
Neural Networks at a Fraction with Pruned
Quaternions

Sahel Mohammad Iqbal, Subhankar Mishra
National Institute of Science Education and Research, India

{sahelm.iqbal, smishra}@niser.ac.in

Abstract

Contemporary state-of-the-art neural networks have increasingly large num-
bers of parameters, which prevents their deployment on devices with limited
computational power. Pruning is one technique to remove unnecessary weights
and reduce resource requirements for training and inference. In addition, for
ML tasks where the input data is multi-dimensional, using higher-dimensional
data embeddings such as complex numbers or quaternions has been shown
to reduce the parameter count while maintaining accuracy. In this work, we
conduct pruning on real and quaternion-valued implementations of different
architectures on classification tasks. We find that for some architectures, at
very high sparsity levels, quaternion models provide higher accuracies than
their real counterparts. For example, at the task of image classification on
CIFAR-10 using Conv-4, at 3% of the number of parameters as the original
model, the pruned quaternion version outperforms the pruned real by more
than 10%. Experiments on various network architectures and datasets show
that for deployment in extremely resource-constrained environments, a sparse
quaternion network might be a better candidate than a real sparse model of
similar architecture.

1 Introduction

A key attribute of any neural network architecture is the number of trainable pa-
rameters that it has. In general, the greater the number of model parameters, the
greater its demands on computational power, time, and energy to train and perform
inference. Contemporary state-of-the-art deep neural networks have model parame-
ters that often run into tens or even hundreds of millions [24, 36, 5], imposing great
demands on the hardware needed to train these models.

There are several real-world scenarios where we would like to deploy well-performing
models to edge devices such as mobile phones. An example would be when dealing
with private user data such as images, where sending data to a back-end datacenter
for inference would be less than ideal [42]. The best (and biggest) models cannot be
run on these resource-constrained computing environments [16]. This leaves us with
two options - either use smaller, more specialized architectures (as in MobileNet [16])
or find ways to compress the bigger ones.

1

ar
X

iv
:2

30
8.

06
78

0v
1 

 [
cs

.L
G

] 
 1

3 
A

ug
 2

02
3



There are multiple compression methods by which we can reduce the resource
consumption of a model such as parameter pruning and sharing, low-rank factoriza-
tion and knowledge distillation [3], but in this work, we focus on pruning. Pruning
is a method to reduce the number of parameters in a model by removing redundant
weights or neurons [20]. Various studies have shown that pruning can drastically
reduce model parameter counts while still maintaining accuracy [13, 23, 2]. These
pruned models can also be re-trained [7], helping to reduce resource utilization during
the training stage as well.

What happens when we prune a model to extreme levels of sparsity, say 90% or
more? At this level, we typically see that the accuracy drops off [7, 13], and that the
pruned model can no longer match the original model. For this reason, most studies
on pruning only prioritize up until the point where the pruned model is no longer on
par with the parent [7, 13, 20, 23]. However, we feel that this regime is still attractive
because various empirical studies have found that a large-pruned model consistently
does better than a small-dense model of equal size [42, 22, 12]. Thus a state-of-the-art
model pruned to just 2% of its original size might still provide better accuracy than
a miniature model of comparable size, even though the pruned model displays lower
accuracy than the original.

Recently, another method of reducing model parameters is undergoing a surge in
popularity. Using higher-dimensional data embeddings, such as complex numbers or
quaternions, has been successfully shown to reduce model parameters while main-
taining accuracy [39, 38, 10, 27]. Quaternions are a 4-dimensional extension to the
complex numbers introduced by the mathematician William Rowan Hamilton in 1843
[27], and quaternion neural networks have been built for a variety of ML tasks [43, 29,
10, 28, 32, 4]. Converting a real model to quaternion can lead to a 75% reduction in
model parameters (which is explained in more detail in Sec. 3.2), making it a suitable
method for model compression.

In the present work, we employ pruning on quaternion networks to see if they have
any advantages over their real counterparts at high levels of model sparsities. To the
extent of our knowledge, there are no prior studies that explore weight-reduction in
neural networks by combining pruning with quaternion-valued neural networks (or
any other higher-dimensional data structure). We choose multiple neural networks
for image classification on the MNIST [19], CIFAR-10 and CIFAR-100 [18] datasets,
build equivalent quaternion representations, and conduct pruning experiments on
both real and quaternion implementations. We find that at extreme sparsities (ap-
proximately 10% or fewer parameters as the real, unpruned model), the quaternion
model outperforms the real. Thus for deploying in a resource-constrained device, a
quaternion pruned model might provide the best accuracy out of all available options.

Specificially, the contributions of this work can be summarized as follows. We con-
duct pruning experiments on real and quaternion-valued implementations of different
network architectures. Through this we show that 1) the lottery ticket hypothesis
[7] is valid for quaternion models, meaning that pruned quaternion models can be
re-trained from scratch to the same accuracy as the unpruned model, and 2) at very
high model sparsities, the quaternion equivalent displays higher accuracy than the
real network.

2



2 Related Work

2.1 Pruning

From the early 1990s, we have known that the majority of weights in a trained
neural network can be pruned without sacrificing its accuracy [20, 34, 14]. Earlier
works were done on simple architectures, but recently pruning has also been shown
to work on much more extensive architectures such as VGG [37] and ResNet [15, 7,
2]. These studies showed that modern state-of-the-art architectures are often heavily
over-parameterized and that they only require a far fewer number of parameters to
learn the necessary function representations [7].

In most studies, authors generally attempt to prune after the training process,
at the end of which the weights would be ordered based on their contribution to
the output. One common example of a heuristic for such ordering is the weight
magnitude, where the contribution of individual weights to the output are judged
based on their absolute values [13]. However, when training pruned networks from
scratch, often they could not match the original accuracy, and the pruned models did
much worse [13, 23]. The ’Lottery Ticket Hypothesis’ paper [7] showed that these
pruned networks could indeed be trained from the beginning, but we had to be pair
the model with the initial weights for the unpruned network. This work showed that
the benefits from pruning could be realized during the training process, which could
potentially reduce the resource requirements of training by a huge amount.

Figure 1: Depiction of how using different linear combinations of coefficients in the
Hamilton product results in a reduction in the number of weights in a neural network.
Image copyright Tituan Parcollet [29], reproduced with permission.

Pruning is generally of two types. In structured pruning, weights are pruned in
groups by removing whole neurons or entire channels [35, 23]. Structured pruning
leads to a reduction in the size of the model and improves model inference speeds as
the dimensions of weight matrices are reduced [25]. Unstructured pruning, by con-
trast, is where individual weights of neurons are removed instead of entire neurons
or channels [20, 13]. While unstructured pruning reduces the number of parame-
ters, this does not immediately manifest itself through an improvement in inference
speeds [30]. This is because unlike structured pruning, here weight matrices remain

3



the same dimensions but are instead simply made sparse, which current hardware
technology is not capable of optimizing [30]. However, empirical studies have shown
that unstructured pruning often yields much better results than structured [35]. In
addition, with both pruning methods, the resource demands for training are reduced
because we now have a far smaller set of weights that we need to optimize. Research
to optimize sparse operations on current hardware has shown promising results [6],
and hardware that can accelerate sparse-matrix multiplications are being built [33].
This suggests that all the predicted theoretical performance gains from pruning could
soon be realized in the near future.

An appealing property of pruned networks, and the one that justifies this work,
is that in general, a large-sparse (pruned) model performs better than a small-dense
(unpruned) one with an equal number of weights [2]. Multiple studies have shown
that for a variety of model architectures on different tasks, sparse models consistently
outperform their dense counterparts [42, 22, 17, 12]. This implies that given a resource
constraint on the size of the models that a user can run, their best bet at achieving
the greatest possible accuracy would be to use a large-pruned model rather than a
small-dense one. This is applicable even when the pruned model cannot match the
accuracy of the original, unpruned model.

2.2 Quaternions

In recent years, there has been a marked increase in works that address the question of
whether it is more optimal to use multi-dimensional data embeddings in applications
where the input data is multi-dimensional (refer [27] for a comprehensive review).
For example, Trabelsi et al. [38] demonstrated that at the task of music transcrip-
tion, where the input signal is two-dimensional (consisting of magnitude and phase of
the signal), complex-valued neural networks outperformed comparable real models.
Complex numbers, however, are insufficient to represent higher-dimensional inputs
such as the three channels of a color image, which is why some studies extended
this idea to four-dimensional quaternions. Zhu et al. [43] compared quaternion and
real-valued convolutional neural networks (henceforth referred to as Q and R re-
spectively) with similar architectures and the same number of parameters on the
CIFAR-10 dataset. They found that Q achieved faster convergence on the training
loss as well as higher classification accuracy on the test set compared to R. Gaudet
and Maida [10] made a similar comparison with image classification on the CIFAR-10
and CIFAR-100 datasets and image segmentation on the KITTI Road Segmentation
dataset [9], but this time with Q having a quarter of the number of parameters as
R. They reported that on both tasks, quaternion models gave higher accuracy than
real and complex networks while having a lower parameter count. Similar advantages
for quaternion neural networks over real networks were also found by Parcollet et al.
[29] for speech recognition.

4



3 Theory of Quaternions

3.1 Quaternion Algebra

Quaternions are a four-dimnensional extension to the complex numbers, and a general
quaternion q may be written as

q = r + xi+ yj+ zk (1)

where r, x, y, z ∈ R and i, j and k are complex entities which follow the relations

i2 = j2 = k2 = ijk = −1 (2)

Given two quaternions q1 and q2, their product (known as the Hamilton product) is
given by

q1 ⊗ q2 = (r1r2 − x1x2 − y1y2 − z1z2)

(r1x2 + x1r2 + y1z2 − z1y2) i

(r1y2 − x1z2 + y1r2 − z1x2) j

(r1z2 + x1y2 − y1x2 − z1r2) k (3)

Unlike real and complex multiplication, quaternion multiplication is not commuta-
tive. Quaternions can be represented as 4 ∗ 4 real matrices such that the matrix
multiplication between such representations are consistent with the Hamilton prod-
uct.

q =


r −x −y −z
x r −z y
y z r −x
z −y x r

 (4)

This is the representation that is used to calculate quaternion products in a quaternion-
valued neural network.

3.2 How does weight-reduction happen?

Consider a small section of a fully-connected neural network with four input and four
output neurons. In the case of a real-valued implementation, this layer would require
4 ∗ 4 = 16 weights. However, if we were to view the above network as consisting of
one input quaternion and one output quaternion, then using the Hamilton product,
we would only require one quaternion weight, or four real weights, to connect them.
Thus provided the number of neurons in all layers are divisible by 4, we can obtain a
75% reduction in the number of parameters of a network by converting it to a quater-
nion implementation. This is shown graphically in Fig. 1. This weight-reduction is
explained in greater detail in [29, 27].

4 Methodology

Our experiments were run on classification tasks on the MNIST [19], CIFAR-10 and
CIFAR-100 [18] datasets. We chose to demonstrate our experiments at image clas-
sification tasks following the lead of some of the most important works in network

5



Model Lenet-300-100 Conv-2 Conv-4 Conv-6

CIFAR-10 CIFAR-10
Datasets MNIST CIFAR-10 CIFAR-100 CIFAR-100

64 ∗ 64, pool
64 ∗ 64, pool 128 ∗ 128, pool

Conv Layers 2 ∗ 64, pool 128 ∗ 128, pool 256 ∗ 256, pool

FC Layers 300, 100, 10 256, 256, 10/100 256, 256, 10/100 256, 256, 10/100

All/Conv Weights (Real) 266.6K 4.30M/38K 2.42M/260K 2.26M/1.14M

All/Conv Weights (Quat) 67.7K 1.08M/9.9K 609K/65K 569K/287K

Training epochs/Batch size 40/60 40/60 40/60 60/60

Optimizer/Learning rate Adam/1.2e-3 Adam/2e-4 Adam/3e-4 Adam/3e-4

Table 1: Model architectures, datasets and hyper-parameters tested in this paper.
The number of weights for Conv-2,4,6 are reported for CIFAR-10 classification. Ar-
chitectures and hyper-parameters have been kept the same as those used in [7] to
facilitate a direct comparison.

compression [7, 8] so that our results may be contrasted with state-of-the-art. We used
the fully-connected Lenet-300-100 architecture from [21], and the Conv-2, Conv-4, and
Conv-6 convolutional models from [7]. Complete details about model architectures
and hyper-parameters are given in Tab. 1.

Our goal in this work was to compare pruning on real and quaternion-valued im-
plementations of different architectures. To do this, we first constructed quaternion
equivalents of every model with the condition that they both have the same number
of real neurons. Q would thus have one-fourth the number of quaternion neurons
(since four real neurons constitute a quaternion neuron) and one-fourth the number
of weights as R (because of the weight-sharing property of the Hamilton product
explained in Sec. 3.2). We used a real output layer for Q because for the MNIST
and CIFAR-10 datasets, the number of output labels (10) is not divisible by 4. An
alternative option here was to use 10 quaternion neurons for the output layer and
then take their norms. We chose not to do this because this would break the equality
condition that we just stated, that the number of real neurons across implementations
be equal. All other network layers were replaced by equivalent quaternion implemen-
tations. The hyper-parameters used for training are also the same as [7] in order to
make direct comparisons.

For the MNIST dataset, since the images are grayscale and have only one channel,
the input image is flattened and each set of four pixels are fed to a quaternion neuron
of Lenet-300-100. On the other hand, for color vision tasks such as classification on the
CIFAR-10, it makes more sense to treat the RGB channels of each pixel as belonging
to a single quaternion neuron. To do this, we need to add one more channel to the
input images, and the equality condition has to be relaxed for the input channel. A
few different options exist, such as a channel with all 0s or using an additional layer to
learn the fourth channel [10]. For our implementation, we chose to use the grayscale
values of the input image as the additional channel.

For pruning experiments, we use iterative pruning, where the model is pruned and

6



then re-trained for a certain number of epochs over multiple iterations. We prune the
networks using a global pruning technique with 20% of the weights in the model
pruned in each pruning iteration. We chose global pruning over layer-wise pruning
because global-pruning can find smaller lottery tickets for larger networks [7], and we
wanted to keep the methodology consistent across all the architectures that we test.
We only prune weights and exempt biases, as biases constitute only a tiny proportion
of the total parameters in a model. At each level of model sparsity, the pruned
model is re-trained from scratch using the initial weights for the same duration as
the original model (as done in [7]), and it is the accuracy of these re-trained pruned
models that we have reported throughout this paper. Our emphasis is on re-trainable
pruned models because our primary concern is with the practical benefits of pruning
conferred during training. The models are pruned until their accuracies drop below
a threshod (which we chose to be 30%) for two successive pruning iterations. This
was done to save computational resources by preventing pruning the model beyond
the point where it is of any practical use.

Pruning experiments were conducted using PyTorch [31]. PyTorch implemen-
tations of the various operations and building blocks necessary to build quaternion
convolutional neural networks have been borrowed from the hTorch library (MIT
License) [41]. This library uses a split activation function [1] where ReLU [11] is
applied individually to the four different components of each quaternion. The back-
propagation algorithm employed for quaternions is a generalization of those for real
and complex networks [26, 28, 38]. All experiments were carried out on a single
Nvidia RTX 3090 GPU.

5 Experimental Results

A few previous studies using quaternions had found that at certain tasks, quaternions
can outperform real networks while having an equal or smaller number of parameters,
including for computer vision tasks such as classification which we consider in this
paper [43, 10]. In our experiments, whereQ has a quarter of the number of parameters
as R, we found that Q cannot, in general, be trained to the same accuracy as R
within a fixed number of iterations. The training results for real and quaternion
implementations of the various models are reported in Fig. 2. The relative accuracy
difference between real and quaternion implementations are different for different
models. We also found that this varied depending on the hyper-parameters used, and
so it may be possible that for some set of hyper-parameters, Q could be made as
accurate as R, reproducing the results given in the references mentioned earlier. We
were unable to find this subset in our experimentation.

On re-training pruned models from scratch, we found that just like R, pruned Q
are capable of matching or exceeding the accuracy of the original, unpruned model
(Fig. 3). For example, in Fig. 3a, a pruned model with 51% weights ends training with
higher accuracy than the unpruned model. This result held for all six architecture-
dataset pairs that we tested. This shows that the lottery ticket hypothesis is valid
for quaternion-valued networks as well.

The accuracies of pruned Q and R at various model sparsities are given in Fig. 4.
On examining this figure, certain patterns become evident. Consider Conv-4 on
CIFAR-10 (Fig. 4c) as an illustrative example. The curve for Q starts at the 25%

7



(a) Lenet-300-100 on MNIST (b) Conv-2 on CIFAR-10

(c) Conv-4 on CIFAR-10 (d) Conv-6 on CIFAR-10

(e) Conv-4 on CIFAR-100 (f) Conv-6 on CIFAR-100

Figure 2: Training results for various architectures for real and quaternion imple-
mentations. Results are the mean over 5 trials, and the error bars are the standard
deviation.

8



(a) Lenet-300-100 on MNIST (b) Conv-2 on CIFAR-10

(c) Conv-4 on CIFAR-10 (d) Conv-6 on CIFAR-10

(e) Conv-4 on CIFAR-100 (f) Conv-6 on CIFAR-100

Figure 3: Training results for quaternion implementations of models at different spar-
sities. Pruned models have been re-trained from scratch with the intial weights. Plot
labels are the percentage of weights remaining after pruning. Results are the mean
over 5 trials, and the error bars are the standard deviation.

9



(a) Lenet-300-100 on MNIST (b) Conv-2 on CIFAR-10

(c) Conv-4 on CIFAR-10 (d) Conv-6 on CIFAR-10

(e) Conv-4 on CIFAR-100 (f) Conv-6 on CIFAR-100

Figure 4: Accuracy vs sparsity results for real and quaternion implementations of vari-
ous architectures. Quaternion curves start at around the 25% mark because unpruned
Q have only one-fourth (approx.) the number of parameters as the corresponding
unpruned R. Models are pruned until their accuracies drop below 30% for two suc-
cessive pruning iteraions.

10



mark as by construction, Q only has that many parameters compared to R. Q also
starts out with lower accuracy than R, which can also be seen in Fig. 2c. The regime
we are interested in is that of high pruning rates, at around 10% of total weights or
lower. Though both models start out at different accuracies, as we get to the 12.5%
mark, the curves for R and Q coincide, meaning that at this sparsity level, both
perform equally well. On further pruning, the R curve drops below the Q curve,
implying that the quaternion outperforms the real model at very high sparsity levels.
At about 3.12% sparsity, Q shows close to 75% accuracy while it is around 62% for
R, a difference of more than 10%. This overall pattern is also repeated for all but one
of the model-dataset pairs that we tested, the sole exception being Lenet-300-100 on
MNIST (Fig. 4a).

(a) Training results. (b) Pruning results.

Figure 5: Training and pruning results for Lenet-12 on MNIST.

For Lenet-300-100, however, R outperforms Q at every level of sparsity. This
model is different from the other three models that we tested in two ways: 1) it is
a fully-connected network (no convolutional layers), and 2) it displays around 98%
accuracy on its task, which is considerably higher than any of the other model-dataset
pairs. To isolate which of these two properties led to the difference in the sparsity-
accuracy trend, we ran pruning experiments on a custom Lenet-12 model (which has
a single hidden layer with 12 real neurons), which is also a fully-connected model
but with lower accuracy. The results for this model on the MNIST dataset are given
in Fig. 5. Here the earlier trend reappears, and Q performs better than R at high
sparsity levels. Thus Lenet-300-100 showed divergent behavior not because it is a
fully-connected network but because it has very high accuracy at its task. A possible
explanation for this may be that this model is so over-parameterized that the real
model can be pruned to a great extent without a significant drop in accuracy. This
explanation, however, cannot justify whyQ underperformsR beyond the 4% sparsity
region for Lenet-300-100.

On the whole, this analysis shows that, in general, at extreme model sparsities,
quaternion models perform better than their real counterparts. Although quaternion
models start out at a disadvantage because of their lower initial accuracy, as the
models are reduced in size, their relative performance gap diminishes until at a certain
point the real model dips below the quaternion, where it remains for the rest of the
pruning process.

11



5.1 Using Early Stopping

In [7], the authors use an early stopping criterion to stop training. The criterion
used is that of the minimum validation loss. We repeated our experiments with the
same early stopping criterion (with a patience of 10 iterations), but here we saw that
Q no longer did better than R at any sparsity level for any of the models that we
tested. For example, the pruning results for Conv-2 when run with the early stopping
criterion is given in Fig. 6, which should be compared with Fig. 4b.

Figure 6: Accuracy vs sparsity results for Conv-2 on CIFAR-10 when using the early
stopping criterion.

5.2 Larger Models

In addition to the models considered earlier, we also ran similar experiments on
Resnet-18 [15] and VGG-16 [37]. These are deeper neural network architectures that
require batch normalization layers. The first implementation of a quaternion batch
normalization algorithm was given by [10]. This implementation treats a quaternion
as a single entity and requires complex matrix operations to calculate the mean and
variance of each layer, and is thus extremely computationally intensive (adding a
single batchnorm layer to Conv-2 increased the time taken for each trainging iteration
by approximately 40 times compared to baseline). Hence we had to opt for another
implementation of batch normalization given in [40]. This implementation treats
each individual components of quaternions separately, and is hence much faster. This
obviously comes at the cost of compromising the relationships between the individual
components of quaternions, but since we are already doing this with our use of the
split activation function, it may not lead to any further disadvantage.

Neither Resnet nor VGG follow the trend we saw for the smaller models, in that
for both of these network architectures R has greater accuracy than Q at all sparsity
levels. Whether it is the introduction of the batchnorm layer or the depth of the archi-
tectures that is causing this reversal in trend is unclear and needs to be investigated
further.

12



6 Conclusions

In this work, we conduct extensive pruning experiments on real and quaternion-valued
implementations of different neural network architectures with the objective of check-
ing whether using quaternions provides any advantages in model compression. We
first found that pruned quaternion models can be re-trained from scratch to match
the original accuracy of the unpruned model, showing that lottery tickets exist for
quaternion networks as well. More importantly, our experiments demonstrate that
when pruned to high levels of sparsities, quaternion implementations of certain mod-
els outperform their complementary real-valued models of equivalent architectures.
Hence for ML tasks with multi-dimensional inputs that need to be run on devices
with limited computational power, a pruned quaternion model may be a more suit-
able option than an analogous real network.

6.1 Limitations and Future Work

Like all empirical studies, the primary limitation of this work is in the scope of vision
tasks, datasets and models tested. Here we tested six architectures on three different
datasets at the task of classification. An extension to this work, and one that could
further generalize the conclusions reached, is to consider a larger set of models and
datasets, and test them on additional vision tasks such as semantic segmentation.
Investigating how pruned quaternion implementations of deeper architectures that
require batch normalization layers can be made to outperform their real counterparts
is also identified as future work.

13



References

[1] Paolo Arena et al. “Neural networks for quaternion-valued function approx-
imation”. In: Proceedings of IEEE International Symposium on Circuits and
Systems-ISCAS’94. Vol. 6. IEEE. 1994, pp. 307–310.

[2] Davis Blalock et al. “What is the state of neural network pruning?” In: arXiv
preprint arXiv:2003.03033 (2020).

[3] Yu Cheng et al. “A survey of model compression and acceleration for deep
neural networks”. In: arXiv preprint arXiv:1710.09282 (2017).

[4] Danilo Comminiello et al. “Quaternion Convolutional Neural Networks for De-
tection and Localization of 3D Sound Events”. In: ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP).
2019, pp. 8533–8537. doi: 10.1109/ICASSP.2019.8682711.

[5] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional transformers for
language understanding”. In: arXiv preprint arXiv:1810.04805 (2018).

[6] Erich Elsen et al. “Fast sparse convnets”. In: CVPR. 2020, pp. 14629–14638.

[7] Jonathan Frankle and Michael Carbin. “The Lottery Ticket Hypothesis: Finding
Sparse, Trainable Neural Networks”. In: ICLR. 2019.

[8] Jonathan Frankle et al. “Pruning Neural Networks at Initialization: Why Are
We Missing the Mark?” In: International Conference on Learning Representa-
tions. 2021. url: https://openreview.net/forum?id=Ig-VyQc-MLK.

[9] Jannik Fritsch, Tobias Kuehnl, and Andreas Geiger. “A New Performance Mea-
sure and Evaluation Benchmark for Road Detection Algorithms”. In: Interna-
tional Conference on Intelligent Transportation Systems (ITSC). 2013.

[10] Chase J. Gaudet and Anthony S. Maida. “Deep Quaternion Networks”. In:
Proceedings of the International Joint Conference on Neural Networks 2018-
July (2018). doi: 10.1109/IJCNN.2018.8489651. arXiv: 1712.04604.

[11] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training
deep feedforward neural networks”. In: Proceedings of the thirteenth interna-
tional conference on artificial intelligence and statistics. JMLR Workshop and
Conference Proceedings. 2010, pp. 249–256.

[12] Scott Gray, Alec Radford, and Diederik P Kingma. “Gpu kernels for block-
sparse weights”. In: arXiv preprint arXiv:1711.09224 3 (2017).

[13] Song Han et al. “Learning Both Weights and Connections for Efficient Neural
Networks”. In: NeurIPS. Montreal, Canada, 2015, pp. 1135–1143.

[14] Babak Hassibi and David G. Stork. “Second Order Derivatives for Network
Pruning: Optimal Brain Surgeon”. In: NeurIPS. San Francisco, CA, USA: Mor-
gan Kaufmann Publishers Inc., 1992, pp. 164–171. isbn: 1558602747.

[15] Kaiming He et al. “Deep residual learning for image recognition”. In: CVPR.
2016, pp. 770–778.

[16] Andrew G Howard et al. “Mobilenets: Efficient convolutional neural networks
for mobile vision applications”. In: arXiv preprint arXiv:1704.04861 (2017).

14

https://doi.org/10.1109/ICASSP.2019.8682711
https://openreview.net/forum?id=Ig-VyQc-MLK
https://doi.org/10.1109/IJCNN.2018.8489651
https://arxiv.org/abs/1712.04604


[17] Nal Kalchbrenner et al. “Efficient neural audio synthesis”. In: International
Conference on Machine Learning. PMLR. 2018, pp. 2410–2419.

[18] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from
tiny images. 2009.

[19] Yann LeCun, Corinna Cortes, and CJ Burges. “MNIST handwritten digit database”.
In: ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist 2 (2010).

[20] Yann LeCun, John S Denker, and Sara A Solla. “Optimal brain damage”. In:
NeurIPS. 1990, pp. 598–605.

[21] Yann LeCun et al. “Gradient-based learning applied to document recognition”.
In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[22] Namhoon Lee et al. “A signal propagation perspective for pruning neural net-
works at initialization”. In: arXiv preprint arXiv:1906.06307 (2019).

[23] Hao Li et al. “Pruning filters for efficient convnets”. In: ICLR. 2017.

[24] Jian Li et al. “DSFD: dual shot face detector”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2019, pp. 5060–5069.

[25] Zhuang Liu et al. “Learning efficient convolutional networks through network
slimming”. In: ICCV. 2017.

[26] Tohru Nitta. “A quaternary version of the back-propagation algorithm”. In:
Proceedings of ICNN’95-International Conference on Neural Networks. Vol. 5.
IEEE. 1995, pp. 2753–2756.

[27] Titouan Parcollet, Mohamed Morchid, and Georges Linarès. “A survey of quater-
nion neural networks”. In: Artificial Intelligence Review 53.4 (2020), pp. 2957–
2982. issn: 15737462. doi: 10.1007/s10462- 019- 09752- 1. url: https:
//doi.org/10.1007/s10462-019-09752-1.

[28] Titouan Parcollet et al. “Quaternion recurrent neural networks”. In: arXiv
preprint arXiv:1806.04418 (2018).

[29] Titouan Parcollet et al. “Speech recognition with quaternion neural networks”.
In: arXiv preprint arXiv:1811.09678 (2018).

[30] Jongsoo Park et al. “Faster cnns with direct sparse convolutions and guided
pruning”. In: ICLR. 2017.

[31] Adam Paszke et al. “Pytorch: An imperative style, high-performance deep learn-
ing library”. In: NeurIPS. Vol. 32. 2019, pp. 8026–8037.

[32] Dario Pavllo et al. “Modeling human motion with quaternion-based neural net-
works”. In: International Journal of Computer Vision 128.4 (2020), pp. 855–
872.

[33] Jeff Pool, Abhishek Sawarkar, and Jay Rodge. Accelerating Inference with Spar-
sity Using the NVIDIA Ampere Architecture and NVIDIA TensorRT. https:
//developer.nvidia.com/blog/accelerating-inference-with-sparsity-

using-ampere-and-tensorrt/. Technical Walkthrough. 2021.

[34] Russell Reed. “Pruning algorithms-a survey”. In: IEEE transactions on Neural
Networks 4.5 (1993), pp. 740–747.

15

https://doi.org/10.1007/s10462-019-09752-1
https://doi.org/10.1007/s10462-019-09752-1
https://doi.org/10.1007/s10462-019-09752-1
https://developer.nvidia.com/blog/accelerating-inference-with-sparsity-using-ampere-and-tensorrt/
https://developer.nvidia.com/blog/accelerating-inference-with-sparsity-using-ampere-and-tensorrt/
https://developer.nvidia.com/blog/accelerating-inference-with-sparsity-using-ampere-and-tensorrt/


[35] Alex Renda, Jonathan Frankle, and Michael Carbin. “Comparing rewinding and
fine-tuning in neural network pruning”. In: ICLR. 2020.

[36] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks
for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[37] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks
for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[38] Chiheb Trabelsi et al. “Deep complex networks”. In: ICLR. 2018, pp. 1–19.
arXiv: 1705.09792.

[39] Thanh Tran et al. “HABERTOR: An efficient and effective deep hatespeech
detector”. In: arXiv preprint arXiv:2010.08865 (2020).

[40] Qilin Yin et al. “Quaternion Convolutional Neural Network for Color Image
Classification and Forensics”. In: IEEE Access 7 (2019), pp. 20293–20301. doi:
10.1109/ACCESS.2019.2897000.

[41] Giorgio Zannini et al. ispamm/hTorch. https://github.com/ispamm/hTorch.
Github Repository. 2021.

[42] Michael Zhu and Suyog Gupta. “To prune, or not to prune: exploring the efficacy
of pruning for model compression”. In: arXiv preprint arXiv:1710.01878 (2017).

[43] Xuanyu Zhu et al. “Quaternion convolutional neural networks”. In: Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics) 11212 LNCS (2018), pp. 645–661.
issn: 16113349. doi: 10.1007/978-3-030-01237-3_39. arXiv: 1903.00658.

16

https://arxiv.org/abs/1705.09792
https://doi.org/10.1109/ACCESS.2019.2897000
https://github.com/ispamm/hTorch
https://doi.org/10.1007/978-3-030-01237-3_39
https://arxiv.org/abs/1903.00658

	Introduction
	Related Work
	Pruning
	Quaternions

	Theory of Quaternions
	Quaternion Algebra
	How does weight-reduction happen?

	Methodology
	Experimental Results
	Using Early Stopping
	Larger Models

	Conclusions
	Limitations and Future Work


