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Robust optimization is a widely studied area in operations research, where the algorithm takes as input a

range of values and outputs a single solution that performs well for the entire range. Specifically, a robust

algorithm aims to minimize regret, defined as the maximum difference between the solution’s cost and that of

an optimal solution in hindsight once the input has been realized. For graph problems in P, such as shortest

path and minimum spanning tree, robust polynomial-time algorithms that obtain a constant approximation

on regret are known. In this paper, we study robust algorithms for minimizing regret in NP-hard graph

optimization problems, and give constant approximations on regret for the classical traveling salesman and

Steiner tree problems.
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1 INTRODUCTION

In many graph optimization problems, the inputs are not known precisely and the algorithm is
desired to perform well over a range of inputs. For instance, consider the following situations.
Suppose we are planning the delivery route of a vehicle that must deliver goods to n locations.
Due to varying traffic conditions, the exact travel times between locations are not known pre-
cisely, but a range of possible travel times is available from historical data. Can we design a tour
that is nearly optimal for all travel times in the given ranges? Consider another situation where
we are designing a telecommunication network to connect a set of locations. We are given cost
estimates on connecting every two locations in the network but these estimates might be off due
to unexpected construction problems. Can we design the network in a way that is nearly optimal
for all realized construction costs?
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12:2 A. Ganesh et al.

These questions have led to the field of robust graph algorithms. To define a robust graph algo-
rithm, we start with a “standard” optimization problem P defined by a set system S ⊆ 2E over
edges E with weights de . For example, if P is the minimum spanning tree problem, S would be
the set of all sets of edges comprising spanning trees. Given these inputs, the goal of the standard
version of P is to find the set S ∈ S that minimizes1 ∑

e ∈S de . In the robust version of P, given a
range of weights [�e ,ue ] for every edge e , we want a solution that is good for all realizations of
edge weights simultaneously. To quantify how good a solution is, we define its regret as the maxi-
mum difference between the algorithm’s cost and the optimal cost for any vector of edge weights
d. In other words, the regret of sol is:

max
d

(sol(d) − opt(d)), sol(d) :=
∑

e ∈sol

de , opt(d) := min
S ∈S

∑
e ∈S

de .

Here, sol(d) (resp. opt(d)) denotes the cost of sol (resp. the cost of the optimal solution) in in-
stance d, and d ranges over all realizable inputs, i.e., inputs such that �e ≤ de ≤ ue for all e . We
emphasize that sol is a fixed solution (independent of d) whereas the solution determining opt(d)
is dependent on the input d.

Now, the goal of the robust version of P is to find a solution that minimizes regret. The solution
that achieves this minimum is called the minimum regret solution (mrs), and its regret is the
minimum regret (mr). In many cases, however, minimizing regret turns out to be NP-hard, in
which case one seeks an approximation guarantee. Namely, a β-approximation algorithm satisfies,
for all input realizations d, sol(d) − opt(d) ≤ β · mr, i.e., sol(d) ≤ opt(d) + β · mr.

To the best of our knowledge, all previous work in polynomial-time algorithms for minimizing
regret in robust graph optimization focused on problems in P. In this paper, we study robust graph
algorithms for minimizing regret in NP-hard optimization problems. In particular, we study robust
algorithms for the classical traveling salesman (tsp) and Steiner tree (stt) problems, that
model e.g., the two scenarios described at the beginning of the paper. As a consequence of the
NP-hardness, we cannot hope to show guarantees of the form: sol(d) ≤ opt(d) + β ·mr, since for
�e = ue (i.e., mr = 0), this would imply an exact algorithm for an NP-hard optimization problem.
Instead, we give guarantees: sol(d) ≤ α · opt(d) + β ·mr, where α is (necessarily) at least as large
as the best approximation guarantee for the optimization problem. We call such an algorithm an
(α , β )-robust algorithm. If both α and β are constants, we call it a constant-approximation to the
robust problem. In this paper, our main results are constant approximation algorithms for the
robust traveling salesman and Steiner tree problems. We hope that our work will lead to further
research in the field of robust approximation algorithms, particularly for minimizing regret in
other NP-hard optimization problems in graph algorithms as well as in other domains.

1.1 Related Work

Robust graph algorithms have been extensively studied in the operations research community. It
is known that minimizing regret is NP-hard for shortest path [25] and minimum cut [1] problems,
and using a general theorem for converting exact algorithms to robust ones, 2-approximations
are known for these problems [11, 16]. In some cases, better results are known for special classes
of graphs, e.g., [17]. Robust minimum spanning tree (mst) has also been studied, although in
the context of making exponential-time exact algorithms more practical [24]. Moreover, robust
optimization has been extensively researched for other (non-graph) problem domains in the op-
erations research community, and has led to results in clustering [4–6, 19], linear programming

1We focus on minimization problems over sets of edges in this paper, but one can easily extend the definition to maximiza-

tion problems and problems over arbitrary set systems.
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Robust Algorithms for TSP and Steiner Tree 12:3

[14, 20], and other areas [3, 16]. More details can be found in the book by Kouvelis and Yu [18] and
the survey by Aissi et al. [2].

Other robust variants of graph optimization where one does not know the edge costs ahead
of time have also been studied in the literature. In the robust combinatorial optimization model
proposed by Bertsimas and Sim [7], edge costs are given as ranges as in this paper, but instead of
optimizing for all realizations of costs within the ranges, the authors consider a model where at
most k edge costs can be set to their maximum value and the remaining are set to their minimum
value. The objective is to minimize the maximum cost over all realizations. In this setting, there
is no notion of regret and an approximation algorithm for the standard problem translates to an
approximation algorithm for the robust problem with the same approximation factor.

In the data-robust model [12], the input includes a polynomial number of explicitly defined
“scenarios” for edge costs, with the goal of finding a solution that is approximately optimal
for all given scenarios. That is, in the input one receives a graph and a polynomial number of

scenarios d(1),d(2) . . . d(k ) and the goal is to find alg whose maximum cost across all scenarios

is at most some approximation factor times minsol maxi ∈[k]
∑

e ∈sol d
(i )
e . In contrast, in this paper,

we have exponentially many scenarios and look at the maximum of alg(d) − opt(d) rather than
alg(d). A variation of this is the recoverable robust model [9], where after seeing the chosen
scenario, the algorithm is allowed to “recover” by making a small set of changes to its original
solution.

1.2 Problem Definition and Results

We first define the Steiner tree (stt) and traveling salesman problems (tsp). In both problems, the
input is an undirected graph G = (V ,E) with non-negative edge costs. In Steiner tree, we are also
given a subset of vertices called terminals and the goal is to obtain a minimum cost connected
subgraph ofG that spans all the terminals. In traveling salesman, the goal is to obtain a minimum
cost tour that visits every vertex inV .2 In the robust versions of these problems, the edge costs are
ranges [�e ,ue ] from which any cost may realize.

Our main results are the following:

Theorem 1.1 (Robust Approximations). There exist constant approximation algorithms for the
robust traveling salesman and Steiner tree problems.

Remark. The constants we are able to obtain for the two problems are very different: (4.5, 3.75)
for tsp (in Section 3) and (2755, 64) for stt (in Section 5). While we did not attempt to optimize
the precise constants, obtaining small constants for stt comparable to the tsp result requires new
ideas beyond our work and is an interesting open problem.

We complement our algorithmic results with lower bounds. Note that if �e = ue , we have mr = 0
and thus an (α , β )-robust algorithm gives an α-approximation for precise inputs. So, hardness of
approximation results yield corresponding lower bounds on α . More interestingly, we show that
hardness of approximation results also yield lower bounds on the value of β (see Section 6 for
details):

Theorem 1.2 (APX-hardness). A hardness of approximation of ρ for tsp (resp., stt) under P �
NP implies that it is NP-hard to obtain α ≤ ρ (irrespective of β) and β ≤ ρ (irrespective of α ) for
robust tsp (resp., robust stt).

2There are two common and equivalent assumptions made in the tsp literature in order to achieve reasonable approxi-

mations. In the first assumption, the algorithms can visit vertices multiple times in the tour, while in the latter, the edges

satisfy the metric property. We use the former in this paper.
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12:4 A. Ganesh et al.

1.3 Our Techniques

We now give a sketch of our techniques. Before doing so, we note that for problems in P with linear

objectives, it is known that running an exact algorithm using weights �e+ue

2 gives a (1, 2)-robust
solution [11, 16]. One might hope that a similar result can be obtained for NP-hard problems by
replacing the exact algorithm with an approximation algorithm in the above framework. Unfor-
tunately, we show in Section 3 that this is not true in general. In particular, we give a robust tsp

instance where using a 2-approximation for tsp with weights �e+ue

2 gives a solution that is not

(α , β )-robust for any α = o(n), β = o(n). More generally, a black-box approximation run on a
fixed realization could output a solution including edges that have small weight relative to opt for
that realization (so including these edges does not violate the approximation guarantee), but these
edges could have large weight relative to mr and opt in other realizations, ruining the robustness
guarantee. This establishes a qualitative difference between robust approximations for problems
in P considered earlier and NP-hard problems being considered in this paper, and demonstrates
the need to develop new techniques for the latter class of problems.

LP relaxation. We denote the input graph G = (V ,E). For each edge e ∈ E, the input is a range
[�e ,ue ] where the actual edge weight de can realize to any value in this range. The robust version
of a graph optimization problem P then has the LP relaxation

min
{
r : x ∈ S;

∑
e ∈E

dexe ≤ opt(d) + r , ∀d
}
,

where P is the standard polytope for P, and opt(d) denotes the cost of an optimal solution when
the edge weights are d = {de : e ∈ E}. That is, this is the standard LP for the problem, but with the
additional constraint that the fractional solution x must have regret at most r for any realization
of edge weights. We call the additional constraints the regret constraint set. Note that setting x to
be the indicator vector of mrs and r to mr gives a feasible solution to the LP; thus, the LP optimum
is at most mr, i.e., the optimal solution to the LP gives a lower bound for the regret minimization
problem.

Solving the LP. We assume that the constraints in P are separable in polynomial time (e.g., this is
true for most standard optimization problems including stt and tsp). So, designing the separation
oracle comes down to separating the regret constraint set, which requires checking that:

max
d

⎡⎢⎢⎢⎢⎣
∑
e ∈E

dexe − opt(d)
⎤⎥⎥⎥⎥⎦ = max

d
max
sol

⎡⎢⎢⎢⎢⎣
∑
e ∈E

dexe − sol(d)
⎤⎥⎥⎥⎥⎦ = max

sol
max

d

⎡⎢⎢⎢⎢⎣
∑
e ∈E

dexe − sol(d)
⎤⎥⎥⎥⎥⎦ ≤ r .

Thus, given a fractional solution x, we need to find an integer solution sol and a weight vector
d that maximizes the regret of x given by

∑
e ∈E dexe − sol(d). Once sol is fixed, finding d that

maximizes the regret is simple: If sol does not include an edge e , then to maximize
∑

e ∈E dexe −
sol(d), we set de = ue ; else if sol includes e , we set de = �e . Note that in these two cases, edge e
contributes uexe and �exe − �e respectively to the regret. The above maximization thus becomes:

max
sol

⎡⎢⎢⎢⎢⎣
∑

e�sol

uexe +
∑

e ∈sol

(�exe − �e )
⎤⎥⎥⎥⎥⎦ =
∑
e ∈E

uexe −min
sol

∑
e ∈sol

(uexe − �exe + �e ). (1)

Thus, sol is exactly the optimal solution with edge weights ae := uexe − �exe + �e . (For reference,
we define the derived instance of a robust graph problem as the instance with edge weights ae .)
Note that these weights are non-negative as ue > �e and xe ≥ 0.

Now, if we were solving a problem in P, we would simply need to solve the problem on the
derived instance. Indeed, we will show later that this yields an alternative technique for obtaining
robust algorithms for problems in P, and recover existing results in [16]. However, we cannot hope

ACM Transactions on Algorithms, Vol. 19, No. 2, Article 12. Publication date: March 2023.
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to find an optimal solution to an NP-hard problem. Our first compromise is that we settle for an
approximate separation oracle. More precisely, our goal is to show that there exists some fixed
constants α ′, β ′ ≥ 1 such that if

∑
e dexe > α ′ · opt(d) + β ′ · r for some d, then we can find sol,d′

such that
∑

e d
′
exe > sol(d′) + r . Since the LP optimum is at most mr, we can then obtain an

(α ′, β ′)-robust fractional solution using the standard ellipsoid algorithm.
For tsp, we show that the above guarantee can be achieved by the classic 2-approximation

based on the mst solution of the derived instance. The details appear in Section 3. Although stt
also admits a 2-approximation based on the mst solution, this turns out to be insufficient for the
above guarantee. Instead, we use a different approach here. We note that the regret of the fractional
solution against any fixed solution sol (i.e., the argument over which Equation (1) maximizes) can
be expressed as the following difference:∑

e�sol

(uexe − �exe + �e ) −
∑
e ∈E

(�e − �exe ) =
∑

e�sol

ae −
∑
e ∈E

be , where be := �e − �exe .

The first term is the weight of edges in the derived instance that are not in sol. The second term
corresponds to a new stt instance with different edge weights be . It turns out that the overall
problem now reduces to showing the following approximation guarantees on these two stt
instances (c1 and c2 are constants):

(i)
∑

e ∈alg\sol

ae ≤ c1 ·
∑

e ∈sol\alg

ae and (ii)
∑

e ∈alg

be ≤ c2 ·
∑

e ∈sol

be .

Note that guarantee (i) on the derived instance is an unusual “difference approximation” that is
stronger than usual approximation guarantees. Moreover, we need these approximation bounds
to simultaneously hold, i.e., hold for the same alg. Obtaining these dual approximation bounds
simultaneously forms the most technically challenging part of our work, and is given in Section 5.

Rounding the fractional solution. After applying our approximate separation oracles, we have
a fractional solution x such that for all edge weights d, we have

∑
e dexe ≤ α ′ · opt(d) + β ′ · mr.

Suppose that, ignoring the regret constraint set, the LP we are using has integrality gap at most
δ for precise inputs. Then we can bound the difference between the cost of mrs and δx in every
realization: Since the integrality gap is at most δ , we have δ ·∑e ∈E dexe ≥ opt(d) for any d. This
implies that:

mrs(d) − δ ·
∑
e ∈E

dexe ≤ mrs(d) − opt(d) ≤ mr.

Hence, the regret of mrs with respect to δx is at most mr. Then a natural rounding approach is to
try to match this property of mrs, i.e., search for an integer solution alg that does not cost much
more than δx in any realization. Suppose we choose alg that satisfies:

alg = argmin
sol

max
d

⎡⎢⎢⎢⎢⎣sol(d) − δ
∑
e ∈E

dexe

⎤⎥⎥⎥⎥⎦ . (2)

Since alg has minimum regret with respect to δx, alg’s regret is also at most mr. Note that δx

is a (δα ′,δβ ′)-robust solution. Hence, alg is a (δα ′,δβ ′ + 1)-robust solution.
If we are solving a problem in P, the alg that satisfies Equation (2) is the optimal solution with

weights max{�e ,ue − (ue − �e )δxe } and thus can be found in polynomial time. So, using an integral
LP formulation (i.e., integrality gap of 1), we get a (1, 2)-robust algorithm overall for these problems.
This exactly matches the results in [16], although we are using a different set of techniques.3 Of

3They obtain (1, 2)-robust algorithms by choosing alg as the optimal solution with edge weights �e + ue . For any d,

consider d′ with weights d ′e = ue + �e −de . By optimality of alg, alg(d) + alg(d′) ≤ mrs(d) +mrs(d′). Rearranging, we

get alg(d) − mrs(d) ≤ mrs(d′) − alg(d′) ≤ mr, so alg’s cost exceeds mrs’ regret by at most mr in every realization.

ACM Transactions on Algorithms, Vol. 19, No. 2, Article 12. Publication date: March 2023.



12:6 A. Ganesh et al.

course, for NP-hard problems, finding a solution alg that satisfies Equation (2) is NP-hard as well.
It turns out, however, that we can design a generic rounding algorithm that gives the following
guarantee:

Theorem 1.3. There exists a rounding algorithm that takes as input an (α , β )-robust fractional
solution to stt (resp. tsp) and outputs a (γδα ,γδβ + γ )-robust integral solution, where γ and δ are
respectively the best approximation factor and integrality gap for (classical) stt (resp., tsp).

We remark that while we stated this rounding theorem for stt and tsp here, we actually give a
more general version (Theorem 2.1) in Section 2 that applies to a broader class of covering problems
including set cover, survivable network design, and so on, and might be useful in future research
in this domain.

1.4 Roadmap

We present the general rounding algorithm for robust problems in Section 2. In Section 3, we use
this rounding algorithm to give a robust algorithm for the Traveling Salesman problem. Section 4
gives a local search algorithm for the Steiner Tree problem. Both the local search algorithm and
the rounding algorithm from Section 2 are then used to give a robust algorithm for the Steiner
Tree problem in Section 5. The hardness results for robust problems appear in Section 6. Finally,
we conclude with some interesting directions of future work in Section 7.

2 A GENERAL ROUNDING ALGORITHM FOR ROBUST PROBLEMS

In this section we give the rounding algorithm of Theorem 1.3, which is a corollary of the following,
more general theorem:

Theorem 2.1. Let P be an optimization problem defined on a set system S ⊆ 2E that seeks to
find the set S ∈ S that minimizes

∑
e ∈S de , i.e., the sum of the weights of elements in S . In the robust

version of this optimization problem, we have de ∈ [�e ,ue ] for all e ∈ E.
Consider an LP formulation of P (called P-LP) given by: {min

∑
e ∈E dexe : x ∈ X , x ∈ [0, 1]E },

where X is a polytope containing the indicator vector χS of all S ∈ S and not containing χS for
any S � S. The corresponding LP formulation for the robust version (called Probust-LP) is given by:
{min r : x ∈ X , x ∈ [0, 1]E ,

∑
e ∈E dexe ≤ opt(d) + r ∀d}.

Now, suppose we have the following properties:

• There is a γ -approximation algorithm for P.
• The integrality gap of P-LP is at most δ .
• There is a feasible solution x∗ to P-LP that satisfies: ∀d :

∑
e ∈E dex

∗
e ≤ α · opt(d) + β · mr.

Then, there exists an algorithm that outputs a (γδα ,γδβ + γ )-robust sol for P.

Proof. The algorithm is as follows: Construct an instance of P which uses the same set sys-
tem S and where element e has weight max{ue (1 − δx∗e ), �e (1 − δx∗e )} + δ�ex

∗
e . Then, use the

γ -approximation algorithm for P on this instance to find an integral solution S , and output it.
Given a feasible solution S to P, note that:

max
d

⎡⎢⎢⎢⎢⎣
∑
e ∈S

de − δ
∑
e ∈E

dex
∗
e

⎤⎥⎥⎥⎥⎦ =
∑
e ∈S

max
{
ue
(
1 − δx∗e

)
, �e (1 − δx∗e )

} −∑
e�S

δ�ex
∗
e

=
∑
e ∈S

[
max
{
ue
(
1 − δx∗e

)
, �e
(
1 − δx∗e

)}
+ δ�ex

∗
e

] −∑
e ∈E

δ�ex
∗
e .
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Now, note that since S was output by a γ -approximation algorithm, for any feasible
solution S ′:∑

e ∈S
[max{ue (1 − δx∗e ), �e (1 − δx∗e )} + δ�ex∗e ] ≤ γ

∑
e ∈S ′

[max{ue (1 − δx∗e ), �e (1 − δx∗e )} + δ�ex∗e ]

=⇒
∑
e ∈S

[max{ue (1 − δx∗e ), �e (1 − δx∗e )} + δ�ex∗e ] − γ
∑
e ∈E

δ�ex
∗
e

≤γ
⎡⎢⎢⎢⎢⎣
∑
e ∈S ′

[max{ue (1 − δx∗e ), �e (1 − δx∗e )} + δ�ex∗e ] −
∑
e ∈E

δ�ex
∗
e

⎤⎥⎥⎥⎥⎦
=γ max

d

⎡⎢⎢⎢⎢⎣
∑
e ∈S ′

de − δ
∑
e ∈E

dex
∗
e

⎤⎥⎥⎥⎥⎦ .
Since P-LP has integrality gap δ , for any fractional solution x, ∀d : opt(d) ≤ δ

∑
e ∈E dexe .

Fixing S ′ to be the set of elements used in the minimum regret solution then gives:

max
d

⎡⎢⎢⎢⎢⎣
∑
e ∈S ′

de − δ
∑
e ∈E

dex
∗
e

⎤⎥⎥⎥⎥⎦ ≤ max
d

[mrs(d) − opt(d)] = mr.

Combined with the previous inequality, this gives:∑
e ∈S

[max{ue (1 − δx∗e ), �e (1 − δx∗e )} + δ�ex∗e ] − γ
∑
e ∈E

δ�ex
∗
e ≤ γmr

=⇒
∑
e ∈S

[max{ue (1 − δx∗e ), �e (1 − δx∗e )} + δ�ex∗e ] −
∑
e ∈E

δ�ex
∗
e ≤ γmr + (γ − 1)

∑
e ∈E

δ�ex
∗
e

=⇒ max
d

⎡⎢⎢⎢⎢⎣
∑
e ∈S

de − δ
∑
e ∈E

dex
∗
e

⎤⎥⎥⎥⎥⎦ ≤ γmr + (γ − 1)
∑
e ∈E

δ�ex
∗
e .

This implies:

∀d : sol(d) =
∑
e ∈S

de ≤ δ
∑
e ∈E

dex
∗
e + γmr + (γ − 1)

∑
e ∈E

δ�ex
∗
e

≤ δ
∑
e ∈E

dex
∗
e + γmr + (γ − 1)

∑
e ∈E

δdex
∗
e

= γδ
∑
e ∈E

dex
∗
e + γmr

≤ γδ[αopt(d) + βmr] + γmr

= γδα · opt(d) + (γδβ + γ ) · mr.

i.e., sol is (γδα ,γδβ + γ )-robust as desired. �

3 ALGORITHM FOR THE ROBUST TRAVELING SALESMAN PROBLEM

In this section, we give a robust algorithm for the traveling salesman problem:

Theorem 3.1. There exists a (4.5, 3.75)-robust algorithm for the traveling salesman problem.

Recall that we consider the version of the problem where we are allowed to use edges multiple
times in tsp. We recall that any tsp tour must contain a spanning tree, and an Eulerian walk on a
doubled mst is a 2-approximation algorithm for tsp (known as the “double-tree algorithm”). One
might hope that since we have a (1, 2)-robust algorithm for robust mst, one could take its output
and apply the double-tree algorithm to get a (2, 4)-robust solution to robust TSP. Unfortunately, we

ACM Transactions on Algorithms, Vol. 19, No. 2, Article 12. Publication date: March 2023.



12:8 A. Ganesh et al.

show in Section 3.1 that this algorithm is not (α , β )-robust for any α = o(n), β = o(n). Nevertheless,
we are able to leverage the connection to mst to arrive at a (4.5, 3.75)-robust algorithm for tsp,
given in Section 3.3.

3.1 Failure of Double-Tree Algorithm

The black-box reduction of [16] for turning exact algorithms into (1, 2)-robust algorithms simply

uses the exact algorithm to find the optimal solution when all de are set to �e+ue

2 and outputs this
solution (see [16] for details on its analysis). We give an example of a robust tsp instance where
applying the double-tree algorithm to the (1, 2)-robust mst generated by this algorithm does not
give a robust tsp solution. Since the doubling of this mst is a 2-approximation for tsp when all

de are set to �e+ue

2 , this example will also show that using an approximation algorithm instead of
an exact algorithm in the black-box reduction fails to give any reasonable robustness guarantee as
stated in Section 1.

Consider an instance of robust tsp with vertices V = {v ′,v1 . . .vn }, where there is a “type-1”
edge from v ′ to vi with length 1 − ϵ for some ϵ > 1

2(n−1) , and where there is a “type-2” edge from

vi to vi+1 for all i , as well as from vn to v1, with length in the range [0, 2 − 1
n−1 ].

Consider mrs, which uses n−1 type-2 edges and two type-1 edges to connectv ′ to the rest of the
tour.4 Its regret is maximized in the realization where all the type-2 edges it is using have length
2 − 1

n−1 and the type-2 edge it is not using has length 0. Note that if a solution contains a type-2

edge of length 2− 1
n−1 , we can replace it with the two type-1 edges it is adjacent to and the cost of

the solution decreases since we set ϵ > 1
2(n−1) . In turn, the optimum solution for this realization

uses the type 2-edge with length 0, the two type-1 edges adjacent to this type-2 edge once,
and then the other n − 2 type-1 edges twice. So mrs has cost (n − 1) (2 − 1

n−1 ) + 2(1 − ϵ ) ≤
2(n − 1) whereas opt has cost 2(n − 1) (1 − ϵ ). Then, the regret of this solution is at
most nϵ .

When all edge costs are set to �e+ue

2 , since ϵ > 1
2(n−1) the minimum spanning tree of the graph is

a star centered at v ′, i.e., all the length 1 − ϵ edges. So the (1, 2)-approximation algorithm outputs
this tree for mst. Doubling this tree gives a solution to the robust tsp instance that costs 2n(1− ϵ )
in all realizations of demands.

Consider the realization d where all type-2 edges have length 0. mrs costs 2− 2ϵ and is also the
optimal solution. If the double-tree solution is (α , β )-robust we get that:

2n(1 − ϵ ) ≤ α · opt(d) + β · mr ≤ α · (2 − 2ϵ ) + βnϵ .

Setting ϵ to e.g., 1/n gives that one of α , β is Ω(n).

3.2 LP Relaxation

We use the LP relaxation of robust traveling salesman in Figure 1. This is the standard subtour LP
(see e.g., [22]), but augmented with variables specifying the edges used to visit each new vertex,
as well as with the regret constraint set. Integrally, yuv is 1 if splitting the tour into subpaths at
each point where a vertex is visited for the first time, there is a subpath from u tov (or vice-versa).
That is, yuv is 1 if between the first time u is visited and the first time v is visited, the tour only
goes through vertices that were already visited before visiting u. xe,u,v is 1 if on this subpath,
the edge e is used. We use xe to denote

∑
u,v ∈V xe,u,v for brevity. We discuss in this subsection

why the constraints other than the regret constraint set in (3) are identical to the standard tsp

4We do not prove this is mrs: Even if it is not, it suffices to upper bound mr by this solution’s regret.
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Fig. 1. The robust TSP polytope.

polytope. This discussion may be skipped without affecting the readability of the rest of the
paper.

The standard LP for tsp is the subtour LP (see e.g., [22]), which is as follows:

min
∑

(u,v )∈E cuvyuv

s.t. ∀∅ � S ⊂ V :
∑

(u,v )∈δ (S ) yuv ≥ 2
∀u ∈ V :

∑
(u,v )∈E yuv = 2

∀(u,v ) ∈ E : 0 ≤ yuv ≤ 1

(4)

where δ (S ) denotes the set of edges with one endpoint in S . Note that because the graph is
undirected, the order of u and v in terms such as (u,v ), cuv , and yuv is immaterial, e.g., there
is no distinction between edge (u,v ) and edge (v,u) and yuv and yvu denote the same variable.
This LP is written for the problem formulation where the triangle inequality holds, and thus we
only need to consider tours that are cycles that visit every vertex exactly once. We are concerned,
however, with the formulation where the triangle inequality does not necessarily hold, but
tours can revisit vertices and edges multiple times. To modify the subtour LP to account for this
formulation, we instead let yuv be an indicator variable for whether our solution connects u to v
using some path in the graph. Using this definition for yuv , the subtour LP constraints then tell
us that we must buy a set of paths such that a set of edges directly connecting the endpoints of
the paths would form a cycle visiting every vertex exactly once. Then, we introduce variables
xe,u,v denoting that we are using the edge e on the path from u to v . For ease of notation, we let
xe =

∑
u,v ∈V xe,u,v denote the number of times a fractional solution uses the edge e in paths. We

can then use standard constraints from the canonical shortest path LP to ensure that in an integer
solution yuv is set to 1 only if for some path from u to v , all edges e on the path have xe,u,v set
to 1.

Lastly, note that the optimal tour does not use an edge more than twice. Suppose a tour uses
the edge e = (u,v ) thrice. By fixing a start/end vertex for the tour, we can split the tour into
e, P1, e, P2, e, P3 where P1 is the part of the tour between the first and second use of e , P2 is the part
of the tour between the second and third use of e , and P3 is the part of the tour after the third use
of e . Because the tour starts and ends at the same vertex (u orv), and each of the three uses of edge
e goes from u to v or vice versa, the number of P1, P2, and P3 that go from u to v or vice-versa (as
opposed to going fromu tou orv tov) must be odd, and hence not zero. Without loss of generality,

we can assume P1 goes from u tov . Then, the tour P1, P2, e, P3, where P1 denotes the reversal of P1,
is a valid tour and costs strictly less than the original tour. So any tour using an edge more than
twice is not optimal. This lets us add the constraint xe ≤ 2 to the LP without affecting the optimal
solution.
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This gives the formulation for tsp without triangle inequality but with repeated edges allowed:

min
∑

e ∈E cexe

s.t. ∀∅ � S ⊂ V :
∑

u ∈S,v ∈V \S yuv ≥ 2
∀u ∈ V :

∑
v�u yuv = 2

∀∅ � S ⊂ V ,u ∈ S,v ∈ V \S :
∑

e ∈δ (S ) xe,u,v ≥ yuv

∀u,v ∈ V ,v � u : 0 ≤ yuv ≤ 1
∀e ∈ E,u,v ∈ V ,v � u : 0 ≤ xe,u,v ≤ 1
∀e ∈ E : xe ≤ 2

(5)

By integrality of the shortest path polytope, if we let puv denote the length of the shortest path
from u tov , then

∑
e ∈E,u,v ∈V cexe,u,v ≥

∑
u,v ∈V puvyuv . In particular, if we fix the value of yuv the

optimal setting of xe,u,v values is to set xe,u,v to yuv for every e on the shortest path from u to v .
So (5) without the triangle inequality assumption is equivalent to (4) with the triangle inequality
assumption. In particular, the integrality gap of (5) is the same as the integrality gap of (4), which
is known to be at most 3/2 [23]. Then, adding a variable r for the fractional solution’s regret and
the regret constraint set gives (3).

3.3 Approximate Separation Oracle

We now describe the separation oracle RRTSP-Oracle used to separate (3). All constraints except
the regret constraint set can be separated in polynomial time by solving a min-cut problem. Recall
that exactly separating the regret constraint set involves finding an “adversary” sol that maximizes
maxd[

∑
e ∈E dexe − sol(d)], and seeing if this quantity exceeds r . However, since TSP is NP-hard,

finding this solution in general is NP-hard. Instead, we will only consider a solution sol if it is a
walk on some spanning tree T , and find the one that maximizes maxd[

∑
e ∈E dexe − sol(d)].

Fix any sol that is a walk on some spanning tree T . For any e , if e is not in T , the regret of x,y
against sol is maximized by setting e’s length toue . If e is inT , then sol is paying 2de for that edge
whereas the fractional solution pays dexe ≤ 2de , so to maximize the fractional solution’s regret,
de should be set to �e . This gives that the regret of fractional solution x against any sol that is a
spanning tree walk on T is∑

e ∈T
(�exe − 2�e ) +

∑
e�T

uexe =
∑
e ∈E

uexe −
∑
e ∈T

(uexe − (�exe − 2�e )).

The quantity
∑

e ∈E uexe is fixed with respect toT , so finding the spanning treeT that maximizes
this quantity is equivalent to finding T that minimizes

∑
e ∈T (uexe − (�exe − 2�e )). But this is just

an instance of the minimum spanning tree problem where edge e has weight uexe − (�exe − 2�e ),
and thus we can find T in polynomial time. This gives the following lemma:

Lemma 3.2. For any instance of robust traveling salesman there exists an algorithm RRTSP-Oracle
that given a solution (x, y, r ) to (3) either:

• Outputs a separating hyperplane for (3), or
• Outputs “Feasible”, in which case (x, y) is feasible for the (non-robust) TSP LP and ∀d :∑

e ∈E dexe ≤ 2 · opt(d) + r .

Proof of Lemma 3.2. RRTSP-Oracle is given in Figure 2. All inequalities except the regret con-
straint set can be checked exactly by RRTSP-Oracle. Consider the tree T ′ computed in RRTSP-
Oracle and d′ with d ′e = �e for e ∈ T ′ and d ′e = ue for e � T ′. The only other violated inequality
RRTSP-Oracle can output is the inequality

∑
e ∈T ′ (�exe − 2�e ) +

∑
e�T ′ uexe ≤ r in line 5, which

is equivalent to
∑

e ∈E d
′
exe ≤ 2

∑
e ∈T d ′e + r . Since 2

∑
e ∈T d ′e is the cost of a tour in realization d′

(the tour that follows a DFS on the spanning tree T ), this inequality is implied by the inequality
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Fig. 2. Separation Oracle for (3).

∑
e ∈E d

′
exe ≤ opt(d′)+r from the regret constraint set. Furthermore, RRTSP-Oracle only outputs

this inequality when it is actually violated.
So, it suffices to show that if there exists d such that

∑
e ∈E dexe > 2opt(d) + r then RRTSP-

Oracle outputs a violated inequality on line 5. Since opt(d) visits all vertices, it contains some
spanning tree T , such that opt(d) ≥ ∑e ∈T de . Combining these inequalities gives∑

e ∈E

dexe > 2
∑
e ∈T

de + r .

Since all xe are at most 1, setting de = �e for e ∈ T and de = ue otherwise can only increase∑
e ∈E dexe − 2

∑
e ∈T de , so∑

e ∈T
�exe +

∑
e�T

uexe > 2
∑
e ∈T
�e + r =⇒

∑
e ∈E

uexe −
∑
e ∈T

(uexe − (�exe − 2�e )) > r .

Then RRTSP-Oracle finds a minimum spanning tree T ′ on G ′, i.e., T ′ such that∑
e ∈T ′

(uexe − (�exe − 2�e )) ≤
∑
e ∈T

(uexe − (�exe − 2�e )).

which combined with the previous inequality gives∑
e ∈E

uexe −
∑
e ∈T ′

(uexe − (�exe − 2�e )) > r =⇒
∑
e ∈T ′

(�exe − 2�e ) +
∑
e�T ′

uexe > r .

�

By using the ellipsoid method with separation oracle RRTSP-Oracle and the fact that (3) has
optimum at most mr, we get a (2, 1)-robust fractional solution. Applying Theorem 1.3 as well as
the fact that the TSP polytope has integrality gap 3/2 (see e.g., [22]) and the TSP problem has a
3/2-approximation gives Theorem 3.1.

4 A LOCAL SEARCH ALGORITHM FOR STEINER TREE

In this section, we describe a local search algorithm for the Steiner tree, given in [13]. By a simpli-
fied version of the analysis appearing in [13], we show that the algorithm is 4-approximate. As with
many local search algorithms, this algorithm could run in superpolynomial time in the worst case.
Standard tricks can be used to modify this algorithm into a polynomial time (4+ϵ )-approximation.
This algorithm will serve as a primitive in the algorithms we design in Section 5.

The local moves considered by the algorithm are all path swaps, defined as follows: If the current
Steiner tree isT , the algorithm can pick any two verticesu,v inT such that there exists a path from
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u tov where all vertices except u andv on the path are not inT (and thus all edges on the path are
not in T ). The algorithm may take any path f from u to v of this form. It suffices to consider only
the shortest path of this form. The path f is added toT , inducing a cycle. The algorithm then picks
a subpath a in the cycle and removes it from T , while maintaining that T is a feasible Steiner tree.
It suffices to consider only maximal subpaths. These are just the subpaths formed by splitting the
cycle at every vertex with degree at least 3 inT ∪ { f }. Let n denote the number of nodes andm the

number of edges in the graph. Since there are at most
(
n
2

)
pairs of vertices u,v , and a shortest path

f between u and v can be found in O (m + n logn) time, and all maximal subpaths in the induced
cycle in T ∪ { f } can be found in O (n) time, if there is a move that improves the cost of T , we can
find it in polynomial time.

We will use the following lemma to show the approximation ratio.

Lemma 4.1. For any tree the fraction of vertices with degree at most 2 is strictly greater
than 1/2.

Proof. This follows from a Markov bound on the random variable X defined as the de-
gree of a uniformly random vertex minus one. A tree with n vertices has average degree
2n−2

n
< 2, so E[X ] < 1. In turn, the fraction of vertices with degree 3 or greater is Pr[X ≥ 2] <

1/2. �

Theorem 4.2. Let A be a solution to an instance of Steiner tree such that no path-swap reduces the
cost of A. Then A is a 4-approximation.

Proof. Consider any other solution F to the Steiner tree instance. We partition the edges of A
into the subpaths such that these subpaths’ endpoints are (i) vertices with degree 3 or larger in A,
or (ii) vertices in A and F (which might also have degree 3 or larger in A). Besides the endpoints,
all other vertices in each subpath have degree 2 and are in A but not in F . Note that a vertex may
appear as the endpoint of more than one subpath. Note also that the set of vertices in F includes
the terminals, which, without loss of generality includes all leaves in A. This along with condition
(i) for endpoints ensures the partition into subpaths is well-defined, i.e., if a subpath ends at a leaf
of A, that leaf is in F .

We also decompose F into subpaths, but some edges may be contained in two of these subpaths.
To decompose F into subpaths, we first partition the edges of F into maximal connected subgraphs
of F whose leaves are vertices in A (including terminals) and whose internal vertices are not in A.
Note that some vertices may appear in more than one subgraph, e.g., an internal vertex in F that
is in A becomes a leaf in multiple subgraphs. Since these subgraphs are not necessarily paths, we
next take any DFS walk on each of these subgraphs starting from one of their leaves (that is, one
of the vertices in A). We take the route traversed by the DFS walk, and split it into subpaths at
every point where the DFS walk reaches a leaf. This now gives a set of subpaths in F such that
each subpaths’ endpoints are vertices in A, no other vertices on a subpath are in A, and no edge
appears in more than two subpaths. Let A and F denote the set of subpaths we decomposed A
and F into, respectively.

For a ∈ A let N (a) ⊆ F be the set of subpaths f in F such that A \ a ∪ f is a feasible Steiner
tree, i.e., f can be swapped for a, and let N (X ) = ∪a∈XN (a). We will show that for any X ⊆ A,
|N (X ) | ≥ 1

2 |X |. By an extension of Hall’s Theorem (Fact 15 in [13]) this implies the existence of a
weight function α : A × F → R+ such that:

(1) α (a, f ) > 0 only if f can be swapped for a
(2) For all subpaths a ∈ A,

∑
f ∈N (a) α (a, f ) = 1.

(3) For all subpaths f ∈ F ,
∑

a∈N −1 (f ) α (a, f ) ≤ 2.
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Fig. 3. The robust Steiner tree polytope.

This weight function then gives:

c (A) =
∑
a∈A

c (a) =
∑
a∈A

∑
f ∈N (a)

c (a)α (a, f ) ≤
∑
f ∈F

∑
a∈N −1 (f )

c ( f )α (a, f ) ≤
∑
f ∈F

2c ( f ) ≤ 4c (F ),

where N −1 ( f ) = {a ∈ A : f ∈ N (a)}. The first inequality holds by the assumption in the lemma
statement that no swaps reduce the cost of A, so for a ∈ A and f ∈ N (a), c (a) ≤ c ( f ). The last
inequality follows by the fact that every edge in F appears in at most two subpaths in F .

We now turn towards proving that for any X ⊆ A, |N (X ) | ≥ 1
2 |X |. Fix any X ⊆ A. Suppose

that we remove all of the edges on paths a ∈ X from A, and also remove all vertices on these paths
except their endpoints. After removing these nodes and edges, we are left with |X | + 1 connected
components. Let T ′ be a tree with |X | + 1 vertices, one for each of these connected components,
with an edge between any pair of vertices in T ′ whose corresponding components are connected
by a subpath a ∈ X . Consider any vertices ofT ′ with degree at most 2. We claim the corresponding
component contains a vertex in F . LetV ′ denote the set of vertices in the corresponding component
that are endpoints of subpaths inA. There must be at least one such vertex inV ′. Furthermore, it
is not possible that all of the vertices inV ′ are internal vertices of A with degree at least 3, since at
most two subpaths leave this component and there are no cycles in A. The only other option for
endpoints is vertices in F , so this component must contain some vertex in F .

Applying Lemma 4.1, strictly more than ( |X | + 1)/2 (i.e., at least |X |/2 + 1) of the components
have degree at most 2, and by the previous argument contain a vertex in F . These vertices are
connected by F , and since each subpath in F does not have internal vertices in A, no subpath in
F passes through more than two of these components. Hence, at least |X |/2 of the subpaths in F
have endpoints in two different components because at least |X |/2 edges are required to connect
|X |/2 + 1 vertices. In turn, any of these |X |/2 paths f could be swapped for one of the subpaths
a ∈ X that is on the path between the components containing f ’s endpoints. This shows that
|N (X ) | ≥ |X |/2 as desired. �

5 ALGORITHM FOR THE ROBUST STEINER TREE PROBLEM

In this section, our goal is to find a fractional solution to the LP in Figure 3 for the robust Steiner
tree. By Theorem 1.3 and known approximation/integrality gap results for Steiner Tree, this will
give the following theorem:

Theorem 5.1. There exists a (2755, 64)-robust algorithm for the Steiner tree problem.

It is well-known that the standard Steiner tree polytope admits an exact separation oracle (by
solving the s, t-min-cut problem using edge weights xe for all s, t ∈ T ) so it is sufficient to find
an approximate separation oracle for the regret constraint set. So, we focus on this section in
deriving an approximate separation oracle. Doing so is the most technically difficult part of the
paper, so we break the section up into multiple parts as follows: In Section 5.1, we start with a
simpler case where �e = 0 for all edges, and show how the local search algorithm of the previous
section can help design the separation oracle in this case. In Section 5.2, we state our main technical
lemma (Lemma 5.5), give a high-level overview of its proof, and show how it implies Theorem 5.1.
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In Section 5.3, we give the algorithm of Lemma 5.5. In Section 5.4, we analyze this algorithm’s
guarantees, deferring some proofs that are highly technical and already covered at a high level in
Section 5.2. In Section 5.5, we give the deferred proofs.

We believe the high-level overview in Section 5.2 captures the main ideas of Sections 5.3, 5.4,
and 5.5, and thus a reader who just wants to understand the algorithm and analysis at a high level
can stop reading after Section 5.2. A reader who wants a deeper understanding of the algorithm’s
design choices and implementation but is not too concerned with the details of the analysis can
stop reading after Section 5.3. A reader who wants a deeper understanding of the analysis can stop
reading after Section 5.4 and still have a strong understanding of the analysis.

5.1 Special Case where the Lower Bounds on All Edge Lengths Are �e = 0

In this section, we give a simple algorithm/analysis for the special case when �e = 0 for all edges.
First, we create the derived instance of the Steiner tree problem which is a copy G ′ of the input

graph G with edge weights uexe + �e − �exe . As noted earlier, the optimal Steiner tree T ∗ on the
derived instance maximizes the regret of the fractional solution x. However, since Steiner tree is

NP-hard, we cannot hope to exactly findT ∗. We need a Steiner tree T̂ such that the regret caused by
it can be bounded against that caused byT ∗. The difficulty is that the regret corresponds to the total
weight of edges not in the Steiner tree (plus an offset that we will address later), whereas standard
Steiner tree approximations give guarantees in terms of the total weight of edges in the Steiner
tree. We overcome this difficulty by requiring a stricter notion of “difference approximation” – that

the weight of edges T̂ \ T ∗ be bounded against those in T ∗ \ T̂ . Note that this condition ensures

that not only is the weight of edges in T̂ bounded against those in T ∗, but also that the weight of

edges not in T̂ is bounded against that of edges not inT ∗. We show the following lemma to obtain
the difference approximation:

Lemma 5.2. For any ϵ > 0, there exists a polynomial-time algorithm for the Steiner tree problem
such that if opt denotes the set of edges in the optimal solution and c (S ) denotes the total weight of
edges in S , then for any input instance of Steiner tree, the output solution alg satisfies c (alg \ opt) ≤
(4 + ϵ ) · c (opt \ alg).

Proof. The algorithm we use is the local search algorithm described in Section 4, which finds
alg such that c (alg) ≤ 4 · c (opt). Suppose that the cost of each edge e ∈ alg ∩ opt is now
changed from its initial value to 0. After this change, alg remains locally optimal because for every
feasible solution F that can be reached by making a local move from alg, the amount by which
the cost of alg has decreased by setting edge costs to zero is at least the amount by which F has
decreased. Hence, no local move causes a decrease in cost. Thus, alg remains a 4-approximation,
which implies that c (alg \ opt) ≤ 4 · c (opt \ alg).

We also need to show that the algorithm converges in polynomially many iterations. The au-
thors in [13] achieve this convergence by discretizing all the edge costs to the nearest multiple of
ϵ

kn
c (apx) for an initial solution apx such that c (opt) ≤ c (apx) ≤ kc (opt) (e.g., a simple way to do

so is to start with a solution formed by the union of shortest paths between terminals, and then
remove edges which cause cycles arbitrarily. This solution has cost between c (opt) and n2 ·c (opt).
See Section B.3 of [13] for more details). This guarantees that the algorithm converges in kn

ϵ
iter-

ations, at an additive ϵ · c (opt) cost. For a standard approximation algorithm this is not an issue,
but for an algorithm that aims for a guarantee of the form c (alg \ opt) ≤ O (1) · c (opt \ alg) an
additive ϵ · c (opt) might be too much.

We modify the algorithm as follows to ensure that it converges in polynomially many iter-
ations: We only consider swapping out a for f if the decrease in cost is at least ϵ/4 times the

ACM Transactions on Algorithms, Vol. 19, No. 2, Article 12. Publication date: March 2023.



Robust Algorithms for TSP and Steiner Tree 12:15

Fig. 4. Separation Oracle for the LP in Figure 3 when �e = 0, ∀e .

cost of a, and we always choose the swap of this kind that decreases the cost by the largest
amount.5

We now show the algorithm converges. Later in the section, we will prove two claims, so for
brevity’s sake we will not include the proofs of the claims here. The first claim is that as long as
c (alg \opt) > (4+ ϵ )c (opt \alg), there is a swap between alg and opt where decrease in cost is
at least ϵ/4 times the cost of the path being swapped out, and is at least ϵ/4n2 times c (alg \ opt)
(the proof follows similarly to Lemma 5.10 in Section 5.3). The second claim is that in any swap
the quantity c (alg \ opt) − c (opt \ alg) decreases by the same amount that c (alg) does (see
Lemma 5.12 in Section 5.4).

So, we use c (alg\opt)−c (opt\alg) as a potential to bound the number of swaps. This potential
is initially at most n maxe ce , is always at least mine ce as long as c (alg \ opt) > c (opt \ alg),
and each swap decreases it multiplicatively by at least a factor of (1 − ϵ/4n2) as long as

c (alg\opt) > (4+ϵ )c (opt\alg). Thus, the algorithm only needs to make
log(n maxe ce /mine ce )
− log(1−ϵ/4n2 )

swaps

to arrive at a solution that is a (4 + ϵ )-approximation, which is a polynomial in the input size. �

Recall that the regret caused byT is not exactly the weight of edges not inT , but includes a fixed
offset of

∑
e ∈E (�e − �exe ). If �e = 0 for all edges, i.e., the offset is 0, then we can recover a robust

algorithm from Lemma 5.2 alone with much better constants than in Theorem 5.1:

Lemma 5.3. For any instance of robust Steiner tree for which all �e = 0, for every ϵ > 0 there exists
an algorithm RRST-Oracle-ZLB which, given a solution (x, r ) to the LP in Figure 3, either:

• Outputs a separating hyperplane for the LP in Figure 3, or
• Outputs “Feasible”, in which case x is feasible for the (non-robust) Steiner tree LP and ∀d :∑

e ∈E dexe ≤ opt(d) + (4 + ϵ )r .

RRST-Oracle-ZLB is given in Figure 4. Via the ellipsoid method this gives a (1, 4 + ϵ )-robust
fractional solution. Using Theorem 1.3, the fact that the integrality gap of the LP we use is 2 [21],
and that there is a (ln 4 + ϵ ) ≈ 1.39-approximation for Steiner tree [8], with appropriate choice of
ϵ we get the following corollary:

5Note that c (a) − c (f ) and
c (a )−c (f )

c (a ) are both maximized by maximizing c (a) and minimizing c (f ). Any path f from

u to v that we consider adding is independent of the paths a we can consider removing, since f by definition does not

intersect with our solution. So in finding a swap satisfying these conditions if one exists, it still suffices to only consider

swaps between shortest paths f and longest paths a in the resulting cycles as before.

ACM Transactions on Algorithms, Vol. 19, No. 2, Article 12. Publication date: March 2023.



12:16 A. Ganesh et al.

Corollary 5.4. There exists a (2.78, 12.51)-robust algorithm for Steiner tree when �e = 0 for all
e ∈ E.

Proof of Lemma 5.3. All inequalities except the regret constraint set can be checked exactly
by RRST-Oracle-ZLB. Consider the tree T ′ computed in RRST-Oracle-ZLB and d′ with d ′e = 0
for e ∈ T ′ and d ′e = ue for e � T ′. The only other violated inequality RRST-Oracle-ZLB can
output is the inequality

∑
e�T ′ uexe ≤ r in line 5, which is equivalent to

∑
e ∈E d

′
exe ≤ T ′(d′) + r ,

an inequality from the regret constraint set. Furthermore, RRST-Oracle-ZLB only outputs this
inequality when it is actually violated. So, it suffices to show that if there exists d, sol such that∑

e ∈E dexe > sol(d) + (4+ ϵ )r then RRST-Oracle-ZLB outputs a violated inequality on line 5, i.e.,
finds Steiner tree T ′ such that

∑
e�T ′ uexe > r .

Suppose there exists d, sol such that
∑

e ∈E dexe > sol(d)+ (4+ϵ )r . Let d∗ be the vector obtained
from d by replacing de with ue for edges not in sol and with 0 for edges in sol. Replacing d with
d∗ can only increase

∑
e ∈E dexe − sol(d), i.e.,:∑

e�sol

uexe =
∑
e ∈E

d∗exe > sol(d∗) + (4 + ϵ )r = (4 + ϵ )r . (9)

Consider the graph G ′ made by RRST-Oracle-ZLB. We’ll partition the edges into four sets,
E0,ES ,ET ,EST where E0 = E \ (sol ∪T ′), ES = sol \T ′, ET = T

′ \ sol, EST = sol ∩T ′. Let c (E ′)
for E ′ = E0,ES ,ET ,EST denote

∑
e ∈E′ uexe , i.e., the total cost of the edge set E ′ in G ′. Since d∗ has

de = 0 for e ∈ sol, from (9) we get that c (E0) + c (ET ) > (4 + ϵ )r .
Now note that

∑
e�T ′ uexe = c (E0) + c (ES ). Lemma 5.2 gives that (4 + ϵ )c (ES ) ≥ c (ET ). Putting

it all together, we get that:∑
e�T ′

uexe = c (E0) + c (ES ) ≥ c (E0) +
c (ET )

4 + ϵ
≥ c (E0) + c (ET )

4 + ϵ
>

(4 + ϵ )r

4 + ϵ
= r .

�

5.2 General Case for Arbitrary Lower Bounds on Edge Lengths: High Level Overview

In this section, we give our main lemma (Lemma 5.5), a high-level overview of the algorithm and
analysis proving this lemma, and show how the lemma implies Theorem 5.1.

In the general case, the approximation guarantee given in Lemma 5.2 alone does not suffice
because of the offset of

∑
e ∈E (�e − �exe ). We instead rely on a stronger notion of approximation

formalized in the next lemma that provides simultaneous approximation guarantees on two sets
of edge weights: ce = uexe − �exe + �e and c ′e = �e − �exe . The guarantee on c ′ can then be used
to handle the offset.

Lemma 5.5. Let G be a graph with terminals T and two sets of edge weights c and c ′. Let sol be
any Steiner tree connecting T . Let Γ′ > 1, κ > 0, and 0 < ϵ < 4

35 be fixed constants. Then there exists
a constant Γ (depending on Γ′,κ, ϵ) and an algorithm that obtains a collection of Steiner trees alg, at
least one of which (let us call it algi ) satisfies:

• c (algi \ sol) ≤ 4Γ · c (sol \ algi ), and
• c ′(algi ) ≤ (4Γ′ + κ + 1 + ϵ ) · c ′(sol).

The fact that Lemma 5.5 generates multiple solutions (but only polynomially many) is fine be-
cause as long as we can show that one of these solutions causes sufficient regret, our separation
oracle can just iterate over all solutions until it finds one that causes sufficient regret.

We give a high level sketch of the proof of Lemma 5.5 here, and defer the full details to
Section 5.4. The algorithm uses the idea of alternate minimization, alternating between a “forward
phase” and a “backward phase”. The goal of each forward phase/backward phase pair is to keep
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c ′(alg) approximately fixed while obtaining a net decrease in c (alg). In the forward phase, the
algorithm greedily uses local search, choosing swaps that decrease c and increase c ′ at the best
“rate of exchange” between the two costs (i.e., the maximum ratio of decrease in c to increase
in c ′), until c ′(alg) has increased past some upper threshold. Then, in the backward phase, the
algorithm greedily chooses swaps that decrease c ′ while increasing c at the best rate of exchange,
until c ′(alg) reaches some lower threshold, at which point we start a new forward phase.

We guess the value of c ′(sol) (we can run many instances of this algorithm and generate differ-
ent solutions based on different guesses for this purpose) and set the upper threshold for c ′(alg)
appropriately so that we satisfy the approximation guarantee for c ′. For c we show that as long
as alg is not a 4Γ-difference approximation with respect to c then a forward/backward phase pair
reduces c (alg) by a non-negligible amount (of course, if alg is a 4Γ-difference approximation then
we are done). This implies that after enough iterations, alg must be a 4Γ-difference approximation
as c (alg) can only decrease by a bounded amount. To show this, we claim that while alg is not a 4Γ-
difference approximation, for sufficiently large Γ the following bounds on rates of exchange hold:

• For each swap in the forward phase, the ratio of decrease in c (alg) to increase in c ′(alg) is

at least some constant k1 times
c (alg\sol)
c ′ (sol\alg) .

• For each swap in the backward phase, the ratio of increase in c (alg) to decrease in c ′(alg)

is at most some constant k2 times c (sol\alg)
c ′ (alg\sol) .

Before we discuss how to prove this claim, let us see why this claim implies that a forward
phase/backward phase pair results in a net decrease in c (alg). If this claim holds, suppose we set
the lower threshold for c ′(alg) to be, say, 101c ′(sol). That is, throughout the backward phase, we
have c ′(alg) > 101c ′(sol). This lower threshold lets us rewrite our upper bound on the rate of
exchange in the backward phase in terms of the lower bound on rate of exchange for the forward
phase:

k2
c (sol \ alg)

c ′(alg \ sol)
≤ k2

c (sol \ alg)

c ′(alg) − c ′(sol)
≤ k2

c (sol \ alg)

100c ′(sol)
≤ k2

c (sol \ alg)

100c ′(sol \ alg)

≤ k2
1

4Γ

c (alg \ sol)

100c ′(sol \ alg)
=

k2

400Γk1
· k1

c (alg \ sol)

c ′(sol \ alg)
.

In other words, the bound in the claim for the rate of exchange in the forward phase is larger
than the bound for the backward phase by a multiplicative factor of Ω(1) · Γ. While these bounds
depend on alg and thus will change with every swap, let us make the simplifying assumption
that through one forward phase/backward phase pair these bounds remain constant. Then, the
change in c (alg) in one phase is just the rate of exchange for that phase times the change in
c ′(alg), which by definition of the algorithm is roughly equal in absolute value for the forward
and backward phase. So this implies that the decrease in c (alg) in the forward phase is Ω(1) · Γ
times the increase in c (alg) in the backward phase, i.e., the net change across the phases is a non-
negligible decrease in c (alg) if Γ is sufficiently large. Without the simplifying assumption, we can
still show that the decrease in c (alg) in the forward phase is larger than the increase in c (alg) in
the backward phase for large enough Γ using a much more technical analysis. In particular, our
analysis will show there is a net decrease as long as:

min
⎧⎪⎨⎪⎩ 4Γ − 1

8Γ
,

(4Γ − 1) (
√

Γ − 1) (
√

Γ − 1 − ϵ )κ

16(1 + ϵ )Γ2

⎫⎪⎬⎪⎭ −
(
eζ ′ (4Γ′+κ+1+ϵ ) − 1

)
> 0, (10)

where

ζ ′ =
4(1 + ϵ )Γ′

(
√

Γ′ − 1) (
√

Γ′ − 1 − ϵ ) (4Γ′ − 1) (4Γ − 1)
.

ACM Transactions on Algorithms, Vol. 19, No. 2, Article 12. Publication date: March 2023.



12:18 A. Ganesh et al.

Note that for any positive ϵ,κ, Γ′, there exists a sufficiently large value of Γ for (10) to hold, since
as Γ → ∞, we have ζ ′ → 0, so that(

eζ ′ (4Γ′+κ+1+ϵ ) − 1
)
→ 0 and

min
⎧⎪⎨⎪⎩ 4Γ − 1

8Γ
,

(4Γ − 1) (
√

Γ − 1) (
√

Γ − 1 − ϵ )κ

16(1 + ϵ )Γ2

⎫⎪⎬⎪⎭ → min{1/2,κ/(4 + 4ϵ )}.

So, the same intuition holds: as long as we are willing to lose a large enough Γ value, we can
make the increase in c (alg) due to the backward phase negligible compared to the decrease in the
forward phase, giving us a net decrease.

It remains to argue that the claimed bounds on rates of exchange hold. Let us argue the claim
for Γ = 4, although the ideas easily generalize to other choices of Γ. We do this by generalizing the
analysis giving Lemma 5.2. This analysis shows that if alg is a locally optimal solution, then

c (alg \ sol) ≤ 4 · c (sol \ alg),

i.e., alg is a 4-difference approximation of sol. The contrapositive of this statement is that if alg
is not a 4-difference approximation, then there is at least one swap that will improve it by some
amount. We modify the approach of [13] by weakening the notion of locally optimal. In particu-
lar, suppose we define a solution alg to be “approximately” locally optimal if at least half of the
(weighted) swaps between paths a in alg \ sol and paths f in sol \ alg satisfy c (a) ≤ 2c ( f ) (as
opposed to c (a) ≤ c ( f ) in a locally optimal solution; the choice of 2 for both constants here implies
Γ = 4). Then a modification of the analysis of the local search algorithm, losing an additional factor
of 4, shows that if alg is approximately locally optimal, then

c (alg \ sol) ≤ 16 · c (sol \ alg).

The contrapositive of this statement, however, has a stronger consequence than before: if alg is
not a 16-difference approximation, then a weighted half of the swaps satisfy c (a) > 2c ( f ), i.e.,
reduce c (alg) by at least

c (a) − c ( f ) > c (a) − c (a)/2 = c (a)/2.

The decrease in c (alg) due to all of these swaps together is at least c (alg\sol) times some constant.
In addition, since a swap between a and f increases c ′(alg) by at most c ′( f ), the total increase in
c ′ due to these swaps is at most c ′(sol \ alg) times some other constant. An averaging argument
then gives the rate of exchange bound for the forward phase in the claim, as desired. The rate of
exchange bound for the backward phase follows analogously.

This completes the algorithm and proof summary, although more details are needed to formalize
these arguments. Moreover, we also need to show that the algorithm runs in polynomial time.

We now formally define our separation oracle RRST-Oracle in Figure 5 and prove that it is an
approximate separation oracle in the lemma below:

Lemma 5.6. Fix any Γ′ > 1,κ > 0, 0 < ϵ < 4/35 and let Γ be the constant given in Lemma 5.5. Let
α = (4Γ′ + κ + 2 + ϵ )4Γ + 1 and β = 4Γ. Then there exists an algorithm RRST-Oracle that given a
solution (x, r ) to the LP in Figure 3 either:

• Outputs a separating hyperplane for the LP in Figure 3, or
• Outputs “Feasible”, in which case x is feasible for the (non-robust) Steiner tree LP and

∀d :
∑
e ∈E

dexe ≤ α · opt(d) + β · r .
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Fig. 5. Separation Oracle for LP in Figure 3.

Proof. It suffices to show that if there exists d, sol such that∑
e ∈E

dexe > α · sol(d) + β · r , i.e.,
∑
e ∈E

dexe − α · sol(d) > β · r

then RRST-Oracle outputs a violated inequality on line 6, i.e., the algorithm finds a Steiner tree
T ′ such that ∑

e�T ′
uexe +

∑
e ∈T ′
�exe −

∑
e ∈T ′
�e > r .

Notice that in the inequality ∑
e ∈E

dexe − α · sol(d) > β · r ,

replacing d with d′ where d ′e = �e when e ∈ sol and d ′e = ue when e � sol can only increase the
left hand side. So replacing d with d′ and rearranging terms, we have

∑
e ∈sol

�exe +
∑

e�sol

uexe > α
∑

e ∈sol

�e + β · r =
∑

e ∈sol

�e +

⎡⎢⎢⎢⎢⎣(α − 1)
∑

e ∈sol

�e + β · r
⎤⎥⎥⎥⎥⎦ .

In particular, the regret of the fractional solution against sol is at least (α − 1)
∑

e ∈sol �e + β · r .
Let T ′ be the Steiner tree satisfying the conditions of Lemma 5.5 with ce = uexe − �exe + �e

and c ′e = �e − �exe . Let E0 = E \ (sol ∪ T ′), ES = sol \ T ′, and ET = T ′ \ sol. Let c (E ′) =∑
e ∈E′ (uexe − �exe + �e ), i.e., the total weight of the edges E ′ inG ′. Now, note that the regret of the

fractional solution against a solution using edges E ′ is:∑
e�E′

uexe +
∑
e ∈E′
�exe −

∑
e ∈E′
�e =

∑
e�E′

(uexe − �exe + �e ) −
∑
e ∈E

(�e − �exe )

= c (E \ E ′) −
∑
e ∈E

(�e − �exe ).

Plugging in E ′ = sol, we then get that:

c (E0) + c (ET ) −
∑
e ∈E

(�e − �exe ) > (α − 1)
∑

e ∈sol

�e + β · r .
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Isolating c (ET ) then gives:

c (ET ) > (α − 1)
∑

e ∈sol

�e + β · r −
∑
e ∈E0

(uexe − �exe + �e ) +
∑
e ∈E

(�e − �exe )

= (α − 1)
∑

e ∈sol

�e + β · r −
∑
e ∈E0

uexe +
∑
e�E0

(�e − �exe ).

Since β = 4Γ, Lemma 5.5 along with an appropriate choice of ϵ gives that c (ET ) ≤ βc (ES ), and
thus:

c (ES ) >
1

β

⎡⎢⎢⎢⎢⎢⎣(α − 1)
∑

e ∈sol

�e + β · r −
∑
e ∈E0

uexe +
∑
e�E0

(�e − �exe )

⎤⎥⎥⎥⎥⎥⎦ .
Recall that our goal is to show that c (E0) + c (ES ) −∑e ∈E (�e − �exe ) > r , i.e., that the regret of

the fractional solution against T ′ is at least r . Adding c (E0) −∑e ∈E (�e − �exe ) to both sides of the
previous inequality, we can lower bound c (E0) + c (ES ) −∑e ∈E (�e − �exe ) as follows:

c (E0) + c (ES ) −
∑
e ∈E

(�e − �exe )

>
1

β

⎡⎢⎢⎢⎢⎢⎣(α − 1)
∑

e ∈sol

�e + β · r −
∑
e ∈E0

uexe +
∑
e�E0

(�e − �exe )

⎤⎥⎥⎥⎥⎥⎦
+
∑
e ∈E0

(uexe − �exe + �e ) −
∑
e ∈E

(�e − �exe )

= r +
α − 1

β

∑
e ∈sol

�e +
1

β

∑
e�E0

(�e − �exe ) +
β − 1

β

∑
e ∈E0

uexe −
∑
e�E0

(�e − �exe )

≥ r +
α − 1 − β

β

∑
e ∈sol

�e +
1

β

∑
e�E0

(�e − �exe ) +
β − 1

β

∑
e ∈E0

uexe −
∑

e ∈ET

(�e − �exe ) ≥ r .

Here, the last inequality holds because by our setting of α , we have

α − 1 − β
β

= 4Γ′ + κ + 1 + ϵ,

and thus Lemma 5.5 gives that
∑

e ∈ET

(�e − �exe ) ≤ α − 1 − β
β

∑
e ∈sol

(�e − �exe ) ≤ α − 1 − β
β

∑
e ∈sol

�e .

�

By using Lemma 5.6 with the ellipsoid method and the fact that the LP optimum is at most mr, we
get an (α , β )-robust fractional solution. Then, Theorem 1.3 and known approximation/integrality
gap results give us the following theorem, which with an appropriate choice of constants gives
Theorem 5.1:

Theorem 5.7. Fix any Γ′ > 1,κ > 0, 0 < ϵ < 4/35 and let Γ be the constant given in Lemma 5.5. Let
α = (4Γ′+κ+2+ϵ )4Γ+1 and β = 4Γ. Then there exists a polynomial-time (2α ln 4+ϵ, 2β ln 4+ln 4+ϵ )-
robust algorithm for the Steiner tree problem.

Proof of Theorem 5.7. By using the ellipsoid method with Lemma 5.6 we can compute a fea-
sible (α , β )-robust fractional solution to the Steiner tree LP (as the robust Steiner tree LP has opti-
mum at most mr). Then, the theorem follows from Theorem 1.3, and the fact that the polytope in
Figure 3 has integrality gap δ = 2 and there is a γ = (ln 4 + ϵ )-approximation for the Steiner tree

ACM Transactions on Algorithms, Vol. 19, No. 2, Article 12. Publication date: March 2023.



Robust Algorithms for TSP and Steiner Tree 12:21

problem due to [8] (The error parameters can be rescaled appropriately to get the approximation
guarantee in the theorem statement). �

Optimizing for α in Theorem 5.7 subject to the constraints in (10), we get that for a fixed (small)
ϵ , α is minimized by setting Γ ≈ 9.284 + f1 (ϵ ), Γ′ ≈ 5.621 + f2 (ϵ ),κ ≈ 2.241 + f3 (ϵ ) (for mono-
tonically increasing f1, f2, f3 which approach 0 as ϵ approaches 0). Plugging in these values gives
Theorem 5.1.

5.3 Algorithm Description

In this section we give the algorithm description for DoubleApprox, as well as a few lemmas
that motivate our algorithm’s design and certify it is efficient. We will again use local search
to find moves that are improving with respect to c . However, now our goal is to show that we
can do this without blowing up the cost with respect to c ′. We can start to show this via the
following lemma, which generalizes the arguments in Section 4. Informally, it says that as long as
a significant fraction (1/θ ) of the swaps (rather than all the swaps) that the local search algorithm
can make between its solution A and an adversarial solution F do not improve its objective by
some factor λ (rather than by any amount at all), A’s cost can still be bounded by 4λθ times
F ’s cost.

From Lemma 5.8 to Lemma 5.11 we will refer to the cost functions on edges by w,w ′ instead
of c, c ′. This is because these lemmas are agnostic to the cost functions they are applied to and
will be applied with both w = c,w ′ = c ′ and w = c ′,w ′ = c in our algorithm. We also define
A,F ,α ,N (·),N −1 (·) as in the proof of Theorem 4.2 for these lemmas.

Lemma 5.8. Let A and F be solutions to an instance of Steiner tree with edge costs w such that if
all edges in A ∩ F have their costs set to 0, then for λ ≥ 1,θ ≥ 1, we have

∑
a∈A,f ∈N (a):w (a)≤λw (f )

α (a, f )w (a) ≥ 1

θ

∑
a∈A,f ∈N (a)

α (a, f )w (a).

Then w (A \ F ) ≤ 4λθw (F \A).

Proof. This follows by generalizing the argument in the proof of Theorem 4.2. After setting
costs of edges in A ∩ F to 0, note that w (A) = w (A \ F ) and w (F ) = w (F \A). Then:

w (A \ F ) =
∑
a∈A

w (a)

≤
∑
a∈A

∑
f ∈N (a)

α (a, f )w (a)

=
∑
f ∈F

∑
a∈N −1 (f )

α (a, f )w (a)

≤ θ
∑
f ∈F

∑
a∈N −1 (f ):w (a)≤λw (f )

α (a, f )w (a)

≤ λθ
∑
f ∈F

∑
a∈N −1 (f ):w (a)≤λw (f )

α (a, f )w ( f )

≤ λθ
∑
f ∈F

∑
a∈N −1 (f )

α (a, f )w ( f ) ≤ 4λθw (F \A).

�
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Corollary 5.9. Let A, F be solutions to an instance of Steiner tree with edge costs w such that for
parameters λ ≥ 1,θ ≥ 1,w (A\ F ) > 4λθw (F \A). Then after setting the cost of all edges in A∩ F to 0,

∑
a∈A,f ∈N (a):w (a)>λw (f )

α (a, f )w (a) >
θ − 1

θ

∑
a∈A,f ∈N (a)

α (a, f )w (a).

The corollary effectively tells us that if w (A \ F ) is sufficiently larger than w (F \A), then there
are many local swaps between S in A and f in F that decrease w (A) by a large fraction of w (a).
The next lemma then shows that one of these swaps also does not increasew ′(A) by a large factor
(even if instead of swapping in f , we swap in an approximation of f ), and reduces w (A) by a
non-negligible amount.

Lemma 5.10. Let A and F be solutions to an instance of Steiner tree with two sets of edge costs, w

andw ′, such that for parameter Γ > 1,w (A \ F ) > 4Γ ·w (F \A). Fix any 0 < ϵ <
√

Γ − 1. Then there

exists a swap between a ∈ A and a path f between two vertices in A such that
(1+ϵ )w ′ (f )−w ′ (a)
w (a)−(1+ϵ )w (f ) ≤

4(1+ϵ )Γ

(
√

Γ−1)(
√

Γ−1−ϵ )
· w ′ (F \A)

w (A\F ) and w (a) − (1 + ϵ )w ( f ) ≥ 1
n2w (A \ F ).

Proof. We use an averaging argument to prove the lemma. Consider the quantity

R =

∑
a∈A,f ∈N (a):w (a)>

√
Γw (f ),w (a)−(1+ϵ )w (f )≥ 1

n2 w (A\F ) α (a, f )[(1 + ϵ )w ′( f ) −w ′(a)]
∑

a∈A,f ∈N (a):w (a)>
√

Γw (f ),w (a)−(1+ϵ )w (f )≥ 1
n2 w (A\F ) α (a, f )[w (a) − (1 + ϵ )w ( f )]

,

which is the ratio of the weighted average of increase in c ′ to the weighted average of decrease in

c over all swaps where w (a) >
√

Γw ( f ) and w (a) − (1 + ϵ )w ( f ) ≥ 1
n2w (A \ F ).

For any edge e in A ∩ F , it is also a subpath f ∈ A ∩ F for which the only a ∈ A such that
A∪ f \a is feasible is a = f . So for all such e we can assume that α is defined such that α (e, e ) = 1,

α (e, f ) = 0 for f � e , and α (a, e ) = 0 for a � e . Clearly w (a) >
√

Γw (a) does not hold, so no swap
with a positive α value in either sum involves edges in A ∩ F . So we can now set the cost with
respect to both c, c ′ of edges in A ∩ F to 0, and doing so does not affect the quantity R.

Then, the numerator can be upper bounded by 4(1 + ϵ )w ′(F \A). For the denominator, we first
observe that ∑

a∈A,f ∈N (a):w (a)>
√

Γw (f ),w (a)−(1+ϵ )w (f )≥ 1
n2 w (A\F )

α (a, f )[w (a) − (1 + ϵ )w ( f )]

≥
∑

a∈A,f ∈N (a):w (a)>
√

Γw (f )

α (a, f )[w (a) − (1 + ϵ )w ( f )]

−
∑

a∈A,f ∈N (a):w (a)−(1+ϵ )w (f )< 1
n2 w (A\F )

α (a, f )[w (a) − (1 + ϵ )w ( f )]. (11)

The second term on the right-hand side of (11) is upper bounded by:∑
a∈A,f ∈N (a):w (a)−(1+ϵ )w (f )< 1

n2 w (A\F )

α (a, f )[w (a) − (1 + ϵ )w ( f )]

≤ 1

n2

∑
a∈A,f ∈N (a):w (a)−(1+ϵ )w (f )< 1

n2 w (A\F )

α (a, f )w (A \ F ) ≤ 1

n
w (A \ F ).

The inequality follows because there are at most n different a ∈ A, and for each one we have∑
f ∈F α (a, f ) = 1. We next use Corollary 5.9 (setting both parameters to

√
Γ) to get the following
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lower bound on the first term in (11):∑
a∈A,f ∈N (a):w (a)>

√
Γw (f )

α (a, f )[w (a) − (1 + ϵ )w ( f )]

≥
∑

a∈A,f ∈N (a):w (a)>
√

Γw (f )

α (a, f )

[
w (a) − 1 + ϵ

√
Γ
w (a)

]

=

√
Γ − 1 − ϵ
√

Γ

∑
a∈A,f ∈N (a):w (a)>

√
Γw (f )

α (a, f )w (a)

≥ (
√

Γ − 1) (
√

Γ − 1 − ϵ )

Γ

∑
a∈A,f ∈N (a)

α (a, f )w (a)

=
(
√

Γ − 1) (
√

Γ − 1 − ϵ )

Γ
w (A \ F ).

This lower bounds the denominator ofR by ( (
√

Γ−1)(
√

Γ−1−ϵ )
Γ −1/n) ·w (A\F ). By properly choosing

of ϵ , for sufficiently large n we can ignore the 1/n term. Then, combining the bounds implies that

R is at most 4(1+ϵ ′)Γ

(
√

Γ−1)(
√

Γ−1−ϵ ′)
· w ′ (F \A)

w (A\F ) . In turn, one of the swaps being summed over in R satisfies

the lemma statement. �

We now almost have the tools to state our algorithm and prove Lemma 5.5. However, the local
search process is now concerned with two edge costs, so just considering adding the shortest path
with respect to c between each pair of vertices and deleting a subset of vertices in the induced
cycle will not suffice. We instead use the following lemma:

Lemma 5.11. Given a graph G = (V ,E) with edge costs w and w ′, two vertices s and t , and input
parameterW ′, let p be the shortest path from s to t with respect to w whose cost with respect to c ′ is
at most W ′. For all ϵ > 0, there is a polynomial time algorithm that finds a path from s to t whose
cost with respect to w is at most w (p) and whose cost with respect to w ′ is at most (1 + ϵ )W ′.

Proof. If all edge lengths with respect tow ′ are multiples of Δ, an optimal solution can be found
in time poly( |V |, |E |,W ′/Δ) via dynamic programming: Let �(v, i ) be the length of the shortest path
from s to v with respect tow whose cost with respect tow ′ is at most i · Δ. Using �(s, i ) = 0 for all
i and the recurrence �(v, i ) ≤ �(u, i − (w ′uv/Δ)) +wuv for edge (u,v ), we can compute �(v, i ) for
all v, i and use backtracking from �(t ,W ′) to retrieve p in poly( |V |, |E |,W ′/Δ) time.

To get the runtime down to polynomial, we use a standard rounding trick, rounding each w ′e
down to the nearest multiple of ϵW ′/|V |. After rounding, the runtime of the dynamic programming

algorithm is poly( |V |, |E |, W ′

ϵW ′/ |V | ) = poly( |V |, |E |, 1
ϵ

). Any path has at most |V | edges, and so its

cost decreases by at most ϵW ′ in this rounding process, i.e., all paths considered by the algorithm
have cost with respect to w ′ of at most (1 + ϵ )W ′. Lastly, since p’s cost with respect to w ′ only
decreases, w (p) still upper bounds the cost of the shortest path considered by the algorithm with
respect to w . �

The idea is to run a local search with respect to c starting with a good approximation with respect
to c ′. Our algorithm alternates between a “forward” and “backward” phase. In the forward phase,
we use Lemma 5.11 to decide which paths can be added to the solution in local search moves.
The local search takes any swap that causes both c (alg) and c ′(alg) to decrease if any exists.
Otherwise, it picks the swap between S ∈ alg and f that among all swaps where c ( f ) < c (a) and
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Fig. 6. Algorithm DoubleApprox, which finds alg such that c (alg \ sol) ≤ O (1) · c (sol \ alg) and c ′(alg) ≤
O (1) · c ′(sol).

c ′( f ) ≤ c ′(sol) minimizes the ratio
c ′ (f )−c ′ (a)
c (a)−c (f ) (we assume we know the value of c ′(sol), as we can

guess many values, and our algorithm will work for the right value for c ′(sol)).
If the algorithm only made swaps of this form, however, c ′(alg) might become a very poor

approximation of c ′(sol). To control for this, when c ′(alg) exceeds (4Γ′ + κ) · c ′(sol) for some
constant Γ′ > 1, we begin a “backward phase”: We take the opposite approach, greedily choosing

either swaps that improve both c and c ′ or that improve c ′ and minimize the ratio
c (f )−c (a)

c ′ (a)−c ′ (f ) , until

c ′(alg) has been reduced by at least κ · c ′(sol). At this point, we begin a new forward phase.
The intuition for the analysis is as follows: If, throughout a forward phase, c (alg \ sol) ≥

4Γ · c (sol \ alg), Lemma 5.10 tells us that there is swap where the increase in c ′(alg) will be very
small relative to the decrease in c (alg). (Note that our goal is to reduce the cost of c (alg \ sol) to
something below 4Γ ·c (sol\alg).) Throughout the subsequent backward phase, we have c ′(alg) >
4Γ′ · c ′(sol), which implies c ′(alg \ sol) > 4Γ′ · c ′(sol \ alg). So Lemma 5.10 also implies that the
total increase in c (alg) will be very small relative to the decrease in c ′(alg). Since the absolute
change in c ′(alg) is similar between the two phases, one forward and one backward phase should
decrease c (alg) overall.

The formal description of the backward and forward phase is given as algorithm DoubleApprox
in Figure 6. For the lemmas/corollaries in the following section, we implicitly assume that we know
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Fig. 7. Algorithm GreedySwap, which finds a swap with the properties described in Lemma 5.10.

values of χ and χ ′ satisfying the conditions of DoubleApprox. When we conclude by proving
Lemma 5.5, we will simply call DoubleApprox for every reasonable value of χ , χ ′ that is a power
of 1 + ϵ , and one of these runs will have χ , χ ′ satisfying the conditions. Furthermore, there are
multiple error parameters in our algorithm and its analysis. For simplicity of presentation, we use
the same value ϵ for all error parameters in the algorithm and its analysis.

5.4 Algorithm Analysis and Proof of Lemma 5.5

In this section we analyze DoubleApprox and give the proof of Lemma 5.5. We skip the proof of
some technical lemmas whose main ideas have been covered already. We first make some obser-
vations. The first lets us relate the decrease in cost of a solution alg to the decrease in the cost of
alg \ sol.

Lemma 5.12. Let alg, alg′, sol be any Steiner tree solutions to a given instance. Then

c (alg) − c (alg′) = [c (alg \ sol) − c (sol \ alg)] − [c (alg′ \ sol) − c (sol \ alg′)].

Proof. By symmetry, the contribution of edges in alg∩alg′ and edges in neither alg nor alg′

to both the left and right hand side of the equality is zero, so it suffices to show that all edges in
alg ⊕ alg′ contribute equally to the left and right hand side.

Consider any e ∈ alg \ alg′. Its contribution to c (alg) − c (alg′) is c (e ). If e ∈ alg \ sol, then e
contributes c (e ) to c (alg\sol)−c (sol\alg) and 0 to−[c (alg′\sol)−c (sol\alg′)]. If e ∈ alg∩sol,
then e contributes 0 to c (alg \ sol) − c (sol \ alg) and c (e ) to −[c (alg′ \ sol) − c (sol \ alg′)]. So
the total contribution of e to [c (alg \ sol) − c (sol \ alg)] − [c (alg′ \ sol) − c (sol \ alg′)] is c (e ).

Similarly, consider e ∈ alg′ \ alg. Its contribution to c (alg) − c (alg′) is −c (e ). If e ∈ sol \ alg,
then e contributes−c (e ) to c (alg\sol)−c (sol\alg) and 0 to [c (alg′\sol)−c (sol\alg′)]. If e � sol,
then e contributes 0 to c (alg\sol)−c (sol\alg) and −c (e ) to −[c (alg′\sol)−c (sol\alg′)]. So the
total contribution of e to [c (alg \ sol) −c (sol \alg)]− [c (alg′ \ sol) −c (sol \alg′)] is −c (e ). �
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Lemma 5.12 is useful because Lemma 5.10 relates the ratio of change in c, c ′ to c (alg \ sol),
but it is difficult to track how c (alg \ sol) changes as we make swaps that improve c (alg). For
example, c (alg \ sol) does not necessarily decrease with swaps that cause c (alg) to decrease (e.g.,
consider a swap that adds a light edge not in sol and removes a heavy edge in sol). Whenever
c (alg \ sol) � c (sol \ alg) (if this doesn’t hold, we have a good approximation and are done),
c (alg \ sol) and c (alg \ sol) − c (sol \alg) are off by a multiplicative factor that is very close to 1,
and thus we can relate the ratio of changes in Lemma 5.10 to c (alg \ sol) − c (sol \alg) instead at
a small loss in the constant, and by Lemma 5.12 changes in this quantity are much easier to track
over the course of the algorithm, simplifying our analysis greatly.

The next lemma lets us assume that any backward phase uses polynomially many calls to
GreedySwap.

Lemma 5.13. Let χ ′ be any value such that χ ′ ∈ [c ′(sol), (1 + ϵ )c ′(sol)], and suppose we round
all c ′e up to the nearest multiple of ϵ

n
χ ′ for some 0 < ϵ < 1. Then any γ -approximation of sol with

respect to c ′ using the rounded c ′e values is an γ (1+ 2ϵ )-approximation of sol with respect to c ′ using
the original edge costs.

Proof. This follows because the rounding can only increase the cost of any solution, and the
cost increases by at most ϵ χ ′ ≤ ϵ (1 + ϵ )c ′(sol) ≤ 2ϵc ′(sol). �

Via this lemma, we will assume all c ′e are already rounded. The following two lemmas formalize
the intuition given in Section 5.2; in particular, by using bounds on the “rate of exchange”, they
show that the decrease in c in the forward phase can be lower bounded, and the increase in c in
the backward phase can be upper bounded. Their proofs are highly technical and largely follow
the intuition given in Section 5.2, so we defer them to the following section.

Lemma 5.14 (Forward Phase Analysis). For any even i in algorithm DoubleApprox, let ρ be

the power of (1 + ϵ ) times mine ce such that ρ ∈ [c (alg(i ) \ sol), (1 + ϵ )c (alg(i ) \ sol)]. Suppose

all values of alg
(i+1)
ρ and the final value of alg(i ) in DoubleApprox satisfy c (alg

(i+1)
ρ \ sol) >

4Γ · c (sol \ alg
(i+1)
ρ ) and c (alg(i ) \ sol) > 4Γ · c (sol \ alg(i ) ). Then for 0 < ϵ < 2/3 − 5/12Γ, the

final values of alg(i ), alg
(i+1)
ρ satisfy

c
(
alg(i )

)
− c
(
alg

(i+1)
ρ

)
≥ min

⎧⎪⎨⎪⎩ 4Γ − 1

8Γ
,

(4Γ − 1) (
√

Γ − 1) (
√

Γ − 1 − ϵ )κ

16(1 + ϵ )Γ2

⎫⎪⎬⎪⎭ · c
(
alg

(i+1)
ρ \ sol

)
.

Lemma 5.15 (Backward Phase Analysis). Fix any even i + 2 in algorithm DoubleApprox and

any value of ρ. Suppose all values of alg
(i+2)
ρ satisfy c (alg

(i+2)
ρ \ sol) > 4Γ ·c (sol \alg

(i+2)
ρ ). LetT =

c ′ (alg
(i+1)
ρ )−c ′ (alg

(i+2)
ρ )

c ′ (sol) . Then for

ζ ′ =
4(1 + ϵ )Γ′

(
√

Γ′ − 1) (
√

Γ′ − 1 − ϵ ) (4Γ′ − 1) (4Γ − 1)
,

the final values of alg
(i+1)
ρ , alg

(i+2)
ρ satisfy

c
(
alg

(i+2)
ρ

)
− c
(
alg

(i+1)
ρ

)
≤
(
eζ ′T − 1

)
· c
(
alg

(i+1)
ρ \ sol

)
.

By combining the two preceding lemmas, we can show that as long as alg is a poor difference

approximation, a combination of the forward and backward phase collectively decrease c (alg(i ) ).

Corollary 5.16. Fix any positive even value of i +2 in algorithm DoubleApprox, and let ρ be the

power of (1+ϵ ) times mine ce such that ρ ∈ [c (alg(i )\sol), (1+ϵ )c (alg(i )\sol)]. Suppose all values of

alg
(i+1)
ρ and the final value of alg(i ) in DoubleApprox satisfy c (alg

(i+1)
ρ \sol) > 4Γ ·c (sol\alg

(i+1)
ρ )
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and c (alg(i )\sol) > 4Γ ·c (sol\alg(i ) ). Then for 0 < ϵ < 2/3−5/12Γ and ζ ′ as defined in Lemma 5.15,

the final values of alg(i+2), alg(i ) satisfy

c (alg(i ) ) − c (alg(i+2) )

≥
⎡⎢⎢⎢⎢⎣min

⎧⎪⎨⎪⎩ 4Γ − 1

8Γ
,

(4Γ − 1) (
√

Γ − 1) (
√

Γ − 1 − ϵ )κ

16(1 + ϵ )Γ2

⎫⎪⎬⎪⎭ − (eζ ′ (4Γ′+κ+1+ϵ ) − 1)
⎤⎥⎥⎥⎥⎦ · c
(
alg

(i+1)
ρ \ sol

)
.

Proof. It suffices to lower bound c (alg(i ) ) − c (alg
(i+2)
ρ ) for this value of ρ, since c (alg(i ) ) −

c (alg(i+2) ) must be at least this large. After rescaling ϵ appropriately, we have

c ′
(
alg

(i+1)
ρ

)
− c ′
(
alg

(i+2)
ρ

)
≤ c ′
(
alg

(i+1)
ρ

)
≤ (4Γ′ + κ + 1 + ϵ )c ′(sol),

because the algorithm can increase its cost with respect to c ′ by at most (1 + ϵ )c ′(sol) in any

swap in the forward phase (by line 5 of GreedySwap, which bounds the increase w ′( f̂ ) ≤ W ≤
(1 + ϵ )w ′(sol)), so it exceeds the threshold (4Γ′ + κ)χ ′ ≤ (4Γ′ + κ) (1 + ϵ )c ′(sol) on line 13 of

DoubleApprox by at most this much. Then applying Lemma 5.14 to c (alg(i ) ) − c (alg
(i+1)
ρ ) and

Lemma 5.15 to c (alg
(i+1)
ρ ) − c (alg

(i+2)
ρ ) (using T ≤ 4Γ′ + κ + 1 + ϵ) gives:

c
(
alg(i )

)
− c
(
alg

(i+2)
ρ

)
=

[
c
(
alg(i )

)
− c
(
alg

(i+1)
ρ

)]
+
[
c
(
alg

(i+1)
ρ

)
− c
(
alg

(i+2)
ρ

)]
≥

⎡⎢⎢⎢⎢⎣min
⎧⎪⎨⎪⎩ 4Γ − 1

8Γ
,

(4Γ − 1) (
√

Γ − 1) (
√

Γ − 1 − ϵ )κ

16(1 + ϵ )Γ2

⎫⎪⎬⎪⎭ − (eζ ′ (4Γ′+κ+1+ϵ ) − 1)
⎤⎥⎥⎥⎥⎦ · c
(
alg

(i+1)
ρ \ sol

)
.

�

Now, we can chain Corollary 5.16 multiple times to show that after sufficiently many iterations

of DoubleApprox, if all intermediate values of alg(i ) are poor difference approximations, over all

these iterations c (alg(i ) ) must decrease multiplicatively by more than n maxe ce

mine ce
, which is a contra-

diction as this is the ratio between an upper and lower bound on the cost of every Steiner tree. In

turn, some intermediate value of alg(i ) must have been a good difference approximation:

Lemma 5.17. Suppose Γ, Γ′,κ, and ϵ are chosen such that for ζ ′ as defined in Lemma 5.15,

min
⎧⎪⎨⎪⎩ 4Γ − 1

8Γ
,

(4Γ − 1) (
√

Γ − 1) (
√

Γ − 1 − ϵ )κ

16(1 + ϵ )Γ2

⎫⎪⎬⎪⎭ − (eζ ′(4Γ′+κ+1+ϵ ) − 1) > 0,

and 0 < ϵ < 2/3 − 5/12Γ. Let η equal

min
{

4Γ−1
8Γ ,

(4Γ−1)(
√

Γ−1)(
√

Γ−1−ϵ )κ
16(1+ϵ )Γ2

}
− (eζ ′ (4Γ′+κ+1+ϵ ) − 1)

1 + 4Γ−1
4Γ (eζ ′(4Γ′+κ+1+ϵ ) − 1)

.

Assume η > 0 and let I = 2(�log n maxe ce

mine ce
/ log(1+η)� +1). Then there exists some intermediate value

alg∗ assigned to alg
(i )
ρ by the algorithm for some i ≤ I and ρ such that c (alg∗\sol) ≤ 4Γc (sol\alg∗)

and c ′(alg∗) ≤ (4Γ′ + κ + 1 + ϵ )c ′(sol).

Proof. Let Φ(i ) := c (alg(i ) \ sol) − c (sol \ alg(i ) ) for even i . Assume that the lemma is false.

Since algorithm DoubleApprox guarantees that c ′(alg
(i )
ρ ) ≤ (4Γ′ + κ + 1 + ϵ )c ′(sol), if the

lemma is false it must be that for all i and ρ, c (alg
(i )
ρ \ sol) > 4Γc (sol \ alg

(i )
ρ ). By Corollary 5.16,

and the assumption on Γ, Γ′,κ, ϵ in the statement of this lemma, for all i c (alg(i ) ) < c (alg(i−2) ),
so the while loop on Line 3 of DoubleApprox never breaks. This means that for all even

i ≤ I , alg(i ) is assigned a value in DoubleApprox. We will show that this implies that for the

final value of alg(I ) , Φ(I ) = c (alg(I ) \ sol) − c (sol \ alg(I ) ) < 4Γ−1
4Γ mine ce . The inequality
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c (alg(I ) \ sol) > 4Γc (sol \ alg(I ) ) implies c (alg(I ) \ sol) − c (sol \ alg(I ) ) > 4Γ−1
4Γ c (alg(I ) \ sol).

The value of c (alg(I ) \ sol) must be positive (otherwise c (alg(I ) \ sol) ≤ 4Γc (sol \ alg(I ) )
trivially), and hence it must be at least mine ce . These two inequalities conflict, which implies a
contradiction. Hence, the lemma must be true.

We now analyze how the quantity Φ(i ) changes under the assumption that the lemma is
false. Of course Φ(0) ≤ n maxe ce . Lemma 5.12 gives that Φ(i ) − Φ(i + 2) is exactly equal to

c (alg(i ) ) − c (alg(i+2) ). For the value of ρ such that ρ ∈ [c (alg(i ) \ sol), (1 + ϵ )c (alg(i ) \ sol)], by
Corollary 5.16 and the assumption that the lemma is false, for even i we have

Φ(i ) − Φ(i + 2)

≥
⎡⎢⎢⎢⎢⎣min

⎧⎪⎨⎪⎩ 4Γ − 1

8Γ
,

(4Γ − 1) (
√

Γ − 1) (
√

Γ − 1 − ϵ )κ

16(1 + ϵ )Γ2

⎫⎪⎬⎪⎭ − (eζ ′(4Γ′+κ+1+ϵ ) − 1)
⎤⎥⎥⎥⎥⎦ · c (alg

(i+1)
ρ \ sol)

≥
⎡⎢⎢⎢⎢⎣min

⎧⎪⎨⎪⎩ 4Γ − 1

8Γ
,

(4Γ − 1) (
√

Γ − 1) (
√

Γ − 1 − ϵ )κ

16(1 + ϵ )Γ2

⎫⎪⎬⎪⎭ − (eζ ′ (4Γ′+κ+1+ϵ ) − 1)
⎤⎥⎥⎥⎥⎦

·[c (alg
(i+1)
ρ \ sol) − c (sol \ alg

(i+1)
ρ )]. (12)

Lemma 5.15 (using the proof from Corollary 5.16 that T ≤ 4Γ′ + κ + 1 + ϵ), Lemma 5.12, and the

inequality c (alg
(i+1)
ρ \ sol) − c (sol \ alg

(i+1)
ρ ) > 4Γ−1

4Γ c (alg
(i+1)
ρ \ sol) give:

Φ(i + 2) − [c (alg
(i+1)
ρ \ sol) − c (sol \ alg

(i+1)
ρ )]

≤(eζ ′ (4Γ′+κ+1+ϵ ) − 1)c (alg
(i+1)
ρ \ sol)

<
4Γ − 1

4Γ
(eζ ′ (4Γ′+κ+1+ϵ ) − 1)[c (alg

(i+1)
ρ \ sol) − c (sol \ alg(i+1) )]

=⇒ [c (alg
(i+1)
ρ \ sol) − c (sol \ alg

(i+1)
ρ )] >

1

1 + 4Γ−1
4Γ (eζ ′ (4Γ′+κ+1+ϵ ) − 1))

Φ(i + 2).

Plugging this into (12) gives:

Φ(i + 2) <
����1 +

min{ 4Γ−1
8Γ ,

(4Γ−1)(
√

Γ−1)(
√

Γ−1−ϵ )κ
16(1+ϵ )Γ2 } − (eζ ′(4Γ′+κ+1+ϵ ) − 1)

1 + 4Γ−1
4Γ (eζ ′ (4Γ+κ+1+ϵ ) − 1)

����
−1

Φ(i )

= (1 + η)−1Φ(i ).

Applying this inductively gives:

Φ(i ) ≤ (1 + η)−i/2Φ(0) ≤ (1 + η)−i/2n max
e

ce .

Plugging in i = I = 2(�log n maxe ce

mine ce
/ log(1 + η)� + 1) gives Φ(I ) ≤ (1 + η)−1 mine ce < mine ce

as desired. �

To prove Lemma 5.5, we now just need to certify that it suffices to guess multiple values of χ , χ ′,
and that the algorithm is efficient.

Proof of Lemma 5.5. If we have χ ∈ [c (sol), (1+ϵ ) ·c (sol)] and χ ′ ∈ [c ′(sol), (1+ϵ ) ·c ′(sol)],
and the c ′e values are multiples of ϵ

n
χ ′, then the conditions of DoubleApprox are met. As long as

(10) holds, that is:

min
⎧⎪⎨⎪⎩ 4Γ − 1

8Γ
,

(4Γ − 1) (
√

Γ − 1) (
√

Γ − 1 − ϵ )κ

16(1 + ϵ )Γ2

⎫⎪⎬⎪⎭ − (eζ ′ (4Γ′+κ+1+ϵ ) − 1) > 0, (10)
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then we have η > 0 in Lemma 5.17, thus giving the approximation guarantee in Lemma 5.5. For
any positive ϵ,κ, Γ′, there exists a sufficiently large value of Γ for (10) to hold, since as Γ → ∞, we

have ζ ′ → 0, (eζ ′(4Γ′+κ+1+ϵ ) − 1) → 0, and min{ 4Γ−1
8Γ ,

(4Γ−1)(
√

Γ−1)(
√

Γ−1−ϵ )κ
16(1+ϵ )Γ2 } → min{1/2,κ/(4+ 4ϵ )},

so for any fixed choice of ϵ,κ, Γ′, a sufficiently large value of Γ causes η > 0 to hold as desired.

Some value in {mine ce , (1 + ϵ ) mine ce , . . . (1 + ϵ ) �log1+ϵ
n maxe ce

mine ce
� mine ce } satisfies the condi-

tions for χ , and there are polynomially many values in this set. The same holds for χ ′ in

{mine c
′
e , . . . (1 + ϵ )

�log1+ϵ
n maxe c′e

mine c′e
�

mine c
′
e }. So we can run DoubleApprox for all pairs of χ , χ ′

(paying a polynomial increase in runtime), and output the union of all outputs, giving the guaran-
tee of Lemma 5.5 by Lemma 5.17. For each χ ′we choose, we can round the edge costs to the nearest
multiple of ϵ

n
χ ′ before running DoubleApprox, and by Lemma 5.13 we only pay an additiveO (ϵ )

in the approximation factor with respect to c ′. Finally, we note that by setting ϵ appropriately in
the statement of Lemma 5.17, we can achieve the approximation guarantee stated in Lemma 5.5
for a different value of ϵ .

Then, we just need to show DoubleApprox runs in polynomial time. Lemma 5.17 shows that
the while loop of Line ?? only needs to be run a polynomial number (I ) of times. The while loop for
the forward phase runs at mostO (n2) times since each call to GreedySwap decreases the cost with
respect to c by at least 1

10n2 ρ, and once the total decrease exceeds ρ/2 the while loop breaks. The
while loop for the backward phase runs at most (κ+1+ϵ ) n

ϵ
times, since the initial cost with respect

to c ′ is at most (4Γ + κ + 1 + ϵ )χ ′, the while loop breaks when it is less than 4Γ′χ ′, and each call
to GreedySwap improves the cost by at least ϵ

n
χ ′. Lastly, GreedySwap can be run in polynomial

time as the maximal a which needs to be enumerated and can be computed in polynomial time as
described in Section 4. �

5.5 Proofs of Lemmas 5.14 and 5.15

Proof of Lemma 5.14. Let alg
(i+1)
ρ, j denote the value of alg

(i+1)
ρ after j calls to GreedySwap on

alg
(i+1)
ρ , and let J be the total number of calls of GreedySwap on alg

(i+1)
ρ . Then alg

(i+1)
ρ,0 is the

final value of alg(i ) , and the final value of alg
(i+1)
ρ is alg

(i+1)
ρ, J

. Any time GreedySwap is invoked

on alg
(i+1)
ρ , by line 6 of DoubleApprox and the assumption ρ ≤ (1+ϵ )c (alg(i ) \sol) in the lemma

statement, we have:

c
(
alg

(i+1)
ρ

)
> c (alg(i ) ) − ρ/2 ≥ c (alg(i ) ) − 1 + ϵ

2
c (alg(i ) \ sol).

Then, by Lemma 5.12 and the assumption c (alg(i ) \ sol) > 4Γ · c (sol \ alg(i ) ) in the lemma
statement, we have:

c (alg
(i+1)
ρ \ sol) ≥ c (alg

(i+1)
ρ \ sol) − c (sol \ alg

(i+1)
ρ )

= c (alg(i ) \ sol) − c (sol \ alg(i ) ) + c (alg
(i+1)
ρ ) − c (alg(i ) )

≥ c (alg(i ) \ sol) − c (sol \ alg(i ) ) − 1 + ϵ

2
c (alg(i ) \ sol)

≥
(

1 − ϵ
2
− 1

4Γ

)
c (alg(i ) \ sol),

For ϵ < 2/3−5/12Γ, c (alg
(i+1)
ρ \sol)/n2 ≥ 1

10n2 ρ. So by Lemma 5.10 GreedySwap never outputs
a tuple where stops = 1, and thus we can ignore lines 8-10 of DoubleApprox under the conditions
in the lemma statement.
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Suppose alg
(i+1)
ρ, J

satisfies c (alg
(i+1)
ρ, J

) ≤ c (alg(i ) ) − ρ/2, a condition that causes the while loop

at line 6 of DoubleApprox to exit and the forward phase to end. Then

c (alg(i ) ) − c (alg
(i+1)
ρ, J

) ≥ ρ/2 ≥ 1

2
c (alg(i ) \ sol)

≥ 1

2
[c (alg(i ) \ sol) − c (sol \ alg(i ) )]

=
1

2
[c (alg

(i+1)
ρ,0 \ sol) − c (sol \ alg

(i+1)
ρ,0 )]

≥ 1

2
[c (alg

(i+1)
ρ, J
\ sol) − c (sol \ alg

(i+1)
ρ, J

)]

≥ 4Γ − 1

8Γ
c (alg

(i+1)
ρ, J
\ sol).

The second-to-last inequality is using Lemma 5.12, which implies c (alg
(i+1)
ρ, j \ sol) − c (sol \

alg
(i+1)
ρ, j ) is decreasing with swaps, and the last inequality holds by the assumption c (alg

(i+1)
ρ \

sol) > 4Γ · c (sol \ alg
(i+1)
ρ ) in the lemma statement. Thus, if c (alg

(i+1)
ρ, J

) ≤ c (alg(i ) ) − ρ/2, the

lemma holds.
Now assume instead that c (alg

(i+1)
ρ, J

) > c (alg(i ) ) − ρ/2 when the forward phase ends. We want

a lower bound on

c (alg
(i+1)
ρ,0 ) − c (alg

(i+1)
ρ, J

) =

J−1∑
j=0

[c (alg
(i+1)
ρ, j ) − c (alg

(i+1)
ρ, j+1)].

We bound each c (alg
(i+1)
ρ, j )−c (alg

(i+1)
ρ, j+1) term using Lemma 5.10 and Lemma 5.11. By Lemma 5.10

and the assumption in the lemma statement that c (alg
(i+1)
ρ \ sol) > 4Γ ·c (sol \alg

(i+1)
ρ ), we know

there exists a swap between a ∈ alg
(i+1)
ρ, j and f ∈ sol such that

(1 + ϵ )c ′( f ) − c ′(a)

c (a) − (1 + ϵ )c ( f )
≤ 4(1 + ϵ )Γ

(
√

Γ − 1) (
√

Γ − 1 − ϵ )
·
c ′(sol \ alg

(i+1)
ρ, j )

c (alg
(i+1)
ρ, j \ sol)

.

By Lemma 5.11, we know that when G ′ is set to a value in [c ′( f ), (1 + ϵ ) · c ′( f )] in line 2
of GreedySwap, the algorithm finds a path f ′ between the endpoints of f such that c ( f ′) ≤
(1 + ϵ )c ( f ) and c ′( f ′) ≤ (1 + ϵ )c ′( f ). Thus, (a, f ′) ∈ swaps and the swap (a∗, f ∗) chosen by the
(j + 1)th call to GreedySwap satisfies:

c ′( f ∗) − c ′(a∗)
c (a∗) − c ( f ∗)

≤ c ′( f ′) − c ′(a)

c (a) − c ( f )
≤ (1 + ϵ )c ′( f ) − c ′(a)

c (a) − (1 + ϵ )c ( f )

≤ 4(1 + ϵ )Γ

(
√

Γ − 1) (
√

Γ − 1 − ϵ )
·
c ′(sol \ alg

(i+1)
ρ, j )

c (alg
(i+1)
ρ, j \ sol)

.

Rearranging terms and observing that c ′(sol) ≥ c ′(sol \ alg
(i+1)
ρ, j ) gives:

c (alg
(i+1)
ρ, j ) − c (alg

(i+1)
ρ, j+1) = c (a∗) − c ( f ∗)

≥ (
√

Γ − 1) (
√

Γ − 1 − ϵ )

4(1 + ϵ )Γ
· c (alg

(i+1)
ρ, j \ sol)

c ′( f ∗) − c ′(a∗)
c ′(sol)

=
(
√

Γ − 1) (
√

Γ − 1 − ϵ )

4(1 + ϵ )Γ
· c (alg

(i+1)
ρ, j \ sol)

c ′(alg
(i+1)
ρ, j+1) − c ′(alg

(i+1)
ρ, j )

c ′(sol)
.
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This in turn gives:

c (alg
(i+1)
ρ,0 ) − c (alg

(i+1)
ρ, J

) =

J−1∑
j=0

[c (alg
(i+1)
ρ, j ) − c (alg

(i+1)
ρ, j+1)]

≥
J−1∑
j=0

(
√

Γ − 1) (
√

Γ − 1 − ϵ )

4(1 + ϵ )Γ
· c (alg

(i+1)
ρ, j \ sol)

·
c ′(alg

(i+1)
ρ, j+1) − c ′(alg

(i+1)
ρ, j )

c ′(sol)

≥ (
√

Γ − 1) (
√

Γ − 1 − ϵ )

4(1 + ϵ )Γ

J−1∑
j=0

[c (alg
(i+1)
ρ, j \ sol) − c (sol \ alg

(i+1)
ρ, j )]

·
c ′(alg

(i+1)
ρ, j+1) − c ′(alg

(i+1)
ρ, j )

c ′(sol)

≥ (
√

Γ − 1) (
√

Γ − 1 − ϵ )

4(1 + ϵ )Γ

J−1∑
j=0

[c (alg
(i+1)
ρ, J
\ sol) − c (sol \ alg

(i+1)
ρ, J

)]

·
c ′(alg

(i+1)
ρ, j+1) − c ′(alg

(i+1)
ρ, j )

c ′(sol)

≥ (4Γ − 1) (
√

Γ − 1) (
√

Γ − 1 − ϵ )

16(1 + ϵ )Γ2
c (alg

(i+1)
ρ, J
\ sol)

·
J−1∑
j=0

c ′(alg
(i+1)
ρ, j+1) − c ′(alg

(i+1)
ρ, j )

c ′(sol)

=
(4Γ − 1) (

√
Γ − 1) (

√
Γ − 1 − ϵ )

16(1 + ϵ )Γ2
c (alg

(i+1)
ρ, J
\ sol)

·
c ′(alg

(i+1)
ρ, J

) − c ′(alg
(i+1)
ρ,0 )

c ′(sol)

≥ (4Γ − 1) (
√

Γ − 1) (
√

Γ − 1 − ϵ )κ

16(1 + ϵ )Γ2
c (alg

(i+1)
ρ, J
\ sol).

The third-to-last inequality is using Lemma 5.12, which implies c (alg
(i+1)
ρ, j \ sol)−c (sol \alg

(i+1)
ρ, j )

is decreasing with swaps. The second-to-last inequality is using the assumption

c (alg
(i+1)
ρ \ sol) > 4Γ · c (sol \ alg

(i+1)
ρ ) in the statement the lemma. The last inequality uses the

fact that the while loop on line 6 of DoubleApprox terminates because c ′(alg
(i+1)
ρ, J

) > (4Γ′ +κ)χ ′

(by the assumption that c (alg
(i+1)
ρ, J

) > c (alg(i ) ) − ρ/2), and lines 2 and 13 of DoubleApprox give

that c ′(alg
(i+1)
ρ,0 ) ≤ 4Γ′χ ′. �

Proof of Lemma 5.15. Because c ′(alg
(i+2)
ρ ) > 4Γ′χ ′ in every backwards phase and χ ′ ≥

c ′(sol), by Lemma 5.10 whenever GreedySwap is called on alg
(i+2)
ρ in line 14 of DoubleApprox,

at least one swap is possible. Since all edge costs are multiples of ϵ
n
χ ′, and the last argument to

GreedySwap is ϵ
n
χ ′ (which lower bounds the decrease in c ′(alg

(i+2)
ρ ) due to any improving swap),

GreedySwap always makes a swap.
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Let alg
(i+2)
ρ, j denote the value of alg(i+2) after j calls to GreedySwap on alg(i+2) , and let J be

the total number of calls of GreedySwap on alg(i+2) . Then alg
(i+2)
ρ,0 is the final value of alg(i+1)

and the final value of alg(i+2) is alg
(i+2)
ρ, J

. We want to show that

c (alg
(i+2)
ρ, J

) − c (alg
(i+2)
ρ,0 ) =

J−1∑
j=0

[c (alg
(i+2)
ρ, j+1) − c (alg

(i+2)
ρ, j )] ≤ (eζ ′T − 1)c (alg

(i+2)
ρ,0 \ sol).

We bound each c (alg
(i+2)
j+1 ) − c (alg

(i+2)
j ) term using Lemma 5.10 and Lemma 5.11. Since in a

backward phase we have c ′(alg
(i+2)
ρ ) > 4Γ′c ′(sol), by Lemma 5.10 we know there exists a swap

between a ∈ alg
(i+2)
ρ, j and f ∈ sol such that

(1 + ϵ )c ( f ) − c (a)

c ′(a) − (1 + ϵ )c ′( f )
≤ 4(1 + ϵ )Γ′

(
√

Γ′ − 1) (
√

Γ′ − 1 − ϵ )
·
c (sol \ alg

(i+2)
ρ, j )

c ′(alg
(i+2)
ρ, j \ sol)

.

By Lemma 5.11, we know that when G ′ is set to the value in [c ( f ), (1 + ϵ ) · c ( f )] in line 2
of GreedySwap, the algorithm finds a path f ′ between the endpoints of f such that c ′( f ′) ≤
(1 + ϵ )c ′( f ) and c ( f ′) ≤ (1 + ϵ )c ( f ). Thus, (a, f ′) ∈ swaps and we get that the swap (a∗, f ∗)
chosen by the (j + 1)th call to GreedySwap satisfies:

c ( f ∗) − c (a∗)

c ′(a∗) − c ′( f ∗) ≤
c ( f ′) − c (a)

c ′(a) − c ′( f )
≤ (1 + ϵ )c ( f ) − c (a)

c ′(a) − (1 + ϵ )c ′( f )

≤ 4(1 + ϵ )Γ′

(
√

Γ′ − 1) (
√

Γ′ − 1 − ϵ )
·
c (sol \ alg

(i+2)
ρ, j )

c ′(alg
(i+2)
ρ, j \ sol)

≤ 4(1 + ϵ )Γ′

(
√

Γ′ − 1) (
√

Γ′ − 1 − ϵ ) (4Γ′ − 1) (4Γ)
·
c (alg

(i+2)
ρ, j \ sol)

c ′(sol)
.

The last inequality is derived using the assumption c (alg
(i+2)
ρ \ sol) > 4Γ · c (sol \ alg

(i+2)
ρ ) in

the statement of the lemma, as well as the fact that for all j < J , c ′(alg
(i+2)
ρ, j ) ≥ 4Γc ′(sol) =⇒

c ′(alg
(i+2)
ρ, j \ sol) ≥ c ′(alg

(i+2)
ρ, j ) − c ′(sol) ≥ (4Γ′ − 1)c ′(sol). This in turn gives:

c (alg
(i+2)
ρ, J

) − c (alg
(i+2)
ρ,0 ) =

J−1∑
j=0

[c (alg
(i+2)
ρ, j+1) − c (alg

(i+2)
ρ, j )]

=

J−1∑
j=0

c (alg
(i+2)
ρ, j+1) − c (alg

(i+2)
ρ, j )

c ′(alg
(i+2)
ρ, j ) − c ′(alg

(i+2)
ρ, j+1)

· [c ′(alg
(i+2)
ρ, j ) − c ′(alg

(i+2)
ρ, j+1)]

≤ 4(1 + ϵ )Γ′

(
√

Γ′ − 1) (
√

Γ′ − 1 − ϵ ) (4Γ′ − 1) (4Γ)

J−1∑
j=0

[c (alg
(i+2)
ρ, j \ sol)]

·
c ′(alg

(i+2)
ρ, j ) − c ′(alg

(i+2)
ρ, j+1)

c ′(sol)
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≤ 4(1 + ϵ )Γ′

(
√

Γ′ − 1) (
√

Γ′ − 1 − ϵ ) (4Γ′ − 1) (4Γ − 1)

·
J−1∑
j=0

[c (alg
(i+2)
ρ, j \ sol) − c (sol \ alg

(i+2)
ρ, j )]

·
c ′(alg

(i+2)
ρ, j ) − c ′(alg

(i+2)
ρ, j+1)

c ′(sol)

= ζ ′
J−1∑
j=0

[c (alg
(i+2)
ρ, j \ sol) − c (sol \ alg

(i+2)
ρ, j )] (13)

·
c ′(alg

(i+2)
ρ, j ) − c ′(alg

(i+2)
ρ, j+1)

c ′(sol)
. (14)

The last inequality is proved using the assumption c (alg
(i+2)
ρ \ sol) > 4Γ · c (sol \ alg

(i+2)
ρ ) in the

statement of the lemma, which implies

c (alg
(i+2)
ρ, j \ sol) =

4Γ

4Γ − 1
c (alg

(i+2)
ρ, j \ sol) − 1

4Γ − 1
c (alg

(i+2)
ρ, j \ sol)

<
4Γ

4Γ − 1
c (alg

(i+2)
ρ, j \ sol) − 4Γ

4Γ − 1
c (sol \ alg

(i+2)
ρ, j ).

It now suffices to show

J−1∑
j=0

[c (alg
(i+2)
ρ, j \ sol) − c (sol \ alg

(i+2)
ρ, j )] ·

c ′(alg
(i+2)
ρ, j ) − c ′(alg

(i+2)
ρ, j+1)

c ′(sol)

≤ eζ ′T − 1

ζ ′
c (alg

(i+2)
ρ,0 \ sol).

To do so, we view the series of swaps as occurring over a continuous timeline, where for

j = 0, 1, . . . J − 1 the (j + 1)th swap takes time τ (j ) =
c ′ (alg

(i+2)
ρ, j )−c ′ (alg

(i+2)
ρ, j+1 )

c ′ (sol) , i.e., occurs from time∑
j′<j τ (j ′) to time

∑
j′ ≤j τ (j ′). The total time taken to perform all swaps in the sum is the total de-

crease in c ′ across all swaps, divided by c ′(sol), i.e., exactlyT . Using this definition of time, let Φ(t )

denote c (alg
(i+2)
ρ, j \sol)−c (sol\alg

(i+2)
ρ, j ) for the value of j satisfying Φ(t ) ∈ [

∑
j′<j τ (j ′),

∑
j′ ≤j τ (j ′)).

Using this definition, we get:

J−1∑
j=0

[c (alg
(i+2)
ρ, j \ sol) − c (sol \ alg

(i+2)
ρ, j )] ·

c ′(alg
(i+2)
ρ, j ) − c ′(alg

(i+2)
ρ, j+1)

c ′(sol)
=

∫ →T

0

Φ(t ) dt .

We conclude by claiming Φ(t ) ≤ eζ ′tc (alg
(i+2)
ρ,0 \ sol). Given this claim, we get:

∫ →T

0

Φ(t ) dt ≤ c (alg
(i+2)
ρ,0 \ sol)

∫ →T

0

eζ ′t dt =
eζ ′T − 1

ζ ′
c (alg

(i+2)
ρ,0 \ sol).

Which completes the proof of the lemma. We now focus on proving the claim. Since Φ(t ) is fixed
in the interval [

∑
j′<j τ (j ′),

∑
j′ ≤j τ (j ′)), it suffices to prove the claim only for t which are equal to∑

j′<j τ (j ′) for some j, so we proceed by induction on j. The claim clearly holds for j = 0 since∑
j′<0 τ (j ′) = 0 and Φ(0) = c (alg

(i+2)
ρ,0 \ sol) − c (sol \ alg

(i+2)
ρ,0 ) ≤ c (alg

(i+2)
ρ,0 \ sol).
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Assume that for t ′ =
∑

j′<j τ (j ′), we have Φ(t ′) ≤ eζ ′t ′c (alg
(i+2)
ρ,0 \ sol). For t ′′ = t ′ + τ (j ), by

induction we can prove the claim by showing Φ(t ′′) ≤ eζ ′τ (j )Φ(t ′).
To show this, we consider the quantity

Φ(t ′′) − Φ(t ′) = [c (alg
(i+2)
ρ, j+1 \ sol) − c (sol \ alg

(i+2)
ρ, j+1)] − [c (alg

(i+2)
ρ, j \ sol) − c (sol \ alg

(i+2)
ρ, j )]

= [c (alg
(i+2)
ρ, j+1 \ sol) − c (alg

(i+2)
ρ, j \ sol)] + [c (sol \ alg

(i+2)
ρ, j ) − c (sol \ alg

(i+2)
ρ, j+1)].

By Lemma 5.12 and reusing the bound in (14), we have:

Φ(t ′′) − Φ(t ′) = c (alg
(i+2)
ρ, j+1) − c (alg

(i+2)
ρ, j )

≤ ζ ′
[c (alg

(i+2)
ρ, j \ sol) − c (sol \ alg

(i+2)
ρ, j )]

c ′(sol)
[c ′(alg

(i+2)
ρ, j ) − c ′(alg

(i+2)
ρ, j+1)]

= ζ ′ · [c (alg
(i+2)
ρ, j \ sol) − c (sol \ alg

(i+2)
ρ, j )] · τ (j ) = ζ ′ · Φ(t ′) · τ (j ).

Rearranging terms we have:

Φ(t ′′) ≤ (1 + ζ ′ · τ (j )) Φ(t ′) ≤ eζ ′τ (j )Φ(t ′),

where we use the inequality 1 + x ≤ ex . This completes the proof of the claim. �

6 HARDNESS RESULTS FOR ROBUST PROBLEMS

We give the following general hardness result for a family of problems that includes many graph
optimization problems:

Theorem 6.1. Let P be any robust covering problem whose input includes a weighted graph G
where the lengths de of the edges are given as ranges [�e ,ue ] and for which the non-robust version of
the problem, P′, has the following properties:

• A solution to an instance of P′ can be written as a (multi-)set S of edges in G, and has cost∑
e ∈S de .

• Given an input including G to P′, there is a polynomial-time approximation-preserving reduc-
tion from solving P′ on this input to solving P′ on some input including G ′, where G ′ is the
graph formed by taking G, adding a new vertex v∗, and adding a single edge from v∗ to some
v ∈ V of weight 0.
• For any input includingG to P′, given any spanning treeT ofG, there exists a feasible solution

only including edges from T .

Then, if there exists a polynomial time (α , β )-robust algorithm forP, there exists a polynomial-time
β-approximation algorithm for P.

Before proving Theorem 6.1, we note that robust traveling salesman and robust Steiner tree are
examples of problems that Theorem 6.1 implicitly gives lower bounds for. For both problems, the
first property clearly holds.

For traveling salesman, given any inputG, any solution to the problem on inputG ′ as described
in Theorem 6.1 can be turned into a solution of the same cost on input G by removing the new
vertex v∗ (since v∗ was distance 0 from v , removing v∗ does not affect the length of any tour),
giving the second property. For any spanning tree of G, a walk on the spanning tree gives a valid
TSP tour, giving the third property.

For Steiner tree, for the input with graphG ′ and the same terminal set, for any solution contain-
ing the edge (v,v∗) we can remove this edge and get a solution for the input with graph G that
is feasible and of the same cost. Otherwise, the solution is already a solution for the input with
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graph G that is feasible and of the same cost, so the second property holds. Any spanning tree is
a feasible Steiner tree, giving the third property.

We now give the proof of Theorem 6.1.

Proof of Theorem 6.1. Suppose there exists a polynomial time (α , β )-robust algorithm A for
P. The β-approximation algorithm for P′ is as follows:

(1) From the input instance I of P where the graph is G, use the approximation-preserving
reduction (that must exist by the second property of the theorem) to construct instance I′
of P′ where the graph is G ′.

(2) Construct an instance I′′ of P from I′ as follows: For all edges in G ′, their length is fixed
to their length in I′. In addition, we add a “special” edge from v∗ to all vertices besides v
with length range [0,∞].6

(3) Run A on I′′ to get a solution sol. Treat this solution as a solution to I′ (we will show it
only uses edges that appear in I). Use the approximation-preserving reduction to convert
sol into a solution for I and output this solution.

Let O denote the cost of the optimal solution to I′. Then, mr ≤ O . To see why, note that the
optimal solution to I′ has cost O in all realizations of demands since it only uses edges of fixed
cost, and thus its regret is at most O . This also implies that for all d, opt(d) is finite. Then for all
d, sol(d) ≤ α · opt(d) + β · mr, i.e., sol(d) is finite in all realizations of demands, so sol does not
include any special edges, as any solution with a special edge has infinite cost in some realization
of demands.

Now consider the realization of demands d where all special edges have length 0. The special
edges and the edge (v,v∗) span G ′, so by the third property of P′ in the theorem statement there
is a solution using only cost 0 edges in this realization, i.e., opt(d) = 0. Then in this realization,
sol(d) ≤ α · opt(d) + β · mr ≤ β · O . But since sol does not include any special edges, and all
edges besides special edges have fixed cost and their cost is the same in I′′ as in I′, sol(d) also
is the cost of sol in instance I′, i.e., sol(d) is a β-approximation for I′. Since the reduction from
I to I′ is approximation-preserving, we also get a β-approximation for I. �

From [10, 15] we then get the following hardness results:

Corollary 6.2. Finding an (α , β )-robust solution for Steiner tree where β < 96/95 is NP-hard.

Corollary 6.3. Finding an (α , β )-robust solution for TSP where β < 121/120 is NP-hard.

7 CONCLUSION

In this paper, we designed constant approximation algorithms for the robust Steiner tree (stt)
and traveling salesman problems (tsp). More precisely, our algorithms take as input a range of
possible edge lengths in a graph and obtain a single solution for the problem at hand that can be
compared to the optimal solution for any realization of edge lengths in the given ranges. While
our approximation bounds for tsp are small constants, those for stt are very large constants. A
natural question is whether these constants can be made smaller, e.g., of the same scale as classic
approximation bounds for stt. While we did not seek to optimize our constants, obtaining truly
small constants for stt appears to be beyond our techniques, and is an interesting open question.

More generally, robust algorithms are a key component in the area of optimization under uncer-
tainty that is of much practical and theoretical significance. Indeed, as mentioned in our survey of
related work, several different models of robust algorithms have been considered in the literature.

6∞ is used to simplify the proof, but can be replaced with a sufficiently large finite number. For example, the total weight

of all edges in G suffices and has small bit complexity.
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Optimizing over input ranges is one of the most natural models in robust optimization, but
has been restricted in the past to polynomial-time solvable problems because of definitional lim-
itations. We circumvent this by setting regret minimization as our goal, and creating the (α , β )-
approximation framework, which then allows us to consider a large variety of interesting combi-
natorial optimization problems in this setting. We hope that our work will lead to more research
in robust algorithms for other fundamental problems in combinatorial optimization, particularly
in algorithmic graph theory.
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