
A Proof System for Communicating
Sequential Processes

KRZYSZTOF R. APT

University of Rotterdam

NISSIM FRANCEZ

Technionmlsrael Institute of Technology
and

WlLLEM P. DE ROEVER

University of Utrecht

An axiomatic proof system is presented for proving partial correctness and absence of deadlock (and
failure) of communicating sequential processes. The key (meta) rule introduces cooperation between
proofs, a new concept needed to deal with proofs about synchronization by message passing. CSP's
new convention for distributed termination of loops is dealt with. Applications of the method involve
correctness proofs for two algorithms, one for distributed partitioning of sets, the other for distributed
computation of the greatest common divisor of n numbers.

Key Words and Phrases: Hoare-style proof rules, partial correctness, global invariant, cooperating
proofs, CSP, communicating processes, concurrency, absence of deadlock, blocking
CR Categories: 4.32, 5.24

1. INTRODUCTION AND PRELIMINARIES

1.1 Introduction

T h i s p a p e r p r e sen t s a p roof s y s t e m for CSP, a l anguage for C o m m u n i c a t i n g
S e q u e n t i a l P rocesses due to Hoa re [11]. T h i s s y s t e m deals wi th proofs of pa r t i a l
co r rec tness a n d of dead lock f r e e d o m ; p r o o f s of s o u n d n e s s a n d re la t ive comple te -
ness will be p u b l i s h e d s epa ra t e ly by the first au thor .

J u s t as C S P sheds new l ight on the way s y n c h r o n i z a t i o n a n d message pass ing
can be e m p l o y e d in a p r o g r a m m i n g language , b o t h by i ts c o m m u n i c a t i o n pr imi-
t ives a n d by the ope ra t i ons u p o n them, so ne w ins igh ts are n e e d e d to o b t a i n a
p roo f s y s t e m for th i s language . I n pa r t i cu l a r the fol lowing proper t i es of C S P have

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
This work was supported by the National Science Foundation under Grant MCS 78-673 during the
authors' stay at the University of Southern California in Los Angeles.
Authors' addresses: K. R. Apt, Faculty of Economics, University of Rotterdam, P.O. Box 1738, 3000
DR Rotterdam, The Netherlands; N. Francez, Department of Computer Science, Technion--Israel
Institute of Technology, Haifa, Israel; W. P. de Roever, Department of Computer Science, University
of Utrecht, P.O. Box 80.002, 3508 TA Utrecht, The Netherlands.
© 1980 ACM 0164-0925/80/0700-0359 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980, Pages 359-385.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F357103.357110&domain=pdf&date_stamp=1980-07-01

360 K.R. Apt, N. Francez, and W. P. de Roever

to be taken care of:

(1) CSP stresses simultaneity rather than mutual exclusion as a synchronization
mechanism by using simultaneous communication as the only means of
synchronization.

{2) The two communication primitives of CSP, input and output commands, can
function as a choice mechanism by acting as guards in {possibly nondeter-
ministic) guarded choices and repetitions.

{3) CSP focuses on terminating concurrent computations by introducing a dis-
tributed termination convention for input/output guarded repetitions.

Correspondingly, to deal with these properties, we introduce

A (meta) rule to establish joint cooperation between isolated proofs for
CSP's sequential components.

In these separate proofs each statement is preceded and followed by a pre- and
postassertion referring only to variables of the process in which the statement
appears. These assertions satisfy the axioms and proof rules introduced for the
purely sequential constructs of CSP. However, when viewed in the isolation of its
sequential component, the postassertion of an input command cannot be validated
since the assertions of its corresponding output command occur in another
sequential component. Such proofs cooperate if, taken together, they validate the
assertions of the I /O commands mentioned in the isolated proofs. A global
invariant is needed to determine which pairs of input and output commands
correspond, i.e., are synchronized during execution.

A simple mechanism for expressing termination of repetitive commands,
generalizing the expression of the termination criterion "negation of all the
Boolean guards" to distributed termination of CSP processes.

This termination criterion is needed for proof of absence of deadlock and
failure; it generalizes the notion of blocking [18] to an environment in which some
processes, which are intended to terminate, fail to communicate.

The distinction between cooperation and combat functioned as an almost
philosophical guideline in our efforts. Examples are cooperation via resources
versus mutual exclusion of critical regions; synchronized communication by
means of CSP's communication primitives between a specified pair of processes
versus asynchronous interaction by means of shared variables; even purely local
variables versus globally shared variables. All these are opposing notions taken
from the area of concurrent languages which accentuate in proof theory the
problem of finding the missing concept needed to deal with synchronization by
message passing: cooperation between proofs. These remarks are elaborated in
the last section.

This proof system derives from various related work:

(1) Owicki's and Lamport 's landmark in the proof theory of concurrent processes
[13, 17, 18]. We benefited also from relative completeness proofs due to
Owicki and to Mazurkiewicz [15, 16].

{2) A still enduring effort spearheaded by Hoare to establish a firm semantic
basis for CSP, in which the second and third authors participated, resulting

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

A Proof System for Communicating Sequential Processes 361

in a denotational semantics [7]. In a later stage this semantics was simplified
using a generalization of Dijkstra's weakest precondition operator as a de-
scriptive tool to obtain a characterization of the semantics of terminating
programs in CSP [2], which brought the semantics closer to a proof system.

(3) The concept of assumption/commitment pairs (interface predicates) as intro-
duced by Francez and Pnueli [8] to characterize the assumptions which a
process has to make about the behavior of its concurrently computing
environment in order to enable it "to function properly," so as to justify in its
turn the claims made by that environment upon its behavior. Thus, assump-
tion/commitment pairs are assertions which express the cooperation between
a process and its environment.

While writing this paper, we learned about related work by Carl Hauser (in
preparation) and Chandy and Misra [4]. Some time after submission of the paper
we were informed of independent, very much related work by G. M. Levin [14],
briefly discussed in the last section.

This paper is organized as follows. Section 1.2 contains a definition of the
kernel of CSP with which we deal in this paper. The fragment incorporates guards
consisting of pairs of a Boolean expression and an input/output command.
Section 2 contains the proof system and is the heart of the paper. Section 3
contains two detailed case studies of correctness proofs--one of a distributed
partition algorithm due to W. Feijen and described in Dijkstra [5] (our proof
differs from that of Dijkstra), and the other of an algorithm for the distributed
computation of the greatest common divisor of n natural numbers taken from
Francez and Rodeh [9]. Section 4 generalizes the proof system to freedom from
deadlock and failure and contains some applications. The last section contains an
assessment and comparison of our method with related Hoare-like proof systems
for other concurrent languages.

1.2 Preliminaries: Definition of CSP

Full details of CSP are contained in [11]. For our purpose the following informal
description of its syntax and meaning suffices:

(1) The basic command of CSP is [P1 [[. . . [[P ,] expressing concurrent execution
of processes P1, . . . , Pn, n >-- 2.

(2) Every Pi refers to a statement Si, as indicated by Pg :: Si. No Si contains
variables subject to change in Sj (i ~ j).

(3) Communication between Pi and Pj (i ~ j) is expressed by the receive and
send primitives Pj?x and Pi!x, respectively. Input command Pj?x (in Sg)
expresses a request to Pj to assign a value to the (local) variable x of Pi.
Output command Pi!y (in $i) expresses a request to Pi to receive a value from
Pj. Execution of Pj?x in Si and Pi!y in Sj is synchronized ("Pi waits at Pj?x
until Pj is ready at Pi!y, and vice versa," as the lingo goes) and results in
assigning the value of y to x.

(4) Guarded commands: The case of two guarded possibilities is used to illus-
trate the command structure. Let guards B~ denote Boolean expressions i =
1, 2. "D" denotes the guarded command separator; " ;" denotes sequential
composition; and "skip" is a statement with no effect.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

362 • K.R. Apt, N Francez, and W P de Roever

Guarded selection: [B1 --* $1 [3 B2 --* $2] fails for B1 V Be -- fa lse , and
leads to (possibly nondeterminist ic) selection of S / fo r execution if Bi -= t r u e .

Guarded iteration: * [B~ --* $117 Be --~ $2] terminates for B1 V Be = fa l se ,
and otherwise executes [B1 --* $1 [3 Be --* $2]; *[B~ --* $1 [q Be --> Se].

CSP's main feature is that the I /O commands Pj?x and Pi!y can also be
used as guards. As an expression Py?x (respectively, Pi!y) evaluates to f a l s e
in case Pj (respectively, Pi) has terminated. For example,

[P~ :: [Pe?x ~ skip [3 P2!x "--> skip] I[Pz :: skip]

leads to failure of Pi, while

[P1 :: * [Pe?x ~ skip [3 Pe!x ----> skip] II P2 :: skip]

proper ly terminates.
Also, as an expression, Pj?x (respectively, Pi!y) evaluates to t r u e if syn-

chronization occurs with a matching ou tpu t (respectively, input) command
or guard. For example,

[P1 :: [Pe?x--* skip [3 Pe!x-* skip] liPs :: [P~?y--* skip [3 P~!y--, skip]]

has the same effect as executing x := y or y := x nondeterministicaUy, and

[P~ :: * [Pe?x --* skip] [I Pe :: PI!0]

has the same effect as executing x := 0 just once.
In Hoare ' s concept ion of CSP only finite processes are considered; thus

[P1 :: * [Pe?x --* skip] I[P2 :: * [PI!0 --* skip]],

so-called infinite chattering, is considered a semantic error.

Using the CSP guards, the guarded commands generalize as follows:

(1) A guard may be a Boolean expression, an I /O command, or a combinat ion of
bo th (separated by " ;") . A Boolean guard is passable if it is true; an I /O
command is passable when a corresponding I /O command in the process
addressed is ready; and a combinat ion is passable if each of its components
is passable.

(2) A guarded selection fails in the case in which all guards are false.
(3) A guard is false in one of the following cases:

(i) I t is a Boolean expression evaluating to fa l se .
(ii) I t is an I /O command for which the process addressed has terminated.

(iii) I t is a combinat ion of a Boolean expression and an I /O command, and
ei ther the Boolean expression is false or the process addressed in the
I /O command has terminated.

(4} " * " denotes a repet i t ive construct. Repet i t ion continues as long as there
exists a passable guard and terminates when all guards are false.

Guarded commands (i.e., selection or repetition} introduce the possibility tha t
more than one matching pair of I /O commands occurs; for instance, in the
example below the first communicat ion of P1 can be ei ther with Pe or with Ps,
ACM Transactions on ProgTamming Languages and Systems, Vol. 2, No. 3, July 1980.

A Proof System for Communicating Sequential Processes 363

but not simultaneously with both: P :: [P1 [] P2 [] P3], where

P1 :: [P2?x--> $1 [3 bl; P3!y-* $2]; *[b2 ; P2!u-* $3f3 b3; P3?u-* $4]
P2 :: * [PI?s ---) So [q Pl!t --* $6 D Pa?s ---) $7]
P3 :: PI?Z; *[b,--* SsD b2--* $9].

Finally, to avoid some cumbersome notational problems in Section 4, we
consider in this paper only guarded commands of which all the guards either
contain an I/O command or are all Boolean.

2. THE PROOF SYSTEM

We intend to reason about CSP programs in a manner analogous to the work of
Owicki and Gries [18]. First we present proofs for processes in separation, and
then we deduce properties of complete programs by comparing the proofs for the
component processes. Therefore we have to provide axioms and proof rules for
all possible constructs of a process. One of the essential properties of CSP
programs is that the meaning of processes viewed in isolation is inherently
incomplete when compared with their meaning in the context of a complete
program. This phenomenon is also present in a less obvious way in the case of
the languages considered in [17] and [18], where the constructs awa i t b t hen S
and wi th r w h e n b do S are meaningful, essentially, only in the context of
parallel composition. Therefore the axioms and proof rules dealing with the
constructs pertinent to CSP do not capture a complete meaning of these con-
structs viewed separately.

The main novel contribution of this work is, in our opinion, the proposal for
tying separate proofs together into a meaningful whole. This proposal, the test
for cooperation between proofs, will be discussed shortly.

We adopt the following axioms and proof rules (ai stand for I/O commands):

A1. Input

{p} Pi?x{q}.

This axiom may look strange since it allows one to deduce any postassertion q
of the input command whatsoever. However, any q thus introduced will later
(when proofs are tested for cooperation) be checked against some postassertion
regarding corresponding output statements. An arbitrary q will in general fail to
pass the cooperation test.

A2. Output

{p}Pi!y{p}.

This axiom conveys the information that an output statement has no side
effect.

R1. I /O Guarded Selection

{p A bi}ai{ri}, {ri}Si{q}, i = 1 , m

{p}[[3(i = 1 m) b~; a~ --) S~] {q} "

The meaning of this rule is that the postassertion of an I/O guarded selection
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

364 K.R. Apt, N. Francez, and W. P. de Roever

must be established along each possibly selected path. We discuss later the
problem of paths never selected.

R2. I / 0 Guarded Repetition

(p A bi)ai{ri}, {ri}Si[p}, i = 1, . . . , m

{p} *[D(i = 1 m) bi; ai ~ Si](p}

Note tha t this rule does not take into account the full exit conditions of the
loop. We shall re turn to this problem at the end of the section.

Subsequent ly we use the following well-known axioms and proof rules:

A3. Assignment

A4. Skip

R3. Alternative Command

R4.

{p[t/x])x := t{p}.

{p)sk ip{p) .

{p A bi}Si{ q}, i = 1 , m
{p) [D(i = 1 m) b i -* Si] (q}"

Repetitive Command

(p A b~}Si{p}, i = 1 m

{p} *[D(i = 1 , . . . , m) b~--~ S~]{p A n(b~ V " ' " V bin)}"

R5. Composition

R6. Consequence

R7. Conjunction

{p}S~{q}, {q}S2{r)
{p}S1; $2 {r}

p--* p~, {p~)S{ql}, ql--* q
{p}S(q}

{p}S{ q}, (p}S{r}
{p}S{ q A r}

Using these axioms and proof rules, we can establish proofs for formulas of the
form {p}Pi{q}, where Pi is a process. Each such proof can be represented, as in
[18], by a proof outline in which each subs ta tement S of Pi is preceded and
followed by a corresponding assertion, pre(S) and post(S), respectively. Th e
subsequent discussion always refers to proofs presented in such a form.

We now present a first formulat ion of a proof rule (or ra the r a meta rule) which
can be used to deduce a proper ty of [P1 [] . . .][Pn] using the proofs concerning
programs Pi, i = 1 , . . . , n. This rule has the following form:

proofs of {pi}Pi(qi}, i = 1 , n, cooperate

{ p l A . . . Apn)[Pl]] . . .]]Pn]{ql A . . . A qn}"

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

A Proof System for Communicating Sequential Processes 365

Intuitively, proofs cooperate if they help each other to validate the post-
assertions of the I/O statements mentioned in those proofs. More formally,
this property is expressed as follows: The proofs of {pi}Pi(qi} , i = 1 n, co-
operate if

(i) the assertions used in the proof of (pi}Pi(qi} contain no variables subject to
change in Pj for i # j ;

(ii) (prel A pre2}Pj?x I] Pi!y {post1 A posts} holds whenever {pre~}Pj?x{posh}
and {pre2}Pi!y(post2} are taken from the proofs of (p i)P i (q i } and
{ P1)PJ (qJ }, respectively .1

We shall need the following axioms to establish cooperation:

A5. Communication

(true}Pi?x [[Pj!y(x = y}

provided Pi?x and Pi!Y are taken from Pj and Pi, respectively.

A6. Preservation

{ p } S { p }

provided no free variable o f p is subject to change in S.
Note that A2 and A4 are subsumed by A6. We also need the following proof

rule, needed to eliminate auxiliary variables from the preassertions.

R8. Substitution

{ p } S (q }

(p[t /z] }S{ q}

provided z does not appear free in S and q.

Example 1. Using the system above we can prove

{true} [P111 P2]1P~]{x = u},

where P1 :: P2lx, P2 :: PI?y; P3!y, and P3 :: P2?u.
Here are the proof outlines:

{x = z}P2!x{x = z},
{ t rue}P~?y(y = z}; Pa!y{y = z},
{true}P2?u(u = z}.

The proofs clearly cooperate; for example,

{x = z}P2!x]1 Pl?y{x = z A y -- z}

can be derived as follows. By the communication axiom (true} P~!x II Pl?y(x = y},
so by the consequence rule, (x = z}P2!x]1 Pl?y{x = y}. On the other hand, by the
preservation axiom, {x = z}P2!xHPl?y{x=z}; so by the conjunction rule,
{x = z}P2!x II Pl?y(x - y /~ x = z}. Finally, {x = z}P2!x]1 Pl?y{x = z /~ y = z} by
the consequence rule. Thus we get {x = z}[P1 II P2 II P3]{x = z A y = z A u = z}.

Such pairs of I /O ins t ruc t ions will be said to be syntactically matching.
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

366 • K .R. Apt, N. Francez, and W. P. de Roever

Now by applying the consequence rule, we get {x = z}[P1 H P2 II P3]{x = u), from
which the claim follows by applying the substitution rule, and substituting x for
z in the precondition. []

This approach fails when dealing with programs in which some output com-
mands do not match with any input command.

Example 2. Let

P1 ::/)2!0,
P2 :: [Pl?x -* skip D P3!y -* skip D P3?y -* skip],
Pa :: skip.

Clearly, (true)[P1 II P2 II P3](x = 0) holds. However, this cannot be proved
in the above system, for any such proof would require establishing both
{true}P3!y(x = 0} and (t rue)P3?y(x = 0). The latter formula is an instance of
the input axiom but the former one cannot be derived in the system. []

We remedy this difficulty by introducing the following, rather astonishing, new
output axiom.

A2'. Output

{p}Pi!y{q}.

At this moment the reader might wonder, "Does not the combination of axioms
A1 and A2', i.e., of {p}Pi?x (q} and (P}Pi!Y{q), together allow us to deduce
(p}Pi?x]1PJ!Y{q} for arbitrary p and q?" That this is not the case follows from
the cooperation test. Using A5, the axiom of communication, and A6, the axiom
of preservation, only formulas of the form (r}Pi?x II Pi!Y(x = Y /k r} can be
derived, where x is not free in r, and any use of the substitution or consequence
rule can only weaken the conclusion. We hope that these remarks indicate to
what extent the choice o fp and q above is restricted by requiring cooperation.

Next we solve the following problem. The cooperation test between proofs
requires comparison of all I/O pairs which syntactically match, even though
some syntactically possible communications will never take place. A simple
example follows where we run into difficulties because of this very reason.

Example 3. Let

PI :: [P2?x --* skip [3 P2!0 --* P2?x; x:= x + 1],
/)2 :: [P1!2 --> skip [3 Pl?Z --) PI!I].

Clearly, {true}[P1 H P2]{x = 2} holds. To prove this, we are forced to use x = 2
as the postassertion of the first occurrence of P2?x in P~. This assertion, however,
will not pass the test for cooperation since it cannot be validated when P2?x is
compared with PI!I (the point being that this pair also syntactically matches,
although it will not be synchronized during execution). []

In general, syntactic matching of a pair of I/O instructions does not imply that
this communication will ever take place, i.e., it does not imply their semantic
match. In order to take care that semantically unmatched pairs of I/O instructions
do not fail the cooperation test as above, we introduce a global invariant I which
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

A Proof System for Communicating Sequential Processes 367

will determine semantic matches, and which may carry other global information
needed for the proof. However, in order to express semantic matching in general,
one needs variables which are not necessarily the ones referred to in the I /O
instructions themselves {and, as is well known, need not be program variables
either; in general auxiliary variables are needed).

For example, consider the following program sections:

• . . P2?x; i : = i + 1 . . . [[. . . PI !y ; j := j + 1 . . .

where i a n d j count the number of communications actually occurring in each
process, and let the criterion for semantic matching be i = j. However, i = j is not
a global invariant since the two assignments to i and j will not necessarily be
executed simultaneously, in contrast to the corresponding I /O commands which
are executed simultaneously.

To resolve these difficulties, we must reduce the number of places where the
global invariant should hold. This is done by introducing brackets, the purpose of
which is to delimit program sections within which the invariant need not neces-
sarily hold.

This phenomenon is similar to the one of Hoare [10] concerning resource
invariants, where the global invariant does not need to hold within the critical
sections. An analogous problem arises when dealing with monitor invariants [12].

Regarding the program sections just considered, the bracketing is

• -. <Pz?x; i :-- i + 1) . . . II " " <PI!y;J:=J+ 1) . . . ,

so tha t i = j holds outside the brackets.

Definition. A process Pi is bracketed if the brackets " (" and ") " are inter-
spersed in its text, so tha t for each program section (S) (to be called a bracketed
section), S is of one of the following forms:

81; a; 82 or a --> $1,

and $1 and $2 do not contain any I /O statements. []

With each proof of {p)[P1 [[. . . [[Pn](q} we now associate a global invariant
I and appropriate brackets. Therefore, the proof rule concerning parallel com-
position becomes the following:

R9. Parallel Composition

proofs of {pi}Pi{qi}, i = 1 , n, cooperate

(p l / k . . . /kpn/k I}[P1 [[" '" [[P ,] { q l / k . . . /k q , / k I)

provided no variable free in I is subject to change outside a bracketed section.

We have now to define precisely when proofs cooperate. Assume a given
bracketing of [P1 [[. . . [[P ,] (to which we referred in the clause concerning the
free variables of I).

Definition. Let ($1) and ($2) denote two bracketed sections from Pi and Pj
(i # j) . We say tha t ($1) and ($2) match if S~ and $2 contain matching I /O
commands. []

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

368 K.R. Apt, N. Francez, and W. P. de Roever

Definition. The proofs of the { pi } Pi{ qi } , i = 1, . . . , n, cooperate if

(i) the assertions used in the proof of {pi}Pi{qi} have no free variables subject
to change in P1 (i # j) ;

(ii) {pre(Si) A pre(S2) A I} $1 II &{pos t (&) A pos t (&) A I} holds for all matching
pairs of bracketed sections (&) and ($2). []

The following additional proof rules are used to establish cooperation:

R10. Formation
{p}S1; Sa(p~}, (p l}a II 5(p2}, {p2}82; S4{q}

{p}(S1; a; &)H (Sa; 5; &) (q }

provided a and 5 match and & , $2, $3, and $4 do not contain any I /O commands.

R l l . Arrow
{p)(a ; S)II &{q)

{p)(a --+ S)]] Si(q)"

R10 and R l l reduce the proof of cooperat ion to sequential reasoning, except
for an appeal to the communicat ion axiom. In this sequential reasoning, assertions
appearing within brackets can be used.

Finally, we use auxiliary variables whenever needed. These are variables which
do not affect program control during execution and are added only for expressing
assertions and invariants which cannot be expressed in terms of the program
variables alone. We use rule R12, a slightly s t rengthened version of a rule f rom
[18], for deleting assignments to auxiliary variables.

R12. Auxiliary Variables. Let AV be a set of variables such tha t x E AV
x appears in S' only in assignments y :ffi t, where y E AV. T h e n if q does not
contain free any variables f rom AV, and S is obtained from S' by deleting all
assignments to variables in AV,

(p}S ' (q}

{p}S{q}"

Example 4. We now show how to verify the program from Example 3. Two
auxiliary variables i and j are needed. We give proof outlines for the already
bracketed program S'.

(i = 0 A j = 0}
[{ /= 0}
[(P2?x{x = 2} --* i := 1)(x = 2 A i = 1}; skip{x = 2}
[]

(P2!0{true} --* i := 1)(i = 1};
(P2?x {x = 1}; i := 2)(x = 1 A i = 2};x := x + 1 (x = 2}

]{x = 2}
II
[{j -- 0}

(P~!2{true} --+j :ffi 1){j = 1} skip(true}
B

(Pl?z{z = 0} --)j := 1}{z = 0 A j -- 1};
(Pi! l{true}; j := 2){j ffi 2}

](true}
]

{x = 2}

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

A Proof System for Communicating Sequential Processes 369

We choose I -= (i = j) . Cooperation is easily established. Note tha t (i = 0 /k (z =
0 A j = 1)/k I) -- fa lse , so the bracketed sections containing P2?x and P~!I pass
the cooperation test trivially. (One has for any S, {false}S{false} by the pres-
ervation axiom, so {false}S{p} for any p by the consequence rule.) Hence, by
the parallel composition rule, consequence rule, and auxiliary variables rule,

{i = 0 A j = 0 / k i = j } [P ~ II P2]{x = 2}

holds. Applying the substi tution rule we finally get

{true}[P1 II P2](x = 2}. []

At this stage we return to the problem signaled earlier--namely, tha t of rule
R2. Rule R2 alone does not provide any means to deduce tha t upon exit of the
loop *[rs(i = 1 rn) bi; ai ---* Si], some of the bi's may be false. Now tha t we
introduce global invariants, we can settle this problem by expressing exit condi-
tions in the global invar ian t / . As an illustration, let us prove

{b}[P1 II Pe]{b}

with

P1 :: *[b; Pe?x --> b := fa lse] and P2 :: skip.

We simply choose I to be b and take all other assertions true. The cooperation
of proofs is voidly satisfied.

A slightly less trivial proof establishes {true}[P1 II P2]{7b} with P1 as above
and Pe :: PI!y. In this case we have to express the fact tha t after the communication
takes place, b turns false. To this purpose we introduce an auxiliary variable i.

We present the proof outlines for the bracketed programs

{true} *[b; (Pz?x-* b := false)] {true}
{i = 0}(Pl!y; i : = 1){i = 1}.

We choose for I the formula (i = 1 --* 7b). Cooperation is easily established using
the formation rule. By the parallel composition rule, consequence rule, and the
auxiliary variables rule,

(i = 0/~ (i = 1 ---> 7b)}[P1H P2](7b},

so finally, by the substi tution rule, {true}[P1 II P2]{Tb}.
These two examples have been given to indicate why rule R2 is sufficient for

proofs of partial correctness. In Section 4 we discuss the problem of whether this
rule is sufficient for proofs of deadlock freedom.

3. CASE STUDIES

3.1 Partitioning a Set

Given two disjoint sets of integers S and T, S U T has to be parti t ioned into two
subsets S ' and T ' such tha t I S I -- I S ' I, I T I =- I T' I, and every element of S ' is
smaller than any element of T'. The program P and its correctness proof are

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

370 K.R. Apt, N. Francez, and W. P. de Roever

inspired by Dijkstra [5]; however the proof presented here differs from Dijkstra's.
P :: [P1 [[P2], as given below, and S ~ O.

P1 :: rnx := max(S);
P2!rnx; S := S - (rnx};
P2?x; S := S U {x};
m x := max(S);
[rnx > x- - P2!rnx; S := S - (rnx};

P2?x; S := S U (x};
m x := max(S)

]

P2 :: PI?y; T := T U {y};
rnn := min(T);
Pl!rnn; T := T - (rnn};
[PI?y- T : = T U {y);

rnn := min(T);
P~!mn; T := T - {rnn}

]

Intuitively, these programs execute the following loop: Let S and T denote set
variables; then processes P1 and P2 exchange the current maximum of S, max(S),
with the current minimum of T, min(T), until max(S) in P~ equals the value last
received from P2.

The proof of correctness of P requires the introduction of two auxiliary
variables/1 in P1 and/2 in P2, to enable expression of the global invariant GI; li
counts the number of communications performed by Pi.

The purposes of GI are

(1) to determine which syntactically matching bracketed sections are executed
(by requiring l~ =/2);

{2) to guarantee the partitioning property;
(3) to tie the local reasoning required for processes P1 and P2 in isolation together

so as to permit the derivation of max(S) < min(T) upon (joint) loop exit; to
express the global conditions on S and T needed for the local reasoning about
P1 and P2 (in testing for cooperation).

In the annotated versions of P1 and P2, P~ and P~, the following is added to
their "bare" text:

(1) Assignments to the auxiliary variables ll and/2.
(2) The pre- and postconditions required for a proof, taking into account deletions

of conditions which were mentioned earlier in the annotated text and re-
mained invariant or were not relevant at earlier points.

(3) Bracketed sections of instructions which from the point of view of the proof
are considered as units for the proof of cooperation. Note that the global
invariant GI requires S N T = O, and that S := S - { m n } a n d T := T tA (y}
are not synchronized. Thus GI may be violated within these units, but n o t

outside these units.
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

A Proof System for Communicating Sequential Processes • 371

A n n o t a t e d tex t o f PI :

{I S I = nl > 0 A S = So A max(S) E S A l l = O}rnx := max(S);
{ m x ~ S A ISI = n l A l 1 = O }
(P2!rnx; 11 := ll + 1; (rex E S } S := S - {rex));
{ISI = n l - l A l l = l }
(Pe?x; 11 := 11 + 1; {x 9£ S } S := S U {x});
(I S I = nl A x E S A 11 = 2}rnx := max(S);

LII: { I S [= nl A m x = max(S) A x -< max(S) A even(ll) A 11 -> 2}
[rex > x -- {rnx ~ S A LI1} (P2!rnx; ll := 11 + 1; (rnx E S } S := S - (rex});

{I s I = n, - 1 A odd(ll) A l, > 2}
(P2?x; ll := 11 + l { x f_ S}; S := S O {x});
{ I S I = nl A x ~ S A even(ll) }rnx := max(S)

LII: {1S I = nl A x E S A m x = max(S) A even(/l) A ll > 2}
]
{max(S) = x A IS[= nl A even(/l)}

A n n o t a t e d tex t o f P2:

[I TI = n2>-O A T = T o A 1 2 = O }
(PI?y; 12 := 12 + 1; {y 9~ T } T : = T O {y});
{I T [= n2 + 1 A 12 = 1}rnn := min(T);
{ I T [= n 2 + l A m n = m i n (T) A / 2 = l}
(Pl!mn; 12 := 12 + 1; {ran ~ T } T := T - {.ran});

Lie: {1 T I -- n2 A m n < rain(T) A even(/e) A/2 > 2}
*[(PI?y-->/2 :=/2 + 1; T : = T O {y});

{I T[= n2 + 1 A odd(12)}mn := min(T);
{I TI = ne + 1 A m n = rain(T) A odd(/e) A/2 > 2}
(P1!mn; 12 := le + 1; T := T - {ran})

Lie: {[T[= n2 A rnn < rain(T) A even(12) A/2 > 2}
]

{I TI = n2 A m n < rain(T)}

The g lobal invar ian t GI:

GI ~ S r3 T = O A S U T = So U ToA ll = /2 A (even(ll) A li-> 2 ~ x < min(T)).

Fo r the sake o f the p r o o f we a s sume t h a t min(O) -- +oo.
W e res t r ic t ourse lves to p rov ing coope ra t ion be tween proofs for the first

b r a c k e t e d sec t ion o f P1 a nd P2, a nd for the second b racke t ed sec t ion o f P1 and
P2; the c u s t o m a r y kind of sequent ia l r eason ing is omi t ted . P roofs for the coop-
e ra t ion be tween the th i rd b r a c k e t e d sect ion and the fou r th are ac tua l ly ident ical
and are omi t ted . P roofs for syn tac t i ca l ly m a t c h i n g bu t semant i ca l ly n o n m a t c h i n g
sec t ions are trivial; for ins tance, t he first sec t ion of P1 and the th i rd o f P3 are
t r ivial ly coope ra t ing since -1GI holds (in this case -1(11 = 0 / k / 2 -> 2 A l l = 12)).
N o t e a l s o how the inpu t a nd o u t p u t ax ioms are used to inser t the occur rences o f
{ rex E S } , { x f~ S } , { y f~ T } , a n d {ran E T } in the a n n o t a t e d p rogram; the choice
of these asser t ions will be just i f ied in the coope ra t ion proofs.

P r o o f o f c o o p e r a t i o n b e t w e e n f i r s t b r a c k e t e d s e c t i o n s . We have prel -
m x E S A [S I = n l A 1 1 = O, a n d pre2 = IT [= n 2 A T = T o A / 2 = 0 . Also, post l
=- I S [= n l - l A /l = l a n d post2 -- I T I = n2 + l A 1 2 = l .

W e m u s t p rove

{prel A pre2 A GI}
P2!rnx; ll := ll + 1; S := S - {rnx} I1PI?y; 12 := 12 + 1; T := T U {y}
{post1 A post2 A GI}.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

372 • K .R. Apt, N. Francez, and W. P. de Roever

By the communication and preservation axioms,

(prel A pre2 A GI}Pgmx II Pl?y(mx = y A prel A pre2 A GI}.

Precondit ion of section l~ := l~ + 1; S := S - {rex};/2 :=/2 + 1; T := T U {y} w.r.t.
postcondition post~ A post2/k GI is

l l = 1 2 = O A y C _ T A ITI = n 2 A m x E S A ISI
= n ~ A S f q T = O A S U T = S o U T o ,

which is implied by {mx = y A prel A pre2 A GI}. Therefore the formation rule
yields the result, since

{pre~ A pre2 A GI} P2!mx II P~?y{mx = y A prel A pre2 A GI}

and

{rex = y A prel A pre2 A GI}ll := 11 + 1; S := S - {rex};
12 := 12 + 1; T :-- T U { y} (post1 A post2 A GI}

hold.

Proof of cooperation between second bracketed sections. We have pre{ - I S I
= n l - 1 A l ~ = l a n d p r e ~ - = ITI = n 2 + l A m n = m i n (T) A l ~ = l . Alsopost{
-= I SI = n l A x E S A l l = 2 a n d p o s t ~ = - ITI = n 2 A m n < m i n (T) Aeven (/2)A
/ 2 _ 2 .

We must prove

{prel A pre~ A GI}
P2?x; ll :-- l~ + 1; S := S U {x} II P~!mn; 12 := 12 + 1; T := T - (ran}
{postl A post~ A GI}.

By the communicat ion axiom and preservation axiom,

{prei A pre~ A GI} P2?x II P~!mn{mn = x A prei A pre4 A GI},

since odd(/~). Now observe tha t

{ran = x A prel A pre4 A GI}
I ~ : = l l + I ; S : = S U (x}; /2 := /2 + I; T := T - (ran}
{postl A post~/k GI}

holds. Note tha t x < min(T) in the postassertion follows from the fact tha t

m n = x A mn = min(T) --) x < min(T - {ran});.

Therefore the formation rule yields the result.
Applying the rule of parallel programs we get

{ I S I = n l > O A S = S o A IT I = n 2 _ 0 A T
= ToAl~ = 0 5 / 2 = 0 A GI}

[Pi II
{LI1 A LI2 A GI}

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

A Proof System for Communicating Sequential Processes 373

where P{ and P~ are the modified versions of P1 and P2. From this we obtain

(ISI = n l >O A S = S o A ITI = n 2 > _ O A T
= T o A S N T = O A l l = O A I 2 = O }
[P i II P~]

{]SI =.nI A I TI = n 2 A S N T = ~ A S U T
= So (J To A max(S) < min(T)}.

Now by dropping the assignments to 11 and/2 and subsequently substi tuting 0
for 11 and/2 in the precondition, we get the desired formula.

3.2. Distributed Computation of the Greatest Common Divisor of n Numbers

As another example, we consider a program P which computes gcd(ol , an},
ai > 0, i = 1 , . . . , n, a var iant of a program first presented in [9]. This program
has the proper ty tha t when all processes reach a final state and have computed
the gcd, the program is blocked in a deadlock state, since no process "knows"
tha t all o ther processes are in final states. Th e interest in such programs arises
because of two facts:

(1) It ma y be easier to write such a program than the corresponding program
tha t will te rminate when all processes reach final states.

(2) The r e exists an automat ic t ransformat ion transforming every such blocked
program into an equivalent terminat ing program. See [6, 9] for details of this
t ransformation.

Using such an example, we are also able to show tha t our deductive system can
deal with more general invariance {or safety, in the terminology of [13]) than just
partial correctness.

The program P consists of n parallel processes arranged in a ring configuration,
where each process Pi communicates with its own immediate neighbors Pi-1, Pi+l
(+ and - are in terpre ted cyclically in {1 n}). Each process has a local
variable xi which initially has the value oi. Each process sends its own xi to each
immedia te neighbor, and uses flags rsl {ready to send left) and rsr (ready to send
right) to avoid sending xi again before it is modified. Other al ternatives of Pi are
to receive a copy of xi-1 in y or a copy of xi+l in z. When such a number is received
from a neighbor process, the number is compared to xi. If x~ is larger, it is then
upda ted according to Euclid's rule, and the rsl and rsr flags are set on. Otherwise
nothing happens. Two auxiliary variables, rcvl (received from left) and rcvr
{received f rom right), are included for the sake of the proof.

Since the program deadlocks upon reaching the final state, no postcondit ion is
claimed for the whole program. Rather , we show how to express in the formalism
the claim about the state at the instant of blocking.

In the following annota ted text for P~, LIi is the loop invariant of Pi which
serves also as the precondit ion and postcondit ion for the body of the main loop:

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

374 • K R. Apt, N. Francez, and W. P de Roever

A n n o t a t e d text o f Pi:

{xi = oi > 0 A rsl~ A rsri}
*[{LIi}

(rsli; Pi-l!xi--* rsli := false; rcvli := fa l se {LIi}
B

(rsri; Pi+l!xi--* rsri = false; rcvri := fa l se) {LL}
B
< Pi-l?yi--. rcvli := t rue;

[y~ >- xi --* skip
[3
yi < xi--* [yi I xi --, xi := yi

yi # x~ --~ x~ := xi rood y~
]; {LIi} rsri := t rue; rsli := t r u e

]) {LL}
B
(Pi+19zi "--> r c v r i :-- t rue ;

[zi >- xi .--* skip
B
Zi < Xi ~ [Zi I Xi ""-> Xi : = Zi

[3
zi ,r xi ~ xi :ffi xl rood zi
]; {LIi} rsri := t rue ; rsl := t r u e

]) {LI,}

The g loba l invar ian t GI:

GI -= A [T r s l i ~ (z i -1 ---- xi A r c v r i - 1)
i~1

A 7rsrl ~ (y i + l ---- x i A rcvli+l)
A gcd(xl x,) = gcd(al On)].

G I e s t ab l i shes t he co r r ec t s end ing a n d rece iv ing r e l a t ionsh ip b e t w e e n a n y t r ip le
Pi-1, Pi, Pi+~, and also e s t ab l i shes t h a t all changes in t he xi 's p r e s e r v e
gcd((I, (I,).

T h e loop i n v a r i a n t LIi is e x p r e s s e d in t e r m s of local va r i ab l e s (of Pi) only, and
desc r ibes t he s equen t i a l b e h a v i o r of t he loop body:

LIi = (nrsl~ A r c v l i ~ y i - xi)

A (Trsri A rcvri --> zi >-- xi) .

T h e i n s t a n t w h e r e a p roces s is a b o u t to execu te the loop b o d y and f ind i t se l f
b locked is c h a r a c t e r i z e d b y

BLi - (LIi A 7rsli A qrsri) .

T h e r e f o r e , we h a v e to p r o v e the fol lowing p rope r ty :

(*) (GI A A BLi) --* (/~ xi ffi gcd(al , . . . , (In)).
i= l i= l

(*) impl ies t h a t t he conc lus ion indeed ho lds a t t he i n s t an t of t o t a l b lock ing if i t
OCCURS.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

A Proof System for Communicating Sequential Processes 375

P r o o f o f (*) . Suppose that GI A Ai%1 BLi holds. From GI AAT~ (nrsli A 7rsri)
we infer that

(1) A (xi -- zi-1 = yi+l) /k rcvri A rcvli.
i~l

From AT=a (LI~ A 7rsli A 7rsr~ A rcvli/k rcvri) we infer that

(2) A (yi--- x iA zi >- xi).
i=1

Using (1) and (2), we get

Xi ~- Zi m Xi+l and Xi+] ~-- yi+l = Xi

which together imply that

(3) xi = Xi+l, and therefore
(4) xi = x2 x,.

Finally, (4) and gcd(xi Xn) ---- gcd(al an) imply the required conclusionl
n

Ai~ l x i = gcd(ai a.).
We are left with the problem of verifying that GI is indeed a global invariant

and LL is a local loop invariant. The second task involves ordinary sequential
reasoning using the input and output axioms, and is left to the reader.

On the other hand, a proof of the global invariance of GI uses the concept of
cooperation.

(a) Initially, A~%~ (Trsli A -lrsri) is false, and the first two clauses of GI are trivially
true. Also, Ai%1 xi = ai trivially implies the third clause.

(b) One pair of matching bracketed sections is the one consisting of the first
alternative of some P i and the fourth alternative of Pi-1. Hence, we have to
show

(rsli A LIi A LIi-1 A GI}
Pi-l!Xi'~ rsli :ffi false; rcvli :---- fa lse

II A
Pi ! z i - i ; ~cvri-1 := t r u e ; [. . . !

{LIi/k LIi-1/k GI}.

The variables changed are rsli, rsli-;, rsri-a, rcvli, rcvli_~, zi-~, and xi-1.
By the rule of formation it remains to be proved that

{Xi = Z i - 1 / k rsl i A L I i / k (nrsl/-1 A rcv l / -1 ~ y i -1 >-- x i -1) A GI},
A; B,
{LIi A LIi -1 A GI}

holds, where the above precondition is the postcondition of

P i - l ! X i II Pi?z i -1

inferred by the axioms of communication and preservation.

First, xi = zi-1 implies, by the known mathematical facts about the gcd function,
that gcd(xl Xn) ---= gcd(o l , . . . , On) remains true after executing A; B. All other
changes need only routine checks.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

376 K.R. Apt, N. Francez, and W. P. de Roever

(c) The other matching bracketed sections are the second alternative of Pi and
the third alternative of Pi+l and are verified similarly.

4. DEADLOCK FREEDOM

Much as in [17, 18], we wish to use our proof system to show that a given program
is deadlock free. For this purpose, however, our system as presented so far is
incomplete, in contrast to [17, 18], and has to be strengthened. The resulting
system can also be used to prove the absence of failure due to attempts at
communication with processes that already terminated. (These questions do not
arise in the work of Owicki and Gries because the distributed termination
convention cannot be described in the programming languages which they con-
sider.)

We adapt the concept of blocking, as introduced in [18]. This concept is used
to characterize those states in which execution cannot be continued. Our version
takes the distributed termination convention of CSP additionally into account, in
that communication at the guards of an I/O guarded repetition will not be
blocked in case all the processes referred to in the guards with a true Boolean
component have terminated. All other communications which address processes
that have terminated will be blocked. Intuitively, a program is blocked (in a given
state) if the set of processes which did not terminate as yet is not empty; all
processes are waiting for communication; there exists among them no pair of
processes which wait for each other, one for input and the other for output; and
there exists no process in that set which would exit a loop by the distributed
termination convention. Thus in a blocked state no process can proceed.

Given a program P and an initial assertion p, we say that P is deadlock free
(relative to p) if no execution of P, starting in an initial state satisfying p, can
reach a state in which P becomes blocked.

We proceed with the formal definitions required in order to formulate the
theorem about deadlock freedom. We assume that a specific proof outline is given
for each process Pi, i = 1 , . . . , n. Let I be the global invariant associated with the
proof.

First we describe a blocked situation. A blocked situation is characterized by
an n-tuple of sets of communication capabilities associated with the correspond-
ing processes.

Assume that each process waits for a communication or has terminated. Then
its communication capabilities are introduced as follows:

(i) If a process waits in front of an I /O command which is not a guard, then the
bracketed section surrounding this I /O command constitutes its only com-
munication capability.

(ii) If a process waits in front of an alternative or repetitive command, then a
(possibly empty) subset of the set of all bracketed sections containing the
I /O guards of that command form its set of communication capabilities. This
subset corresponds to those guards whose Boolean parts evaluate to true.

(iii) If a process has terminated, then its communication capability consists only
of acknowledging its termination.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

A Proof System for Communicating Sequential Processes 377

Now, a situation is blocked if all of the following clauses hold:

(a) In the n-tuple of sets of communication capabilities there does not exist a
matching pair of bracketed sections.

(b) If a process waits in front of a repetitive command, then its set of communi-
cation capabilities is nonempty, and not all processes (which are addressed in
the bracketed sections), from its sets of communication capabilities acknowl-
edge their termination.

(c) Not all processes acknowledge their termination.

To illustrate the concepts, just introduced, consider the following examples. In
all of them we consider the situation in which each process waits to begin, so
clause (c) applies trivially.

(1) Let P :: [P1 :: P2!x]IP2 :: PI!y]. Then clause (a) clearly holds, and (b) is
obviously satisfied, so P is blocked.

(2) Let P :: [P~ :: P2!x II P2 :: P~?y]. Then clause (a) does not apply, so the situation
is not blocked.

(3) Let P :: [P~ :: *[P2?x --~ S] lIP2 :: P~?y]. Then both (a) and (b) hold, so the
si tuation is blocked.

(4) Let P :: [P1 :: *[P2?x --~ S]]l Pe :: PI!y]. Then (b) holds but (a) does not, so the
situation is not blocked.

(5) Let P :: [P1 :: *[false; P2?x --> S] II P2 :: PI!y]. Then the set of communication
capabilities of P1 is empty because the Boolean guard of the loop is identically
false. Thus (b) does not apply and the situation is not blocked. Indeed, P1 can
exit the loop, and then a blocked situation does indeed arise.

(6) Let P :: [P1 :: [false; P2?x --> S] II P2 :: P~!y]. Then both Ca) and (b) (notice
tha t P~ is a guarded selection!) are satisfied and the situation is blocked.

Next, we associate with each blocked situation an n-tuple of assertions. We
intend to prove tha t program P is deadlock free (relative to assertion p) by
checking tha t all blocked situations give rise to unsatisfiability of the global
invariant I and all assertions associated with tha t situation.

In the subsequent discussion the following notation will be useful.
Let S be an alternative s ta tement [[:3 (j ffi 1 , . . . , m) bi; a i ~ $i] or a repetitive

s ta tement *[[] (j ffi 1, . . . , rn) bj; a i---* Sj], and let A _ {1, . . . , m}. By pre(S, A)
we mean the assertion pre(S) /k A/eA bj/k Aj~A 7by.

Consider now a blocked situation. Let Pi be one of the blocked processes. We
associate with P~ an assertion pi:

(a) If P~ is in the situation as described in (i) above, then p~ is the preassertion of
the corresponding bracketed section.

(b) If Pi is in the situation as described in (ii) above, then pi is pre(S, A), where
S is the guarded command in front of which Pi waits and A is the set of
indices corresponding with the set of communication capabilities of Pi.

(c) If Pi is in the situation as described in (iii) above, t h e n p i is post(Pi).

We call an n-tuple (pl , p ,) of assertions associated with a blocked situation
a blocked n-tuple.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

378 • K .R . Apt, N. Francez, and W. P. de Roever

Then the following theorem holds:

THEOREM 1. Given a proof of {p} P (q} with global invariant I, P is deadlock
free (relative to p) i f for every blocked n-tuple (pl , p,),-l(AT_~ pi /X I) holds.

Hence, in order to prove that P is deadlock free, we have to identify all blocked
tuples of assertions, and the global invariant I should be such that a contradiction
can be derived from the conjunction of the invariant and the given blocked tuple.
The operational meaning of this contradiction is as follows: There is no moment
during execution at which control of every Pi reaches a point in which the
assertion pi (taken from the given blocked tuple) holds. If the conditions of the
theorem hold, then execution can proceed smoothly (possibly forever).

The theorem above is a consequence of the following one, the proof of which
is part of the proof of the soundness and completeness of the system, to be
published by the first author.

THEOREM 2. Let a proof of {p}P{q} be given. I f during execution of P
starting in a state satisfying p, each Pi is about to execute a statement with a
preassertion prei, then AT=I prei is satisfied by the (global) state at that moment.
I f Pi has terminated, then post(Pi) holds. I f none of the processes is within a
bracketed section, then I holds.

To illustrate the use of Theorem 1, we now prove deadlock freedom of the
programs considered in Examples 1, 3, and 4 of Section 2.

To deal with the program from Example 1, [P~ :: P2!x II P2 :: PI?y; P~!y II P3 ::
P2?u], we need the following new proof outlines:

{i-- 0} (P2!x; i := 1) {i = 1},
{ j - - 0 A k - - 0 } (P~?y;j:--1); { j = l A k f f i O }

(P31y;k:= l) { j = l A k - - 1 } ,
{1 = 0} (P2?u; l := 1) (l = 1}.

Let / - - - i = j A k = 1.
The proofs clearly cooperate and can be used to establish the rather unimpres-

sive fact that {true} [P1 II P2]l Pa] (true} holds. On the other hand the above
proof outlines are sufficient for the proof of deadlock freedom. It is easy to see
that the conjunction of any blocked triple of assertions implies i ~ j V k ~ l,
which is incompatible with/ . By Theorem 1, [P1 II P2 II P3] is deadlock free relative
to t rue .

Having dealt with I /O commands only, let us now consider a program contain-
ing an I /O guarded alternative statement, namely, the program from Examples
3 and 4, [P~ :: [P2?x --> skip [] P2!0 ---> P2?x; x := x + 1] II P2 :: [P~!2 ~ skip [] P~?z

P~!I]]. In this case the proof outlines given in Example 4 are sufficient to show
deadlock freedom relative to t rue. The analysis is simplified by the fact that the
Boolean guards of the alternative statements are identical to t rue; this implies
that any process waiting to start has exactly two communication capabilities.

In particular, the situation when one process waits to start and the other did
not terminate is not blocked. The only situation which is blocked is when one
process waits to start and the other has terminated. The corresponding pair of
blocked assertions then implies i ~ j, which is incompatible with the global
invariant I - i = j.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

A Proof System for Communicating Sequential Processes • 379

Let us now turn our attention to programs containing an I/O guarded repetitive
command. One of the simplest examples is a program of the form [skip II *[a --~
skip]]. This program is clearly deadlock free relative to t rue, and the proof of
this fact is trivialmaccording to the defmitions there is simply no blocked
situation, so no blocked pair of assertions needs to be considered.

We are less fortunate when trying to prove deadlock freedom of the program
[2 II *[a --* skip]]. In spite of our elaborated definitions it is impossible to prove
with our method that the trivial program above is deadlock free relative to true!
The easiest way to see this is as follows:

(1) The only formally blocked situation is the one when the first process waits
to start and the second has terminated. Of course such a situation cannot occur
operationally, but our definitions above do not rule this situation out.

(2) Consider now a new, fictitious interpretation of I/O guarded repetitive
commands according to which the loop can also be exited immediately. Our rule
for I/O guarded repetition is still sound under this interpretation, and the
description of blocked situations still applies to the new interpretation. As a
result, both Theorem 1 and 2 remain valid. If we were now able to prove the
required premise of Theorem 1 in the case of the above program, then this
program would be deadlock free relative to t rue under the new interpretation.
But the latter is clearly not the case, since the new interpretation now makes the
only formerly blocked situation reachable.

Note that the reasoning above does not contradict the relative completeness of
the introduced proof system for partial correctness. Namely, if {p} P { q } is true
under the usual interpretation, then it is true under the new interpretation, so
the argument above does not apply any more.

One is tempted to consider the situation above where the first process waits to
start and the other has terminated as not being blocked. However, such a solution
does not work with more complicated programs, for instance, when P2 is of the
form *[false --~ *[a -* skip]].

We conclude that the present system is inadequate for reasoning about dead-
lock freedom, since its underlying interpretation can be changed so as to rule out
the example of formal blocking considered above, while keeping axioms and proof
rules satisfied.

To remedy the situation, we introduce local propositional variables Endj, i # j,
1 _< i, j _< n, with the following interpretation: Endj- holds if Pi "assumes" that Pj
has terminated. These propositional variables have false as their initial truth
value. When they are included in some assertion with t rue as their truth value,
it will be due only to a loop exit in some process. In the proof (but not in the
program) this change of value is described as if assignments take place upon loop
exit. Endj can only be used in proofs concerning Pi.

The new rule for I/O guarded repetition now becomes

R2'. Guarded Repet i t ion

{p A bj)aj{rj}, { r j } S j { p } , j = 1 , . . . , m

{p}*[[~ (j = 1 , m) by; aj--* Sj]{p A A?=a(Tb/V End/kj)}

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

380 K.R. Apt, N. Francez, and W. P. de Roever

Here kj denotes the index of the process referred to by aj, and i denotes the
index of the process containing the loop.

The propositional variables End) are used in general in the global invariant/ ,
so setting them to t r ue can affect the invariant. Therefore we must add the
following clause to the definition of cooperation:

(iii) Let S denote a subprogram of Pi of the form

*[[7 (j = 1 , rn) bj; a1-~ S j] .

Let A _C { 1 , . . . , rn}, and let C be the set of indices of all processes referred
to in aj fo r j E A. Then Ajec post(Pj) A pre(S, A) A I - * (post(S) A I) [t rue /
End~']jec holds.

Here q [t r u e / E n d ~] j e c stands for the formula obtained from q by simultaneous
substitution of t rue for End), j ~ C.

Clause (iii) states that if process Pi is about to exit an I /O guarded repetition
(which is expressed by the left-hand side of the formula), then the exit itself
(modeled by setting the corresponding Endj- variables to t rue) both preserves the
invariant and establishes the postcondition of the loop. The other assertions do
not use End~ variables and so cannot be affected by the exit.

The adopted changes retain the validity of Theorem 1.
A simple example serves to illustrate the concepts introduced. Consider the

program P :: [~ [[*[a --~ skip]] (which caused our troubles originally) with the
following proof outlines:

{ i = 0 } (5 ; i : = 1) (i = l } ,
{TEndS} *[a ~ skip] {End~},

and let I -- End21 --* i -- 1.
All omitted assertions are equal to t rue. The second proof outline makes use

of rule R2'. The proofs cooperate--the new clause of cooperation,

i = 1 A -1End~ A I - o (End~ A I)[true/End~],

clearly holds.
The only blocked situation leads to a blocked pair (i = 0, End~) of assertions

which are clearly incompatible with/ . The proof outlines are sufficient to establish
the proof of [true} P (t rue} . By Theorem 1, P is deadlock free relative to t rue .

Now we apply these new concepts to the partition example considered in
Section 3. We refer to the proof presented there.

In order to prove the absence of deadlock in this program, we have to strengthen
the invariant GI to include

GI' -- End~ ---> rnx <_ x,

and add m x > x to the precondition of the two bracketed sections in the loop of
P1, as well as adding rnx <_ x to the postcondition of P,. Also, the use of the strong
version of the I /O guarded repetition rule implies that End21 is added to post(P2).
In showing the cooperation of proofs, the only new case that has to be checked
is the loop exit of P2, since we can assume that post(P1), GI' holds.
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

A Proof System for Communicating Sequential Processes 381

Next we consider all blocked pairs (p, q) of assertions, and show that their
conjunction with GI A GI' is contradictory.

In all cases which do not involve the postassertions of P~ or/)2, the contradiction
is reached by observing that all blocked pairs imply different parities of the li's,
whereas GI implies l~ = /2. For example, with p as the preassertion of the first
bracketed section of P1 and q as the preassertion of the first bracketed section of
/)2 inside its loop, we have

l l -~ 0 A odd(/2) A 11 = / 2 ,

which is contradictory.
The only other case with an essentially different proof, which does not use the

fact that GI implies l~ = /2, is when p denotes the preassertion of Pl's first
bracketed section inside its loop and P2 has terminated, i.e., q contains End~
(among others). Then we have

m x > x A (End~ --> m x _< x) A End~,

which again is contradictory.
Note that it is only here that the additional invariant GI' is used.
Returning to the gcd program from Section 3, we will prove that there is no

other blocking possibility in that program besides the intended one (as stated in
the explanation to the program).

Let GI' = Ai%l (Endi+~ -= Endi+l). We shall prove the invariance of GI'. By
using the strong repetition rule R~, we get that each post(Pi) implies

Endi+l A Endi-1

(by considering the third and fourth alternatives of each loop). Initially GI' holds,
since all End~ are initially false.

All we have to consider now is a loop exit of some Pi, and then post(Pi+l) A
post(Pi-1) may be assumed; i.e., we have to verify

GI' A Endi +1 A End~ -1 --) (GI' A End~+~ A Endi_~)[true/Endi+~, t rue/End,- l] ,

which trivially holds.
A simple consequence of GI' is

(**) A Endj -- End(
i~j

The meaning of this condition is that either all processes have terminated or none
did.

Any blocked tuple of assertions (besides the one considered in Section 3)
implies that some of the assertions in the tuple are post(Pi) for some 1 _< i _ n,
i.e., that some (but not all) of the processes terminated, which clearly contradicts
(**).

In order to conclude that the situation considered in Section 3 does occur (i.e.,
is inevitably reachable), we have to use

(i) a well-foundedness argument to prove the absence of infinite computations.
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

382 • K.R. Apt, N. Francez, and W. P. de Roever

(ii) the distributed termination pat tern theorem [6] to show tha t the program
does not terminate, since its terminat ion dependency graph is cyclic,

(iii) the absence of blocked tuples of assertions other than the one considered in
Section 3, as was shown above.

The proof of (i) is beyond the scope of the present paper and therefore is omitted.

5. CONCLUSION AND COMPARISON WITH RELATED WORK

We have presented a proof system for partial correctness and absence of deadlock
in CSP programs. Now tha t we have gone through all stages of its development,
it may be useful to compare our proof system with related Hoare-style proof
systems dealing with concurrency.

As we see no way of improving in this respect upon Leslie Lampor t ' s lucid
comments upon our paper we feel justified in citing him in extenso:

This paper provides a method for proving safety properties (the generalization of
partial correctness properties) of programs written in CSP. Proving such properties
requires proving that if the program is started in a valid initial state, then a certain
assertion will always remain true. This in turn is proved by showing that some
assertion I is invariant--i.e., if the program is started in any state in which I is true,
then I remains true.

The simplest approach to proving the invariance of I is to show that each atomic
action of the program leaves I true. This approach was f'mst described by Ashcroft [3].
The next approach, taken by Owicki and Lamport, takes into account the structure of
ordinary multiprocess programs, in which each atomic action occurs as the result of
executing one "program step" in some process. The invariant assertion I is written as
the conjunction of assertions of the form "control at x-->I(x)," where I(x) is the
assertion "attached to" control point x. To prove invariance o f / , one proves the
following for each control point x.

If I(x) is true, control is at x, and executing the program step at x leaves control at
x', then

(1) I(x') is true after execution;
(2) for each control point y in every other process, ifI{y) is true before the execution

and control is at y, then I(y) is true after the execution.

The second part of the conclusion was called "interference freedom" by Owicki.
This method can be viewed as a special case of Ashcroft's method, in which the
assertion I has a special form. Conversely, Ashcroft's method can be viewed as the
special case of Owicki's and Lamport's in which the single assertion I is attached to all
control points. (This illustrates the futility of trying to decide whether one method is
more general than another.)

Because the same assertion is attached to each location, part 2 (interference
freedom) of the conclusion is implied by part 1, so no explicit proofs of interference
freedom are needed by Ashcroft's method. However, this provides no real advantage
since the same amount of verification is required in both methods: the interference
freedom proofs appear in Ashcroft's method as the extra complexity of proving that
the larger monolithic assertion I is left true by each atomic operation. The difference
in the two methods is largely a matter of syntactic convenience. The interference
freedom method is more convenient when the global invariant assertion I is conven-
iently written as the conjunction of assertions I(x) attached to program control points.
Ashcroft's method is more convenient when the invariant I is simple and does not
need to be decomposed.

In Owicki's treatment, the assertions I(x) could not explicitly mention program
control points. This meant that she had to introduce auxiliary variables, instead.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

A Proof System for Communicating Sequential Processes 383

Now suppose we consider a more general multiprocess programming language, in
which program steps in one or more different processes may be executed simultane-
ously as one single step. Let us call {xl xi} a multicontrol point if the program
steps at control points xl xi are steps which may be executed simultaneously in
this way--where each of the x's is in a different process. (The singleton {x} is a
multicontrol point if the program step at x is a local one, which can be executed by
itself.) If x = {xl xi}, define I(x) to be the conjunction of the assertions
I(xl) Hxi). The above Owicki/Lamport proof rule can then be generalized by
replacing the single control points x and x' by multicontrol points, where "control at
x" is defined in the obvious way for a multicontrol point x. (In the new definition, y
remains an ordinary [single] control point.) [This methodology was independently
developed by Mazurkiewicz [15] where simultaneous await-statements are consid-
ered.]

The approach obviously provides a proof methodology for CSP, where the nonlocal
multicontrol points involve I/O statements. [The actual transition from proof meth-
odology to proof system is achieved by providing suitable axioms and proof rules, such
as the communication axiom, which enable incorporation of the above generalization
of condition 1 (i.e., cooperation) into the proof system.] The proof method presented
in the present paper can be derived as follows, as a special case of this general method,
on the basis of the fact that syntactic restrictions on the type of assertions that can be
used make certain verifications unnecessary. First of all, the CSP language is gener-
alized by introducing the "bracketed sections." The bracketing defines the nonlocal
atomic operations. The rules for what may appear inside brackets are codifications of
the well-known fact that operations that affect only local variables may be subsumed
within an adjacent atomic operation. (In particular, it does not make any difference
how the local atomic operations are defmed.)

The nonlocal multicontrol points are the control points at the beginning of the
bracketed statements. The assertion I(y) attached to each control point y is of the
form "I ' (y) and/ ," where I ' (y) is the assertion explicitly attached to y, and I is the
"global invariant." The separation of the proof into a local proof and a proof of
"cooperation" involves the separation into local control points (singleton multicontrol
points) and nonlocal control points. Rules A1 and A2 simply enforce that the
statements involving I/O concern nonlocal control points, and are not considered by
the local proof.

The fact that no interference freedom proofs are necessary is an immediate
consequence of the restriction that the assertion attached to each control point y is of
the form "I'(y) and/ ," where I '(y) contains variables only modified by that process.
[The same remark applies to the proof system considered in [17].] No interference
proofs are needed for precisely the same reason that they are not needed in Ashcroft's
method: because the only nonlocal assertion is attached to all control points. The
global assertion I does not have to appear in the local part of the proof because of the
assumption that it contains no variables that can be set by other local operations.

In the present paper program control is modeled by the use of auxiliary
variables and the global invariant. A different approach (suggested by L. Lamport)
can be envisaged here, in which program control variables are explicitly allowed
to appear in assertions making the use of the global (monolithic) invariant
unneeded.

A full discussion of the relative merits of these two alternative approaches, i.e.,
auxiliary variables versus program control variables, is beyond the scope of the
paper. We ment ion only tha t program control variables lead in general to
nonrecursive intermediate assertions (see [1]).

I t is also possible to have a proof system for CSP without global invariants, in
which only shared auxiliary variables are used. An example is the proof system

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

384 • K.R. Apt, N. Francez, and W. P. de Roever

presented in [14], where the component proofs have to be checked both for
interference freedom and cooperation, since auxiliary variables can be shared.

One of the features of our system is that the cooperation test requires us to
supply n e w formal proofs which do not constitute a part of the (sequential) proof
outlines. This phenomenon is also present in [18], where new proofs are needed
to show interference freedom. These proofs can be viewed as global reasoning
since they involve more than one process. In our case the bigger the bracketed
sections, the more sizable the proofs that have to be carried out. The forthcoming
proof of relative completeness of our system implies that we can always choose
bracketed sections of the form a; S, where S is an assignment (for updating the
local history of communications), thus reducing global reasoning.

Our method suffers from the same drawback as the one presented in [18]; in
the worst case the test for cooperation, e.g., for the case of two processes, can
involve as many as ml * rn2 checks, where rnl and rn2 are proportional to the
lengths of the component programs. The same problem can arise in proofs of
absence of deadlock. However, in practice the number of cases is significantly
smaller, and often several of them can be trivially established, as is the case in
testing cooperation between syntactically matching but semantically unmatched
pairs. For example, in our proof for the partitioning program, eight cases had to
be established in the cooperation test and fifteen for the proof of absence of
deadlock, but only four cases have a nontrivial proof of the cooperation test, and
only one such case occurs in the proof of absence of deadlock.

Finally, the results of this paper are summarized.
We have presented a system both for understanding and for proving correctness

of CSP programs. The main feature of this system is the notion of cooperating
proof outlines. The arguments leading to the system as a whole have been
motivated within the context of CSP. However Lamport's remarks seem to
indicate that the notion of cooperating proof outlines is also essential for proving
correctness of concurrent programs written in an extension of the usual shared
variable framework with mutual synchronization (by means of "multicontrol
points") - __

CSP expresses distributed termination of processes. We illustrate this aspect in
our system by proofs of two examples of distributed computation, one for
partitioning a finite set, the other for computing the gcd of n numbers concur-
rently.

In order to prove absence of deadlock and failure (i.e., abortion), the proof
system has to be strengthened. This is a consequence of CSP's distributed
termination convention. The final system is obtained by adding the proof theo-
retical counterpart of this termination convention.

ACKNOWLEDGMENTS

We express our gratitude to Leslie Lamport for his lucid comments, on which a
substantial part of Section 5 is based. We also thank David Luckham, Susan
Owicki, and Gordon Plotkin for their remarks. Finally, we feel both personally
and scientifically indebted to Edsger Dijkstra and Tony Hoare.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

A Proof System for Communicating Sequential Processes 385

REFERENCES
1. APT, K.R. Recursive assertions and parallel programs. Submitted for publication.
2. APT, K.R., DE ROEVER, W.P., AND FRANCEZ, N. Weakest precondition semantics for communi-

cating processes. To appear.
3. ASHCROFT, E. Proving assertions about parallel programs. J. Comput. Syst. Sci. 10 (1975), 110-

135.
4. CHANDY, K.M., AND MISRA, J. An axiomatic proof technique for networks of communicating

processes. Tech. Rep. T1:~-98, Dep. of Computer Science, Univ. of Texas at Austin, 1979.
5. DIJKSTRA, E.W. A correctness proof for commtmicating processes--A small exercise. EWD-607,

Burroughs, Nuenen, The Netherlands, 1977.
6. FRANCEZ, N. On achieving distributed termination. ACM Trans. Program, Lang.Syst. 2, 1

(January 1980), 42-55.
7. FRANCEZ, N., HOARE, C.A.R., LEHMANN, D.J., AND DE ROEVER, W.P. Semantics of nondeter-

minism, concurrency and communication. J. Comput. Syst. Sci. 19 (1979), 290-308.
8. FRANCEZ, N., AND PNUELI, A. A proof method for cyclic programs. Acta Inf. 9 (1978).
9. FRANCEZ, N., AND RODEH, M. Achieving distributed termination without freezing. Rep. TR 72,

IBM Israel Scientific Center, 1980.
10. HOARE, C.A.R. Towards a theory of parallel programming. In Operating Systems Techniques,

C.A.R. Hoare and R. Perrot, Eds., Academic Press, New York, 1972.
11. HOARE, C.A.R. Communicating sequential processes. Commun, ACM 21, 8 (August 1978), 666-

677.
12. HOWARD, J.H. Proving monitors. Commun. ACM 19, 5 (May 1976), 273-279.
13. LAMPORT, L. Proving the correctness of multiprocess programs. IEEE Trans. Softw. Eng. 3, 2

(1977), 125-143.
14. LEVIN, G.M. A proof technique for communicating sequential processes (with an example).

Tech. Rep., Computer Science Dep., Cornel] Univ., 1979. To be submitted to Acta Inf.
15. MAZURKIEWICZ, A. A complete set of assertions on distributed systems. Inst. of Computer

Science, Polish Academy of Science, 1979.
16. OWICKI, S.S. A consistent and complete deductive system for the verification of parallel

programs. Proc. 8th ACM Syrup. on Theory of Computing, 1976, 73-86.
17. OWICKI, S.S., AND GRIES, D. Verifying properties of parallel programs: An axiomatic approach.

Commun. ACM 19, 5 (May 1976), 279-285.
18. OWICKI, S.S., AND GRIES, D. An axiomatic proof technique for parallel programs. I. Acta Inf. 6,

1976, 319-340.

Received August 1979; revised May 1980; accepted May 1980.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

