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1. INTRODUCTION AND PRELIMINARIES 

1.1 Introduction 

T h i s  p a p e r  p r e sen t s  a p roof  s y s t e m  for CSP,  a l anguage  for C o m m u n i c a t i n g  
S e q u e n t i a l  P rocesses  due  to Hoa re  [11]. T h i s  s y s t e m  deals  wi th  proofs of pa r t i a l  
co r rec tness  a n d  of dead lock  f r e e d o m ; p r o o f s  of s o u n d n e s s  a n d  re la t ive  comple te -  
ness  will be  p u b l i s h e d  s epa ra t e ly  by  the  first  au thor .  

J u s t  as C S P  sheds  new  l ight  on  the  way s y n c h r o n i z a t i o n  a n d  message  pass ing  
can  be e m p l o y e d  in  a p r o g r a m m i n g  language ,  b o t h  by  i ts  c o m m u n i c a t i o n  pr imi-  
t ives  a n d  by  the  ope ra t i ons  u p o n  them,  so ne w  ins igh ts  are n e e d e d  to o b t a i n  a 
p roo f  s y s t e m  for th i s  language .  I n  pa r t i cu l a r  the  fol lowing proper t i es  of C S P  have  
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to be taken care of: 

(1) CSP stresses simultaneity rather than mutual exclusion as a synchronization 
mechanism by using simultaneous communication as the only means of 
synchronization. 

{2) The two communication primitives of CSP, input and output commands, can 
function as a choice mechanism by acting as guards in {possibly nondeter- 
ministic) guarded choices and repetitions. 

{3) CSP focuses on terminating concurrent computations by introducing a dis- 
tributed termination convention for input/output guarded repetitions. 

Correspondingly, to deal with these properties, we introduce 

A (meta) rule to establish joint cooperation between isolated proofs for 
CSP's sequential components. 

In these separate proofs each statement is preceded and followed by a pre- and 
postassertion referring only to variables of the process in which the statement 
appears. These assertions satisfy the axioms and proof rules introduced for the 
purely sequential constructs of CSP. However, when viewed in the isolation of its 
sequential component, the postassertion of an input command cannot be validated 
since the assertions of its corresponding output command occur in another 
sequential component. Such proofs cooperate if, taken together, they validate the 
assertions of the I /O commands mentioned in the isolated proofs. A global 
invariant is needed to determine which pairs of input and output commands 
correspond, i.e., are synchronized during execution. 

A simple mechanism for expressing termination of repetitive commands, 
generalizing the expression of the termination criterion "negation of all the 
Boolean guards" to distributed termination of CSP processes. 

This termination criterion is needed for proof of absence of deadlock and 
failure; it generalizes the notion of blocking [18] to an environment in which some 
processes, which are intended to terminate, fail to communicate. 

The distinction between cooperation and combat functioned as an almost 
philosophical guideline in our efforts. Examples are cooperation via resources 
versus mutual exclusion of critical regions; synchronized communication by 
means of CSP's communication primitives between a specified pair of processes 
versus asynchronous interaction by means of shared variables; even purely local 
variables versus globally shared variables. All these are opposing notions taken 
from the area of concurrent languages which accentuate in proof theory the 
problem of finding the missing concept needed to deal with synchronization by 
message passing: cooperation between proofs. These remarks are elaborated in 
the last section. 

This proof system derives from various related work: 

(1) Owicki's and Lamport 's landmark in the proof theory of concurrent processes 
[13, 17, 18]. We benefited also from relative completeness proofs due to 
Owicki and to Mazurkiewicz [15, 16]. 

{2) A still enduring effort spearheaded by Hoare to establish a firm semantic 
basis for CSP, in which the second and third authors participated, resulting 
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in a denotational semantics [7]. In a later stage this semantics was simplified 
using a generalization of Dijkstra's weakest precondition operator as a de- 
scriptive tool to obtain a characterization of the semantics of terminating 
programs in CSP [2], which brought the semantics closer to a proof system. 

(3) The concept of assumption/commitment pairs (interface predicates) as intro- 
duced by Francez and Pnueli [8] to characterize the assumptions which a 
process has to make about the behavior of its concurrently computing 
environment in order to enable it "to function properly," so as to justify in its 
turn the claims made by that  environment upon its behavior. Thus, assump- 
tion/commitment pairs are assertions which express the cooperation between 
a process and its environment. 

While writing this paper, we learned about related work by Carl Hauser (in 
preparation) and Chandy and Misra [4]. Some time after submission of the paper 
we were informed of independent, very much related work by G. M. Levin [14], 
briefly discussed in the last section. 

This paper is organized as follows. Section 1.2 contains a definition of the 
kernel of CSP with which we deal in this paper. The fragment incorporates guards 
consisting of pairs of a Boolean expression and an input/output command. 
Section 2 contains the proof system and is the heart of the paper. Section 3 
contains two detailed case studies of correctness proofs--one of a distributed 
partition algorithm due to W. Feijen and described in Dijkstra [5] (our proof 
differs from that  of Dijkstra), and the other of an algorithm for the distributed 
computation of the greatest common divisor of n natural numbers taken from 
Francez and Rodeh [9]. Section 4 generalizes the proof system to freedom from 
deadlock and failure and contains some applications. The last section contains an 
assessment and comparison of our method with related Hoare-like proof systems 
for other concurrent languages. 

1.2 Preliminaries: Definition of CSP 

Full details of CSP are contained in [11]. For our purpose the following informal 
description of its syntax and meaning suffices: 

(1) The basic command of CSP is [P1 [[ . . .  [[ P , ]  expressing concurrent execution 
of processes P1, . . . ,  Pn, n >-- 2. 

(2) Every Pi refers to a statement Si, as indicated by Pg :: Si. No Si contains 
variables subject to change in Sj (i ~ j). 

(3) Communication between Pi and Pj (i ~ j) is expressed by the receive and 
send primitives Pj?x and Pi!x, respectively. Input command Pj?x (in Sg) 
expresses a request to Pj to assign a value to the (local) variable x of Pi. 
Output command Pi!y (in $i) expresses a request to Pi to receive a value from 
Pj. Execution of Pj?x in Si and Pi!y in Sj is synchronized ("Pi waits at Pj?x 
until Pj is ready at Pi!y, and vice versa," as the lingo goes) and results in 
assigning the value of y to x. 

(4) Guarded commands: The case of two guarded possibilities is used to illus- 
trate the command structure. Let guards B~ denote Boolean expressions i = 
1, 2. "D" denotes the guarded command separator; " ;"  denotes sequential 
composition; and "skip" is a statement with no effect. 
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Guarded  selection: [B1 --* $1 [3 B2 --* $2] fails for B1 V Be -- fa lse ,  and 
leads to (possibly nondeterminist ic)  selection of S / fo r  execution if Bi -= t r u e .  

Guarded  iteration: * [B~ --* $117 Be --~ $2] terminates for B1 V Be = fa l se ,  
and otherwise executes [B1 --* $1 [3 Be --* $2]; *[B~ --* $1 [q Be --> Se]. 

CSP's  main feature is that the I /O  commands Pj?x and Pi!y can also be 
used as guards. As an expression Py?x (respectively, Pi!y) evaluates to f a l s e  
in case Pj (respectively, Pi) has terminated.  For  example, 

[P~ :: [Pe?x ~ skip [3 P2!x "--> skip] I[ Pz :: skip] 

leads to failure of Pi, while 

[P1 :: * [Pe?x ~ skip [3 Pe!x ----> skip] II P2 :: skip] 

proper ly  terminates.  
Also, as an expression, Pj?x (respectively, Pi!y) evaluates to t r u e  if syn- 

chronization occurs with a matching ou tpu t  (respectively, input) command  
or guard. For  example, 

[P1 :: [Pe?x--* skip [3 Pe!x-* skip] liPs :: [P~?y--* skip [3 P~!y--, skip]] 

has the  same effect as executing x := y or y := x nondeterministicaUy, and 

[P~ :: * [Pe?x --* skip] [I Pe :: PI!0] 

has the  same effect as executing x := 0 just  once. 
In Hoare ' s  concept ion of CSP only finite processes are considered; thus  

[P1 :: * [Pe?x --* skip] I[ P2 :: * [PI!0 --* skip]], 

so-called infinite chattering, is considered a semantic error. 

Using the CSP guards, the guarded commands  generalize as follows: 

(1) A guard may  be a Boolean expression, an I /O  command,  or a combinat ion of 
bo th  (separated by " ;") .  A Boolean guard is passable if it is true; an I /O  
command  is passable when a corresponding I /O  command  in the process 
addressed is ready; and a combinat ion is passable if each of its components  
is passable. 

(2) A guarded selection fails in the case in which all guards are false. 
(3) A guard is false in one of the following cases: 

(i) I t  is a Boolean expression evaluating to fa l se .  
(ii) I t  is an I /O  command  for which the process addressed has terminated.  

(iii) I t  is a combinat ion of a Boolean expression and an I /O  command,  and 
ei ther  the Boolean expression is false or the process addressed in the 
I /O  command  has terminated.  

(4} " * "  denotes  a repet i t ive construct.  Repet i t ion continues as long as there  
exists a passable guard and terminates  when all guards are false. 

Guarded  commands  (i.e., selection or repetition} introduce the possibility tha t  
more  than  one matching pair  of I /O  commands  occurs; for instance, in the 
example below the  first communicat ion of P1 can be ei ther  with Pe or with Ps, 
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but not simultaneously with both: P :: [P1 [] P2  [] P3], where 

P1 :: [P2?x--> $1 [3 bl; P3!y-* $2]; *[b2 ;  P2!u-* $3f3 b3; P3?u-* $4] 
P2 :: * [PI?s ---) So [q Pl!t --* $6 D Pa?s ---) $7] 
P3 :: PI?Z; *[b,--* SsD b2--* $9]. 

Finally, to avoid some cumbersome notational problems in Section 4, we 
consider in this paper only guarded commands of which all the guards either 
contain an I/O command or are all Boolean. 

2. THE PROOF SYSTEM 

We intend to reason about CSP programs in a manner analogous to the work of 
Owicki and Gries [18]. First we present proofs for processes in separation, and 
then we deduce properties of complete programs by comparing the proofs for the 
component processes. Therefore we have to provide axioms and proof rules for 
all possible constructs of a process. One of the essential properties of CSP 
programs is that  the meaning of processes viewed in isolation is inherently 
incomplete when compared with their meaning in the context of a complete 
program. This phenomenon is also present in a less obvious way in the case of 
the languages considered in [17] and [18], where the constructs awa i t  b t hen  S 
and wi th  r w h e n  b do S are meaningful, essentially, only in the context of 
parallel composition. Therefore the axioms and proof rules dealing with the 
constructs pertinent to CSP do not capture a complete meaning of these con- 
structs viewed separately. 

The main novel contribution of this work is, in our opinion, the proposal for 
tying separate proofs together into a meaningful whole. This proposal, the test 
for cooperation between proofs, will be discussed shortly. 

We adopt the following axioms and proof rules (ai stand for I/O commands): 

A1. Input 

{p} Pi?x{q}. 

This axiom may look strange since it allows one to deduce any postassertion q 
of the input command whatsoever. However, any q thus introduced will later 
(when proofs are tested for cooperation) be checked against some postassertion 
regarding corresponding output statements. An arbitrary q will in general fail to 
pass the cooperation test. 

A2. Output 

{p}Pi!y{p}. 

This axiom conveys the information that an output statement has no side 
effect. 

R1. I /O  Guarded Selection 

{p A bi}ai{ri}, {ri}Si{q}, i = 1 . . . .  , m 

{p}[[3(i = 1 . . . . .  m) b~; a~ --) S~] {q} " 

The meaning of this rule is that  the postassertion of an I/O guarded selection 
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must be established along each possibly selected path. We discuss later the 
problem of paths never selected. 

R2. I / 0  Guarded Repetition 

(p  A bi)ai{ri}, {ri}Si[p}, i = 1, . . . ,  m 

{p} *[D(i = 1 . . . . .  m) bi; ai ~ Si](p} 

Note  tha t  this rule does not  take into account  the full exit conditions of the 
loop. We shall re turn  to this problem at  the end of the section. 

Subsequent ly  we use the following well-known axioms and proof  rules: 

A3. Assignment  

A4. Skip 

R3. Alternative Command 

R4. 

{p[t/x] )x := t{p}.  

{p)sk ip{p) .  

{p A bi}Si{ q}, i = 1 . . . .  , m 
{p) [D( i  = 1 . . . . .  m) b i -*  Si ] (q}"  

Repetitive Command 

(p  A b~}Si{p}, i = 1 . . . . .  m 

{p} *[D(i = 1 , . . . ,  m) b~--~ S~]{p A n(b~ V " ' "  V bin)}" 

R5. Composition 

R6. Consequence 

R7. Conjunction 

{p}S~{q}, {q}S2{r) 
{p}S1; $2 {r} 

p--* p~, {p~)S{ql},  ql--* q 
{p}S(q}  

{p}S{ q}, (p}S{r}  
{p}S{  q A r} 

Using these axioms and proof  rules, we can establish proofs for formulas of the 
form {p}Pi{q},  where Pi is a process. Each  such proof  can be represented,  as in 
[18], by a proof  outline in which each subs ta tement  S of Pi is preceded and 
followed by a corresponding assertion, pre(S) and post(S),  respectively. Th e  
subsequent  discussion always refers to proofs presented in such a form. 

We now present  a first formulat ion of a proof  rule (or ra the r  a meta  rule) which 
can be used to deduce a proper ty  of [P1 [ ] . . .  ][ Pn] using the proofs concerning 
programs Pi, i = 1 , . . . ,  n. This  rule has the following form: 

proofs of {pi}Pi(qi},  i = 1 . . . .  , n, cooperate  

{ p l  A . . .  Apn)[Pl] ]  . . .  ]]Pn]{ql A . . .  A qn}" 
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Intuitively, proofs cooperate if they help each other to validate the post- 
assertions of the I/O statements mentioned in those proofs. More formally, 
this property is expressed as follows: The proofs of {pi}Pi(qi} ,  i = 1 . . . . .  n, co- 
operate if 

(i) the assertions used in the proof of (pi}Pi( qi} contain no variables subject to 
change in Pj for i # j ;  

(ii) (prel A pre2}Pj?x I] Pi!y {post1 A posts} holds whenever {pre~}Pj?x{posh} 
and {pre2}Pi!y(post2} are taken from the proofs of (p i )P i (q i }  and 
{ P1 )PJ ( qJ }, respectively .1 

We shall need the following axioms to establish cooperation: 

A5. Communication 

(true}Pi?x [[ Pj!y(x = y} 

provided Pi?x and Pi!Y are taken from Pj and Pi, respectively. 

A6. Preservation 

{ p } S { p }  

provided no free variable o f p  is subject to change in S. 
Note that A2 and A4 are subsumed by A6. We also need the following proof 

rule, needed to eliminate auxiliary variables from the preassertions. 

R8. Substitution 

{ p } S ( q }  

(p[ t /z]  }S{ q} 

provided z does not appear free in S and q. 

Example  1. Using the system above we can prove 

{true} [P111 P2 ]1P~]{x = u}, 

where P1 :: P2lx, P2 :: PI?y; P3!y, and P3 :: P2?u. 
Here are the proof outlines: 

{x = z}P2!x{x = z}, 
{ t rue}P~?y(y  = z}; Pa!y{y = z}, 
{true}P2?u(u = z}. 

The proofs clearly cooperate; for example, 

{x = z}P2!x ]1 Pl?y{x = z A y -- z} 

can be derived as follows. By the communication axiom (true} P~!x II Pl?y(x  = y}, 
so by the consequence rule, (x = z}P2!x ]1 Pl?y{x = y}. On the other hand, by the 
preservation axiom, {x = z}P2!xHPl?y{x=z};  so by the conjunction rule, 
{x = z}P2!x II Pl?y(x  - y /~  x = z}. Finally, {x = z}P2!x ]1 Pl?y{x = z /~  y = z} by 
the consequence rule. Thus we get {x = z}[P1 II P2 II P3]{x = z A y = z A u = z}. 

Such  pairs  of  I /O  ins t ruc t ions  will be said to be syntactically matching. 
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Now by applying the consequence rule, we get {x = z}[P1 H P2 II P3]{x = u), from 
which the claim follows by applying the substitution rule, and substituting x for 
z in the precondition. [] 

This approach fails when dealing with programs in which some output com- 
mands do not match with any input command. 

Example  2. Let 

P1 ::/)2!0, 
P2 :: [Pl?x -* skip D P3!y -*  skip D P3?y -* skip], 
Pa :: skip. 

Clearly, (true)[P1 II P2 II P3](x = 0) holds. However, this cannot be proved 
in the above system, for any such proof would require establishing both 
{true}P3!y(x = 0} and ( t rue )P3?y(x  = 0). The latter formula is an instance of 
the input axiom but the former one cannot be derived in the system. [] 

We remedy this difficulty by introducing the following, rather astonishing, new 
output axiom. 

A2'. Output  

{p}Pi!y{q}.  

At this moment the reader might wonder, "Does not the combination of axioms 
A1 and A2', i.e., of {p}Pi?x (q}  and (P}Pi!Y{q),  together allow us to deduce 
(p}Pi?x  ]1PJ!Y{q} for arbitrary p and q?" That  this is not the case follows from 
the cooperation test. Using A5, the axiom of communication, and A6, the axiom 
of preservation, only formulas of the form (r}Pi?x II Pi!Y( x = Y /k r} can be 
derived, where x is not free in r, and any use of the substitution or consequence 
rule can only weaken the conclusion. We hope that  these remarks indicate to 
what extent the choice o fp  and q above is restricted by requiring cooperation. 

Next we solve the following problem. The cooperation test between proofs 
requires comparison of all  I/O pairs which syntactically match, even though 
some syntactically possible communications will never take place. A simple 
example follows where we run into difficulties because of this very reason. 

Example  3. Let 

PI :: [P2?x --* skip [3 P2!0 --* P2?x; x:= x + 1], 
/)2 :: [P1!2 --> skip [3 Pl?Z --) PI!I]. 

Clearly, {true}[P1 H P2]{x = 2} holds. To prove this, we are forced to use x = 2 
as the postassertion of the first occurrence of P2?x in P~. This assertion, however, 
will not pass the test for cooperation since it cannot be validated when P2?x is 
compared with PI!I (the point being that  this pair also syntactically matches, 
although it will not be synchronized during execution). [] 

In general, syntactic matching of a pair of I/O instructions does not imply that  
this communication will ever take place, i.e., it does not imply their semantic  
match. In order to take care that  semantically unmatched pairs of I/O instructions 
do not fail the cooperation test as above, we introduce a global invariant I which 
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will determine semantic matches, and which may  carry other global information 
needed for the proof. However, in order to express semantic matching in general, 
one needs variables which are not  necessarily the ones referred to in the I /O 
instructions themselves {and, as is well known, need not  be program variables 
either; in general auxiliary variables are needed). 

For example, consider the following program sections: 

• . .  P2?x; i : =  i + 1 . . .  [[ . . .  PI !y ; j := j  + 1 . . .  

where i a n d j  count the number  of communications actually occurring in each 
process, and let the criterion for semantic matching be i = j.  However, i = j is not  
a global invariant since the two assignments to i and j will not  necessarily be 
executed simultaneously, in contrast  to the corresponding I /O commands which 
are executed simultaneously. 

To resolve these difficulties, we must  reduce the number  of places where the 
global invariant should hold. This is done by introducing brackets, the purpose of 
which is to delimit program sections within which the invariant need not  neces- 
sarily hold. 

This phenomenon is similar to the one of Hoare [10] concerning resource 
invariants, where the global invariant does not need to hold within the critical 
sections. An analogous problem arises when dealing with monitor invariants [12]. 

Regarding the program sections just  considered, the bracketing is 

• -. <Pz?x; i :--  i +  1) . . .  II " "  <PI!y;J:=J+ 1) . . . ,  

so tha t  i = j holds outside the brackets. 

Definition. A process Pi is bracketed if the brackets " ( "  and " ) "  are inter- 
spersed in its text, so tha t  for each program section (S)  (to be called a bracketed 
section), S is of one of the following forms: 

81; a; 82 or a --> $1, 

and $1 and $2 do not  contain any I /O statements.  [] 

With each proof of {p)[P1 [[ . . .  [[ Pn](q} we now associate a global invariant 
I and appropriate brackets. Therefore, the proof rule concerning parallel com- 
position becomes the following: 

R9. Parallel Composition 

proofs of {pi}Pi{qi}, i = 1 . . . .  , n, cooperate 

( p l / k  . . .  /kpn/k  I}[P1 [[ " '"  [[ P , ] { q l / k  . . .  /k q , / k  I )  

provided no variable free in I is subject to change outside a bracketed section. 

We have now to define precisely when proofs cooperate. Assume a given 
bracketing of [P1 [[ . . .  [[ P , ]  (to which we referred in the clause concerning the 
free variables of I).  

Definition. Let  ($1) and ($2) denote two bracketed sections from Pi and Pj 
(i # j) .  We say tha t  ($1) and ($2) match if S~ and $2 contain matching I /O 
commands.  [] 
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Definition. The  proofs of the { pi } Pi{ qi } , i = 1, . . . ,  n, cooperate if 

(i) the assertions used in the proof  of {pi}Pi{qi} have no free variables subject  
to change in P1 (i # j ) ;  

(ii) {pre(Si) A pre(S2) A I} $1 II &{pos t (&)  A pos t (&)  A I} holds for all matching 
pairs of bracketed  sections ( & )  and ($2). [] 

The  following additional proof  rules are used to establish cooperation: 

R10. Formation 
{p}S1; Sa(p~}, (p l}a  II 5(p2}, {p2}82; S4{q} 

{p}(S1; a; &)H (Sa; 5; & ) ( q }  

provided a and 5 match  and & ,  $2, $3, and $4 do not  contain any I /O  commands.  

R l l .  Arrow 
{p)(a ;  S)II &{q)  

{p)(a --+ S)]] Si( q)" 

R10 and R l l  reduce the proof  of cooperat ion to sequential  reasoning, except  
for an appeal  to the communicat ion axiom. In this sequential  reasoning, assertions 
appearing within brackets  can be used. 

Finally, we use auxiliary variables whenever  needed. These  are variables which 
do not  affect program control  during execution and are added only for expressing 
assertions and invariants which cannot  be expressed in terms of the program 
variables alone. We use rule R12, a slightly s t rengthened version of a rule f rom 
[18], for deleting assignments to auxiliary variables. 

R12. Auxiliary Variables. Let  AV be a set of variables such tha t  x E AV 
x appears  in S' only in assignments y :ffi t, where y E AV. T h e n  if q does not  
contain free any variables f rom AV, and S is obtained from S' by deleting all 
assignments to variables in AV, 

(p}S ' (q}  

{p}S{q}" 

Example 4. We now show how to verify the program from Example  3. Two 
auxiliary variables i and j are needed. We give proof  outlines for the already 
bracketed  program S'. 

(i = 0 A j  = 0} 
[{ /= 0} 
[(P2?x{x = 2} --* i := 1)(x = 2 A i = 1}; skip{x = 2} 
[] 

(P2!0{true} --* i := 1)(i = 1}; 
(P2?x {x = 1}; i :=  2)(x = 1 A i =  2};x :=  x + 1 (x = 2} 

]{x = 2} 
II 
[{j -- 0} 

(P~!2{true} --+j :ffi 1){j = 1} skip(true} 
B 

(Pl?z{z = 0} --)j  := 1}{z = 0 A j  -- 1}; 
(Pi! l{true}; j  := 2){j  ffi 2} 

](true} 
] 

{x = 2} 
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We choose I -= (i = j) .  Cooperation is easily established. Note tha t  (i = 0 /k  (z = 
0 A j = 1)/k I)  -- fa lse ,  so the bracketed sections containing P2?x and P~!I pass 
the cooperation test  trivially. (One has for any S, {false}S{false} by the pres- 
ervation axiom, so {false}S{p} for any p by the consequence rule.) Hence, by 
the parallel composition rule, consequence rule, and auxiliary variables rule, 

{i  = 0 A j  = 0 / k  i = j } [ P ~  II P2]{x = 2} 

holds. Applying the substi tution rule we finally get 

{true}[P1 II P2](x = 2}. [] 

At this stage we return to the problem signaled earlier--namely,  tha t  of rule 
R2. Rule R2 alone does not  provide any means to deduce tha t  upon exit of the 
loop *[rs(i = 1 . . . . .  rn) bi; ai ---* Si], some of the bi's may be false. Now tha t  we 
introduce global invariants, we can settle this problem by expressing exit condi- 
tions in the global invar ian t / .  As an illustration, let us prove 

{b}[P1 II Pe]{b} 

with 

P1 :: *[b; Pe?x --> b := fa lse]  and P2 :: skip. 

We simply choose I to be b and take all other assertions true. The cooperation 
of proofs is voidly satisfied. 

A slightly less trivial proof establishes {true}[P1 II P2]{7b} with P1 as above 
and Pe :: PI!y. In this case we have to express the fact tha t  after the communication 
takes place, b turns false. To this purpose we introduce an auxiliary variable i. 

We present the proof outlines for the bracketed programs 

{true} *[b; (Pz?x-*  b := false)] {true} 
{i = 0}(Pl!y; i : =  1){i = 1}. 

We choose for I the formula (i = 1 --* 7b). Cooperation is easily established using 
the formation rule. By the parallel composition rule, consequence rule, and the 
auxiliary variables rule, 

(i = 0/~ (i = 1 ---> 7b)}[P1H P2](7b}, 

so finally, by the substi tution rule, {true}[P1 II P2]{Tb}. 
These two examples have been given to indicate why rule R2 is sufficient for 

proofs of partial correctness. In Section 4 we discuss the problem of whether  this 
rule is sufficient for proofs of deadlock freedom. 

3. CASE STUDIES 

3.1 Partitioning a Set 

Given two disjoint sets of integers S and T, S U T has to be parti t ioned into two 
subsets S '  and T '  such tha t  I S I -- I S '  I, I T I =- I T'  I, and every element of S '  is 
smaller than  any  element of T'.  The program P and its correctness proof are 
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inspired by Dijkstra [5]; however the proof presented here differs from Dijkstra's. 
P :: [P1 [[ P2], as given below, and S ~ O. 

P1 :: rnx := max(S); 
P2!rnx; S := S - (rnx}; 
P2?x; S := S U {x}; 
m x  := max(S); 
*[rnx > x- -*  P2!rnx; S := S - (rnx}; 

P2?x; S := S U (x}; 
m x  := max(S) 

] 

P2 :: PI?y; T := T U {y}; 
rnn := min(T); 
Pl!rnn; T := T -  (rnn}; 
*[PI?y-* T : =  T U  {y); 

rnn := min(T); 
P~!mn; T := T -  {rnn} 

] 

Intuitively, these programs execute the following loop: Let S and T denote set 
variables; then processes P1 and P2 exchange the current maximum of S, max(S), 
with the current minimum of T, min(T), until max(S) in P~ equals the value last 
received from P2. 

The proof of correctness of P requires the introduction of two auxiliary 
variables/1 in P1 and/2 in P2, to enable expression of the global invariant GI; li 
counts the number of communications performed by Pi. 

The purposes of GI are 

(1) to determine which syntactically matching bracketed sections are executed 
(by requiring l~ =/2  ); 

{2) to guarantee the partitioning property; 
(3) to tie the local reasoning required for processes P1 and P2 in isolation together 

so as to permit the derivation of max(S) < min(T) upon (joint) loop exit; to 
express the global conditions on S and T needed for the local reasoning about 
P1 and P2 (in testing for cooperation). 

In the annotated versions of P1 and P2, P~ and P~, the following is added to 
their "bare" text: 

(1) Assignments to the auxiliary variables ll and/2. 
(2) The pre- and postconditions required for a proof, taking into account deletions 

of conditions which were mentioned earlier in the annotated text and re- 
mained invariant or were not relevant at earlier points. 

(3) Bracketed sections of instructions which from the point of view of the proof 
are considered as units for the proof of cooperation. Note that the global 
invariant GI requires S N T = O, and that S := S - { m n }  a n d  T := T tA ( y} 
are not synchronized. Thus GI may be violated within these units, but  n o t  

outside these units. 
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A n n o t a t e d  tex t  o f  PI : 

{I S I = nl > 0 A S = So A max(S) E S A l l  = O}rnx := max(S); 
{ m x ~ S A  ISI  = n l A l 1 = O }  
(P2!rnx; 11 := ll + 1; (rex E S } S  := S - {rex)); 
{ISI = n l - l A l l = l }  
(Pe?x; 11 := 11 + 1; {x 9£ S } S  := S U {x} ); 
(I S I = nl A x E S A 11 = 2}rnx := max(S); 

LII: { I S [ = nl A m x =  max(S) A x -< max(S) A even(ll) A 11 -> 2} 
*[rex > x --* {rnx ~ S A LI1} (P2!rnx; ll := 11 + 1; (rnx E S } S  := S - (rex});  

{I s I = n, - 1 A odd(ll) A l, > 2} 
(P2?x; ll := 11 + l { x  f_ S};  S := S O {x}); 
{ I S I = nl A x ~ S A even(ll) }rnx := max(S) 

LII: {1S I = nl A x E S A m x =  max(S) A even(/l) A ll > 2} 
] 
{max(S) = x A IS[ = nl A even(/l)} 

A n n o t a t e d  tex t  o f  P2: 

[I TI  = n2>-O A T = T o A 1 2 = O }  
(PI?y; 12 := 12 + 1; {y 9~ T } T : =  T O  {y}); 
{I T [  = n2 + 1 A 12 = 1}rnn := min(T); 
{ I T [  = n 2 +  l A m n = m i n ( T )  A / 2 =  l} 
(Pl!mn; 12 := 12 + 1; {ran ~ T } T  := T -  {.ran}); 

Lie: {1 T I -- n2 A m n <  rain(T) A even(/e) A/2 > 2} 
*[(PI?y-->/2 :=/2 + 1; T : =  T O  {y}); 

{I T[ = n2 + 1 A odd(12)}mn := min(T); 
{I TI = ne + 1 A m n  = rain(T) A odd(/e) A/2 > 2} 
(P1!mn; 12 := le + 1; T := T - {ran} ) 

Lie: {[ T[ = n2 A rnn < rain(T) A even(12) A/2 > 2} 
] 

{I TI = n2 A m n <  rain(T)} 

The  g lobal  invar ian t  GI: 

GI ~ S r3 T =  O A S U T =  So U ToA ll = /2  A (even(ll) A li-> 2 ~  x < min(T)). 

Fo r  the  sake  o f  the  p r o o f  we a s sume  t h a t  min(O) -- +oo. 
W e  res t r ic t  ourse lves  to p rov ing  coope ra t ion  be tween  proofs  for  the  first 

b r a c k e t e d  sec t ion  o f  P1 a nd  P2, a nd  for  the  second  b racke t ed  sec t ion  o f  P1 and  
P2; the  c u s t o m a r y  kind of  sequent ia l  r eason ing  is omi t ted .  P roofs  for  the  coop-  
e ra t ion  be tween  the  th i rd  b r a c k e t e d  sect ion and  the  fou r th  are  ac tua l ly  ident ical  
and  are  omi t ted .  P roofs  for  syn tac t i ca l ly  m a t c h i n g  bu t  semant i ca l ly  n o n m a t c h i n g  
sec t ions  are  trivial; for  ins tance,  t he  first sec t ion  of  P1 and  the  th i rd  o f  P3 are  
t r ivial ly coope ra t ing  since -1GI holds  (in this  case -1(11 = 0 / k / 2  -> 2 A l l  = 12)). 
N o t e  a l s o  how the  inpu t  a nd  o u t p u t  ax ioms are  used  to  inser t  the  occur rences  o f  
{ rex  E S } ,  { x  f~ S } ,  { y f~ T } ,  a n d  {ran E T }  in  the  a n n o t a t e d  p rogram;  the  choice  
of  these  asser t ions  will be just i f ied in the  coope ra t ion  proofs.  

P r o o f  o f  c o o p e r a t i o n  b e t w e e n  f i r s t  b r a c k e t e d  s e c t i o n s .  We have  prel  - 
m x  E S A [ S I = n l  A 1 1 =  O, a n d  pre2 = IT [  = n 2 A T = T o A / 2 = 0 .  Also, post l  
=- I S [  = n l  - l A /l = l a n d  post2  -- I T I = n2 + l A 1 2  = l .  

W e  m u s t  p rove  

{prel A pre2 A GI} 
P2!rnx; ll := ll + 1; S := S - {rnx}  I1PI?y; 12 := 12 + 1; T :=  T U {y} 
{post1 A post2 A GI}.  
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By the communication and preservation axioms, 

(prel A pre2 A GI}Pgmx II Pl?y(mx = y A prel A pre2 A GI}. 

Precondit ion of section l~ := l~ + 1; S := S - {rex};/2 :=/2 + 1; T := T U {y} w.r.t. 
postcondition post~ A post2/k GI is 

l l = 1 2 = O A  y C _ T A  ITI = n 2 A m x E S A  ISI 
= n ~ A S f q T = O A S U T = S o U T o ,  

which is implied by {mx = y A prel A pre2 A GI}. Therefore the formation rule 
yields the result, since 

{pre~ A pre2 A GI} P2!mx II P~?y{mx = y A prel A pre2 A GI} 

and 

{rex = y A prel A pre2 A GI}ll := 11 + 1; S := S - {rex}; 
12 := 12 + 1; T :-- T U { y} (post1 A post2 A GI} 

hold. 

Proof of cooperation between second bracketed sections. We have pre{ - I S I 
= n l -  1 A l ~ = l a n d p r e ~ - =  ITI = n 2 + l A m n = m i n ( T )  A l ~ = l .  Alsopost{ 
-= I SI = n l A x E S A l l = 2 a n d p o s t ~ = -  ITI = n 2 A m n < m i n ( T )  Aeven ( /2 )A  
/ 2 _ 2 .  

We must  prove 

{prel A pre~ A GI} 
P2?x; ll :-- l~ + 1; S := S U {x} II P~!mn; 12 := 12 + 1; T := T - (ran} 
{postl A post~ A GI}. 

By the communicat ion axiom and preservation axiom, 

{prei A pre~ A GI} P2?x II P~!mn{mn = x A prei A pre4 A GI}, 

since odd(/~ ). Now observe tha t  

{ran = x A prel A pre4 A GI} 
I ~ : = l l + I ; S : = S U  (x}; /2 := /2 + I; T := T - (ran} 
{postl A post~/k GI} 

holds. Note tha t  x < min(T) in the postassertion follows from the fact tha t  

m n =  x A mn = min(T) --) x < min(T  - {ran});. 

Therefore the formation rule yields the result. 
Applying the rule of parallel programs we get 

{ I S I = n l > O A S = S o A  IT  I = n 2 _ 0 A T  
= ToAl~ = 0 5 / 2  = 0 A GI} 

[Pi II 
{LI1 A LI2 A GI} 
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where P{ and P~ are the modified versions of P1 and P2. From this we obtain 

(ISI = n l  >O A S = S o A  ITI = n 2 > _ O  A T 
= T o A S N T = O A l l = O A I 2 = O }  
[P i  II P~] 

{]SI =.nI A I TI = n 2 A  S N T = ~  A S U  T 
= So (J To A max(S) < min(T)}.  

Now by dropping the assignments to 11 and/2  and subsequently substi tuting 0 
for 11 and/2  in the precondition, we get the desired formula. 

3.2. Distributed Computation of the Greatest Common Divisor of n Numbers 

As another  example, we consider a program P which computes  gcd(ol . . . .  , an}, 
ai > 0, i = 1 , . . . ,  n, a var iant  of a program first presented in [9]. This  program 
has the proper ty  tha t  when all processes reach a final state and have computed 
the gcd, the program is blocked in a deadlock state, since no process "knows" 
tha t  all o ther  processes are in final states. Th e  interest  in such programs arises 
because of two facts: 

(1) It  ma y  be easier to write such a program than  the corresponding program 
tha t  will te rminate  when all processes reach final states. 

(2) The r e  exists an automat ic  t ransformat ion transforming every such blocked 
program into an equivalent  terminat ing program. See [6, 9] for details of this 
t ransformation.  

Using such an example, we are also able to show tha t  our  deductive system can 
deal with more  general invariance {or safety, in the terminology of [13]) than  just  
partial  correctness. 

The  program P consists of n parallel processes arranged in a ring configuration, 
where each process Pi communicates  with its own immediate  neighbors Pi-1, Pi+l 
(+ and - are in terpre ted cyclically in {1 . . . . .  n} ). Each  process has a local 
variable xi which initially has the value oi. Each process sends its own xi to each 
immedia te  neighbor, and uses flags rsl {ready to send left) and rsr (ready to send 
right) to avoid sending xi again before it is modified. Other  al ternatives of Pi are 
to receive a copy of xi-1 in y or a copy of xi+l in z. When such a number  is received 
from a neighbor process, the number  is compared to xi. If x~ is larger, it is then  
upda ted  according to Euclid's rule, and the rsl and rsr flags are set on. Otherwise 
nothing happens.  Two auxiliary variables, rcvl (received from left) and rcvr 
{received f rom right),  are included for the sake of the proof. 

Since the program deadlocks upon reaching the final state, no postcondit ion is 
claimed for the whole program. Rather ,  we show how to express in the formalism 
the claim about  the state at  the instant  of blocking. 

In the following annota ted  text  for P~, LIi is the loop invariant  of Pi which 
serves also as the precondit ion and postcondit ion for the body of the main loop: 
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A n n o t a t e d  text  o f  Pi: 

{xi = oi > 0 A rsl~ A rsri} 
*[{LIi} 

(rsli; Pi-l!xi--* rsli := false; rcvli := fa l se  {LIi} 
B 

(rsri; Pi+l!xi--* rsri = false; rcvri := fa l se)  {LL} 
B 
< Pi-l?yi--.  rcvli := t rue;  

[y~ >- xi --* skip 
[3 
yi < xi--* [yi I xi --, xi := yi 

yi # x~ --~ x~ := xi rood y~ 
]; {LIi} rsri := t rue;  rsli := t r u e  

] ) {LL} 
B 
(Pi+19zi  "--> r c v r i  :-- t rue ;  

[zi >- xi .--* skip 
B 
Zi < Xi ~ [Zi I Xi ""-> Xi : =  Zi 

[3 
zi ,r xi ~ xi :ffi xl rood zi 
]; {LIi} rsri := t rue ;  rsl := t r u e  

] ) {LI,} 

The g loba l  invar ian t  GI: 

GI -= A [ T r s l i  ~ (z i -1  ---- xi  A r c v r i - 1 )  
i~1 

A 7rsrl ~ ( y i + l  ---- x i  A rcvli+l) 
A gcd(xl . . . . .  x,) = gcd(al . . . . .  On)]. 

G I  e s t ab l i shes  t he  co r r ec t  s end ing  a n d  rece iv ing  r e l a t ionsh ip  b e t w e e n  a n y  t r ip le  
Pi-1, Pi, Pi+~, and  also e s t ab l i shes  t h a t  all  changes  in t he  xi 's  p r e s e r v e  
gcd((I, . . . . .  (I,). 

T h e  loop  i n v a r i a n t  LIi  is e x p r e s s e d  in t e r m s  of  local  va r i ab l e s  (of Pi)  only,  and  
desc r ibes  t he  s equen t i a l  b e h a v i o r  of  t he  loop body:  

LIi  = (nrsl~ A r c v l i  ~ y i  - xi) 

A (Trsri A rcvri  --> zi >-- xi) .  

T h e  i n s t a n t  w h e r e  a p roces s  is a b o u t  to execu te  the  loop  b o d y  and  f ind i t se l f  
b locked  is c h a r a c t e r i z e d  b y  

BLi  - (LIi A 7rsli  A qrsri) .  

T h e r e f o r e ,  we  h a v e  to  p r o v e  the  fol lowing p rope r ty :  

(*) (GI  A A BLi) --* (/~ xi ffi gcd(al ,  . . . ,  (In)). 
i= l  i= l  

(*) impl ies  t h a t  t he  conc lus ion  indeed  ho lds  a t  t he  i n s t an t  of  t o t a l  b lock ing  if i t  
OCCURS. 
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P r o o f  o f ( * ) .  Suppose that GI A Ai%1 BLi holds. From GI AAT~ (nrsli A 7rsri) 
we infer that 

(1) A (xi -- zi-1 = yi+l) /k rcvri A rcvli. 
i~l 

From AT=a (LI~ A 7rsli A 7rsr~ A rcvli/k rcvri) we infer that 

(2) A (yi--- x iA zi >- xi).  
i=1 

Using (1) and (2), we get 

Xi ~- Zi m Xi+l and Xi+] ~-- yi+l = Xi 

which together imply that 

(3) xi = Xi+l, and therefore 
(4) xi = x2 . . . . .  x,. 

Finally, (4) and gcd(xi . . . . .  Xn) ---- gcd(al . . . . .  an) imply the required conclusionl 
n 

Ai~ l  x i  = gcd(ai . . . . .  a.). 
We are left with the problem of verifying that GI is indeed a global invariant 

and LL is a local loop invariant. The second task involves ordinary sequential 
reasoning using the input and output axioms, and is left to the reader. 

On the other hand, a proof of the global invariance of GI uses the concept of 
cooperation. 

(a) Initially, A~%~ (Trsli A -lrsri) is false, and the first two clauses of GI are trivially 
true. Also, Ai%1 xi = ai trivially implies the third clause. 

(b) One pair of matching bracketed sections is the one consisting of the first 
alternative of some P i  and the fourth alternative of Pi-1. Hence, we have to 
show 

(rsli A LIi A LIi-1 A GI} 
Pi-l!Xi'~ rsli :ffi false; rcvli :---- fa lse  

II A 
Pi ! z i - i ;  ~cvri-1 :=  t r u e ;  [ . . . !  

{LIi/k LIi-1/k GI}. 

The variables changed are rsli, rsli-;, rsri-a, rcvli, rcvli_~, zi-~, and xi-1. 
By the rule of formation it remains to be proved that 

{Xi = Z i - 1 / k  rsl i  A L I i / k  (nrsl/-1 A rcv l / -1  ~ y i -1  >-- x i -1)  A GI}, 
A; B, 
{LIi A LIi -1  A GI} 

holds, where the above precondition is the postcondition of 

P i - l ! X i  II Pi?z i -1  

inferred by the axioms of communication and preservation. 

First, xi = zi-1 implies, by the known mathematical facts about the gcd function, 
that gcd(xl . . . . .  Xn) ---= gcd(o l , . . . ,  On) remains true after executing A; B. All other 
changes need only routine checks. 

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980. 



376 K.R. Apt, N. Francez, and W. P. de Roever 

(c) The other matching bracketed sections are the second alternative of Pi and 
the third alternative of Pi+l and are verified similarly. 

4. DEADLOCK FREEDOM 

Much as in [17, 18], we wish to use our proof system to show that  a given program 
is deadlock free. For this purpose, however, our system as presented so far is 
incomplete, in contrast to [17, 18], and has to be strengthened. The resulting 
system can also be used to prove the absence of failure due to attempts at 
communication with processes that already terminated. (These questions do not 
arise in the work of Owicki and Gries because the distributed termination 
convention cannot be described in the programming languages which they con- 
sider.) 

We adapt the concept of blocking, as introduced in [18]. This concept is used 
to characterize those states in which execution cannot be continued. Our version 
takes the distributed termination convention of CSP additionally into account, in 
that  communication at the guards of an I/O guarded repetition will not be 
blocked in case all the processes referred to in the guards with a true Boolean 
component have terminated. All other communications which address processes 
that  have terminated will be blocked. Intuitively, a program is blocked (in a given 
state) if the set of processes which did not terminate as yet is not empty; all 
processes are waiting for communication; there exists among them no pair of 
processes which wait for each other, one for input and the other for output; and 
there exists no process in that  set which would exit a loop by the distributed 
termination convention. Thus in a blocked state no process can proceed. 

Given a program P and an initial assertion p, we say that  P is deadlock free 
(relative to p) if no execution of P, starting in an initial state satisfying p, can 
reach a state in which P becomes blocked. 

We proceed with the formal definitions required in order to formulate the 
theorem about deadlock freedom. We assume that  a specific proof outline is given 
for each process Pi, i = 1 , . . . ,  n. Let I be the global invariant associated with the 
proof. 

First we describe a blocked situation. A blocked situation is characterized by 
an n-tuple of sets of communication capabilities associated with the correspond- 
ing processes. 

Assume that  each process waits for a communication or has terminated. Then 
its communication capabilities are introduced as follows: 

(i) If a process waits in front of an I /O command which is not a guard, then the 
bracketed section surrounding this I /O command constitutes its only com- 
munication capability. 

(ii) If a process waits in front of an alternative or repetitive command, then a 
(possibly empty) subset of the set of all bracketed sections containing the 
I /O guards of that  command form its set of communication capabilities. This 
subset corresponds to those guards whose Boolean parts evaluate to true. 

(iii) If a process has terminated, then its communication capability consists only 
of acknowledging its termination. 
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Now, a situation is blocked if all of the following clauses hold: 

(a) In the n-tuple of sets of communication capabilities there does not exist a 
matching pair of bracketed sections. 

(b) If  a process waits in front of a repetitive command, then its set of communi- 
cation capabilities is nonempty,  and not  all processes (which are addressed in 
the bracketed sections), from its sets of communication capabilities acknowl- 
edge their  termination. 

(c) Not  all processes acknowledge their  termination. 

To illustrate the concepts, just  introduced, consider the following examples. In 
all of them we consider the situation in which each process waits to begin, so 
clause (c) applies trivially. 

(1) Let  P :: [P1 :: P2!x]IP2 :: PI!y]. Then clause (a) clearly holds, and (b) is 
obviously satisfied, so P is blocked. 

(2) Let  P :: [P~ :: P2!x II P2 :: P~?y]. Then  clause (a) does not apply, so the situation 
is not  blocked. 

(3) Let  P :: [P~ :: *[P2?x --~ S] lIP2 :: P~?y]. Then both (a) and (b) hold, so the 
si tuation is blocked. 

(4) Let  P :: [P1 :: *[P2?x --~ S] ]l Pe :: PI!y]. Then (b) holds but  (a) does not, so the 
situation is not  blocked. 

(5) Let  P :: [P1 :: *[false; P2?x --> S] II P2 :: PI!y]. Then the set of communication 
capabilities of P1 is empty  because the Boolean guard of the loop is identically 
false. Thus  (b) does not  apply and the situation is not blocked. Indeed, P1 can 
exit the loop, and then  a blocked situation does indeed arise. 

(6) Let  P :: [P1 :: [false; P2?x --> S] II P2 :: P~!y]. Then both Ca) and (b) (notice 
tha t  P~ is a guarded selection!) are satisfied and the situation is blocked. 

Next, we associate with each blocked situation an n-tuple of assertions. We 
intend to prove tha t  program P is deadlock free (relative to assertion p) by 
checking tha t  all blocked situations give rise to unsatisfiability of the global 
invariant I and all assertions associated with tha t  situation. 

In the subsequent discussion the following notation will be useful. 
Let  S be an alternative s ta tement  [[:3 (j ffi 1 , . . . ,  m) bi; a i ~ $i] or a repetitive 

s ta tement  *[[] ( j  ffi 1, . . . ,  rn) bj; a i---* Sj], and let A _ {1, . . . ,  m}. By pre(S, A) 
we mean  the assertion pre(S) /k  A/eA bj/k Aj~A 7by. 

Consider now a blocked situation. Let  Pi be one of the blocked processes. We 
associate with P~ an assertion pi: 

(a) If  P~ is in the situation as described in (i) above, then p~ is the preassertion of 
the corresponding bracketed section. 

(b) If Pi is in the situation as described in (ii) above, then pi is pre(S, A), where 
S is the guarded command in front of which Pi waits and A is the set of 
indices corresponding with the set of communication capabilities of Pi. 

(c) If  Pi is in the situation as described in (iii) above, t h e n p i  is post(Pi). 

We call an n-tuple (pl . . . .  , p , )  of assertions associated with a blocked situation 
a blocked n-tuple. 
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Then the following theorem holds: 

THEOREM 1. Given a proof of {p} P (q} with global invariant I, P is deadlock 
free (relative to p) i f  for every blocked n-tuple (pl . . . .  , p,),-l(AT_~ pi /X I) holds. 

Hence, in order to prove that P is deadlock free, we have to identify all blocked 
tuples of assertions, and the global invariant I should be such that a contradiction 
can be derived from the conjunction of the invariant and the given blocked tuple. 
The operational meaning of this contradiction is as follows: There is no moment 
during execution at which control of every Pi reaches a point in which the 
assertion pi (taken from the given blocked tuple) holds. If the conditions of the 
theorem hold, then execution can proceed smoothly (possibly forever). 

The theorem above is a consequence of the following one, the proof of which 
is part of the proof of the soundness and completeness of the system, to be 
published by the first author. 

THEOREM 2. Let a proof of  {p}P{q}  be given. I f  during execution of P 
starting in a state satisfying p, each Pi is about to execute a statement with a 
preassertion prei, then AT=I prei is satisfied by the (global) state at that moment. 
I f  Pi has terminated, then post(Pi) holds. I f  none of  the processes is within a 
bracketed section, then I holds. 

To illustrate the use of Theorem 1, we now prove deadlock freedom of the 
programs considered in Examples 1, 3, and 4 of Section 2. 

To deal with the program from Example 1, [P~ :: P2!x II P2 :: PI?y; P~!y II P3 :: 
P2?u], we need the following new proof outlines: 

{i-- 0} (P2!x; i := 1) {i = 1}, 
{ j - - 0 A k - - 0 }  (P~?y;j:--1); { j =  l A k f f i O }  

(P31y;k:= l) { j = l A k - - 1 } ,  
{1 = 0} (P2?u; l :=  1) ( l =  1}. 

Let / - - -  i = j A k  = 1. 
The proofs clearly cooperate and can be used to establish the rather unimpres- 

sive fact that {true} [P1 II P2 ]l Pa] (true} holds. On the other hand the above 
proof outlines are sufficient for the proof of deadlock freedom. It is easy to see 
that the conjunction of any blocked triple of assertions implies i ~ j V k ~ l, 
which is incompatible with/ .  By Theorem 1, [P1 II P2 II P3] is deadlock free relative 
to t rue .  

Having dealt with I /O commands only, let us now consider a program contain- 
ing an I /O guarded alternative statement, namely, the program from Examples 
3 and 4, [P~ :: [P2?x --> skip [] P2!0 ---> P2?x; x := x + 1] II P2 :: [P~!2 ~ skip [] P~?z 

P~!I]]. In this case the proof outlines given in Example 4 are sufficient to show 
deadlock freedom relative to t rue.  The analysis is simplified by the fact that the 
Boolean guards of the alternative statements are identical to t rue;  this implies 
that  any process waiting to start has exactly two communication capabilities. 

In particular, the situation when one process waits to start and the other did 
not terminate is not blocked. The only situation which is blocked is when one 
process waits to start and the other has terminated. The corresponding pair of 
blocked assertions then implies i ~ j, which is incompatible with the global 
invariant I - i = j.  
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Let us now turn our attention to programs containing an I/O guarded repetitive 
command. One of the simplest examples is a program of the form [skip II *[a --~ 
skip]]. This program is clearly deadlock free relative to t rue,  and the proof of 
this fact is trivialmaccording to the defmitions there is simply no blocked 
situation, so no blocked pair of assertions needs to be considered. 

We are less fortunate when trying to prove deadlock freedom of the program 
[2 II *[a --* skip]]. In spite of our elaborated definitions it is impossible to prove 
with our method that  the trivial program above is deadlock free relative to true! 
The easiest way to see this is as follows: 

(1) The only formally blocked situation is the one when the first process waits 
to start and the second has terminated. Of course such a situation cannot occur 
operationally, but our definitions above do not rule this situation out. 

(2) Consider now a new, fictitious interpretation of I/O guarded repetitive 
commands according to which the loop can also be exited immediately.  Our rule 
for I/O guarded repetition is still sound under this interpretation, and the 
description of blocked situations still applies to the new interpretation. As a 
result, both Theorem 1 and 2 remain valid. If we were now able to prove the 
required premise of Theorem 1 in the case of the above program, then this 
program would be deadlock free relative to t rue  under the new interpretation. 
But the latter is clearly not the case, since the new interpretation now makes the 
only formerly blocked situation reachable. 

Note that  the reasoning above does not contradict the relative completeness of 
the introduced proof system for partial correctness. Namely, if {p} P { q }  is true 
under the usual interpretation, then it is true under the new interpretation, so 
the argument above does not apply any more. 

One is tempted to consider the situation above where the first process waits to 
start and the other has terminated as not being blocked. However, such a solution 
does not work with more complicated programs, for instance, when P2 is of the 
form *[false --~ *[a -* skip]]. 

We conclude that the present system is inadequate for reasoning about dead- 
lock freedom, since its underlying interpretation can be changed so as to rule out 
the example of formal blocking considered above, while keeping axioms and proof 
rules satisfied. 

To remedy the situation, we introduce local propositional variables Endj, i # j, 
1 _< i, j _< n, with the following interpretation: Endj- holds if Pi "assumes" that  Pj 
has terminated. These propositional variables have false as their initial truth 
value. When they are included in some assertion with t rue  as their truth value, 
it will be due only to a loop exit in some process. In the proof (but not in the 
program) this change of value is described as if assignments take place upon loop 
exit. Endj can only be used in proofs concerning Pi. 

The new rule for I/O guarded repetition now becomes 

R2'. Guarded  Repet i t ion 

{p A bj)aj{rj}, { r j } S j { p } , j  = 1 , . . . ,  m 

{p}*[[~ ( j  = 1 . . . .  , m) by; aj--* Sj]{p A A?=a(Tb/V End/kj)} 
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Here kj denotes the index of the process referred to by aj, and i denotes the 
index of the process containing the loop. 

The propositional variables End) are used in general in the global invariant/ ,  
so setting them to t r ue  can affect the invariant. Therefore we must add the 
following clause to the definition of cooperation: 

(iii) Let S denote a subprogram of Pi of the form 

*[[7 ( j  = 1 . . . .  , rn) bj; a1-~ S j ] .  

Let A _C { 1 , . . . ,  rn}, and let C be the set of indices of all processes referred 
to in aj fo r j  E A. Then Ajec  post(Pj) A pre(S, A) A I - *  (post(S) A I) [ t rue /  
End~']jec holds. 

Here q [ t r u e / E n d ~ ] j e c  stands for the formula obtained from q by simultaneous 
substitution of t rue  for End), j ~ C. 

Clause (iii) states that if process Pi is about to exit an I /O guarded repetition 
(which is expressed by the left-hand side of the formula), then the exit itself 
(modeled by setting the corresponding Endj- variables to t rue)  both preserves the 
invariant and establishes the postcondition of the loop. The other assertions do 
not use End~ variables and so cannot be affected by the exit. 

The adopted changes retain the validity of Theorem 1. 
A simple example serves to illustrate the concepts introduced. Consider the 

program P :: [~ [[ *[a --~ skip]] (which caused our troubles originally) with the 
following proof outlines: 

{ i = 0 }  ( 5 ; i : = 1 )  ( i = l } ,  
{TEndS} *[a ~ skip] {End~}, 

and let I -- End21 --* i -- 1. 
All omitted assertions are equal to t rue.  The second proof outline makes use 

of rule R2'. The proofs cooperate--the new clause of cooperation, 

i = 1 A -1End~ A I - o  (End~ A I)[ true/End~],  

clearly holds. 
The only blocked situation leads to a blocked pair (i = 0, End~ ) of assertions 

which are clearly incompatible with/ .  The proof outlines are sufficient to establish 
the proof of [true} P ( t rue} .  By Theorem 1, P is deadlock free relative to t rue .  

Now we apply these new concepts to the partition example considered in 
Section 3. We refer to the proof presented there. 

In order to prove the absence of deadlock in this program, we have to strengthen 
the invariant GI to include 

GI'  -- End~ ---> rnx <_ x, 

and add m x >  x to the precondition of the two bracketed sections in the loop of 
P1, as well as adding rnx <_ x to the postcondition of P,. Also, the use of the strong 
version of the I /O guarded repetition rule implies that End21 is added to post(P2). 
In showing the cooperation of proofs, the only new case that has to be checked 
is the loop exit of P2, since we can assume that post(P1), GI'  holds. 
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Next we consider all blocked pairs (p, q) of assertions, and show that  their 
conjunction with GI A GI' is contradictory. 

In all cases which do not involve the postassertions of P~ or/)2, the contradiction 
is reached by observing that  all blocked pairs imply different parities of the li's, 
whereas GI implies l~ = /2. For example, with p as the preassertion of the first 
bracketed section of P1 and q as the preassertion of the first bracketed section of 
/)2 inside its loop, we have 

l l  -~ 0 A odd(/2) A 11 = / 2 ,  

which is contradictory. 
The only other case with an essentially different proof, which does not use the 

fact that  GI implies l~ = /2, is when p denotes the preassertion of Pl's first 
bracketed section inside its loop and P2 has terminated, i.e., q contains End~ 
(among others). Then we have 

m x  > x A (End~ --> m x  _< x) A End~, 

which again is contradictory. 
Note that  it is only here that  the additional invariant GI' is used. 
Returning to the gcd program from Section 3, we will prove that  there is no 

other blocking possibility in that  program besides the intended one (as stated in 
the explanation to the program). 

Let GI'  = Ai%l (Endi+~ -= Endi+l). We shall prove the invariance of GI'. By 
using the strong repetition rule R~, we get that  each post(Pi) implies 

Endi+l A Endi-1 

(by considering the third and fourth alternatives of each loop). Initially GI' holds, 
since all End~ are initially false. 

All we have to consider now is a loop exit of some Pi, and then post(Pi+l) A 
post(Pi-1) may be assumed; i.e., we have to verify 

GI'  A Endi +1 A End~ -1 --) (GI' A End~+~ A Endi_~)[true/Endi+~, t rue/End,- l ] ,  

which trivially holds. 
A simple consequence of GI'  is 

(**) A Endj -- End( 
i~j 

The meaning of this condition is that  either all processes have terminated or none 
did. 

Any blocked tuple of assertions (besides the one considered in Section 3) 
implies that  some of the assertions in the tuple are post(Pi) for some 1 _< i _ n, 
i.e., that  some (but not all) of the processes terminated, which clearly contradicts 
(**). 

In order to conclude that  the situation considered in Section 3 does occur (i.e., 
is inevitably reachable), we have to use 

(i) a well-foundedness argument to prove the absence of infinite computations. 
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(ii) the distributed termination pat tern  theorem [6] to show tha t  the program 
does not  terminate,  since its terminat ion dependency graph is cyclic, 

(iii) the absence of blocked tuples of assertions other  than  the one considered in 
Section 3, as was shown above. 

The  proof  of (i) is beyond the scope of the present paper  and therefore is omitted. 

5. CONCLUSION AND COMPARISON WITH RELATED WORK 

We have presented a proof  system for partial correctness and absence of deadlock 
in CSP programs. Now tha t  we have gone through all stages of its development,  
it may  be useful to compare our  proof  system with related Hoare-style proof  
systems dealing with concurrency.  

As we see no way of improving in this respect upon Leslie Lampor t ' s  lucid 
comments  upon our paper  we feel justified in citing him in extenso: 

This paper provides a method for proving safety properties (the generalization of 
partial correctness properties) of programs written in CSP. Proving such properties 
requires proving that if the program is started in a valid initial state, then a certain 
assertion will always remain true. This in turn is proved by showing that some 
assertion I is invariant--i.e., if the program is started in any state in which I is true, 
then I remains true. 

The simplest approach to proving the invariance of I is to show that each atomic 
action of the program leaves I true. This approach was f'mst described by Ashcroft [3]. 
The next approach, taken by Owicki and Lamport, takes into account the structure of 
ordinary multiprocess programs, in which each atomic action occurs as the result of 
executing one "program step" in some process. The invariant assertion I is written as 
the conjunction of assertions of the form "control at x-->I(x)," where I(x) is the 
assertion "attached to" control point x. To prove invariance o f / ,  one proves the 
following for each control point x. 

If I(x) is true, control is at x, and executing the program step at x leaves control at 
x', then 

(1) I(x') is true after execution; 
(2) for each control point y in every other process, ifI{y) is true before the execution 

and control is at y, then I(y) is true after the execution. 

The second part of the conclusion was called "interference freedom" by Owicki. 
This method can be viewed as a special case of Ashcroft's method, in which the 
assertion I has a special form. Conversely, Ashcroft's method can be viewed as the 
special case of Owicki's and Lamport's in which the single assertion I is attached to all 
control points. (This illustrates the futility of trying to decide whether one method is 
more general than another.) 

Because the same assertion is attached to each location, part 2 (interference 
freedom) of the conclusion is implied by part 1, so no explicit proofs of interference 
freedom are needed by Ashcroft's method. However, this provides no real advantage 
since the same amount of verification is required in both methods: the interference 
freedom proofs appear in Ashcroft's method as the extra complexity of proving that 
the larger monolithic assertion I is left true by each atomic operation. The difference 
in the two methods is largely a matter of syntactic convenience. The interference 
freedom method is more convenient when the global invariant assertion I is conven- 
iently written as the conjunction of assertions I(x) attached to program control points. 
Ashcroft's method is more convenient when the invariant I is simple and does not 
need to be decomposed. 

In Owicki's treatment, the assertions I(x) could not explicitly mention program 
control points. This meant that she had to introduce auxiliary variables, instead. 
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Now suppose we consider a more general multiprocess programming language, in 
which program steps in one or more different processes may be executed simultane- 
ously as one single step. Let us call {xl . . . . .  xi} a multicontrol point if the program 
steps at control points xl . . . . .  xi are steps which may be executed simultaneously in 
this way--where each of the x's is in a different process. (The singleton {x} is a 
multicontrol point if the program step at x is a local one, which can be executed by 
itself.) If x = {xl . . . . .  xi}, define I(x) to be the conjunction of the assertions 
I(xl) . . . . .  Hxi). The above Owicki/Lamport proof rule can then be generalized by 
replacing the single control points x and x' by multicontrol points, where "control at 
x" is defined in the obvious way for a multicontrol point x. (In the new definition, y 
remains an ordinary [single] control point.) [This methodology was independently 
developed by Mazurkiewicz [15] where simultaneous await-statements are consid- 
ered.] 

The approach obviously provides a proof methodology for CSP, where the nonlocal 
multicontrol points involve I/O statements. [The actual transition from proof meth- 
odology to proof system is achieved by providing suitable axioms and proof rules, such 
as the communication axiom, which enable incorporation of the above generalization 
of condition 1 (i.e., cooperation) into the proof system.] The proof method presented 
in the present paper can be derived as follows, as a special case of this general method, 
on the basis of the fact that syntactic restrictions on the type of assertions that can be 
used make certain verifications unnecessary. First of all, the CSP language is gener- 
alized by introducing the "bracketed sections." The bracketing defines the nonlocal 
atomic operations. The rules for what may appear inside brackets are codifications of 
the well-known fact that operations that affect only local variables may be subsumed 
within an adjacent atomic operation. (In particular, it does not make any difference 
how the local atomic operations are defmed.) 

The nonlocal multicontrol points are the control points at the beginning of the 
bracketed statements. The assertion I(y) attached to each control point y is of the 
form "I ' (y)  and/ ,"  where I ' (y)  is the assertion explicitly attached to y, and I is the 
"global invariant." The separation of the proof into a local proof and a proof of 
"cooperation" involves the separation into local control points (singleton multicontrol 
points) and nonlocal control points. Rules A1 and A2 simply enforce that the 
statements involving I/O concern nonlocal control points, and are not considered by 
the local proof. 

The fact that no interference freedom proofs are necessary is an immediate 
consequence of the restriction that the assertion attached to each control point y is of 
the form "I'(y) and/ ,"  where I '(y) contains variables only modified by that process. 
[The same remark applies to the proof system considered in [17].] No interference 
proofs are needed for precisely the same reason that they are not needed in Ashcroft's 
method: because the only nonlocal assertion is attached to all control points. The 
global assertion I does not have to appear in the local part of the proof because of the 
assumption that it contains no variables that can be set by other local operations. 

In the present  paper  program control is modeled by the use of auxiliary 
variables and the global invariant. A different approach (suggested by L. Lamport)  
can be envisaged here, in which program control variables are explicitly allowed 
to appear  in assertions making the use of the global (monolithic) invariant 
unneeded. 

A full discussion of the relative merits of these two alternative approaches, i.e., 
auxiliary variables versus program control variables, is beyond the scope of the 
paper. We ment ion only tha t  program control variables lead in general to 
nonrecursive intermediate assertions (see [1]). 

I t  is also possible to have a proof  system for CSP without  global invariants, in 
which only shared auxiliary variables are used. An example is the proof  system 
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presented in [14], where the component proofs have to be checked both for 
interference freedom and cooperation, since auxiliary variables can be shared. 

One of the features of our system is that  the cooperation test requires us to 
supply n e w  formal proofs which do not constitute a part of the (sequential) proof 
outlines. This phenomenon is also present in [18], where new proofs are needed 
to show interference freedom. These proofs can be viewed as global reasoning 
since they involve more than one process. In our case the bigger the bracketed 
sections, the more sizable the proofs that  have to be carried out. The forthcoming 
proof of relative completeness of our system implies that  we can always choose 
bracketed sections of the form a; S, where S is an assignment (for updating the 
local history of communications), thus reducing global reasoning. 

Our method suffers from the same drawback as the one presented in [18]; in 
the worst case the test for cooperation, e.g., for the case of two processes, can 
involve as many as ml * rn2 checks, where rnl and rn2 are proportional to the 
lengths of the component programs. The same problem can arise in proofs of 
absence of deadlock. However, in practice the number of cases is significantly 
smaller, and often several of them can be trivially established, as is the case in 
testing cooperation between syntactically matching but semantically unmatched 
pairs. For example, in our proof for the partitioning program, eight cases had to 
be established in the cooperation test and fifteen for the proof of absence of 
deadlock, but only four cases have a nontrivial proof of the cooperation test, and 
only one such case occurs in the proof of absence of deadlock. 

Finally, the results of this paper are summarized. 
We have presented a system both for understanding and for proving correctness 

of CSP programs. The main feature of this system is the notion of cooperating 
proof outlines. The arguments leading to the system as a whole have been 
motivated within the context of CSP. However Lamport's remarks seem to 
indicate that  the notion of cooperating proof outlines is also essential for proving 
correctness of concurrent programs written in an extension of the usual shared 
variable framework with mutual synchronization (by means of "multicontrol 
points") . . . .  - __ 

CSP expresses distributed termination of processes. We illustrate this aspect in 
our system by proofs of two examples of distributed computation, one for 
partitioning a finite set, the other for computing the gcd of n numbers concur- 
rently. 

In order to prove absence of deadlock and failure (i.e., abortion), the proof 
system has to be strengthened. This is a consequence of CSP's distributed 
termination convention. The final system is obtained by adding the proof theo- 
retical counterpart of this termination convention. 
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