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General Sparse Matrix-Matrix Multiplication (SpGEMM) has attracted much attention from researchers in
graph analyzing, scientific computing, and deep learning. Many optimization techniques have been developed
for different applications and computing architectures over the past decades. The objective of this article is to
provide a structured and comprehensive overview of the researches on SpGEMM. Existing researches have
been grouped into different categories based on target architectures and design choices. Covered topics include
typical applications, compression formats, general formulations, key problems and techniques, architecture-
oriented optimizations, and programming models. The rationales of different algorithms are analyzed and
summarized. This survey sufficiently reveals the latest progress of SpPGEMM research to 2021. Moreover,
a thorough performance comparison of existing implementations is presented. Based on our findings, we
highlight future research directions, which encourage better design and implementations in later studies.
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1 INTRODUCTION

SpGEMM is a special case of general matrix multiplication (GEMM) when two input matrices are
sparse matrices. It is a fundamental and expensive computational kernel in numerous scientific
computing applications and graph algorithms, such as algebraic multigrid solvers [14][13], tri-
angle counting [36][33][124][9], multi-source breadth-first searching [53][116][20], the shortest
path finding [26], colored intersecting [73][42], and subgraphs matching [119][22]. Hence, the
optimization of SpGEMM has the potential to impact a wide variety of applications.

To the best of our knowledge, this is the first survey paper that overviews the developments of
SpGEMM over the past decades. The goal of this survey is to present a working knowledge of the
underlying theory and practice of SpGEMM for solving large-scale scientific problems, and provide
an overview of the algorithms, data structures, and libraries available. This survey covers the sparse
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formats, application domains, challenging problems, architecture-oriented optimization techniques,
and performance evaluation of available implementations. This study follows the guidelines of the
systematic literature review proposed by Kitchenham [74], which was initially used in medical
science but later gained interest in other fields as well. According to the three main phases: planning,
conducting, and reporting, we have formulated the following research questions:

RQ1: What are the applications of Sp)GEMM, and how are they formulated?

RQ2: What is the current status of Sp)GEMM research?

RQ3: How do the state-of-the-art Sp)GEMM implementations perform?

RQ4: What challenges could be inferred from the current research effort?

Regarding RQ1, this study presents a detailed introduction to three typical applications and
addresses how SpGEMM is used in these applications. This will give an insight into the requirements
of SpGEMM in solving real problems. In RQ2, the study looks at existing techniques that were
proposed in recent decades from different angles. Regarding RQ3, we perform some performance
evaluations to have a general idea about the performance of these implementations on prevailing
hardware platforms. Finally, in RQ4, we summarize the challenges and future research directions
according to our investigative results.
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Fig. 1. Year distribution of reported contributions.

To have a broad coverage, we perform a systematic literature survey by indexing papers from
several popular digital libraries (IEEE Explore Digital Library, ACM Digital Library, Elsevier Sci-
enceDirect, Springer Digital Library, Google Scholar, Web of Science, DBLP, arXiv) using the
keywords "SpGEMM", "sparse matrix", "sparse matrix multiplication", "sparse matrix-matrix mul-
tiplication". It is an iterative process, and the keywords are fine-tuned according to the returned
results step by step. We try to broaden the search as much as possible while maintaining a man-
ageable result set. Then, we read the titles and abstracts of these papers and finally include 92
SpGEMM related papers, whose year distribution is presented in Figure 1. It can be seen that the
articles in the past three years have shown a rapid upward trend.

It is difficult to give a sufficient and systematic taxonomy for classifying SpPGEMM research
because the same topic may have different understandings in different contexts, such as load balance
of SpGEMM in distributed, shared-memory multicore, single GPU, multi-GPU and CPU+GPU. We
select several topics that are frequently covered by existing papers, and present the correlation
between papers and topics in table or figure of each section.

The rest of the paper is organized as follows. Section 2 introduces background in detail, including
symbol notation used in this paper, some popular and state-of-the-art compression formats for
sparse matrix, and several classical applications of SpGEMM. Four different Sp)GEMM formulations
are introduced in Section 3. In Section 4, the discussion about the existing solutions for three pivotal
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problems of SpGEMM computation is presented. In Section 5, architecture-oriented Sp GEMM opti-
mization is introduced. Section 6 gives a comprehensive introduction to the Sp GEMM optimization
using different programming models. Besides, we conduct a performance evaluation covering most
SpGEMM implementations in Section 7. A discussion about the challenges and future work of
SpGEMM is presented in Section 8, and followed by our conclusion in Section 9.

2 BACKGROUND

2.1 Preliminaries

2.1.1 Notation. In this section, we first give the symbolic representation commonly used in this
paper, which is presented in Table 1. We use bold capital italic for matrices, lowercase bold italic
for vectors, and lowercase italic for scalars.

Table 1. Symbolic representation.

Symbol Description ‘Symbol Description

A,B,C A and B are input matrices, C is the output matrix ‘ . Inner product of two vectors

;s The i-th row of A

® Outer product of two vectors

General matrix multiplication of two matrices

[ The j-th column of A X .
or a matrix and a vector
a The entry in the i-th row and the j-th column of A ‘ . Multiplication of two scalars or a scalar and a
vector
p,q.r Dimensions: A: pXgq,B:gXxr,C:pXr ‘ o Element-wise multiplication

2.1.2  Sparse Matrix. There is no strict and formal definition of sparse matrix. The most popular
one is given by Wilkinson: sparse matrix is any matrix with enough zeros that it pays to take
advantage of them [52]. Another common quantitative definition is given by Barbieri et al. [50],
that is, a matrix A is sparse if its number of non-zero entries (referred to as NNZ) is O(n).

Table 2. A summary of sparse formats used in existing contributions.

Format Contribution
COO0 [40][57][84][28][133][100][101][81]

[61][31][17][111][41][84][82][94][83][35][75][87][48][130][80][122][120][78][28][86]
[133][77][29][69][92][62][129][103][110][131][66][125][99]

CsC [31][131][129][102][28][77]
DCSC  [17][18][19][20][21][94][8][109]

DIA[84],ELL[69][28],DCSR[18],BCSR[15],HNI[93],CFM[126],Bitmap/BitMask[55][72]
[95][129][98],RLC[63][27],RIR[113],C?SR[115]Tiled structure[89]

CSR

Others

2.1.3 Compression Format. Storing matrices with a dense pattern often leads to a lot of useless
calculations and redundant storage, because they usually have a few non-zero entries (referred to
as non-zeros). The prevailing solution is to store each sparse matrix with a compression format.
Table 2 summarizes the contributions using different formats.

COOQ, CSR, CSC, ELL, and DIA are five basic and popular compression formats. COO is the
plainest format and stores the row index, column index, and value of each non-zero entry in three
separate arrays. CSR is the most extensively used format in existing work. Instead of storing row
indices, CSR stores the row pointers to the first non-zero entry per row. CSC replaces the column
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indices array of COO with column pointers. ELL compacts all non-zeros to the left side. DIA is
specifically designed for diagonal sparse matrices. It stores non-zeros in each diagonal and the
offset of each diagonal from the main diagonal.

In addition to the above five basic formats, some new sparse formats have been proposed over
the past years. Bulug et al. [18][17] propose double compressed sparse column (DCSC), an improved
format based on CSC. It is designed for hypersparse matrix by removing all the repetitions in
column pointers array. They also present DCSR format [18], which is a row-based dialect of DCSC.
Borstnik et al. [15] design an efficient distributed sparse matrix multiplication algorithm using
blocked CSR (BCSR) format. Park et al. [93] propose huffman-coded non-zero indication (HNI)
format, which is a bitmap-based data encoding. It uses non-zero indication bit-stream to replace
row and column indices and encodes the stream with Huffman coding. Xie et al. [126] design
compressed feature map (CFM) for efficiently storing sparse feature maps in convolution neural
network (CNN). In SparTen proposed by Gondimalla et al. [55], a sparse tensor is encoded into a
two tuple of a bit-mask representation and a set of non-zeros. The bit-mask representation has 1’s
for positions with non-zeros and 0’s otherwise. This bit-mask based compression idea is also used
in [72][95][129][98]. Han et al. [63][27] use a CSR variation, run-length encoding (RLE), to store
a sparse weight matrix in deep neural network (DNN). The new format stores a vector v and an
equal-size vector z for each column in the weight matrix, where v saves the non-zero weights, and
z stores the number of zeros before the corresponding entry in . Soltaniyeh et al. [113] propose
REAP intermediate Representation (RIP) to increase the throughput on FPGAs. It has three parts:
shared feature, metadata and distinct features. To overcome the inefficient memory access of CSR,
Srivastava et al. [115] propose a channel cyclic sparse row (C2SR) format, which assigns each matrix
row to a fixed channel in a cyclic manner. In TileSpGEMM, Yu et al. [89] propose a sparse tile data
structure which describes a sparse matrix using two levels of tile information.

2.2 Typical Applications

SpGEMM is a basic and critical component in many applications. We introduce the background of
some applications and how the SpGEMM is formulated and used in these applications as follows.

2.2.1 Multi-source BFS. Breadth-first search (BFS) is a key and fundamental subroutine in many
graph analysis algorithms. The goal of the BFS is to traverse a graph from a given source vertex,
which can be performed by a sparse matrix-vector multiplication (SpMV) between the adjacency
matrix A of a graph G = (V, E) and a sparse vector representing the source vertex [132]. Assume
n = |V|, then the size of A is n X n. Let x be a sparse vector with x; = 1 and all other entries being
zero, then the 1-hop vertexes from source vertex i, denoted as Uil, can be derived by the SpMV
operation: »; = A X x. Repeating the operation from v}, we can receive the 2-hop vertexes from i.
Finally, a complete BFS for the graph G from vertex i is yielded [53]. In contrast, Multi-Source BFS
(MS-BFS) runs multiple independent BFSs concurrently on the same graph from multiple source
vertexes, which can be formulated as SpGEMM. A simple example for MS-BFS is presented in
Figure 2. Let {1, 2} be two source vertexes, A is the adjacency matrix of the graph, and X = (x!, x?)
is a rectangular matrix representing the source vertexes, where x! and x? are two sparse column
vectors with x] = 1 and x = 1 respectively and all other entries being zero. Then, the sparse
matrix B! representing the 1-hop vertexes (denoted as »') from source vertexes {1, 2} is give by
B! = A x X. Repeat the multiplication of adjacency matrix and B': B = A x B!, we can derive
the 2-hop vertexes from {1, 2}. Finally, we get the results of BFS from vertices 1 and 2, which are
{1,3,4,2,5,6} and {2,3,4, 1,5, 6} respectively.
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Many applications run hundreds of BFSs over the same graph. Compared with running BFSs
sequentially, running multiple BFSs concurrently in a single kernel allows us to share the compu-
tation between different BFSs without paying the synchronization cost [53]. As one of the most
expensive operations of MS-BFS, SpGEMM is worthy of more attention to be paid.

Initial state Iteration 1 Iteration 2

(o NNV NNV S ]

Fig. 2. An example of MS-BFS. Vertexes filling in horizontal and vertical lines are being visited by the BFS
starting from vertex {1} and {2} respectively, and vertexes filling in left oblique lines have been visited by the
BFS starting from vertex {1} or {2} [116].

2.2.2  Markov Clustering (MCL). Clustering is one of the unsupervised learning methods for statis-
tical data analysis, and MCL is one of the graph clustering algorithms proposed for biological data
[109]. Using MCL, the closely connected points are grouped into clusters by performing random
walks on a graph based on Markov chains. Let A denote a probability matrix, and each entry in the
matrix is the probability of each point reaching others. The sum of each column in this matrix is
1. There are three steps in the clustering iteration. In the first step of expansion, the probability
matrix of reaching other points starting from any point after one step is given by B = A X A. This
not only strengthens the connection between different areas, but also leads to the convergence
of probabilities. In the second step, all entries smaller than a given threshold are pruned. Then,
the third step of inflation is required to weaken the possibility of loosely connected points by
computing the power of each element in the probability matrix. Next, the matrix is replaced with
the new matrix and used for next iterations. After a number of iterations, the points in a graph are
gradually clustered into groups.

Due to the high time and memory overhead of MCL, high performance MCL (HipMCL) algorithm
is proposed for fast clustering of large-scale networks on distributed platforms [109].

2.2.3  Algebraic Multigrid Solvers. Algebraic Multigrid (AMG) is a multi-grid method developed
based on Geometric multigrid (GMG). AMG iteratively solves large and sparse linear system
Ax = b by automatically constructing a hierarchy of grids and inter-grid transfer operators
[49][16]. Generally, AMG includes two processes: setup and solve. The setup phase constructs
multiple components of multigrid algorithm. The solve phase executes multigrid cycling based
on these components, and SpMV dominates this phase. SpGEMM is an important kernel in setup
phase, whose critical steps are presented in Algorithm 1. It first constructs interpolation operator
P; based on input matrix A (line 3), then the restriction operator R; is the transposition of P; (line
4). Finally, the coarse-grid system Aj.; is constructed using Galerkin product (line 5), which is
implemented with two SpGEMMs [14][13]. Generally, P; is tall and skinny, and Ry is short and fat.
Their non-zeros’ distribution is closely related to the used interpolation algorithms.

These SpGEMM:s, taking more than 80% of the total construction time, are the most expensive
components. Moreover, the construction of operators (thus SPGEMM) is an expensive part in overall
execution since it may occur at every time step (for transient problems) or even multiple times per
time step (for non-linear problems), making it important to optimize SpGEMM [48].
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Algorithm 1: Construction of several important operators in AMG setup phase [14].

Input: A

Output: Ay, ..., A, Py, ..., P

1 Ay — A;

2 forl=0,..,L—1do

3 P; =interpolation(A;); // Construction of interpolation operator

4 R, = PIT // Construction of restriction operator

5 Apy1 = RjA;P;; // Construction of coarse system: Galerkin product
¢ end

2.2.4 Others. SpGEMM is also one of the most important components for genome assembly
[108][59][60], NoSQL database [32][51][67], triangle counting [33][123][124], graph contraction
[54], graph coloring [73][42], the all pairs shortest path [26], sub-graph [119][22], cycle detection
or counting [25], and molecular dynamics [121][1].

3 FORMULATIONS

3.1 Overview

Table 3. A summary of different Sp GEMM formulations.

Formulation Contribution

Row-by-row [61][111][84][82][83][94][35][13][87][45][3][41][46][43][48][86][130][28][80]
[122][78][113][62][29][115] [39][110][131][66][99][40][89]

Inner-product [15][129][9][126][109][3][2][101]

Outer-product [31][128][17][18][84][1][114][58][13][3][2][77][133][107] [91]

Column-by-column [18][8]

In sparse matrix multiplication, two sparse matrices that are multiplied can be accessed either
by row or column. This derives four SpGEMM formulations, which are row-by-row (RbR), row-
by-column/inner-product (IP), column-by-row/outer-product (OP), and column-by-column (CbC).
Table 3 summarizes the existing work using different SpGEMM formulations. As shown in the
table, RbR is the most popular and favored formulation by researchers, followed by OP, then IP,
and the least explored is CbC. In this section, we introduce the calculation of the four formulations,
followed by a discussion on the advantages and disadvantages of the four formulations.

3.2 Row-by-row

RbR formulation is based on the row-wise partitioning of two input matrices. Each row c;, of C is
calculated by summing the intermediate multiplication results of each non-zero entry a; of a;.
and corresponding row by.of B, i.e.

Cix = Z ajk *br,i=1,2,..,p. (1)
kEIi(A)

where I;(A) denotes the set of column indexes k of the non-zeros in the i-th row of A. Figure 3(a)
presents an example illustrating the computing pattern of RbR formulation.

3.3 Inner-product

This formulation is based on the row-wise and column-wise partitioning of A and B respectively.
The result matrix C consists of the inner product of each row of A and each column of B, i.e.

cij = Z @ s by i =120, = 1,2 .07 @)
kel(i,))
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Intermediate Intermediate Intermediate i
A B results A B results A B results A B Imi::[:j(tislate
: [ ][] [o 2] 1 1 2 1 1 1 2 1 8
B x| EE- 3 x| |23= [3 x 23-= 3| | 203 = |
4 5 4 4 5 |4 4 54 4 4 s| [4] 20
+ + +
: "E]_Em B E EE ) 5 B 0
3 x 2.3 = 3 x |23 = [3] x[ 2 3]=| 6o 3 x 23= ||
4 5 l:l 4 s 4 | 4| |s 4 4 5 4 4
+ + +
+ + - +
1 2 1 1 2 1 1 2 1 8 1 2 1
3 x  23= 5 X aE” 3| x 23 = 3| x 2[3])= |9
4 [4 | [20 | [& 5] |4 [« |s][s 20 4l |s 4
(a) Row-by-row (b) Inner-product (c) Outer-product (d) Column-by-column

Fig. 3. Examples of four Sp)GEMM formulations. The rows, columns or intermediate matrices involved in the
computation are labeled with black border [115].

where I(i, j) denotes the set of indexes k such that both the entries a;; and by ; are non-zero. An
example that illustrates the inner-product formulation is presented in Figure 3(b).

3.4 Outer-product

This formulation is based on the column-wise and row-wise partitioning of input matrices A and
B, respectively. The result matrix C is calculated by summing the outer product of each column a;
of A and corresponding row b;. of B, i.e.

q
C=) ai®b., 3)
i=1

An example that illustrates the outer-product formulation is presented in Figure 3(c).

3.5 Column-by-column

This formulation is based on the column-wise partitioning of two matrices, which is similar to the
RbR formulation. Each column c,; of the result matrix C is calculated by summing the intermediate
multiplication results of each non-zero entry by ; of b.; and corresponding column a,y, i.e.

C.j = Z @ ¥ by j=1,2, .07, 4
kEIj(B)

where I;(B) denotes the set of row indexes k of the non-zeros in the j-th column of B. An example
that illustrates the column-by-column is presented in Figure 3(d).

3.6 Discussion

Srivastava et. al [115] compare the data reuse and on-chip memory requirement of four Sp GEMM
formulations. In their work, data reuse is defined as the ratio of the number of multiply-accumulate
(MAC) performed to the size of data read from or written to memory. They assume that all three
sparse matrices are square (N X N) and have the uniform non-zero distribution, and A and B have
the same number of non-zero entries (nnz). Assuming that the NNZ of A, B, and C, has a small
difference, their discussion can be concluded in two points. First, the relationship between the data
reuse of four formulations is: DR;p < DRgpr = DRcpc < DRop. Second, for the on-chip memory,
the relationship is MEMjp < MEMgpr = MEMcpe < MEMop.
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Here we extend the discussion to the size of intermediate results. Let nnzc represent the NNZ in
output matrix C. For RbR SpGEMM, one non-zero entry of A and the corresponding row of B are
loaded and multiplied, generating a vector of size “<. Therefore, its size of intermediate results
that require to be reduced is O(""Zi]#) For IP SpGEMM, a dot product between one row of A
and one column of B is performed, generating one non-zero entry of C. Therefore, no intermediate
results are generated. For OP SpGEMM, an outer product between one column of A and one row of
B is performed, generating an intermediate result matrix of C. Its total size of intermediate results
is O(N X nnz¢). CbC SpGEMM is similar to RbR SpGEMM. Therefore, the relationship between
the size of intermediate results is IR;p < IRgpr = IRcpc < ORop.

Besides, the four SpGEMM formulations are different in storage format and index matching. RbR
prefers to store two input matrices and the output matrix in row-major layout, such as CSR. On
the contrary, the column-major layout, such as CSC, is preferred by CbC. However, IP prefers to
store two input matrices in row-major and column-major layouts, respectively. OP prefers to an
opposite storage format. There is no preference for how the resulting matrix is stored for IP and
OP. Among the four SpGEMM formulations, only IP requires index matching.

Generally, the two most basic operations of SpGEMM are scalar multiplication and addition.
However, they can also be customized and redefined in some applications. For example, Selvitopi et
al. [108] and Guidi et al. [60] present a custom semiring to overload multiplication and addition of
SpGEMM 1in a similar protein sequences identification algorithm. Some popular libraries, such as
CombBLAS [10], CTF [112], and GraphBLAS [37], support user-defined multiplication and addition
on semirings. On that account, Sp)GEMM can be generalized and extended to more fields.

4 KEY PROBLEMS AND TECHNIQUES
4.1 Overview

The typical workflow of Sp)GEMM is presented in Figure 4, which has five stages, including size
prediction, memory allocation, work partition and load balance, numeric multiplication, and result
accumulation. The size prediction stage aims to predict the memory footprint of result matrix
before real execution. The memory allocation stage allocates memory space for result matrix on
target device. The objective of the work partition and load balance stage is to design an efficient
algorithm to fully exploit the performance of parallel processors. Numeric multiplications and
partial additions are performed, and a large number of intermediate results are also generated in
this stage. Result accumulation desires to reduce these results and calculate final results.

Size Memory ‘Work partition Numeric Result
> > > >

o . PR . [-» Output matrix
prediction allocation and load balance multiplication accumulation

Input matrices —»|

Fig. 4. General workflow of SpGEMM.

The multiplication result of two sparse matrices is also a sparse matrix, which requires to
be stored in a compression format. In CSR/CSC format, NNZ of a sparse matrix dominates its
memory footprint, and the sparsity of the result matrix is always unknown in advance. However,
precise prediction for the size of result matrix is always expensive in practice. Moreover, with
the popularization of multi/many-core processors and distributed systems, the parallelization of
intensive computing has become a necessary step for accelerating applications. Sp)GEMM involves
three sparse matrices, which significantly increases the complexity of the problem. Last but not
least, due to the sparsity and irregular non-zero distribution, designing an efficient accumulator
(the data structure that we use to hold the intermediate results) is also a challenging task.
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In the following sections, we discuss in detail the approaches to deal with three challenging
problems: size prediction, work partition and load balance, and result accumulation.

4.2 Size Prediction

4.2.1 Precise Prediction. SpGEMM algorithms using precise prediction usually consist of two
phases: symbolic and numeric phases. In the symbolic phase, the precise NNZ in each row/column
of the output matrix is computed based on row and column indices of input sparse matrices, an
example is shown in Figure 5. Real values of non-zeros are calculated in the numeric phase.

. . . o | o|e| u =nnz(by)+nnz(by) =3
. . . u, =nnz(by,) =1
. . x . R uz = nnz(by,) + nnz(bs,) = 2
. . . . * | uy =nnz(by,) =2
A B C

Fig. 5. An example of precise and upper-bound prediction. Solid dots represent non-zeros. u; represents the
NNZ in the i-th row of C predicted by the upper-bound method.

The implementations of SpGEMM in Kokkos Kernels [99], cuSPARSE [90], MKL [68], and RMerge
[57] are typical representatives of this method. Besides, existing work [41], [87], [40] and [1] also
exploit this approach. In order to speed up the symbolic phase, Deveci et al. [45][46] design a graph
compression technique to compress the matrix B by packing its columns as bits. In [58], the authors
estimate the memory requirement for C as well as the number of bins and allocate space for global
bins in the symbolic phase. SpECK [92] uses size information collected in symbolic execution to
guide the selection of accumulators in numeric phase.

Rows of €
Ly
B . . Columns of B
.
Rows of B
e - L2
R . Columns of A $V; 3
A
. Rows of 4 I
vy vy vz 1

Fig. 6. The three-layer graph. Given input matrices A and B of 3 X 3, three nodes vy, v, 03 at the layer L;
represent three rows of A, and v1’,02”, 03" at the layer Ly represent its three columns. v; is connected to Uj’
only when a;; is non-zero. Then the product A X B can be represented as a three-layer graph.

4.2.2 Probabilistic Method. Cohen [30] transforms the problem of estimating NNZ in the output
matrix to the size estimation of reachability sets in a directed graph, and presents a Monte Carlo-
based algorithm to estimate the size of reachability sets. The algorithm can be demonstrated using
a hierarchical structure graph of matrix product, as shown in Figure 6. The algorithm starts by
assigning a vector of same size, initialized with exponential-distribution random samples, to each
node in L. The vector of each node in the higher layer is equal to the column-wise minimum of
the vectors of its neighbors in the lower layer. Finally, NNZ in each row of C is estimated based
on the vector of each node in Ls. For any tolerated relative error € > 0, it can compute an 1 + €
approximation of NNZ in result matrix in time O(n/e?). Then, Amossen et al. [4] improve this
method to expected time O(n) for some particular €. Anh et al. [5] utilize a similar size estimation
technology based on the rows sampling of A and B. In [30], the authors introduce an algorithm to
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determine the multiplication order of chain products with minimal number of calculation operations.
Paper [107] also uses this three-layer graph representation to estimate the size of result matrix.

4.2.3 Upper-Bound Prediction. The third method computes an upper-bound NNZ in the output
matrix and allocates corresponding memory space. The most commonly used method is to count
NNZ in the corresponding rows of B for each non-zero entry in A. Taking the matrices presented
in Figure 5 for example, the upper bound of NNZ in each row of the output matrix is stored in the
array U = {uy, u, us, ug }. The first row of A has two non-zeros, whose column indices are 2 and
4. Therefore, the upper-bound NNZ in the first row of C equals to the sum of NNZ in the second
and forth rows of B. The ESC algorithm [14][34] proposed by Bell et al. is a representative of this
method. Nagasaka et al. [86] also count a maximum of scalar non-zero multiplications per row of
the result matrix. Then each thread allocates a hash table based on the maximum and reuses the
hash table throughout the computation by re-initializing at the beginning of calculating each row.

4.2.4 Progressive Method. The fourth method, also known as the progressive method, dynami-
cally allocates memory as needed. It first allocates memory of proper size and then starts matrix
multiplication. A larger memory block is re-allocated if the current memory is insufficient. The
implementation of SpGEMM in Matlab [52] is a representative of this method. It first guesses the
size, and then allocates a memory block that is larger by a constant factor (typically 1.5) than the
current space if more space is required at some point.

Liu and Vinter [82][83] propose a hybrid method which calculates the upper-bound NNZ for each
row and groups all rows into multiple bins according to NNZ. The method allocates space of the
upper-bound size for short rows and progressively allocates space for long rows. In TileSSpGEMM
proposed by Yu et al. [89], it first calls the symbolic implementation in NSparse [87] to get the
sparse tile structure of C. Then, it uses binary search to find intersection sparse tiles from A and B.
Finally, bit mask operations are used to calculate the number of non-zeros of each tile in C.

4.2.5 Discussion. Of the four methods, precise method not only saves the memory usage, but also
enables the sparse structure of C to be reused for different multiplies with the same structure of
input matrices [46][61]. Moreover, it presents significant benefits in graph analytics, because most
of them work only on the symbolic structure, no numeric phase [124]. However, the calculation
of two phases means that it needs to iterate through the input matrices twice, leading to higher
computation overhead than other methods. The accuracy and the speed of the second method
depend on the probabilistic algorithm used, and additional memory allocation must be launched
when the estimate fails. The upper-bound method is efficient and easy to implement, but it usually
leads to memory over-allocation. The progressive method allocates memory dynamically as needed,
and additional memory allocation must also be launched when the first allocation fails. In practice,
the choice needs to be made according to the discussed problems.

4.3 Work Partition and Load Balancing

The mainstream work partition and load balancing methods are presented in Figure 7, and we
introduce and discuss these methods in detail in the following sections.

4.3.1 Block Partition. Block partition of SPGEMM can be categorized into 1D, 2D and 3D algorithms
based on how they partition the work among computing units [8][12]. We first introduce the
workcube notation before diving into the details, as shown in Figure 8(b). The front, top, and side
views of the workcube represent the two input matrices and the output matrix presented in Figure
8(a), respectively. The workcube can be divided into 3 X 3 X 3 voxels. Each voxel inside represents
the scalar multiplication of two non-zeros, which are mapped to cells of the voxel in the front and
top views, and contributes to its projection in the side view [11]. Based on this projection, task
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Fig. 7. Classification of SpGEMM partition.

partition of SP)GEMM can be seen as the partition of workcube in different dimensions. Next, we
introduce 1D, 2D and 3D partition based on this notation.
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(a) An example of SpPGEMM (b) Workcube

Fig. 8. The workcube for matrix multiplication.

1D Partition. 1D partition only divides the workcube in one of the three dimensions. As shown in
Figure 9, each sub-figure represents a variant of 1D partition. A "layer" of the workcube is assigned
to one computing unit in all variations. Figure 9(a) divides the workcube by planes parallel to the
top view, referred to as T-partition. Each computing unit is responsible for the multiplication of a
set of rows in A and the entire matrix B, producing the corresponding rows of C. Similarly, Figures
9(b) and (c) divide the workcube by planes parallel to the front view and side view, respectively.
We refer to these two partition variants as F-partition and S-partition.

T-partition. Liu et al. [82] group rows of C to different bins according to their upper-bound
NNZ to maintain a balanced load. Nagasaka et al. [87] partition rows of C according to precise
NNZ in each row in numeric phase. Kurt et al. [75] propose to assign one thread block to a fixed

¢
i

AN

(a) T-partition. (b) F-partition. (c) S-partition.

Fig. 9. Three variants of 1D partition.
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number of rows in A and assign a same number of threads in the block to complete the row-
wise multiplication of each row in A and corresponding entries in B. Deveci et al. [45] propose
a hierarchical and parallel SpGEMM algorithm based on Kokkos library [47]. At the first level,
one kokkos-team is assigned to calculate a set of rows of C. Each kokkos-thread within the team
is responsible to produce a subset of these rows at the second level. Multiple vector-lanes in one
kokkos-thread are assigned to perform the row-wise multiplication of each non-zero entry in the
subset of A and corresponding rows in B at the third level. They also explore T-partition but with
different task assigning schemes for HPC architectures [46]. Winter et al. [122] present a partition
scheme assigning the same NNZ of A to each block while ignoring the row boundaries. Instead of
splitting rows evenly [48], Li et al. [78] split the matrix into multiple row blocks based on NNZ. To
address the input or output reuse problem, Zhang et al. [131] split matrix A into row fibers and
dispatch them to processing elements (PEs) in a SpGEMM accelerator GAMMA, and each PE then
performs a linear combination of row fibers of B to produce a row fiber of C. Shivdikar et al. [110]
group multiple rows in a single window and assign one PIUMA (Programmable Integrated Unified
Memory Architecture) block to a window. The size of a window depends on the scratchpad size.

F-partition. Azad et al. [9] assign processors to process columns of the upper triangular matrix
in triangle counting. Lin et al. [79] design an architecture for SP)GEMM on FPGAs, the computation
is partitioned evenly to all PEs, and each PE is assigned to calculate multiple columns of matrix C.

S-partition. Based on the outer-product multiplication, Deveci et al. [43] divide rows of B into
blocks so that each block can be fitted into the HBM of KNL. This partition also induces a row-wise
partition of A. Zhang et al. [133] optimize the outer-product SpPGEMM by compacting non-zeros of
each row in A to the left so that the data locality for both input and output matrices are jointly
optimized. Gu et al. [58] develop an improved ESC SpGEMM based on outer product. They group
the expanded triples into bins to saturate memory bandwidth.

Others. Ballard et al. [13] present a theoretical and detailed analysis for the communication cost
of Galerkin triple product in the smoothed aggregation of AMG methods. They conclude that the
row-by-row product (T-partition) is the best 1D method for the first two multiplications, and the
outer product (S-partition) is the best 1D method for the third multiplication.

Most of Sp GEMM can be implemented using 1D partition. However, when the NNZ in columns
or rows of the matrix A or B increases, the communication overhead becomes substantially huge
in distributed computing. This indicates that a "layer" in 1D partition is required to be processed by
more computing units. Therefore, the 2D algorithms with fine-grained partition are proposed.

2D Partition. 2D algorithms divide the workcube in two of the three dimensions, so there are
also three variants. Figure 10(a) illustrates three partition variants that divide the workcube by
planes parallel to two of the three views (top and front views, front and side views, top and side
views), referred to as TF-partition, FS-partition and TS-partition hereafter. In TF-partition, each
computing unit computes a block of C. However, in TS-partition and T F-partition, each computing
unit computes a block of intermediate results of C.

TF-partition. SpSUMMA was first proposed by Bulug et al. [18][17] based on dense SUMMA
algorithm [118]. They also present a comparative SpCannon algorithm based on dense Cannon
algorithm [23]. Both algorithms logically organize processors as a 2D grid, and map a block of A
and B to each processor. In SpPSUMMA, each processor broadcasts data to other processors in the
same row/column of the grid, and also receives data broadcast by these processors. In SpCannon,
processors exchange data using point-to-point communication. In both algorithms, each processor
accesses a row block of A and column block of B, and calculates a result block of C, which conforms
with TF-partition. Matrix partition similar to SUMMA is also used by Jin et al. [71]. Patwary et al.
[94] partition A by row, while partition B by column when a certain condition is satisfied.
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Fig. 10. 2D and 3D partition.

TS-partition. Deveci et al. [43] partition A and B by row for GPU. When one partition of A
cannot fit in GPU fast memory, column-wise partition is applied for row strip of A.

2D algorithms perform reasonably well on a few hundred processes. However, as the number
of processes increases, the communication cost becomes a bottleneck, and 3D algorithms were
developed to reduce the communication cost.

3D Partition. 3D algorithms divide all three dimensions of the workcube. As shown in Figure
10(b), each computing unit owns a block of A and a block of B to compute an intermediate result
block of the matrix C.

Azad et al. [8] present a parallel implementation of the 3D SpGEMM algorithm. Hussain et al.
[66] use a similar 3D partition, while dividing each block of B into multiple batches to meet the size
of available memory. To avoid excessive communications and logistic operations of 2D SpSUMMA,
Weber et al. [121] propose a novel SpGEMM algorithm MPSM3 for the computation of the density
matrix in electronic structure theory. All processes are organized as a 3D Cartesian topology, and
each box in the workcube is assigned to a specific process on terms of the physical properties of the
problem. Yu et al. [89] divide two input sparse matrices into a number of 16-by-16 tiles to utilize
8-bit unsigned char data type for local indices.

4.3.2  Graph Partition. Traditional block-based matrix partitions rarely consider the workload
(NNZ in each block) assigned to each processing element. For example, SpSUMMA presumes that
non-zeros are uniformly and randomly distributed across the row/column, which may not hold for
most sparse matrices.

Hypergraph Partition. The hypergraph representation for C = A X B, denoted as H =
(V,N) = (VABUVC, N), is defined as a set of vertices V' and a set of nets (hyperedges) N. Here
we take the outer-product Sp)GEMM as an example to introduce the hypergraph based partition. In
H = (VABUVEC N), each vertex v; in VAB denotes the outer product of the column a,; of A with
the row b;, of B. V¢ contains a vertex v; j for each non-zero entry c;; in C. N contains a net n;; for
each non-zero entry c;; in C. Figure 11(a) shows an example of SpGEMM and Figure 11 (b) shows
its hypergraph representation. The task of hypergraph partitioning is to divide a hypergraph into
two or more roughly equal-sized parts such that a cost function on the nets connecting vertices in
different parts is minimized [24].

Bipartite Graph Partition. A bipartite graph for C = AX B, denoted as G = (VABUNC, &), is
defined as two disjoint sets of vertices V4B and V¢, and a set of edges &. Also take outer-product
SpGEMM as an example. The semantics of each vertex in G is the same with those in H. The
difference is that the dependence of c;; is captured with edges, instead of a net. If an outer product
represented by v, produces a partial result for ¢;;, an edge connecting vertices vy and v;; is added
in €. An example of a bipartite graph for the outer-product Sp)GEMM is presented in Figure 11(c).
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Fig. 11. Hypergraph and bipartite graph representation of SpGEMM.

Hypergraph-based partition was first applied in outer-product SpGEMM by Akbudak et al. [1].
Besides, they also present two extended hypergraph model, which partitions the matrix C by row
and column, respectively. Ballard et al. [12] present a fine-grained hypergraph model, in which each
vertex is either a scalar multiplication or a non-zero entry. Based on this hypergraph model, Kurt et
al. [75] use an iterative method to construct hypergraph partitions to ensure that the data entries
involved in each partition does not exceed the cache capacity. Akbudak et al. [2] use hypergraph
model to improve outer-product and inner-product Sp GEMM.

Akbudak et al. [3] propose and compare multiple computational partitioning models based on
hypergraph and bipartite graph partitioning, with the aim of reducing message volume. Further,
three communication hypergraph partitioning models for three S)GEMM formulations are proposed
to reduce the latency cost. The bipartite graph model for row-by-row SpGEMM was later used
by Demirci et al. [40]. Instead of associating two weights with each vertex, they propose a three-
constrained partitioning in which each vertex is associated with three weights. Selvitopi et al.
[107] apply bipartite graph and hypergraph models for simultaneous scheduling of the map and
reduce tasks for MapReduce jobs. Demirci et al. [39] propose hypergraph models for 2D and 3D
partitioning to improve the performance of 2D and 3D SpGEMM.

4.3.3 Discussion. Each partition algorithm usually has its own design considerations and advan-
tages. As the most commonly used sparse formats, CSR and CSC usually store sparse matrices
by rows and columns, respectively. It is compatible with the 1D partition. The workload of 1D
partition is closely related to the non-zeros distributions in the divided rows or columns, and the
non-zeros distributions in the other sparse matrix. Taking T-partition for example, we assume
that each thread or a group of threads are responsible for the multiplication of one row of A and
entire B. If B is a regular sparse matrix and has uniform non-zeros distribution, then the NNZ in
each row of A determines the workload of each computing unit. Therefore, the longest row of
A dominates the performance. The problem of load imbalance is more serious and complicated
if B is irregular. 2D and 3D partitions are fine-grained and produce a more balanced workload
than the 1D partition. Communication cost is an important metric for the distributed system.
In the 1D partition, each work process accesses an entire input matrix (B for T-partition, A for
F-partition) or output matrix (C for S-partition), which requires a huge communication overhead.
Differently, 2D and 3D partitions just access some rows/columns, or partial non-zeros. The graph
partitioning algorithms build computation and communication graph models to ensure load balance
and minimum communication cost. For S)GEMM with an irregular computation pattern, graph
partitioning algorithms achieve a more balanced load and lower communication cost than block
partitioning algorithms, but at the cost of higher partitioning overhead.

4.4 Result Accumulating

According to the storage structure of the intermediate results, we classify accumulators into three
types: dense, sparse, and hybrid accumulators. The related researches are shown in Figure 12.
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Fig. 12. Classification of accumulators.

4.4.1 Dense Accumulator. Dense accumulators use dense vectors to cache the intermediate results
of current "active" columns or rows in the result matrix. The most popular dense accumulator, was
first proposed by Gustavson [61], usually has three vectors. The first one stores real values. The
second one is used as a tag array to check if a column index has been inserted before. The third
one stores column indexes. An example of the dense accumulator is presented in Figure 13.

ag| 1 1 by, 1]2 €11€12C13C14 €11€12 €13 C1a €11€12C13C14
Ay, by.| 3 val val 1{2 val [4]|1]7
as, X by, | 4 5 bool |F|F|F|F bool |[F|T|T|F bool |[T|T|T|F
[P by, 6 column column| 2 | 3 column| 2 |3 | 1
) A B ) ) Initial status =—— aq;-by, —— ayq by, +a43- ngl
T Y
Input matrices Dense accumulator

Fig. 13. An example for dense accumulator. Each non-zero entry in the first row of A is multiplied by the
corresponding row of B. The intermediate results are stored in the dense array val, the corresponding entry
in the array bool is set to true, and the column index that has not been recorded is pushed into the array col.

Gustavson’s algorithm allows random access to a single entry in a specified time, and it is
widely used and improved by many successive researches [52][94][111][77]. For example, the SPA
accumulator in Matlab [52] uses a dense vector of the same size as the column size of C, a dense
vector with true/false "occupied"” flags, and an unordered list of the indices whose "occupied" flags
are true. Elliott et al. [48] note that prolongation matrices in the AMG method are usually tall and
skinny, so they use a local dense lookup array for each thread that supports fast memory space
allocation for result matrix by page-aligned and size-tracked techniques.

4.4.2 Sparse Accumulator. In sparse accumulator, intermediate results for a row are stored in
compact data structures. There are two types of method for merging: list and hash-based methods.

List-based accumulating usually sorts the intermediate results by column indexes. According
to the sorting algorithms utilized, we classify researches as follows. Radix sort based methods
allocate the entries to be sorted to some "buckets", so as to achieve the goal of sorting. Bell et al.
[14] propose the ESC algorithm, which sorts many scalar products in the second phase. It has been
improved in [83] and [78]. Dalton et al. [35] use the B40C radix sort algorithm [85] which allows
specifications in the number and location of the sorting bits to accelerate the sort operation. Gu
et al. [58] use an in-place radix sort to group keys by a single byte sharing the same valid byte
position. In [80], a sparse accumulator, which sorts data in the GPU registers, is proposed. Merge
sort based methods first divide the sequence to be sorted into several subsequences. Then each
subsequence is ordered, and all subsequences are combined into an overall ordered sequence. In
[57], the sparse rows of B selected and weighted by corresponding non-zeros of A, are merged in a
hierarchical way similar to merge sort. Besides, Liu et al. [80] propose a GPU register-based merge
algorithm, which demonstrates significant speedup over its original implementation. Heap sort

ACM Comput. Surv., Vol. 55, No. 12, Article 244. Publication date: March 2023.



244:16 J. Gao et al.

based accumulator is proposed by Azad et al. [8]. The intermediate result is represented as a list of
triples, and each triple includes row index, column index and value of each non-zero entry. A k-way
merge on k lists of triples is performed by maintaining a heap of size k, which stores the current
minimum entry in each triple list. Then a multi-way merge routine finds the minimum triple from
the heap and merges it into the current result. Nagasaka et al. [86] implement a heap-sort based
sparse accumulator on multicore architectures.

I hash table
i ba b ba b key | val
: a. | 1 1 1] 2 2} ; key | val key | val
: ay, x| 3 hash 3 7 shrink| 2 1 | sort | 1 4
i
1 az 4 5 1 7 3 7 2 1
i

1 4 3 7
: Ay 6 110
i A B

hash: column=key

Fig. 14. An example of hash-based accumulator for calculating the first row of the output matrix C. The hash
table is initially set to -1. The column indices of B serve as the key of hash table.

Hash-based. Hash-based sparse accumulator first allocates a memory space based on the upper
bound estimation as the hash table and uses the column indexes of the intermediate results as the
key. Then the hash table is required to be shrunk to a dense state. Finally, we sort the values of
each row of the result matrix according to their column indexes to obtain the final result matrix
compressed with sparse format [80]. An example is shown in Figure 14. Sp)GEMM implementation
in cuSPARSE [41][90] is a representative of this accumulator. Deveci et al. [44] design a hashmap-
based, two-level, sparse accumulator that supports parallel insertions and merges from multiple
vector lanes. Weber et al. [121] use the hash table to store each row of the matrix C based on the
distributed BCSR format. In [5], the row and column indices of an intermediate result, normally
stored in two 32-bit numbers, are first compacted into a single 32-bit value and then inserted
into hash table as key. It is helpful to accelerate the later sorting operation. Nagasaka et al. [87]
utilize vector registers in KNL and multi-core architectures for hash probing to accelerate hash-
based SpGEMM. Their hash function is defined as the reminder after division of the column index
multiplied by a constant number by hash table size. Liu et al. [80] optimize the data allocations of
each thread in a hash-based accumulator utilizing GPU registers. Selvitopi et al. [109] compare the
heap and hash sort in distributed HipMCL, and conclude that the latter method performs better.

4.4.3  Hybrid Accumulator. Deveci et al. develop KKMEM [45] and KKSpGEMM [46] algorithms,
which support two hash-based accumulators and one dense accumulator. Which accumulator
to use depends on the features of the discussed matrix. KKTri-Cilk algorithm [127] uses a sim-
ilar accumulator to that in the KKSpGEMM algorithm. Meanwhile, it is optimized in the Cilk
implementation.

Sparse or dense accumulators are selected according to the distribution of non-zeros in different
parts of a matrix. Liu et al. [82][83] propose a hybrid parallel result accumulating method. Three
sort-based accumulators are selected according to the upper-bound NNZ in each row. In the spECK
algorithm [92], a local balancer decides which accumulator to use for each block to achieve the
best expected performance from the following three accumulators: direct reference, hashing, or
dense accumulation. The hash function of its hash-based accumulator multiplies the element index
with a prime number and then divides the result by hash table size. TileSp GEMM [89] uses the
sparse accumulator working on a sparse tile and the dense accumulator working on a dense tile.
Whether a tile is dense or sparse is determined by a preseted threshold.
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4.4.4 Discussion. Compared with sparse accumulators, dense accumulator requires a large memory
space, especially in high concurrent scenarios. They usually require to maintain a private dense
accumulator for each thread or thread group, which greatly reduces the scalability of the algorithm.
There are three cases in which dense accumulators are preferred: (1) in hybrid accumulators
to process the rows with a large number of non-zeros per row; (2) in SpGEMM algorithms on
CPU whose large cache and modest computing cores are preferred by dense accumulator; (3) in
SpGEMM whose result matrix has small column size. In contrast, the sparse accumulators have
lower memory requirement and are more suitable for Sp GEMM whose result matrix has a large
number of columns. At the same time, sparse accumulators are also the primary choice for GPU-
based SpGEMM algorithm, because GPU has limited shared memory. Among sparse accumulators,
hash-based accumulators have low memory space requirement, with the cost of handling collisions.
For three list-based sparse accumulators, the performance of the used sorting algorithm determines
their performance. Heap and merge sort has the same time complexity, while the latter presents a
higher space complexity. Radix sort is preferred when processing large-scale array.

5 ARCHITECTURE ORIENTED OPTIMIZATION

Different computer architectures usually have different computing and memory features, so the
optimization of Sp GEMM is closely related to the architecture used. In the following sections,
we introduce SpGEMM optimization for five popular architectures: CPU, GPU, FPGA, ASIC, het-
erogeneous, and distributed platform. Figure 15 summarizes existing contributions on different
architectures.

CPU-[94][28][58][29][48]
GPU-[129][82][83][125][14][41][77][92][57] [43]1[80][35][75] [87][122][99][89]
FPGA-[79][70][62]
ASIC-[91][97][64][131][114][115][133]

CPU+GPU-[111][130][84][83][105]
Heterogeneous { CPU+FPGA-[113]

Others-[81]
Distributed-[102][11][66][17][19][21][107][8][71][1][40][121][15]

Architectures

Fig. 15. A summary of existing researches on different architectures.

5.1 CPU-based Optimization

5.1.1 Optimization for Memory Access. Patwary et al. [94] propose to divide A and B by row and
column, respectively, aiming to alleviate the problem of high L2 cache misses caused by dense
accumulator. Elliott et al. [48] present a single-phase OpenMP variant of the Gustavson algorithm.
They use page-aligned allocations and track used size and capacity separately to accelerate the
allocation of thread-local memories. Gu et al. [58] use the propagation block technique to improve
the memory bandwidth utilization of OP SpGEMM. They first save the multiple tuples generated by
the outer product into multiple partially sorted bins, and then sort and merge each bin independently.
Chen et al. [28][29] design multiple SPGEMM kernels based on different sparse formats. They all
utilize coalesced DMA transmission instead of discrete memory access to achieve fast data loading
from main memory. Furthermore, they reserve a minimum partition of B in local data memory to
improve data reuse and avoid redundant data loading.

5.1.2  Optimization for Load Balance. In [94], matrices are divided into small partitions and dynamic
load balancing is used over the partitions. They find that better results are achieved when the total
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number of partitions is 6-10 times the number of threads. Chen et al. [28][29] present a three-level
partitioning scheme for Sunway architecture. At the first level, each core group in the SW26010
processor performs the multiplication of a sub-A and B. At the second level, each CPE core in a
core group multiplies the sub-A by a sub-B. At the third level, to fit the 64 KB local data memory
in each CPE core, sub-A and sub-B are further partitioned into several sets. To achieve a balanced
load, they divide A and B according to the computational loads rather than rows.

5.1.3 Optimization for Data Structure. Patwary et al. [94] store each column partition of B in an
individual CSR format. This requires to change the data structure of B from CSR to blocked CSR
in advance, which brings a significant format conversion overhead. Therefore, they use a simple
upper-bound method to estimate the proportion of non-zeros per row that exceeds the size of the
L2 cache, and format conversion occurs only when this proportion is higher than 30%.

5.2 GPU-based Optimization

GPU has emerged as a promising computing device to HPC for its massive parallelism and high
memory bandwidth. On the one hand, a GPU has thousands of streaming processors (SP). Applica-
tion optimization on GPU should address the problem of scalable parallelism and load unbalancing.
On the other hand, GPU has a hierarchical memory architecture including thousands of registers,
on-chip shared memories and caches, and local and global memory. Most GPU architecture-oriented
optimizations aim to reduce the memory traffic between on-chip and global memory.

5.2.1 Optimization for Memory Access. In [35], Dalton et al. propose an improved ESC method,
which stores the non-zeros of A in shared memory to avoid repeated loading from global memory.
In [122], Winter et al. propose an adaptive chunk-based GPU SpGEMM approach (AC-SpGEMM),
which improves ESC algorithm by reducing intermediate results of C within shared memory.
Gremse et al. [57] also use shared memory to merge intermediate results. The main idea is to
reduce the overhead of global memory accesses by merging rows using sub-warps. Then in [87],
Nagasaka et al. propose a fast S GEMM algorithm that only requires a small amount of memory and
achieves high performance. Since the memory subsystems of NVIDIA® GPU differ from generation
to generation significantly in both bandwidth and latency, two different data placement methods
are proposed in [43]. One is to keep the partitions of A and C in fast memory and stream the
partitions of B to shared memory. The other is the opposite. Which method to choose often depends
on the features of the input matrices. In [82][83], memory pre-allocation for the result matrix is
organized using a hybrid approach that saves a large amount of global memory space.

5.2.2 Optimization for Load Balance. In [41], one warp is assigned to one row of A, and each
thread in the warp is responsible for the multiplication of one non-zero entry in the row and the
corresponding row of B. To address the load imbalance between thread blocks, Lee et al. [77] propose
Block Reorganizer based on the OP SpGEMM. The Block Reorganizer first gets the calculation load
of all column-row pairs of input matrices, then combines, splits and assigns these pairs to thread
blocks. Kurt et al. [75] also use one thread block to process multiple rows of A simultaneously.
Yu et al. [89] store input matrices and output matrix as multiple non-empty tiles and assign one
warp to process one sparse tile of C in both symbolic and numeric phases on GPU, which greatly
alleviates the load imbalance caused by irregular non-zero distributions of matrix rows.

To achieve a better load balancing, some work uses thread block to process the same NNZ. In [122],
Winter et al. split the non-zeros of A uniformly and assign each thread block to process the same
NNZ. However, the workload for each block varies based on the intermediate products generated
due to the irregular non-zero distribution in the rows of B. They present a fine-grained load
balancing strategy within thread block. In addition, some researches assign tasks by intermediate
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results. For example, the authors of [83][82] group the rows of the result matrix to multiple bins
according to upper-bound NNZ estimation of each row, and assign different computing units to
each bin to have a better load balancing.

In recent years, some authors have suggested two-level load balancing. SpECK [92] takes advance
of both global load balance which splits the work into blocks, and local load balance which decides
the number of threads assigned for each row of B. Xia et al. [125] also adopt this load balance
strategy in their own GPU implementation of SpGEMM. Also, SpGEMM in Kokkos Kernels [99]
picks the best task assignment method according to non-zeros distribution of input matrices.
Specifically, for the matrices with fewer non-zeros per row, it assigns one thread to a row. For the
matrices with more non-zeros, multiple threads are assigned to one row, and vector parallelism is
used. In [35], SpGEMM is formulated as a layered graph model, and the expansion phase of ESC
method is considered as the BFS in the levels of the layered mode. Then, they parallel the expansion
phase over the multiplication of each non-zero entry of A and the corresponding row of B at the
granularity of thread, warp, or thread block, according to the length of the row referenced from B.

The emerging tensor core unit (TCU) in GPU attracts the attention of researchers. In [129],
Zachariadis et al. utilize TCUs to improve the performance of SpGEMM. They partition the input
matrices into tiles and operate only on tiles which contain one or more non-zero entries.

5.2.3 Optimization for Data Structure. Liu et al. [82][83] present efficient parallel merging methods
for rows with a large number of intermediate results. It consists of four steps: binary search and
duplicate entries reducing, prefix-sum scan, non-duplicate entries copy, and merging of two sorted
sequence in one continuous memory space. Dalton et al. [35] propose an optimization scheme
for the sorting process of ESC method. They replace global memory-based sorting operations
over a large number of intermediate results with multiple parallel shared memory-based sorting
operations over a small number of ones. When the shared memory space is insufficient, the global
memory-based sorting is launched. Liu et al. [80] utilize GPU registers to optimize three typical
sparse accumulators: sort, merge, and hash.

5.3 Field-Programmable Gate Array (FPGA)

FPGA is an alternative computing device to CPU and GPU, and it has customizable data paths,
flexible memory and massive parallel computing units. Lin et al. [79] were the first to address
SpGEMM on FPGAs. Their design allows user-tunable power-delay and energy-delay trade off
by employing different number of processing elements in architecture design and different block
size in blocking decomposition. The authors of [70] believe that the comparisons of the indexes
dominate the performance of SpPGEMM. Therefore, they propose a highly parallel architecture,
which can carry out at least 8xX8 indexes comparison in a single clock cycle. Their design uses the
CbC SpGEMM. Moreover, two different formats are used respectively for matrix A (CSR) and B
(CSC). The work of [62] proposes an FPGA-based reconfigurable framework FP-AMG that can be
reused for all kernels in AMG. The proposed architecture is scalable and reconfigurable, but the
implementation details about Sp)GEMM are not given.

DSP blocks and blocked memory are important components in the design of Sp GEMM on FPGA.
The number of DSP blocks and the size of blocked memory limit the scale of the dedicated hardware.
The problem size is usually very large in practice, and therefore memory blocks are frequently
swapped in and out because of small on-chip memories. However, the operating frequency of FPGA
generally is lower than that of the CPU or GPU, and the data transmission is also time-consuming.
These are the two main reasons why FPGA is not widely employed for Sp)GEMM.
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5.4 ASIC

OuterSPACE [91] is the first work that addresses the ASIC acceleration of SpPGEMM. The authors
explore an outer-product based matrix multiplication and revised sparse format in their imple-
mentation. Sriseshan et al. [114] present a memory-centric architecture MetaStrider to address the
fundamental latency-bound inefficiencies of sparse data reduction. SpArch [133] is proposed to
jointly optimize input and output data, which uses outer-product formulation to reuse input data
and uses on-chip partial matrix merging to reuse output matrix. Different from the outer product,
the authors of [115] present a new architecture (MatRaptor) based on row-wise product. It accesses
the sparse data in a vectorized and streaming fashion. The work in [131] presents a SpGEMM
accelerator Gamma that also leverages Gustavson algorithm. It uses an on-chip storage structure
FiberCache to capture data reuse patterns and supports thousands of concurrent fine granularity
fibers. It also achieves high throughput using a dynamic scheduler and preprocessing algorithm.
Based on the observation that the most compact memory format and the most efficient computing
format need not be the same, the authors of [97] propose an accelerator extension that supports
efficient format conversion and optimal format-pair prediction. ExTensor [64] is an approach for
accelerating generalized tensor algebra using hierarchical and compositional intersection. There
is a metadata engine inside that aggressively looks ahead in the computation to remove useless
computations before they are delivered to the arithmetic units. Generally speaking, hardware accel-
erators prefer algorithms that have small memory footprints. Thereby, row-wise or inner and outer
jointly production are more popular than others in current implementations. Additionally, most
work reported are evaluated using software simulators, such as GEM5 [91][115] or home-made
cycle-accurate simulators [133][131][64][97].

It is interesting to see that six out of seven papers of ASIC optimization are reported after 2020.
However, there is only one paper that presents dedicated hardware design for Sp GEMM. The
number of paper about SpGEMM has rapidly increased in recently years. We are expecting to see
customized chips coming out in the near future.

5.5 Heterogeneous Platform

CPU+GPU. Siegel et al. [111] develop a task-based programming model and a runtime-supported
execution model to achieve dynamic load balancing on CPU-GPU heterogeneous system. For a
CPU-GPU heterogeneous computing system, Matam et al. [84] propose several heuristic methods
to identify the proper work division of a subclass of matrices between CPU and GPU. Liu etl
al. [83][130] exploit heterogeneous processor AMD A10-7850K APU, which shares the system
RAM between CPU and GPU, to improve the performance of memory re-allocation when the first
size prediction fails for some matrices with relatively long rows. Besides, in [105], Rubensson et
al. present a method for parallel block Sp GEMM on distributed memory clusters based on their
previously proposed Chunks and Tasks model [104].

CPU+FPGA. The authors of [113] introduce a cooperative CPU+FPGA architecture REAP. The
sparse matrices are reorganized on CPU and then streamed into FPGA. The CPU performs the
symbolic analysis and packs the non-zeros in an intermediate representation to increase regularity.

Heterogeneous memory architecture. Liu et al. [81] explore the optimization of two sparse
tensors contraction (SpTC), a high-order extension of SpPGEMM in essence, using the persistent
memory-based heterogeneous memory. Based on the knowledge of the SpTC algorithm and data
object characteristics, they statically prioritize the data placement between DRAM and persistent
memory module (PMM) to achieve the better performance.
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5.6 Distributed Platform

Researches of Sp)GEMM on the distributed platform usually aim at minimizing inter-node commu-
nication and simultaneously maintaining balanced load among multiple nodes. In [71], Jin et al.
propose multiple static and dynamic smart scheduling policies for sparse matrix multiplication
under their proposed super programming model (SPM). The distributed Sp GEMM implementations
provided in the EpetraExt and Tpetra packages of Trilinos [65] divide the first matrix A into multiple
computing nodes by row, and then each computing node accesses the needed columns of the second
matrix B that correspond to the column distribution of the divided A rows from a remote location.

<---- Point-to-point communication — Broadcast
Bisf ~ 1 s || B3
Py, “la, W2 fas Aoy 23& =P 471 425 za o B2s
Py3 « -—".':_"_,-“ 3331._._._.,1333 B33 )
Py # - Baz By3
A B A B
(a) SpCannon (b) SpPSUMMA

Fig. 16. SpCannon and SpSUMMA. Take the processor P3 as an example. (a) SpCannon: P;3 sends A3 to
its left neighbor Py, and By to its upper neighbor P;3, and receives Ag4 from its right neighbor P24 and B33
from its lower neighbor P33. (b) SpSUMMA: P23 broadcasts Az along the second row and Bj3 along the
third column.

To improve the performance of distributed Sp GEMM, Bulug et al. [17] propose two 2D algorithms:
SpSUMMA and SpCannon. For both algorithms, P processors are logically organized on a VP x VP
mesh, and matrices A, B, and C are assigned to processors according to 2D decomposition. In
SpCannon, each processor sends and receives VP — 1 point-to-point messages of size nnz(A) /P, and
VP—1messages of size nnz(B)/P. Instead of the nearest-neighbor communication in SpCannon, row-
wise and column-wise broadcasts are used in SpSUMMA. Figure 16 shows examples of SpCannon
and SpSUMMA. Later, they extend the above algorithms to the distributed platform with thousands
of processors using newer MPI version [19][21]. A communication scheme similar to [21] is used
in [15], which provides a distributed blocked compressed sparse row (DBCSR) library aiming to
accelerate SpGEMM in the solving of self consistent field (SCF) equations from quantum chemistry.

In the batched 3D SpSUMMA algorithm proposed by Hussain et al. [66], when the memory re-
quirement to compute the output exceeds available memory of each processor, it accesses each block
of B batch-by-batch. Split-3D-SpGEMM presented by Azad et al. [8] splits each two-dimensional
sub-matrix into ¢ slices along the third process grid dimension. Rasouli et al. [102] propose a new
divide-and-conquer Sp GEMM. It executes data from previous processor while communicating its
data with neighbors to reduce communication time. Ballard et al. [11] analyze the lower bounds of
bandwidth and latency of distributed 1D/2D/3D algorithms, and propose improved algorithms to
lower the communication cost. Weber et al. [121] organize all processes as a 3D Cartesian topology.
Each block Aj;; is located on a specific process according to physical properties of the practical
problem. The process that holds C;; block receives the blocks A;x and By; from other processes,
and performs C;; = C;j + Ay By;.

Selvitopi et al. [107] use two-constraint hypergraph and bipartite graph models to enable balanc-
ing processors’ loads in both map and reduce phases, and minimizing data transfer in shuffle phase.
Demirci et al. [40] design a distributed SpGEMM algorithm on Accumulo. It alleviates multiple
times scanning of the input matrices by using Accumulo’s batch scanning capability. They also
propose a bipartite graph-based partition scheme to reduce the total communication volume and
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provide a balance of workload among servers. In [1], Akbudak et al. propose a two-phases parallel
SpGEMM algorithm, which uses a two-constraint hypergraph partitioning to guide partitioning for
maintaining a balanced load over two phases. In the first phase, each processor owns a column stripe
of A and a row stripe of B, and then finishes the communication-free local Sp)GEMM computations.
The second phase reduces partial results yielded in the first phase to calculate the final value.

5.7 Discussion

In view of the importance of Sp)GEMM in classical scientific computing and its wide application in
graph analysis, ASIC-based Sp GEMM optimization has been increasing in recent years. CPU-based
SpGEMM optimization work mainly focuses on reasonable partition of the input matrices to ensure
high cache hits and load balancing among computing units. The SpGEMM optimization on GPU
usually uses registers and shared memory to speedup multiplication and accumulation as much as
possible, so as to reduce the access to global memory. In view of multi-level parallelism (thread,
warp, and thread block), assigning different workloads to different parallel levels to ensure load
balancing has also attracted great attention of researchers. On heterogeneous platforms, an efficient
partitioning method that can fully utilize the computing power of both CPU and accelerator is one
of the important designing objectives. Balanced workload and minimal communication overhead
among computing processes are critical on distributed platforms.

6 PROGRAMMING MODEL

A programming model is a bridge between a programmer’s logical view and physical view of
program execution on some specific hardware [7]. Over the years, a number of programming
models were proposed and only a few of them are widely used. Most of these popular programming
models are either driven by commercial companies or embraced by open-source communities.
Table 4 lists popular programming models and frameworks reported in the literature.

Table 4. A summary of different programming models.

Model Contribution | Model Contribution
Tasks-based [111][104][71][86][105][127] ‘ OpenCL [84]

OpenMP  [102][66][84][86][48][39] | MPI [102][11][15][3][28][48] [29][19][21][99]
CUDA [571[80](84]1[130](77)[92] [14][41][87][125][$9] | MapReduce [107]

6.1 Task-based programming model

Task-based programming model is a high-level abstraction in parallel computing. In this model, a
workload is partitioned into smaller tasks recursively until a certain task granularity is reached.
The computation of the program follows a fork-join model that concurrent tasks fork at designated
points and join later at a subsequent point. Each task is executed on one processing unit.

There are several task-based programming models used in SpGEMM implementations, and
they have different paradigms. Cilk is a revised-C/C++ language for parallel computing. It uses
two keywords spawn and sync to orchestrate tasks in the computation, and uses a work-stealing
algorithm to balance task in the runtime. Paper [127] proposes KKTri-Clik algorithm and uses a
heuristic strategy to find a balanced partition. Instead of a language extension like Cilk, Threading
Building Blocks (TBB) [96] explores a library-based implementation. The library manages task
mapping and scheduling at runtime. It is only used for memory allocation/deallocation to gain
higher performance on multi-core and many-core processors in [86]. Paper [111] defines a task-
based programming framework that supports partitioning the SpGEMM in blocks to address the
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problem of load balancing. Different from [111], the authors of [104] propose Chunks and Tasks, a
new task-based programming model. It maps the chunks and tasks to physical resources. Paper [105]
also uses this programming model in their implementation. There are also some other customized
task libraries for SpGEMM [71]. However, these libraries are only used in the reported work.

6.2 OpenMP and MPI

OpenMP is one of the most popular programming paradigms to enable threaded parallelism [6].
It uses preprocessing directives to tell compilers which code block can be executed in parallel.
OpenMP is much easier to use than the task-based model. However, programmers have to make
sure that their programs using OpenMP are data race free. The authors of [86] target Intel Xeon Phi
architecture and use OpenMP to parallelize loops. In the domain of high performance computing,
OpenMP is usually used together with MPI, which is a specification for distributed computing API
that enables many computers to communicate with and work together. Generally, Sp GEMM on
distributed systems endorses a two-level parallelism that MPI facilitates communication among SMP
nodes and OpenMP manages multiple-threads on each SMP node [102][66][48][15][39]. Almost
all the work that reported on super computers (Cray XT4 [21], BlueGene/Q system [3], Sunway
TaihuLight [28][29], Astra and Fugaku [99]) and clusters [19] use MPI.

OpenMP is also used for CPU+X heterogeneous architectures, in which X can be any hardware
accelerators, such as GPU [84] and KNL. In general, both host and device are used for computation
and heuristics are designed to find the balanced work division between CPU and X.

6.3 MapReduce

MapReduce is a structured parallel programming model proposed by Google that serves for pro-
cessing large data sets in a massively parallel manner [76]. It is a very important programming
pattern that is supported in the Hadoop framework based on the Hadoop file system. Paper [107]
has its SpGEMM implementation atop MR-MPI, an open-source implementation of MapReduce
written for distributed machines on top of standard MPL This work schedules map and reduce
tasks statically in a MapReduce job to improve data locality and load balance.

6.4 CUDA and OpenCL

Both CUDA and OpenCL can be used to program GPU devices to maximize data parallelism using
the SIMT programming model. Their difference lies in that CUDA is from NVIDIA® and OpenCL is
an open standard supporting many devices from different vendors, such as CPU, GPU and DSP.
The most used versions in existing work include CUDA 4.0 [14][84], CUDA 6.0[57], CUDA 8.0
[80][125] and CUDA 10.x [92]. CUDA uses multiple streams to express concurrency and stream
sequence of operations to GPU devices. Some reported work uses multiple streams to overlap not
only executions, but also data transfers [84]. Results reported in [125] confirm the effectiveness of
launching multiple CUDA kernels with CUDA streams for each group to execute concurrently.

CUDA and OpenCL facilitate the programming of massively parallel computing devices. Neverthe-
less, a deep understanding of the underlying architecture is essential to have high performance gain.
Especially after the new Volta architecture is released, enabling independent threads scheduling,
and it’s more challenging to write correct code on new GPU devices.

In addition, some libraries also provide the Python wrappers that bridge the gap between C/C++
and Python. For example, Pygraphblas [56] makes it easy and simple to call GraphBLAS [37] APIs
in Python. PyTrilinos [106] allows Python developers to import Trilinos [117] packages and then
call their APIs in a Python program.
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Table 5. Detailed information of evaluated libraries.

Device Library Version  Open-source Size prediction Accumulator Format

CPU KK-OpenMP[99] 3.5.00 v precise dense CSR
MKL[68] 2020.4.304 X precise - CSC/CSR/BSR
cuSPARSE[90] 11.4.120 X precise hash CSR
CUSP[34] 0.5.0 v upper-bound list COO

GPU bhSPARSE[83][82] 2015.11.6 v hybrid hybrid CSR
KK-CUDA[99] 3.5.00 v precise hash CSR
NSparse[87] 1.5.0 v precise hash CSR
spECK[92] 2022.1.2 v precise hybrid CSR
TileSpGEMM[89]  2022.1.25 v precise hybrid Tiled structure

Distributed CTF[112] 1.5.5 4 precise dense CSR

system PETSc 3.17.3 v precise list CSR

7 PERFORMANCE EVALUATION
7.1 Overview

In this section, we conduct a series of experiments to compare the Sp)GEMM performance of several
state-of-art implementations on three platforms, including CPU, GPU, and distributed system. Table
5 lists details of the libraries evaluated in each part. CPU and GPU-based SpGEMM implementations
in Kokkos Kernels are labeled with KK-OpenMP and KK-CUDA, respectively.

7.2 System Setup and Benchmark

CPU-based SpGEMM is tested on a machine running 64-bit Ubuntu 18.04 and equipped with one
Intel® Xeon® E5-2680 v4 with 2.40 GHz clock frequency and 14 physical cores, supporting 28
threads. For GPU-based libraries, two different NVIDIA® GPUs are used. The first is Tesla P100,
which is based on Pascal architecture and equipped with 3,584 CUDA cores and 16 GB device
memory. The second is Tesla V100, which is based on the Volta architecture and equipped with
5,120 CUDA cores and 16 GB device memory. The version of CUDA Toolkit is 11.4. The performance
evaluation for distributed SpGEMM is conducted on a cluster including 10 nodes, each of which is
equipped with two Intel® Xeon® Gold 6258R with 2.7 GHz clock frequency and 56 physical cores.
All the tested sparse matrices are downloaded from the SuiteSparse Matrix Collection [38]. We
use the same dataset for performance tests on CPU and GPU. It has 1,880 square and 678 rectangular
matrices. Considering the powerful computing power and non-negligible communication overhead
of distributed system, we choose 10 matrices whose NNZ is greater than 5M. Table 6 lists details of
these matrices. SpGEMM benchmark of A X A, commonly used in Markov clustering algorithm, is
used for all square matrices. The benchmark of A x AT universal in AMG solver, is used for all
rectangular matrices. The performance of both single and double floating-point is tested.

7.3 Evaluation Results on CPU

MKL uses a highly encapsulated internal data structure to perform operations on sparse matrices.
We encode both input matrices in either CSR or BSR format and call mkl_sparse_sp2m to perform
SpGEMM. The MKL implementation supports two-stage execution. The row pointer array of the
output matrix is calculated in the first stage. In the second stage, the remaining column indexes
and value arrays of the output matrix are calculated. We consider the execution time of these two
stages as the run time of Sp GEMM in MKL, while format conversion between CSR/BSR and internal
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Table 6. Tested sparse matrices for distributed system.

Matrix M N NNZ ‘ Matrix M N NNZ

TSOPF_RS_b2052_c1 25,626 25,626 6,761,100 ‘ Chebyshev4 68,121 68,121 5,377,761
TSOPF_RS_b678_c2 35,696 35,696 8,781,949 ‘ testl 392,908 392,908 12,968,200
largebasis 440,020 440,020 5,560,100 ‘ PRO2R 161,070 161,070 8,185,136
marinel 400,320 400,320 6,226,538 ‘ ohne2 181,343 181,343 11,063,545
Goodwin_127 178,437 178,437 5,778,545 ‘ torsol 116,158 116,158 8,516,500

Table 7. Comparison of the number of sparse matrices for which each algorithm achieves the best performance
(the left side of "/") and runs successfully (the right side of "/") on CPU.

.. | # of matrices ‘ Speedup to KK-OpenMP
Precision

| MKL-CSR MKL-BSR KK-OpenMP | MKL-CSR MKL-BSR

single ‘ 1,187/2,342  993/1,235 216/2,396 ‘ 3.46 13.64

double ‘ 1,256/2,304  921/1,212 219/2,396 ‘ 3.56 15.34
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Fig. 17. GFLOPS on CPU ordered by the total number of products.

representation is considered as the preprocessing overhead and discussed later. Besides, we set 28
threads for KK-OpenMP. Figure 17 presents the performance of three SpGEMM algorithms on CPU
ordered by the number of products, which equals to the upper-bound predicted NNZ. Table 7 lists
the number of sparse matrices for which each algorithm presents the best performance and runs
successfully on CPU, as well as the average speedup of MKL-CSR and MKL-BSR to KK-OpenMP.
We make the following observations:

e MKL-BSR and MKL-CSR show better performance than KK-OpenMP for most sparse matrices, and
achieve an average speedup of more than 3x and 13x for both precision, respectively. Specifically,
KK-OpenMP achieves the highest GFLOPS for about 8% matrices in single and double precision.

e MKL-BSR achieves the highest GFLOPS for more than 900 sparse matrices in both precision, but
it fails to run on about 53% matrices. The reason is that the format conversion from default CSR
to BSR poses a large memory requirement.

e KK-OpenMP presents a comparable performance to MKL-CSR and MKL-BSR for large-scale
matrices. The reason is that small-scale matrices can not fully utilize the powerful hardware, and
their performance gain from multi-threaded parallel computing are offset by thread creation and
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synchronization. On the contrary, MKL-CSR runs successfully for more than 90% matrices, and
shows the best performance for about half of them.

We also evaluate the performance of single precision on CPU. For MKL-CSR, the average and
maximum speedups of single to double precision are 1.05x and 2.48x, respectively. MKL-BSR
achieves an average speedup of 1.17x on average. In addition, an average speedup of 1.09x and a
maximum speedup of 2.33x are achieved for KK-OpenMP.

7.4 Evaluation Results on GPU
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Fig. 18. GFLOPS on Tesla P100 ordered by the total number of products.
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Fig. 19. GFLOPS on Tesla V100 ordered by the total number of products.

Seven GPU-based SpGEMM algorithms are evaluated in this section. Figures 18 and 19 present
their performance on Tesla P100 and V100, respectively. Table 8 lists the number of matrices for
which each algorithm achieves the best performance and runs successfully. Moreover, the average
speedup to CUSP is given in Table 9. We summarize our observations in the following points:

e CUSP and TileSpGEMM run successfully for about 72% and 68% matrices on both GPUs. This
is because the SpGEMM implementation of CUSP uses the ESC method, which requires a large
memory space to store the results of scalar multiplication and to support the sorting operation.
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Table 8. Comparison of the number of sparse matrices for which each algorithm achieves the best performance
(the left side of "/") and runs successfully (the right side of "/") on Tesla P100 and V100.

GPU Precision SpGEMM algorithm
CUSP cuSPARSE  NSparse spECK  bhSPARSE KK-CUDA TileSpGEMM
P100 single 0/1,848 43/2,347  791/2,352 1,201/2,333 0/2,375 16/2,391 343/1,689
double 0/1,845 33/2,301 798/2,317 1,165/2,281 12/2,383 28/2,388 357/1,689
V100 single 0/1,853 29/2,346  837/2,367 1,337/2,335 2/2,373 19/2,391 170/1,689
double 0/1,848 17/2,305 847/2,378 1,338/2,335 5/2,385 18/2,391 170/1,695

Table 9. Average speedup to CUSP on Tesla P100 and V100.

SpGEMM algorithm
cuSPARSE  NSparse spECK bhSPARSE KK-CUDA TileSpGEMM

GPU Precision

P100 single 3.70 7.06 7.79 2.69 1.25 4.36
double 3.49 7.33 8.02 2.77 1.40 4.85
V100 single 3.25 6.56 7.78 2.66 0.86 5.02
double 2.96 6.56 7.55 2.49 0.88 4.81

Table 10. Average speedup of single to double precision on Tesla P100 and V100.

GPU | SpGEMM algorithm

| CUSP cuSPARSE NSparse spECK bhSPARSE KK-CUDA TileSpGEMM
P100 | 1.09 1.23 108 111 1.08 1.00 1.03
V100 | 1.05 1.20 106 108 113 1.02 1.08

TileSpGEMM uses a tile format, which requires the input matrix to be square. Therefore, it can
not process all rectangular sparse matrices, which account for about 27% of the entire dataset.

e On both GPUs, CUSP does not present the best performance for all matrices, while spECK and
NSparse achieve the best performance for most sparse matrices. TileSpGEMM outperforms other
SpGEMM algorithms for 10%~20% successfully run matrices. In addition, cuSPARSE and KK-
CUDA achieve the highest GFLOPS for similar number of matrices on both GPUs, and bhSPARSE
is superior to other SpGEMM algorithms for a few matrices on both GPUs.

e KK-CUDA shows different performance on two GPUs compared with other SpGEMM algorithms.
Specifically, its performance on Tesla P100 is better than that of CUSP, and it achieves an average
speedup to CUSP of 1.25x and 1.40x in single and double precision, respectively. On Tesla V100,
however, its overall performance is inferior to that of all other Sp GEMM algorithms.

We also compare the performance of each algorithm with different floating-point precision,
and Table 10 lists the average speedup of single to double precision SpGEMM. We can observe
that the single-precision SpGEMM runs slightly faster than double-precision Sp GEMM on both
two GPUs. Specifically, the average speedups of all SpPGEMM algorithms fall within the interval
[1.00, 1.23] on Tesla P100 and [1.02,1.20] on Tesla V100. Although single-precision SpGEMM runs
faster than double-precision Sp GEMM on most sparse matrices, the difference is not significant,
especially for KK-CUDA, its performance of single precision is very close to that of double precision
on both GPUs. We find that for some SpGEMM algorithms such as spECK and KK-CUDA, the
important parameters are determined according to the floating point precision used. It means that
the performance comparison between two floating-point precision also includes the impact of
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parameters change. On the other hand, the idea of two-stage calculation is used in most Sp GEMM
algorithms. The first stage calculates the size of the result sparse matrix, which does not involve
any floating-point calculation. When the symbolic phase accounts for a relatively large proportion
of the overall execution time, the change in floating point precision has less impact on performance.

100%
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Fig. 20. Parallel efficiency on distributed system. Each line is the average parallel efficiency over all sparse
matrices displayed with a 95% colored confidence interval.

Table 11. Average speedup over 1-process PETSc on distributed system.

SpGEMM | PETSc | CTF

Processes | 2 4 8 16 32 64 128 25 512 1 2 4 8 16 32 64 128 256 512
single | 139 207 3.64 591 7.83 1091 9.81 7.52 7.02]029 040 065 127 237 465 737 711 490 536
double | 1.40 215 359 574 798 1069 1106 779 672|034 052 091 159 314 6.00 1041 10.88 7.50 7.72

7.5 Evaluation Results on Distributed System

The performance of CTF and PETSc on distributed system is evaluated in this section. Figure 20
summarizes their parallel efficiency, and their run time is compared in Table 11, which lists the
average speedup to 1-process PETSc. It can be observed that CTF achieves higher parallel efficiency
than PETSc in almost all processes settings, but its average performance is inferior to that of PETSc.
For single precision, the average speedup of PETSc with all processes settings is higher than that
of CTF. For double precision, however, the average speedup of CTF is close to that of PETSc at 64,
128, and 256 processes, and higher at 512 processes. Moreover, we find that CTF achieves a higher
maximum speedup than PETSc for single-precision SpGEMM when the number of processes is
larger than 32. For double-precision SpGEMM, it holds for all tested settings. In summary, PETSc
achieves the better average performance than CTF, but CTF shows a better parallel efficiency
and is expected to outperform PETSc when a large number of processes are available. Besides,
we also compare the performance of CTF and PETSc with different floating-point precision. The
experimental results from CTF show that the average speedup of single to double over all processes
settings falls within the interval [1.04,1.11]. The interval becomes [1.21,1.40] for PETSc.

7.6 Evaluation Results of Preprocessing Overhead

Since other Sp)GEMM algorithms do not has a preprocessing stage, we only present the preprocess-
ing overhead of MKL-CSR, MKL-BSR, and TileSpGEMM in this section. MKL-CSR includes two
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preprocessing operations: storing an input CSR matrix using the internal data structure (referred to
as import), exporting the output matrix from the internal structure to the CSR (referred to as export).
Although MKL-BSR is superior to MKL-CSR on a considerable number of matrices, it also requires
extra preprocessing operation: format converting between CSR and BSR (referred to as convert).
In TileSpGEMM, two input sparse matrices encoded with the CSR are required to be compressed
using the tile structure (referred to as CSR2Tile), and the output matrix compressed with the tile
structure is also required to be converted to the CSR (referred to as Tile2CSR).

Experimental results show that, for both MKL-CSR and MKL-BSR, the overhead of export is
negligible, and import takes less than one SpGEMM on average. The convert in MKL-BSR is more
time-consuming than other operations, taking about 8 Sp)GEMM on average. In TileSpGEMM, the
format conversion between the tile structure and the CSR requires careful consideration, especially
CSRZ2Tile, because it costs tens of single TileSpGEMM for some matrices. Tile2CSR has less time
overhead than CSR2Tile, about 5 SpGEMM on average.

From the above discussion, we can conclude that most of the preprocessing overhead of Sp GEMM
comes from the format conversion. MKL-BSR, TileSpGEMM, and CUSP use BSR, tile structure, and
COO format, respectively. All other SpGEMM algorithms use the popular CSR. Our evaluation on
preprocessing overhead shows that the proposal of a new format requires careful consideration.
It is necessary to evaluate the performance of Sp)GEMM in specific applications, simultaneously
considering the overhead of format conversion.

8 CHALLENGES AND FUTURE WORK

SpGEMM has gained a lot of attention in recent decades, and the work has been conducted in many
directions. We believe that it will be used in many other fields as the development of IoT, big data,
and Al. We summarize some potential research directions and challenges as follows.

Optimization based on machine learning (ML). One of the challenges of SPGEMM is explor-
ing the sparsity of sparse matrices. Researchers find that the non-zeros’ distribution dominates the
performance of SpMV and SpGEMM on the same architecture. Over the past years, the parameter
auto-tuning and automatic selection of sparse formats and SpMV algorithms based on ML models
have been designed for SpMV optimization, and significant performance improvement has been
observed. However, ML-based SpGEMM optimization is more challenging due to the sparsity
consideration of three input sparse matrices, complicated matrix partitioning, and load balancing.

Optimization of size prediction. Among the four size prediction methods, upper-bound
prediction may result in memory over-allocation, and progressive and probabilistic prediction may
lead to memory re-allocation. Both over- and re-allocation are time-consuming for acceleration
devices, such as GPU, DSP, FPGA, and TPU. On one hand, on-device memory capacity is limited
and may not accommodate such a large amount of data. On the other head, it takes time to copy
data to and from device memory because of separated memory space. Precise prediction is the
most popular method. It not only reduces the overhead of memory management, but also indirectly
improves the performance of result accumulating. However, we compared the run time of each
stage in two-stage SpGEMM algorithms and found that the symbolic stage is even more expensive
than the numerical stage for some matrices. Therefore, more efficient size prediction is required.

Heterogeneous architecture-oriented optimization. CPU is good at processing complicated
logic, while the GPU is good at dense computations. Besides, DSP and FPGA may be used in different
systems. One of the critical questions of porting Sp GEMM to the heterogeneous system is how
to achieve load balance and minimize communication traffic. Moreover, sub-matrices may have
different non-zeros’ distribution. Ideally, relatively dense blocks should be mapped to acceleration
devices, while ultra sparse blocks can be assigned to CPU. Only in this way can each device give
full play to its architecture and optimize the overall computing performance of SpGEMM.
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Application specific optimization. Application specific optimization of Sp)GEMM tends to be
more useful and effective. Taking unsmoothed aggregation-based AMG for example, the sparse
matrix P of Galerkin product PT AP is a binary matrix with at most one non-zero entry per row.
Therefore, the library AmgX [88] develops a custom kernel to speed up the product. However,
in classical AMG, P is a tall-skinny sparse matrix. The calculating order of the Galerkin prod-
uct, (PTA)P or PT(AP), is important to the performance of hash accumulator-based SpGEMM.
Specifically, PT (AP) tends to have less intermediate results accumulating overhead per row than
(PT A)P [88]. Although the SpGEMM optimization based on application characteristics may reduce
its extensibility, it is worthwhile if significant performance gains can be achieved. We expect more
application characteristics to be fully exploited and utilized in the future.

SpMM is well-supported by existing hardware accelerators and GPU devices, as it is an important
kernel of many convolutional algorithms. However, the sparsity of the matrices in convolution is
much lower than that in HPC. Moreover, most high-performance computing units (such as tensor
cores) only support the calculation of low floating-point precision (e.g. 16-bit half precision) because
the precision is not so important in Al applications. This is not true for scientific and engineering
computing, in which double precision is usually used for the convergence of solvers. Converting
a sparse matrix to a dense one and running it on tensor cores are not promising as there are too
much wasting work and extra overhead. SpGEMM is useful in the convolution algorithm if both the
input and model are sparse. As the development of Al techniques, model pruning and optimization
techniques, SpGEMM is expected to be supported in HPC devices.

9 CONCLUSION

The design of an efficient SpPGEMM algorithm, as well as its implementation, is critical to many
large-scale scientific applications. Therefore, it is not surprising that SpPGEMM has attracted much
attention from researchers over the years. In this survey, we highlight some developments in recent
years and emphasize the applications, formulations, challenging problems, architecture-oriented
optimizations, programming models, and performance evaluation. Some interesting conclusions can
be summarized. Row-by-row is the most commonly used formulation because of its high parallelism
and low cache requirement. CSR is the most frequently used storage format, as it is widely used
in various fields and thus avoids expensive format conversion. S)GEMM in MKL presents the
best performance on CPU. On GPU, spECK and NSparse outperform others and achieve the best
performance on a large number of matrices. TileSpGEMM also shows excellent performance for
regular and square matrices. On distributed system, PETSc is the winner when the number of
processes is small. However, CTF presents better performance as the number of processes increases.

In conclusion, we stress the fact that despite recent progress, there are still important areas
where much work remains to be done, such as different formats supporting, application and
architecture-oriented optimization, and efficient size prediction. On the other hand, the heteroge-
neous architecture may give rise to new optimization opportunities, and efficient implementation
in the specific architecture is within reach and can be expected to continue in the future.
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