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Five Facets of 6G: Research Challenges and Opportunities

LI-HSIANG SHEN and KAI-TEN FENG, National Yang Ming Chiao Tung University

LAJOS HANZO, University of Southampton

While the fifth-generation systems are being rolled out across the globe, researchers have turned their at-

tention to the exploration of radical next-generation solutions. At this early evolutionary stage, we survey

five main research facets of this field, namely Facet 1: next-generation architectures, spectrum, and services;

Facet 2: next-generation networking; Facet 3: Internet of Things; Facet 4: wireless positioning and sensing; and

Facet 5: applications of deep learning in 6G networks. In this article, we provide a critical appraisal of the

literature of promising techniques ranging from the associated architectures, networking, and applications,

as well as designs. We portray a plethora of heterogeneous architectures relying on cooperative hybrid net-

works supported by diverse access and transmission mechanisms. The vulnerabilities of these techniques are

also addressed and carefully considered for highlighting the most of promising future research directions.

Additionally, we list a rich suite of learning-driven optimization techniques. We conclude by observing the

evolutionary paradigm shift that has taken place from pure single-component bandwidth efficiency, power

efficiency, or delay optimization toward multi-component designs, as exemplified by the twin-component

ultra-reliable low-latency mode of the fifth-generation system. We advocate a further evolutionary step to-

ward multi-component Pareto optimization, which requires the exploration of the entire Pareto front of all

optimal solutions, where none of the components of the objective function may be improved without degrad-

ing at least one of the other components.
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1 INTRODUCTION

With the rapid revolution of cloud computing, network function virtualization, and the concept

of software-defined networks (SDNs) [101] under the fifth-generation (5G) umbrella, a par-

adigm shift toward the sixth generation (6G) of mobile communications is observed [169]. In

this era, future networks are no longer confined to conventional terrestrial cellular architectures;

they are evolving toward a hybrid terrestrial-underwater-aerial-space network [95, 275]. Hence,

the requirements of 6G are compared to those of the existing 5G networks in Table 1. Although

6G performance indicators are not formally finalized at the time of writing, we introduce the

potential target specifications from the open literature. The corresponding stringent service de-

mands in 6G include a peak rate of 1 Tbps, system latency lower than 0.1 ms, reliability of

99.99999999%, user velocity higher than 1,000 km/hour, and unprecedented densities of devices

per square kilometer [75, 119, 188, 250, 275]. In comparison to the existing 5G system, the 6G

system will require much improved energy efficiency and area spectral efficiency [188, 226, 250].

These specifications will be able to support smooth, resilient, and high-quality services in a hybrid

network.

In this context, a whole raft of pivotal issues have to be addressed, such as cloud storage, the

underlying computing architecture, computing resource management, multimedia streaming tech-

nologies, SDN, and network function virtualization [188, 250]. The rapid development of arti-

ficial intelligence (AI) as a powerful optimization tool and deep learning has facilitated the

solution of highly complex problems in conventional systems [35, 177]. Advances in wireless

positioning and sensing [83] and the Internet of Things (IoT) [15, 20] have facilitated large-

scale data collection both across the industrial sectors and in the home with the prospect of

supporting sophisticated new applications of 6G mobile networks. However, the massive tele-

traffic forecast also leads to potential network security and privacy challenges. Accordingly, ad-

vanced information and security solutions have to be designed for supporting these novel net-

work architectures, which are shown at a glance in Figure 1 and will be elaborated in the follow-

ing sections. Against the preceding backdrop, this article aims for surveying the most promis-

ing 6G research topics evolving from the 5G technologies, which are captured at a glance in

Figure 2. The main research issues include a whole raft of next-generation architecture, spec-

trum, and services; next-generation networking; IoTwireless positioning and sensing; and the ap-

plications of deep learning in 6G networks. In a nutshell, our contributions can be summarized

as follows:

• Relying on recent research results, we sort out the key performance metrics as well as five

service use cases of 6G compared to the 5G system. We investigate comprehensive literature

surveys for the potential promising techniques from the perspectives of architectures, net-

working, and applications, as well as scheme designs, which are extended from the current

foundation of wireless and networking.

• Furthermore, we discuss the inherent characteristics by highlighting unique and promising

next-generation architecture, spectrum, and services. We portray a plethora of heteroge-

neous architectures with integrated hybrid networks under different accessing and trans-

mission mechanisms. The vulnerabilities of the corresponding techniques in their regions

are also addressed and carefully considered for future research directions.

• We also investigate a plentiful suite of learning-driven optimization and solutions for the

preceding open issues. Depending on each case and its requirement, different machine and

deep learning schemes should be intelligently and favorably exploited as a remedy shown

in the open literature.
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Table 1. Key Requirement Comparison of 5G and 6G

5G 6G

Application Services

� eMBB

� URLLC

� mMTC

� eUMBB

� eURLLC

� UmMTC

� LDHMC

� ELPC

Communication Network Architecture
� 5G-NR cellular

� mmWave network

� AI-empowered network

� Aerial network

� Terrestrial network

� Underwater network

� mmWave/THz network

Transmission Spectrum Usage
� sub-6 GHz (2.4/3.5/5 GHz)

� mmWave (28/39/60 GHz)

� sub-6GHz (2.4/3.5/5 GHz)

� mmWave (28/39/60 GHz)

� THz (above 100 GHz)

� Laser

� VLC

� Non-RF

Peak Data Rate 20 Gbps 1 Tbps

Latency Requirement 1 ms 0.01–0.1 ms

Reliability Demands 99.999 % 99.99999999 %

Connectivity Density 106 devs/km2 107 devs/km2

Mobility Support 500 km/hour ≥1,000 km/hour

Area Spectral Efficiency Compared to 5G 1× 10×
Energy Efficiency Compared to 5G 1× 100×

• We demonstrate some substantial field trial performances regarding the high-frequency

mechanism, IoT communication, and sensing, as well as deep learning driven device-free

indoor positioning and sensing detection techniques.

• Owing to future complex network scenarios with quite different requirements, we elabo-

rate the road from the single-component to multi-component Pareto-optimization principle,

which differentiates conventional methods and carries out potentially encountered trade-

offs among numerous factors, such as rate, bandwidth, energy, latency, and complexity.

Indeed, there exist other 6G research surveys and tutorials (e.g., [35, 51, 75, 119, 120, 161, 188, 216,

225, 230]). However, to the best of our knowledge, this survey has provided a more comprehensive

next-generation overview of network architectures and applications as well as optimization. Addi-

tionally, our article offers a cross-disciplinary synthesis ranging from whole network layers, which

is explicitly contrasted to the existing works in Table 2 for identifying the difference in the open

literature. The open research issues of 6G communication and networking are also summarized in

Table 3, where 6G facets 1 through 4 are discussed with open research issues.

2 FACET 1: NEXT-GENERATION ARCHITECTURE, SPECTRUM, AND SERVICES

2.1 Advanced Wireless Network Architecture and Technology

The forthcoming 6G wireless network is expected to evolve beyond the conventional terrestrial

cellular network by additionally including underwater, aerial, and satellite communication net-

works, forming a vertical 3D network (so-called 3DNet or SkyNet) [68, 95] as seen in the styl-

ized illustration of Figure 1. Accordingly, the management of these emerging heterogeneous ver-

tical/horizontal massive ultra-dense networks (UDNs) becomes one of the key research topics.

ACM Computing Surveys, Vol. 55, No. 11, Article 235. Publication date: February 2023.



235:4 L.-H. Shen et al.

Fig. 1. The architecture of AI-empowered 6G communication networking technologies includes next-

generation wireless communications for aerial, terrestrial and underwater networks. The aerial network con-

tains GEO, MEO, LEO, UAV, and drones. The terrestrial network includes V2X, C-RAN, M2M, UDN, D2D,

IoT, mmWave/THz, and the core network, which are enabled by edge computing, RIS, NOMA, CoMP, NR,

unlicensed spectrum usage, positioning and sensing, blockchain, SDN/NFV, network slicing, and big data

techniques. The underwater network is formed by groups of vessels and AUVs conducting sensing and data

collection missions.

The conventional cloud radio access network (C-RAN) [184] relies on fully centralized network

functions, computations, decisions, and operations in the central cloud, which is insufficiently

flexible for future networks. Accordingly, based on the associated network functions, 6G terres-

trial communication networks partition the traditional base stations (BSs) of the C-RAN into the

central unit (CU), distributed units (DUs), and radio units (RUs). This partitioning requires

flexible radio access technology (RAT) [117]. The powerful CU in the cloud has substantial com-

putation and data storage capabilities managed by the higher network layers, whereas the network

functions of the lower layers are deployed within multiple DUs at the edge. The RUs are respon-

sible for signal transmission and reception, whereas the networking policy is formulated at the

DUs and CU. Furthermore, instead of using traditional costly wired links, the fronthaul and back-

haul of flexible CU/DU/RU architectures may rely on high-speed millimeter wave (mmWave)

and terahertz (THz) techniques [181]. Similarly, both the user equipment (UE) and sensors are

supported by high-speed mmWave THz radio links:

ACM Computing Surveys, Vol. 55, No. 11, Article 235. Publication date: February 2023.
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Fig. 2. Nature of 6G technologies. Stemming from 5G with the root of resource characteristics and channel

modeling environments, the 6G trunk includes technology branches of wireless communications, network-

ing, IoT, and positioning and sensing. The leaves and foliage of promising 6G architectures and techniques

are nourished in its belonging branches from the 5G roots nourished by the human being so-called AI. Ac-

cordingly, the performance flowers are vigorously growing up shading below the lush 6G tree.

Table 2. Comparison with Available Surveys and Tutorials

Paper [51] [119] [188] [35] [230] [75] [120] [216] [161] [225] This Work

Year 2019 2019 2019 2019 2020 2020 2021 2021 2021 2022 2022

Type Survey Tutorial Survey Tutorial Tutorial Survey Survey Survey Survey Survey Survey

Netw. Architecture � � � � � � � ✔

Wireless Transmission � � � � � � � � ✔

Unlicensed Spectrum � � � ✔

Multi-Service Use Cases � � � ✔

Softwarization SDN/NFV � � � � � ✔

IoT and Security � � � � � � � ✔

Positioning and Sensing � � � ✔

Learning Wireless/Netw. � � � � � � � � � � ✔

Multi-Component Opt. � ✔

• mmWave transmission: As a benefit of its ample bandwidth, an mmWave system typically

operating at 28/39/60 GHz is capable of supporting Gbps-level transmission [173, 180, 197].

However, this is achieved at a high pathloss and sensitivity to blockages. As a potential

remedy, beamforming relying on high-gain beams may be harnessed for mitigating the

pathloss [180].
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Table 3. Open Research Issues of 6G Communication and Networking Technologies

Next-Generation Architecture, Spectrum, and Services

Advanced Wireless Networks

� Interference management in hybrid 6G networks
� Dynamic spectrum management for different wireless transmissions
� High-mobility handover management (vehicle, train, UAV, AUV, etc.)
� Network power control and energy harvesting
� Flexible scheduling for integrated RAT

New Multiuser Transmission

� Enhanced RRM for diverse resources (code, space, frequency, time, etc.)
� New UM-MIMO beamforming for mmWave and THz
� Spectrum/Energy efficient techniques (NOMA, FD, CoMP, etc.)
� Advanced grant-free transmissions
� Deployment and optimization of RIS
� Non-RF techniques (laser, VLC, quantum communications, etc.)

Unlicensed Spectrum Access

� Interference mitigation for unlicensed spectrum accessing (e.g., LAA)
� Re-transmission mechanism at higher-frequency bands
� New multiuser orthogonal contention and data transmission schemes
� Advanced unlicensed 60-GHz beamforming design for 802.11ad/ay

Multiple Wireless Services

� High performance hybrid services (e.g., URLLC-eMBB)
� Front-end resource allocation and hybrid numerology optimization
� Management of new 6G services of LDHMC and ELPC

Next-Generation Networking

Network Softwarization

� Advanced automatic network traffic optimization and service management
� Flexible and cost-effective network function deployment
� New NFV management and orchestration

Next-Generation Core
� Next-generation core virtualization
� QoS-guaranteed virtual networks

Mobile Network Management
� Resource management for mobile cloud and edge computing
� Advanced SDN/NFV-enabled SON

Internet of Things

IoT Networks

� Efficient mechanisms for sensing and data collection and upload
� Simultaneous operation among different IoT protocols
� Advanced power preservation, interference management, and synchronization
� Cloud resource management and big data storage and processing
� Advanced social IoT network structure for information dissemination and recognition

Vehicular Networks

� Wireless channel characteristic and resource management of V2X
� Heterogeneity management over different V2X protocols and interfaces
� Advanced optimization of joint sensing, control, and communications
� Efficient and effective vehicular routing and trajectory design
� Congestion control and secured and reliable IoT-V2X

Security and Privacy

� Next-generation quantum and post-quantum cryptology
� Implementations/Applications of multi-functional security and privacy techniques
� Blockchain on advanced data security and system operation
� Enhancement in physical-layer security
� Privacy-aware strategies in smart services and cloud/edge networks

Wireless Positioning and Sensing

Wireless Positioning and Sensing

� Flexible, robust, and high-precision trajectory tracking
� Doppler shift of high-speed and long-distance outdoor positioning
� Device-free CSI-based positioning, sensing, and detection
� Fine-grained positioning and detection in extreme environments
� Multi-scale human behavior and vitality detection

• THz transmission: The THz band represents the carrier frequencies spanning from 0.1 to

1 THz, which has even wider bandwidth resources than the mmWave band. Hence, it is

potentially capable of supporting Tbps transmission speeds [181, 275]. However, it suffers

from significantly higher pathloss than mmWave carriers due to severe molecular absorp-

tion. Therefore, it requires massive antennas to support so-called THz-oriented pencil beams

[60, 98]. In this context, THz beam alignment is an excessively challenging task, especially

in the face of mobility in a short-distance THz communications. Moreover, directional THz-

enabled cognitive radio aided transceivers are capable of dynamically exploiting the slivers

of unoccupied spectrum for improving the area spectral efficiency.

ACM Computing Surveys, Vol. 55, No. 11, Article 235. Publication date: February 2023.
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The 6G architecture of underwater communication networks has the task of supporting au-

tonomous underwater vehicles (AUVs) and AUV controllers [131], which can be harnessed in

diverse scenarios, including underwater air crash investigations, military applications, and deep

sea exploration. The AUV-based network supports multiple AUVs and multiple AUV controllers

equipped with sensors and sonar/camera systems for collaborative navigation, localization, and

object tracking. However, underwater communications rely on ultra-low frequencies, which are

affected by water flow, the Doppler effect of ships, environmental noise, and vortex-induced water

vibration. The mitigation of these phenomena requires substantial further research in 6G under-

water networks.

Aerial communications in 6G rely on drones or unmanned aerial vehicles (UAVs) and

low/high altitude platforms (LAPs/HAPs). Furthermore, the 6G satellite network contains several

layers in Figure 1, including the low earth orbit (LEO) satellites below 2,000 km, medium earth

orbit (MEO), high earth orbit (HEO), and geostationary earth orbit (GEO) satellites at 36,000 km

[95, 213]. Due to the long transmission distance from the satellite to ground, high transmit power

is required for mitigating the pathloss and specialized terrestrial-space terminals (TSTs) have to

be used. For efficiently collecting information, multiple UAVs and multiple satellites may cooper-

atively transfer their data forming a heterogeneous integrated ground-air-space (IGAS) net-

work [48]. However, numerous mobility-related factors should be taken into account, such as the

roll/pitch/yaw movement of UAVs, and the high-velocity orbiting of LEO and MEO satellites are

challenging issues to be tackled [105, 146]. But again, the UAVs and satellites are capable of sub-

stantially improving the coverage quality [105, 146].

As an evolution from conventional BS-centric networking, user-centric cell-free networks [13]

have become popular, which judiciously allocate the network’s resources according to the specific

quality of service (QoS) requirements of the UE. As a benefit of this user-centric philosophy,

amorphous coverage areas are created by assigning the access points (APs) inhomogeneously

by matching their density to the non-uniform user density. Hence, they exhibit excellent load-

balancing capability. The network determines its resource allocation strictly based on the QoS

requirements [3]. However, achieving this ambitious design objective, while handling diverse cell

sizes, ranging from small cells (SCs) to femtocells, picocells, and the emerging nanocells [185], re-

quires substantial further research in the context of 6G networks. To elaborate a little further, a host

of sophisticated interference management, dynamic channel allocation, high-mobility handover,

packet admission control, power control, and scheduling have to be investigated. Furthermore, the

nodes operating in remote areas where no electricity is available have to rely on advanced energy

harvesting and wireless power transfer in next-generation wireless communications [6, 175, 200].

2.2 New Multiuser Transmission Schemes

Conventional transmission techniques tend to focus on improving their resource efficiency in time,

frequency, and spatial domains. The 6G new radio (NR) will further extend these techniques to the

mmWave and THz bands [181] while relying on ultra-massive multiple input multiple output

(UM-MIMO) beamforming techniques [41, 198]. By relying on these techniques, multiple beams

can be generated to serve numerous users in different directions at diverse QoS requirements.

However, sophisticated power control, interference management, and radio resource manage-

ment (RRM) are required. Moreover, to improve the spectral efficiency versus energy efficiency

trade-off, we can superpose all signals in the time, frequency, and spatial resource slots. The corre-

sponding techniques include non-orthogonal multiple access (NOMA) [122], 3D beamforming,

full duplex (FD) [66], coordinated multi-point (CoMP) transmission/reception [36], and rate

splitting multiple access (RSMA) [47]:

ACM Computing Surveys, Vol. 55, No. 11, Article 235. Publication date: February 2023.
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• NOMA: The transmitter will multiplex several desired signals to a single resource slot of

certain resource domains, whereas the receiver carries out successive interference can-

cellation (SIC) for mitigating the interference imposed by the signals belonging to other

users. In the most popular power-domain NOMA, two or more users’ signals are superim-

posed at a given power and SIC is used to detect the strongest signal while considering the

weaker signals as interference. The remodulated signal is then deducted from the aggregate

signal, leaving the clean/weaker signal behind [11, 56, 148]. Similar SIC-aided procedures

are used also for code-domain NOMA. A whole plethora of other NOMA solutions can be

found elsewhere [53, 141]. However, it becomes a potential challenge to design advanced

NOMA techniques in terms of integrating the diverse resource domains of mmWave/THz

systems [54, 266], canceling the interference in UDNs, or enhancing the coverage area of

UAV and satellite networks [73, 108].

• 3D beamforming: This concept emerges from that of sectorized antennas aiming for serving

users roaming at different angles with the aid of sophisticated beamforming techniques and

antenna configurations. Since mmWave carriers suffer from excessive pathloss, the employ-

ment of high-gain beamforming is critical. High-gain beamforming is even more crucial

for THz carriers relying on pencil beams. Furthermore, it is of salient importance to fru-

gally manage the limited 3D resources for supporting diverse QoS requirements under IGAS

networks.

• FD: This technique allows simultaneous uplink and downlink transmission within a single

timeslot at the same frequency [66, 123]. However, the interference imposed by the high

transmit power on the low received power is a critical issue, which requires advanced self-

interference mitigation techniques. With the emergence of powerful new 6G architectures

and technologies, there is an opportunity for FD solutions to increase the spectral efficiency

by employing mmWave/THz UM-MIMO beamforming in both terrestrial and aerial net-

works [12, 186, 228].

• CoMP : This technique supports simultaneous transmissions from multiple BSs to a single

receiver [97]. Furthermore, as a benefit of mmWave/THz beamforming, UM-MIMO CoMP is

capable of increasing the network’s throughput [147, 224]. Nonetheless, there are substan-

tial challenges in the way of large-scale CoMP roll-out, such as the related synchronization

issues, because the receiver can only be perfectly synchronized with a single BS.

• RSMA: As exemplified in Figure 3(e), the BS having for example M transmit antennas and

K serving users (each relying on a single receiver antenna) communicates under the as-

sumption that common messages are to be received by all users in addition to the private

and confidential messages destined for the individual ones. The terminology of rate split-

ting of messages implies that the downlink stream is partitioned into K segments for the K
users, where each user’s message contains both a common and a private message segments.

The K private messages of the individual users are then jointly transmitted with the com-

mon message of all users. Both the common and private messages are transmitted in the

downlink by the BS having M downlink transmit antennas, but naturally, the antenna-array

weights used for the transmit precoding (TPC) private messages depend on the individ-

ual user positions, whereas those used for the common part are trained for reaching all

users [46, 47, 133, 149].

At the users, the common message is detected first by assuming that the private messages

are unknown and hence they can only by treated as additional noise. In the next processing

step, we aim for canceling the interference imposed by the common message on the compos-

ite received signal using SIC. This is achieved by first remodulating the common message

detected as well as applying the TPC to its modulated version and then subtracting the result

ACM Computing Surveys, Vol. 55, No. 11, Article 235. Publication date: February 2023.
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Fig. 3. The 6G RIS-empowered wireless network of (a) RIS-empowered mmWave/THz, (b) RIS-NOMA, (c) RIS-

FD, and (d) RIS-CoMP transmissions, as well as emerging architecture of (e) RSMA and (f) STAR-RIS/IOS.

from the composite received signal. This leaves the superimposed private messages behind.

Now each user has to extract his or her own private message following a similar SIC process

as outlined earlier. Explicitly, each user detects his or her own private signal by treating all

the other users’ signals as noise. This is because the TPC weights of the other users are un-

known, and hence their interference cannot be canceled. Suffice to say that the preceding

rudimentary portrayal of the RSMA philosophy relies on a number of simplifying assump-

tions, which are eliminated in the detailed treatises of Bastami et al. [17, 18].

Reconfigurable intelligent surfaces (RISs) also constitute promising techniques for extend-

ing the coverage area, reducing the power consumption, and enhancing the data rates [16, 27, 55,

94, 243]. The RIS is composed of numerous metamaterial elements, which can reflect the received

waves, while adjusting their phases without complex signal processing [55] as detailed in the

following:

• RIS-empowered mmWave/THz transmissions: The fixed BS infrastructure can beamform its

mmWave/THz signals to the RIS, which may reflect them to arbitrary transmit direc-

tions [24, 86, 93], as demonstrated in Figure 3(a). Blocking the line-of-sight (LOS) paths of

mmWave/THz carriers may be circumvented with the aid of RISs. However, they create extra

interference, which has to be carefully managed. In this context, it is imperative to jointly

design the active beamforming at the BS and the passive phase shift based beamforming at

the RIS to meet different requirements.

• RIS-empowered multiuser transmissions:

(1) RIS-NOMA: Again, multiuser NOMA schemes impose extra interference due to the super-

posed signals of the 3D resource domains. The RIS deployment shown in Figure 3(b) has

the potential of generating specific channel features for readily distinguishing the over-

lapped NOMA signals. Moreover, RIS-NOMA [27, 90, 138, 253] is capable of extending the

coverage area to provide services for distant cell-edge users. However, the joint design of

the different resource domains of NOMA and RIS constitutes a wide open research issue.

ACM Computing Surveys, Vol. 55, No. 11, Article 235. Publication date: February 2023.
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(2) RIS-FD: As for FD transmission, RISs are capable of adjusting their phase shifts to cancel

or alleviate the self-interference of FD [62], where the uplink and downlink signals may

become orthogonal in terms of their directions as demonstrated in Figure 3(c). The RISs are

intrinsically operated at FD which directly reflect arbitrary incident signals. We note that

the FD transmission here indicates the co-existence of two transmission directions in the

wireless network, including downlink signals from BS to UE and simultaneous uplink ac-

cess in a reverse direction. However, additional interference emerges from the RISs, which

should be jointly considered in RIS-FD design [65, 109]. The joint design of FD and RIS

configurations may achieve potentially higher area spectral efficiency than conventional

FD operating without RIS assistance.

(3) RIS-CoMP : Conventional CoMP aims for improving the low signal quality of cell-edge

users. This is achieved by turning the harmful interference into useful source of desired

signal energy with aid of RIS-CoMP [61], as seen in Figure 3(d). As a benefit, the transmitter

is capable of dissipating less power than conventional CoMP while still meeting the tele-

traffic demands. Accordingly, CoMP-RIS should be jointly designed for improving the area

spectrum/energy efficiency. However, there are numerous open problems, including their

BS backbone bottlenecks, channel estimation and synchronization, just to mention a few.

Again, it is not possible to perfectly synchronize a UE with more than one BS.

• Simultaneous transmitting and reflecting RISs: An impediment of the conventional RIS solu-

tions is that the transmitter and the user have to be within the same 180-degree half-plane

rather than roaming across the entire 360-degree full plane. By contrast, the simultaneous

transmitting and reflecting RIS (STAR-RIS) architecture, as illustrated in Figure 3(f), or

termed as intelligent omni-surface (IOS), allows full-plane coverage by potentially harness-

ing full reflection, full transmission, and simultaneous transmission and reflection [140, 155].

These modes were discussed in the work of Liu et al. [140] with special emphasis on NTT

DOCOMO’s prototype. There are three different principles governing their operations,

namely the so-called energy-splitting, partitioning, and time-switching types, which have

their different pros and cons [140]. In the energy-splitting mode, the signal impinging upon

an element is partially reflected and transmitted. By contrast, the partitioning type may be

viewed as having a reflection-only and transmission-only segment of reduced sizes. Finally,

the time-switching type is capable of switching the reflective elements between the trans-

mit and reflect modes. There is a huge variety of compelling applications scenarios, such as

STAR-RIS-NOMA [241], STAR-RIS-CoMP [91], and multi-STAR-RIS deployment, as well as

AI-assisted STAR-RIS [276], which require further exploration by the research community.

Furthermore, from an air-interface and transmission framing perspective, both multi-

numerology, as well as mini-slot-based and grant-free transmissions, potentially make the systems

more flexible in terms of reusing the time/frequency and spatial domain radio resources. However,

several possible issues arise in the emerging 6G communication systems, which are elaborated as

follows:

• Multi-domain numerology: Given the wide range of diverse applications and services, the

multi-domain numerology defined in 5G NR enables flexible configuration of the time and

frequency slots, where several resource elements can be specifically configured for meeting

the QoS requirements encountered [130, 212]. However, this flexibility is attained at a poten-

tially severe inter-domain interference [79, 202, 272]. With the emergence of 6G networks,

advanced multi-domain numerology is required for defining a common air interface for sup-

porting hybrid mmWave/THz and multiuser transmission schemes under the integrated 3D

UDN philosophy.

ACM Computing Surveys, Vol. 55, No. 11, Article 235. Publication date: February 2023.



Five Facets of 6G: Research Challenges and Opportunities 235:11

• Mini-slots: As a similar concept to that of multi-domain numerology, the advanced philos-

ophy of reserving mini-slots within a timeslot for prioritized latency-aware or reliability-

aware services has emerged [150]. However, the provision of mini-slots is challenging due

to the associated dynamic configuration required by the multi-domain numerology aided

multiuser transmission schemes. Furthermore, how to strike a beneficial compromise be-

tween the existing services and the emerging 6G applications and scenarios is a substantial

open challenge.

• Grant-free transmission: Conventional grant-based uplink transmission imposes high latency

owing to performing four-phase handshakes relying on access request, access grant, trans-

mission, and acknowledgment [192]. By contrast, grant-free transmission facilitates direct

uplink transmission under a simplified two-phase procedure of transmission and acknowl-

edgment [2, 178, 191]. Despite the gradual maturing of this subject area, the conception

of low-overhead grant-free transmission for hybrid multi-domain numerology and mini-

slots requires dedicated community effort. This is particularly urgent in the area of joint

user-activity and channel estimation, as well as iterative synchronization and data detec-

tion [142, 233] for multiuser network architectures.

• From OFDM to OTFS: As part of the evolution of wireless communication through five gen-

erations, the system capabilities have improved by orders of magnitude, particularly the

achievable bit rate. The corresponding symbol durations have been reduced commensurately,

which results in ever more dispersive channels requiring more powerful higher-order chan-

nel equalizers. As part of this trend, it became clear that using single-tap frequency-domain

equalization as in OFDM is a more attractive solution for high-rate systems operating in dis-

persive channels than using excessive-order time-domain equalizers. As another dominant

trend of the same era, the vehicular velocity has also been escalating, and so did the car-

rier frequency, since high-rate high-bandwidth systems can only be accommodated at high

carrier frequencies, where unused bandwidth is still available [81, 240]. This trend heralded

the era of high-Doppler systems. Against this backdrop, it is clear that a fundamental under-

standing of wireless propagation relying on the family of Bello-functions [76] is of pivotal

significance. This is particularly in the context of high-velocity UAV, aeroplane, and satellite

communications, which is likely to become part of the SAGIN (space-air-ground integrated

network) networking concept [136], or referred to as IGAS of the emerging 6G systems.

In the associated high-mobility and high-Doppler contexts, it becomes attractive to carry

out the associated signal processing in the so-called delay-Doppler (DD) domain [76]

rather than relying on the classic time-frequency-domain OFDM principles. This avenue

of thought leads to the concept of OTFS (orthogonal time-frequency space) modulation

transceivers [80, 204, 258], as detailed in the following. In simple tangible terms, a linear

time-invariant (LTI) system having a time-invariant channel impulse response (CIR) has

an infinite coherence time, where each CIR tap remains constant versus time. Clearly, this is

a dispersive CIR and its Fourier transform gives the frequency-domain channel transfer

function (FDCHTF). But again, in practice, CIR taps tend to fluctuate, and even the receiver

is stationary owing to the movements of people and objects, hence resulting in linear time-

variant channels that impose frequency shifts due to the Doppler effect, yielding frequency-

domain dispersion. Recall that based on the Fourier transform, a non-dispersive Dirac-delta

CIR results in a flat FDCHTF, of which the time-dispersive CIRs result is frequency-selective

FDCHTF. By the same token, high-Doppler frequency-dispersive channels are time selective,

and in reality, the linear time-variant channels of high-mobility scenarios are typically both

time- and frequency dispersive upon encountering long-delay CIRs and high-velocity, high-

Doppler propagation scenarios. The classic OFDM systems tend to use adaptive bit-loading
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of the subcarriers of the 2D time-frequency plane, which have found their way into numer-

ous systems, including the 4G and 5G systems. Instead, the more recent OTFS technique re-

lies on the DD domain mentioned previously, and it is shown to be capable of outperforming

OFDM, especially in high-Doppler SAGIN applications [249]. As a benefit of the sparse and

quasi-stationary nature of the DD domain, convenient low-overhead DD-domain channel

estimation becomes possible [210], but there are numerous open problems to be addressed

by future research in other works [209, 211, 249], such as the choice of the most appropriate

near-capacity channel codes and multiple access techniques, just to name a few.

In contrast to traditional radio transmission, advanced next-generation technologies will include

non-radio frequency (RF) solutions relying on laser-based optical communications, visible light

communications (VLC), and quantum communications [25, 44, 127, 235]. The pertinent research

issues consist of power control and modulation design for laser-based optical wireless communi-

cations (OWC) and VLC [270]. A detailed tutorial on quantum key distribution (QKD) designed

for satellite channels may be found in the work of Hosseinidehaj et al. [89] and Pan et al. [170].

2.3 Unlicensed Spectrum Access

Given the thirst for bandwidth, there is a need for advanced bandwidth-efficient transmission

techniques. Therefore, unlicensed spectrum accessing, including both the traditional sub-6-GHz

frequencies and the mmWave band, has become an active research topic of next-generation net-

works [157]. In the unlicensed spectrum [157], interference mitigation becomes a particularly cru-

cial research issue. The networks using unlicensed spectrum include licensed-assisted access

(LAA) [31], IEEE 802.11ax [4], IEEE 802.11be [143], IEEE 802.11ad [196], and IEEE 802.11ay [278].

Moreover, ultra-high-rate THz transmission is supported by the IEEE 802.15.3d standard utilizing

both sub-THz and THz frequencies [100, 172, 194]:

• Sub-6-GHz frequencies: The goal of LAA is to deploy the legacy 4G long-term-evolution-

advanced (LTE-A) system in the 5-GHz band. However, since the pathloss is increased at

higher frequencies, the coverage area is reduced compared to that at 2.4 GHz. Addition-

ally, both the IEEE 802.11ac/ax/be standard systems and weather radar systems are oper-

ated at 5 GHz, where the uplink/downlink interference control and retransmission mecha-

nism constitute the key research issues of LAA. Therefore, LAA employs carrier aggregation

(CA) to guarantee the target QoS of UEs. The IEEE 802.11ax system combines OFDMA (or-

thogonal frequency division multiple access) with sophisticated scheduling mechanisms to

achieve simultaneous multiuser data transmission over separate bands [201]. We also note

that 802.11be is an enhanced version of 802.11ax, which further improves the spectral effi-

ciency by adopting wider unlicensed bands and enhanced transmission techniques [143].

• mmWave frequencies: IEEE 802.11ad/ay operates in the 60-GHz mmWave band and relies

on beamforming to compensate for the high pathloss with the aid of the so-called EDMG

(enhanced directional multi-gigabit) technique [195]. However, the hidden node problem

associated with the usage of 802.11ad/ay critically relying on beamforming remains a chal-

lenging unsolved issue [278]. Furthermore, multiple APs have to be established for practical

multiuser mmWave-based EDMG transmissions relying on the 802.11ad/ay protocols. How-

ever, beamforming training is another potential challenge, which has to be tackled for find-

ing the optimal beam direction in such complex multiuser multi-AP scenarios. Therefore,

an enhanced multi-AP multiuser architecture is proposed in the work of Shen et al. [199],

which is backward compatible with the existing 802.11ad/ay protocol. To elaborate briefly,

the CBFT (coordination based beamforming training) of Shen et al. [199] was designed for

multiple APs and multiple users with the objective of attaining near-unity successful user

ACM Computing Surveys, Vol. 55, No. 11, Article 235. Publication date: February 2023.



Five Facets of 6G: Research Challenges and Opportunities 235:13

association ratio and a maximum tolerable beam alignment outage probability. The APs aim

for flexibly tuning both the length of training frames and of the contention slots, whereas the

users perform their individual association and individual beam training [199]. As shown by

Shen et al. [199] quantifying both the system’s latency and throughput, the CBFT imposes

the lowest latency and yet achieves the highest throughput, substantially outperforming

both the time division method and the conventional 802.11ad/ay protocols.

• THz frequencies: The THz band holds the promise of an abundance of bandwidths capable

of fulfilling the high data rate demands of 6G. As an enhancement of the mmWave IEEE

802.11ad/ay standard, IEEE 802.15.3d is the first protocol ratified for THz transmissions [100].

It supports different applications, such as wireless backhaul/fronthaul, data centers, kiosk

downloading, and even intra-chip networks [172]. The ultra-wide band (UWB) proposed

by the World Radio Conference 2019 (WRC-2019) spans from 2.16-GHz up to 69.12-GHz

bandwidth utilization between the operating frequencies of 252.72 and 321.84 GHz. How-

ever, the THz properties impose several implementation-oriented hurdles both in terms

of the high-power signal generation and signal detection, which require carefully crafted

new THz beamforming techniques. Furthermore, due to the hostile propagation properties,

802.15.3d adopts robust low-complexity modulation schemes, such as the THz single car-

rier mode (THz-SC PHY) and THz on-off keying mode (THz-OOK PHY), both proposed else-

where [100, 172]. From a protocol design perspective, the network coordinator will train its

THz beams with the aid of consecutive beacons transmitted to the devices, whereas the de-

vices will transmit directional association requests for exchanging all desired information.

Given the higher beam resolution of 802.15.3d THz compared to 802.11ad/ay, it requires

new low-complexity and low-overhead THz-oriented beamforming training. Furthermore,

the prospective techniques of 802.15.3d conceived for the THz band include (1) simplified

procedures for initial access and device discovery, (2) multiple access and interference miti-

gation, (3) node mobility and multiple-channel access support, and (4) up to 100 Gbps-level

mid-range wireless fronthaul/backhaul capabilities using nano-antenna arrays. To elaborate

a little further, as elaborated in Figure 4, the beam network leveraging both mmWave wide

beams and THz-oriented pencil beams becomes a promising solution in multi-spectrum ac-

cessing in a collaborative transmission manner. However, it remains an open issue regarding

how to design low-complexity and low-overhead coordinative beam training and transmis-

sion mechanism under limited computing and communication resources for cross-spectrum

and hybrid-radio access networks.

2.4 Multiple Wireless Services

The 5G network supports three rather different types of wireless services, including enhanced

mobile broadband (eMBB), ultra-reliable and low latency communications (URLLC), and

massive machine type communications (mMTC) [176], as depicted in Figure 5. The next-

generation eMBB network services require new transmission and access technologies for achiev-

ing even higher data rates in new wireless network architectures, representing the genesis of the

enhanced ultra-mobile broadband (eUMBB) philosophy. In a similar spirit, the emerging next-

generation enhanced-URLLC (eURLLC) mode has beneficial applications in unmanned facto-

ries, unmanned aircraft, unmanned vehicles, and intelligent transportation systems requiring in-

stant messaging at a high reliability and low latency. Additionally, given the escalation of the

number of connections, there is an increasing need for an ultra-mMTC (UmMTC) design for

supporting more flexible, efficient, low-latency, highly adaptive protocols. In the next-generation

hybrid services, such as the URLLC-eMBB services [64], front-end resource allocation and hybrid

numerology optimization have emerged as open issues.
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Fig. 4. The system architecture of coordinated THz/mmWave multiuser beamforming training.

Fig. 5. Multiple network services for 5G and 6G eras.

As defined in the 3rd Generation Partnership Project (3GPP) specifications, the network’s

functional split [117] is capable of supporting the flexible configuration of the entire core network

and its devices for performing either centralized or distributed computing. In addition to the

services mentioned previously, the research community is also discussing the conception of

both long-distance and high-mobility communications (LDHMC), as well as of extremely

low-power communications (ELPC) [275], as also illustrated in Figure 5. Moreover, as a

prospect potential specification by 3GPP [99, 245], they release the tentative timeline and key
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Fig. 6. Tentative timeline and key technologies from 5G, 5G advanced, and 6G in 3GPP organization.

technologies from 5G and its advanced as well as 6G-era, as summarized in Figure 6. Terrestrial

use cases is proposed at early stage from Release 14 to 16, whereas versatile conceptions of

architectures and spectrum utilization are leveraged in advanced version of 5G from Release 17

to 20. However, from Release 21, powerful AI techniques and new transmission/spectrum for

community usage are tentatively conceived as 6G services in heterogeneous radios. As a result, it

becomes imperative to integrate the networks both horizontally and vertically in support of high

transmission rates, full coverage of remote areas, high-mobility, and lower-power IoT devices.

3 FACET 2: NEXT-GENERATION NETWORKING

3.1 Network Softwarization of SDN/NFV

To fulfill the challenging specifications of next-generation networks, SDN research focuses both

on automatic network management and on the optimization of traffic management, which in-

cludes dynamic real-time automated network management, routing optimization, load-balancing,

multi-path routing, quality management of service routes, and automatic repair of faltering

routes [23, 262, 269]. Network function virtualization (NFV) partitions the real network into

multiple independent virtual networks, which have their individual operating resources in sup-

port of heterogeneous service qualities. The security challenges are attacks against the controller

and blocking of network services [160]. In a nutshell, NFV becomes an important research topic,

which increases the flexibility of network deployment and reduces both the device costs and op-

erating costs. We can further improve the system performance by combining the SDN principles

with optimized management of the tele-traffic routes. Hence, NFV combined with management

and orchestration (NFV-MANO) constitute pivotal research issues to be explored in the field of

network softwarization [5].

3.2 Next-Generation Packet Core Networks

The conventional mobile core network is constituted by specific hardware and software, includ-

ing a mobility management entity (MME), as well as serving gateways (SGWs) and home sub-

scriber server (HSS) units [10]. Although the traditional core network relies on separate control

and data link layers, the processing of packets between these two layers should still be performed

in the switch and router simultaneously. With the rapid development of SDN and NFV, the mo-

bile core network constitutes the natural platform for accommodating the control and data link

layers, which leads to the potential research topic of the so-called virtualized evolved packet core

(vEPC) [182]. The 3GPP organization also proposed the 5G core (5GC) networking concept, includ-

ing both standalone (SA) and non-standalone (NSA) options for flexibly adjusting the configura-

tion of the control and user planes [50, 107]. Integrating SDN and NFV techniques is capable of
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supporting flexible applications for telecom operators. It also contributes to the conception of

the network slicing architecture [107], where a realistic network is partitioned into multiple QoS-

guaranteed virtual networks. However, improving the flexibility and functionality of packet pro-

cessing across different switches becomes one of the salient research issues in the SDN/NFV-

enabled 6G core (6GC) network of the near future.

3.3 Next-Generation Mobile Network Architecture and Management

Thanks to the introduction of SDN and NFV, the architecture and management of next-generation

mobile networks exhibits a high grade of flexibility, intelligence and automation, including ad-

vanced mobile cloud and edge computing. It is a crucial task to adaptively assign computing re-

sources to the cloud and edge. Both mobile edge computing (MEC) [110, 163] and fog comput-

ing [164] constitute important next-generation network architectures, which potentially lead to

the reduction of service latency, as well as to the improvement of both the spectral efficiency

and QoS. Given the increased number of BSs forming heterogeneous networks, conventional man-

ual control of the power allocation and BS deployment becomes infeasible. The advanced self-

organized network (SON) [284] concept subsumes SDN and NFV in support of self-configuration,

self-optimization, self-healing, and self-sustenance. The SON can also automatically execute the

optimization of the key parameter settings [9].

4 FACET 3: IOT

4.1 IoT Access, Sensing, and Data Collection

The IoT is a network formed by the interactions of physical objects or by the related hardware

and software, gleaning information from diverse networks constituted by heterogeneous sensor

devices and controllers [154]. The different IoT networks require diverse types of sensors and

transmission modes, as exemplified by the Internet of Everything, the network of personal wear-

ables [104], industrial IoT (IIoT) [156, 207], intelligent home services, and even the underwater

Internet [102]. It is critical to design a mechanism for efficiently sensing the environments for col-

lecting data and for uploading information to the processing server. However, there are substantial

challenges, such as the coordination of different protocols for improving the system’s power con-

sumption, capacity, and spectral efficiency [74].

The versatile features of IoT transmission are capable of facilitating diverse configurations in

support of either large-scale access, or long transmission distances, low-power, and/or low-rate

operation at low deployment cost [74]. In addition to M2M (machine-to-machine) type communi-

cations, the family of advanced IoT-based protocols include Zigbee, ZWave, Bluetooth Low Energy

(BLE), Bluetooth 5.0, SigFox, IEEE 802.11p for vehicular communications, the Long Range (LoRa)

protocol [203], 3GPP Narrow Band IoT (NB-IoT), and WiFi HaLow for IEEE 802.11ah, which are

so-called low-power wide area network (LPWAN) solutions [15, 183]. The comparison of popular

IoT technologies including NB-IoT, LoRa, and SigFox is summarized in Table 4. To elaborate a little

further, NB-IoT [273] is the standardized protocol relying on 5G BSs for providing convenient IoT

access based on the existing infrastructure. Furthermore, wireless wide area networks based on

LoRa [183] and IEEE 802.11ah are capable of offering private or public network deployment for

industrial applications.

However, these revolutionary techniques should consider the potentially conflicting require-

ments of high area spectral efficiency, low interference, infrequent handovers, and power conser-

vation [20]. A range of further challenging problems are associated with data encryption [103],

traffic management, and resource allocation in low-power IoT networks [203]. The preceding IoT

technologies mainly rely on using narrow band communications. Therefore, we should design ad-

vanced schemes for striking a trade-off among the requirements of narrow bandwidth, low power
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Table 4. Comparison of NB-IoT, LoRa, and SigFox

Feature NB-IoT LoRa SigFox

Alliance 3GPP (2016)
LoRa Alliance

(2015)
SigFox (2009)

Spectrum Licensed Unlicensed Unlicensed

Frequency

In-band LTE,

LTE Guard band,

700–900 MHz

433, 780,

868, 915 MHz
868, 902 MHz

Bandwidth 180–200 kHz 125–500 kHz 100 Hz

Modulation
UL: SC-FDMA

DL: OFDMA

Chirp spread

spectrum (CSS)
UWB

Transmission Half-duplex Half-duplex Half-duplex

Data Rate
UL: 130 kbps

DL: 160 kbps
0.25–50 kbps 100 bps

Output Power
UL: 14–22 dBm

DL: 27–30 dBm
14–30 dBm 14, 20–23 dBm

Max Range 15 km
Urban: 3–5 km

Rural: 15 km

Urban: 10 km

Rural: 50 km

Connectivity 105 devs. 2.5 × 105 devs. 106 devs.

Battery Life 5–10 years 5–10 years 5–10 years

Cost High Low Medium

Interference Low High High

Security High Low Low

Fig. 7. Experimental environment of an LoRa-based IoT network [203].

consumption, tight synchronization, and limited processing complexity. Shen et al. [203] have es-

tablished an LoRa-based IoT network for the complex scenario seen in Figure 7 by proposing a

joint traffic-aware channel and contention backoff window size allocation (TCBA) scheme capa-

ble of handling diverse IoT traffic loads characterized by their packet arrival rates. The IoT covers

multiple research areas, which requires the consideration of the overall network architecture and

various heterogeneous technologies, while tackling the technical challenges of efficiency, relia-

bility, and integration in the sensing layer, the network transport layer, and the operations and

management layer, as well as the application layer [158, 205].
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4.2 Vehicular Networks

As a special use case of IoT, there is an ever-increasing demand for high-performance Internet of Ve-

hicles services [229], which stimulates substantial research. One of the most important challenges

is that of connected autonomous vehicles (CAVs) relying on joint sensing, control, and communi-

cations [63]. The associated IoT devices and sensors are carried by the vehicles with objective of

detecting and tracking objects, such as pedestrians, other vehicles, and traffic signs. Moreover, it is

vitally important to keep track of the status of road traffic. Furthermore, Vehicle-to-Everything

(V2X) [78] supports the wireless exchange of information between vehicles and other connected

devices. For example, V2X communication is capable of supporting the IoT sensors by providing

long-range detection of hazards, traffic conditions, and blind spots outside the vehicular field of

view (FoV). By relying on IoT services, V2X technology improves road safety, traffic efficiency, and

energy efficiency through the employment of road side units. More specific service types include

V2I (Vehicle-to-Infrastructure), V2V (Vehicle-to-Vehicle), V2N (Vehicle-to-Network), V2P (Vehicle-

to-Pedestrian), and V2D (Vehicle-to-Device) solutions relaying either on cellular-based or WLAN

(wireless local area network)-based systems. The C-V2X (cellular V2X) and NR-V2X harness exist-

ing cellular NR-based networks and V2X protocols [78, 187]. Furthermore, as specified by the IEEE

802.11p standard, dedicated short-range communications (DSRC), which is the first V2X communi-

cation service that relies on WLAN technology and supports directly both V2V and V2I services by

forming vehicular ad hoc network [1]. The open challenges in IoT-V2X include their wireless chan-

nel characteristics, resource management, their heterogeneous interfaces, their dynamic topology,

efficient routing and trajectory design, congestion policy, and security and reliability, as well as

joint optimization of sensing, control, and communications [72, 151, 165, 193, 231].

4.3 Social IoT Network

Social IoT (S-IoT) networks are virtual social networks formed by a group of IoT devices be-

longing to people having similar interests [179]. The S-IoT integrates IoT networks, which rely

on ProxSe (proximity services) [92]. Note that under a ProxSe scenario, members of mobile com-

munity networks must be geographically adjacent and are capable of directly accessing D2D or

vehicular communications. The S-IoT can also be regarded as a human social network support-

ing efficient services or facilitating the interaction of sensor devices. The S-IoT is also capable of

reusing social networking modules for IoT networks, including pedestrian/vehicular mobile social

networks [283]. The potential future applications will include advertising, geographic data or con-

tent sharing, social networking platforms, robotic systems, gaming platforms, and the relaying of

data from the users or IoT devices, including the enhanced driving safety, roadside information

access, UAVs, autonomous driving, and environmentally friendly vehicles.

In this context, network science aims for analyzing the resultant complex networks in terms

of their topology, dynamic characteristics, behaviors, functions, and diverse attributes by relying

on graph theory [26], social network theory [7], statistical physics [171], biology [166], and social

science [112]. Some of the open research issues in 6G include but are not limited to (1) the network’s

topology, connectivity, resilience, and robustness; (2) information dissemination assisted by the

epidemic network model and network inference [167]; and (3) the conception of advanced analytic

tools relying on graph theory [58] and game theory [267].

4.4 Security and Privacy

In recent years, numerous network attacks have taken place threatening user security and

privacy [111, 221]. Hence, rapid advances took place in privacy enhancement as well as in

physical-layer security [88]. However, the existing security and privacy protection techniques only

consider a single functionality and service, which has to be extended to multiple services [208].
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Furthermore, next-generation quantum cryptography and post-quantum cryptography have

numerous challenging open problems [38].

The privacy issues of IoT applications in wearable device networks, smart grids, and vehicular

networks are in their infancy. For example, under wireless body area networks (WBANs) relying on

the IEEE 802.15.6 standard [189], wearable device protocols have to be redesigned for ensuring the

security and privacy of wearable devices. The privacy-aware strategies of smart grids associated

with electricity prediction and billing also require substantial future research [168]. Moreover, the

security-critical issues of vehicular networks also require further advances, with special attention

on emergency messages, authentication, and ultra-low latency communications between road side

units and vehicles in the face of high mobility. Additionally, the security and privacy of intelligent

cloud and edge networks also constitute important research topics [247].

5 FACET 4: WIRELESS POSITIONING AND SENSING

5.1 Outdoor Positioning

The most widely used outdoor positioning [29] system at the time of writing is the GPS (global

positioning system), which has a limited position accuracy and limited coverage owing to its high

signal loss. Its shortcomings might be mitigated by beneficially harnessing the signals gleaned

from cellular BSs [227], such as for the location tracking of vehicles and UAVs [118, 144]. However,

the excessive Doppler shift of high-speed movement constitutes a critical challenge in the physi-

cal layer of high-accuracy tracking [39]. By relying on sophisticated AI techniques [232], we can

design compelling outdoor applications around regional points of interests [132]. The associated

space-time-based positioning information can be beneficially exploited for precisely tracking spe-

cific user trajectories. Furthermore, a whole suite of challenging but promising services may be

conceived upon integrating long-distance and/or low-power IoT networks into the existing cellular

vehicle tracking, for example.

5.2 Indoor Positioning

Since the existing GPS system has almost no indoor coverage, the indoor positioning systems

typically rely on WiFi signal strength measurements and pre-recorded RF maps termed as fin-

gerprinting [33, 83]. However, the precision of fingerprint-based indoor positioning techniques

critically hinges on the stability of wireless signals and on the establishment of large databases,

which is extremely laborious [254, 261]. This task may nonetheless be mitigated with the aid of

spatial skeleton databases inferred from indoor map information [42]. As a design alternative,

lower-power Bluetooth [255] and UWB scenarios may also be adopted by the indoor positioning

systems. To improve the attainable positioning accuracy, we can deploy various micro sensors

such as RF identification (RFID), infrared, ultrasonic, and visible light [285], as well as other smart

devices, including accelerometers, gyroscopes, magnetometers, air pressure, ambient sound, and

laser sensors.

Moreover, when aiming for centimeter-level positioning accuracy, the channel state informa-

tion (CSI) has also been widely adopted to collect positioning data [45, 57, 144, 236] to glean a

more complete signal profile of frequency, power, and latency than simply harnessing the received

signal strength [83]. Recent studies have also been conducted in the mmWave [134, 223] and THz

bands, while relying on beamforming techniques [59] to collect higher-dimensional signal sources

for wireless positioning and sensing. In a nutshell, the positioning receiver of the preceding so-

called device-based regimes is required to collect measurement data concerning known reference

points when performing fingerprint-based indoor localization.

However, the evolutionary trend is to design device-free indoor positioning [45, 96, 137, 144] al-

gorithms operating without the aid of wearable devices. The corresponding overall architecture is
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Fig. 8. Device-free wireless positioning and sensing detection with the deployed functional APs, and edge

and central AI servers. The CSI dataset is collected via wireless channels between AP pairs. Local network

parameters are learned by edge AI servers, whereas global model updating and broadcasting are performed

by a central AI server.

illustrated in Figure 8, which is established by relying on multiple APs associated with AI-assisted

edge and central servers. Although Figure 8 might seem complex, it provides an easy-reading anec-

dotal portrayal of the whole gamut of ideas under discussion by the scientific community. As the 6G

standardization evolves further toward a broad global consensus, this figure may be reconstructed

according to the harmonious confluence of ideas elaborated as follows. As shown in Figure 8, the

databases can be gleaned from the front-end AP by measuring and scrutinizing the specific fluctua-

tion of the received signals, which characterize the particular nature of indoor activities, including

motion, positioning, presence, and vitality detection. These issues will be further detailed in the

following section in the context of Figure 9. The edge server carries out the local training of the

network’s model parameters related to its corresponding behavior, and the resultant trained local

models will be merged into a global model by the central server. This device-free positioning phi-

losophy is especially suitable for application scenarios where no wearable devices are available,

including continuous tracking and ushering [280], which allows us to simply monitor the wireless

signals without revealing any user identities [116]. Furthermore, in hostile indoor scenarios of oil

tankers, mining pits, or complex plants [19], it becomes extremely challenging to glean accurate po-

sitioning information. Therefore, the key research issues of indoor positioning include object track-

ing, trajectory modeling, and the associated parameter optimization of device-free positioning.

5.3 Wireless Indoor Detection

Given the rapid development of device-free indoor positioning [45, 96, 137, 144], the applica-

tion scenarios of smart homes, green buildings, factory manufacturing, and healthcare will all

substantially benefit. Moreover, these fine-grained detection techniques will also find innovative
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Fig. 9. Experimental results of (a) CSI for presence observations and (b) CSI for abnormal/normal/apnea

breathing scenarios and the corresponding performances of (c) localization [222], (d) presence detection

[96], and (e) breath rate detection in terms of localization errors, F1-score, and rate of breaths per minute,

respectively.

applications in pedestrian path tracking, presence detection, motion detection, and vitality detec-

tion [32]:

• Pedestrian tracking aims for tracking a human’s walking trajectory within a specific

area [242]. We can distinguish their potential behaviors through historical data. However,

due to the complexity of overlapped signals in the time and frequency domains, it is quite

challenging to carry out multi-object tracking, which remains an open research issue.

• Presence detection infers the existence of people in indoor environments based on the varia-

tion of received signals [114, 279], but the challenge is that not only human presence but also

a range of other events may result in time-varying signals. False detection may take place

even owing to humidity and temperature changes in the air, and due to the unpredictable

locations of interfering objects, which requires time-consuming replenishment of the data-

base. To elaborate a little further, presence detection across different rooms [45, 144] imposes

substantial challenges on the associated signal analysis, where the associated attenuation as

well as multipath effects, which should be jointly taken into consideration. As the detection

coverage area is expanded, it becomes imperative to strike a balance among deployment

costs, implementation complexity, and detection accuracy.

• Motion detection aims for detecting human behavior and movements, such as standing, hand-

waving, falling, slow walking, jumping, and so on [43, 77, 113]. Different movements poten-

tially lead to distinct signal changes in the wireless paths. Hence, advanced algorithms may

be conceived for detecting different human behaviors with reasonable accuracy. However,

the network topology should be carefully designed to avoid interferences from other objects,

which may severely deteriorate the accuracy of motion detection.

• Vitality detection analyzes wireless signals for detecting slight human feature changes, such

as breathing rate [251, 265] and heart rate changes. With the aid of breath/heart rate estima-

tion and prediction, a carer of the elderly may be notified if abnormal heartbeat, arrhythmia,
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apnea, and severe snoring occurs. Due to more subtle changes in the human body compared

to the surroundings, existing advances are confined to a small area or very short distances

to provide adequate detection accuracy.

Most existing techniques utilize wearable devices for maintaining detection accuracy; however,

wearing devices may lead to potential inconvenience and frequent battery recharging [256]. It be-

comes imperative to enhance the signal processing techniques in the physical layer for improving

the attainable device-free detection precision at a reduced computational complexity. Regarding

the techniques illustrated in Figure 8, some authors [96, 222] have established an AI-empowered

device-free WiFi-based CSI learning platform for both positioning, as well as for presence and

vitality detection. The associated experimental results are depicted in Figure 9. It can be read-

ily observed in Figure 9(a) that the CSI difference indicates the presence and absence of humans.

By contrast, Figure 9(b) shows three breathing scenarios, including abnormal, apnea, and normal

states. In comparison to the existing positioning methods found in the open literature and char-

acterized in Figure 9(c), the device-free machine learning based CSI positioning scheme proposed

by Tsai et al. [222] achieves the lowest localization error of 0.15 m. Moreover, the CSI-based pres-

ence detection framework proposed by Huang et al. [96] and characterized in Figure 9(d) has the

highest detection accuracy in terms of the F1 metric defined in their work [96]. In Figure 9(e), it is

observed for vitality detection that the device-free breath detection may approach the performance

of wearable sensing devices.

6 FACET 5: APPLICATIONS OF DEEP LEARNING IN 6G NETWORKS

Given the rapid development of AI-empowered deep learning, both supervised learning as well

as unsupervised learning and reinforcement learning have found favor in solving challenging com-

munications and networking problems [52, 230], as shown in Figure 10. Specific examples are

constituted by radio interference management, resource allocation, multiple parameter optimiza-

tion [214], network traffic prediction, computing resource assignment, and flexible configuration

of network functions [35]. In supervised learning, ground truth labels and fixed-size inputs con-

stitute a deep layered neural network (NN). However, labeling is not required in unsupervised

learning, which exploits the correlation between samples of the dataset. In reinforcement learning,

an agent will interact with the environment and then updates the model based on the correspond-

ing rewards. Note that deep learning can deal with comparably complex problems in a non-linear

and non-convex manner than that utilizing machine learning. Therefore, we can efficiently man-

age both vertical and horizontal networks with the aid of deep neural networks (DNNs). The

AI schemes adopting deep learning for potential 6G applications and solutions are summarized at

a glance in Table 5 and presented next:

• Supervised learning: The open challenges in this technique include data collection and the

appropriate data analytics in practical network scenarios. Taking wireless transmission as

an example, the collected beamforming data from real measurement or from solutions of

convex optimization is served as ground-truth labels in an NN-based training. Moreover,

laborious indoor fingerprinting for collecting signal features should be conducted for posi-

tioning and detection sensing. Several machine and deep learning techniques are designed

to address different types of issues, such as (1) spatial correlation over data classification and

prediction is well tackled by support vector machine (SVM), k-nearest neighbor (KNN),

DNN, and convolutional neural network (CNN), among others [71, 96, 195, 222]; (2) the

temporal-domain problem is addressed by the recurrent neural network (RNN) and long

short-term memory (LSTM) [124, 206, 239]; and (3) large-scale networking policy and

management is perfectly performed by the graph neural network (GNN) [37, 87, 252].
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Fig. 10. Deep learning mechanisms of (a) supervised, (b) unsupervised, and (c) reinforcement learning. The

architecture of network learning of (d) distributed, (e) federated, and (f) transfer learning.

• Unsupervised learning: The research target of this learning mechanism is focused on infer-

ence from an unlabeled dataset. Unlike supervised method with ground truth, unsupervised

learning leverages iterative inference to attain hidden features for either dataset partitioning,

clustering, or augmentation. For example, the generative adversarial network (GAN) is

promisingly adopted in network data augmentation [22, 129, 220] and security [190, 244, 277]

for compensating information insufficiency from practical measurement. The highly com-

plex and high-dimensional large-scale network data processing can be well dealt with by

using the principal component analysis (PCA) method, whereas accessing under an un-

certain and stochastic environment can rely on the hidden Markov model (HMM) or

expectation-maximization (EM) algorithms for maximizing total utility [139]. The grand

challenge lies in the accuracy and confidence of learning results, which becomes an open

issue.

• Reinforcement learning: Such technique is broadly employed for dynamic network policy

adaptation in wireless network communication and computing resource management, net-

work multi-parameters for diverse tele-traffic demands, QoS-guaranteed scheduling, and ac-

cessing [69, 126, 145, 248]. Q learning uses a model-free mechanism by adjusting its policy

according to updated system state and performance. However, its performance is limited by

convergence speed and great uncertainties in a large-scale network. As an enhancement, the

deep Q network (DQN) can tackle the preceding problems by using different model-based

NNs for respective actions and evaluations based on interaction with the environment. How-

ever, the common challenge of reinforcement learning techniques lies in theoretical proofs

of convergence, optimality, and dynamic adaptation.

As a promising extension of DQN, deep deterministic policy gradient (DDPG)-based

learning relies on a pair of NNs forming an action-critic network: the action network
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Table 5. AI for 6G Communication and Networking Technologies

AI Schemes
Machine

Learning

Deep

Learning
Potential Applications and Solutions

Supervised

Learning

� SVM

� Bayesian

� KNN

� LDA

� Decision Tree

� DNN

� CNN

� RNN

� LSTM

� GNN

− Optimum UM-MIMO beamforming for mmWave/THz (DNN, CNN)

− Channel and traffic classification and prediction (SVM, LDA, Bayesian)

− Device-free positioning and detection sensing (KNN, RNN, LSTM)

− Automatic management of integrated 6G RAT (GNN, Decision Tree)

−Mobility-based handover mechanism (SVM, LDA LSTM)

− Big data processing for IoT (DNN, CNN, RNN, LSTM)

− 6G multi-network and multi-service optimization (DNN, GNN)

Unsupervised

Learning

� K-means

� PCA

� SVD

� HMM

� EM

� Autoencoder

� GAN

− 6G network data augmentation (GAN)

−Wireless channel detection and generation (SVD, Autoencoder, GAN)

− Grant-free transmissions (HMM, EM)

− Server data dimension reduction (PCA)

− High-precision trajectory tracking (K-means, HMM)

− 6G network function and BS deployment (K-means)

− Security and privacy enhancement (Autoencoder, GAN)

− Unlicensed spectrum sensing (HMM, EM)

Reinforcement

Learning

� Q Learning

� Monte Carlo

� DQN

� DDPG

� IRL

− Cloud/edge computing resource management (Q learning, DQN, DDPG)

− Enhanced 6G RRM for diverse tele-traffic demands (DQN, DDPG, Monte Carlo)

− Network numerology adaptation (Q learning, DQN, DDPG)

− New user contention and accessing schemes (Q learning)

− QoS-guaranteed virtual networks (DQN, DDPG)

− Transmission and traffic scheduling (Q learning, DQN, DDPG, Monte Carlo)

− Network power control based on wireless experts’ experience (IRL, DDPG)

Distributed

Learning
– –

− Parallel computing in 6GC

−Multi-task oriented communications and networking

Federated

Learning
– –

− Security-/privacy-aware strategies for multiusers and multi-services

− Coordination and cooperation among different 6G networks

Transfer

Learning
– –

− Rapid model establishment for SDN/NFV-based SON

− Positioning and detection in different coverage areas

LDA, linear discriminant analysis; SVD, singular value decomposition.

provides the optimal policy, whereas the critic network evaluates the action. DDPG poten-

tially enhances the stability, flexibility, and adaptability to dynamic wireless communication

systems [34, 93]. Furthermore, multi-agent reinforcement learning [159] is widely adopted in

conjunction with multiple agents controlling their own policies, which mitigates the com-

putational burden and memory requirements at the server. Note that multi-agent solutions

may be viewed as multiple BSs and edges [28], a swarm of drones [257], or vehicles [219].

They interact with the common shared environment and determine their next action without

any information exchange overhead. To elaborate a little further, inverse reinforcement

learning (IRL), also referred to as learning from demonstrations [115], may also find ap-

plications in wireless communications and networking [271]. In contrast to conventional

forward reinforcement learning, IRL is capable of learning from an expert and may exhibit

some human-like behaviors [14], which is popularly applied in robotic control systems.

Furthermore, the complexity of wireless propagation environments and the challenging re-

quirements of high tele-traffic can be readily dealt with by sophisticated transfer learning meth-

ods [152, 263]. Briefly, transfer learning directly employs the models that were previously trained

under a network to a new environment for improving the efficiency of retraining [264]. Given the

rapid evolution of virtualized SDNs, it appears promising to adopt AI techniques for efficiently

assigning resources both to CUs as well as to edge servers and flexibly manage the resultant mo-

bile network [237]. In the past, fully centralized computing was the norm, which often led to
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overloaded situations. As a remedy, distributed learning allows the server to distribute its tasks

to different computing units for parallel processing [234]. For example, the 6GC network is ex-

pected to employ intelligent units for separately managing its control and user planes as well as

the dynamic configuration of network functions [238].

Some other new machine learning and deep learning techniques found in the AI domain and ap-

plied for control and computer vision may also be harnessed for solving wireless communications

and networking problems. As another attractive technique, meta learning relies on sparse sam-

ples and labels for solving heterogeneous tasks [70]. It can promptly adapt the trained parameters

based on just a few experiences in a new environment at an impressive convergence rate and low

computational complexity, which has already been employed in cellular [286], IoT [260], and vehic-

ular networks [259]. AI techniques are also capable of efficiently processing massive amounts of

IoT data [121], whereas the family of unlicensed access technologies may adopt AI-based learning

models for detecting existing networks to avoid interference and packet collisions while improving

the spectrum versus energy efficiency [30]. Moreover, DNNs are also capable of maintaining the

QoS while supporting numerous IoT devices [153]. They can also preserve energy and adaptively

collect environmental data [218]. Additionally, we can support network deployment as well as

prediction and performance evaluation of a massive number of sensor nodes by employing graph

convolutional networks [268]. For ensuring network information security, federated learning can

be employed [125, 162], where the encrypted models of local networks are uploaded and updated

by a global controller, which prevents tapping and inference from the models by eavesdroppers.

In the face of uncertainty, it is promising to conceive deep learning designs for ascertaining the

authenticity of subscribers and for detecting unusual network behaviors, combatting attacks from

external networks, and ensuring data privacy, especially, when relying on both limited computing

resources and information [217, 246].

7 SUMMARY AND THE ROAD TO MULTI-COMPONENT PARETO OPTIMIZATION

This article has listed five key research topics of next-generation wireless, including next-

generation architecture, spectrum, and services, next-generation networking, IoT, and wireless posi-

tioning and sensing, as well as the applications of deep learning in 6G networks. We have investigated

comprehensive literature surveys for the potential promising techniques from the perspectives of

architectures, networking, and applications, as well as scheme designs, which are extended from

the current foundation of wireless and networking. We return to Figure 1 and note that there is

a potentially infinite number of system configurations that may be harnessed by next-generation

systems. Throughout the past five generations, there has been a gradual paradigm shift from band-

width efficiency relying on complex, high-delay near-capacity transceivers [84] toward maximiz-

ing the power efficiency [40], which has the fond connotation of green radio [82]. With the intro-

duction of 5G NR and its URLLC mode, the importance of simultaneously maintaining both low

latency and low bit error rate has reached the limelight. This trend heralds a new multi-component

optimization era [67], in which the research community is expected to find all the so-called Pareto-

optimal operating points of the associated multi-component objective functions, as highlighted for

example in other works [8, 49, 135, 230].

In this context, the following question arises: how can we boldly differentiate Pareto optimiza-

tion from the set of simple conventional trade-offs? Explicitly, when we carry out, for example,

single-component bandwidth-efficiency optimization, we completely ignore any other parameters

or metrics of the system, such as its complexity or delay. In this context, we can, for example, al-

ways approach the Shannonian capacity more closely, if we employ a longer coding, which typi-

cally imposes an increased delay and escalating computing complexity. By contrast, in addition to

this unconstrained Shannonian solution, the Pareto front of all optimal configurations will contain
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Fig. 11. Illustration of a multi-component Pareto-optimization considering two objectives, such as rate, la-

tency, overhead, complexity, and bit error rate metrics.

the specific delay and complexity associated with each individual legitimate channel coded length.

Hence, from physical-layer perspective, this Pareto-optimal approach also goes way beyond the

concept of finite-block-length information theory [174], which simply quantifies the achievable

performance associated with a specific coding length (i.e., delay), but it remains oblivious of the

complexity of a block code capable of achieving it.

To elaborate a little further in the context of a tangible example, let us assume that the multi-

component objective function relying on bit error rate, throughput, delay, and complexity has to

be optimized, as shown in Figure 11. It is plausible that the throughput may be readily increased

upon increasing the number of bits/symbol even without degrading the bit error rate, if we increase

the power (i.e., degrade the power efficiency and vice versa). Indeed, the throughput may also be

improved without degrading the power efficiency to the detriment of the bit error rate owing to

increasing the number of bits/symbol. In this tangible practical context, the Pareto front contains

all optimal solutions. However, by definition, none of the preceding parameters may be improved

without degrading at least one of the others. Some other numerous tangible practical solutions

may be found elsewhere [8, 40, 49, 67, 82, 84, 135, 230].

By relying on an asymptotic concept of multi-task learning [274], we are capable of incorpo-

rating powerful machine learning and deep learning techniques into multi-component optimiza-

tion [215]. Depending on the specific requirements, multiple weighted loss functions can be de-

signed for maximizing the detection accuracy and rate while minimizing the processing time and

energy in conjunction with four respective weights. AI-based multi-component optimization is

capable of decomposing complex objective function spaces, striking a compelling trade-off be-

tween processing efficiency and computational complexity [215]. As for applications in wireless

communications and networking, federated learning and reinforcement learning based schemes

are widely employed for multi-component learning optimization of diverse requirements, such as

rate, throughput, latency, energy-spectrum efficiency, and reliability [21, 85, 128, 281, 282]. Fur-

thermore, transfer learning may be capable of resolving the dynamic multi-objective optimization

problems routinely found in parameter initialization by the exploiting NN’s memory for faster

convergence [106]. To conclude, a subset of open research issues in next-generation wireless are

listed for providing insights gleaned from different fields, as the community moves from single-

component to multi-component optimization. This radical system optimization principle may be

expected to pervade the next-generation era but requires a concerted community effort to make it

a reality!
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