling process can be stopped whenever a node can be more succinctly 
and clearly defined in one's favorite programming language. That  node can then 
be left as a primitive leaf in the and/or program and can be further specified 
elsewhere. Personally, in writing the flowcharter of [9, 10], and in further exper- 
iments, we acquired a reasonable sense of the level at which and/or programming 
was no longer appropriate for us. It seems that for any combination of program- 
mer/large-program such a level exists and can be sensed by the programmer in 
the process of writing the large and/or program. We are confident that despite 
the inconvenience of having to write programs in treelike form (and having, 
therefore, to measure their size in square feet, or sometimes acres, instead of 
number of lines of code.. .) ,  the task of producing the large program by the 
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programmer can be greatly eased by appealing to and/or programs until the level 
discussed above is reached. 

We would also venture the opinion that and/or programs can be beneficially 
used to teach the basic principles of programming to students. The concepts of 
and and or subgoaling seem natural enough for even nonmathematically-inclined 
people to comprehend, thus capturing, as a bonus, the concepts of nondetermin- 
ism and a straightforward kind of parallelism. Also, the way in which recursion 
is embedded in the trees seems to give rise to a natural way of describing this, 
otherwise quite difficult, concept. 

6. DIRECTIONS FOR FUTURE WORK 

The most obvious project to be carried out is the implementation of a language 
such as this. As hinted earlier, such a task would obviously involve either a 
textual linear representation for the input tree or a two-dimensional method of 
entering it directly. Perhaps more substantially, a decent implementation will 
have to decide upon the sequence(s) of operations to be performed, i.e., the 
control flow of such a program. Note that while in conventional languages the 
control flow is usually given and is transparent to the compiler/interpreter but 
the data flow is obtained by some kind of analysis, here the situation is dual. The 
way in which the data flows through an and/or tree is more transparent than 
that of the control. Methods for optimizing and/or programs (in the sense, say, of 
using a small number of "real" variables to contain in succession the values of a 
large number of variables) should be developed. It might also be possible to 
develop a smooth interface with a mechanism enabling the programmer to define 
his own (abstract) data types. 

Some comparative research is lacking in the present paper, comparing and/or 
programs with data flow procedures, applicative languages such as Lisp, parallel 
programming languages, networks, and decision trees. Some observations on the 
connection with the latter two will appear in a subsequent paper. 

On a more theoretical level, there are questions which can be asked concerning 
the power of uninterpreted and/or schemes compared to various classes of 
program schemes considered in the literature. Also, various interesting measures 
of the textual complexity of and/or programs seem to justify investigation, such 
as the depth, width, and size of the tree. In this context, one can define the 
and/or  depth of a tree as the maximal number of alternations of and and or 
nodes on paths from the root to a leaf, this measure having well-known counter- 
parts in the other applications of alternation mentioned in Section 1. As a first 
result in this direction, we can show that with the addition of auxiliary variables, 
every and/or program can be equivalently written as one with and/or depth 1. 
Equivalently, that is, in the uninterpreted sense of having the same effect in all 
interpretations. This result too will appear in a subsequent paper. 

However, the most important question in our opinion is whether and/or 
programs will turn out in practice to be a real help to the everyday designer and 
writer of large programs. 

APPENDIX 

As claimed in the text, the virtues of and/or programs are not apparent in small 
toy programs, and only an example of a large real program could illustrate the 
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points we make. However,  since a programming language cannot  be introduced 
without  at least one example of a program, and since we obviously cannot  exhibit 
a large one here, we present  the and /o r  t ree of a simple recursive program for 
computing the factorial of a nonnegative integer, together  with a good annotation.  
The  reader  is requested to view the example accordingly, i.e., as an illustration of 
some of the definitions, and not  compare  it with his own, simpler-looking version 
of a factorial progTam. 

In the example, the interpreta t ion consists of the domain of the natural  
numbers,  and 1, m u l t ,  p r e d ,  and =0 are in terpreted respectively as the number  
"one," the functions of multiplication and subtract ion of 1, and the test  "equal  to 
zero." I t  is trivial to check the goodness of the annota t ion and hence the partial  
correctness of the .program. The  assertions a t tached to the nodes are parenthe-  
sized: 

y = factorial(x) (x >_ 0 A y = x!) 

[x ~ l  = o] [~x = o] 

t = (y = 1) y = 1( ) y = factoria -of-posi ive(x) (x > 0 A y x!) 

y = mul t (y" ,  x) 

(y = y".x) 

y" = factor ia l (y ' )  y '  ffi pred(x)  

(y'_> 0 A y" = y'!) (y' = x -  1) 
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