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Abstract

In general, a graph modification problem is defined by a graph modification operation � and a
target graph property P. Typically, the modification operation � may be vertex deletion, edge
deletion, edge contraction, or edge addition and the question is, given a graph G and an integer
k, whether it is possible to transform G to a graph in P after applying the operation � k times
on G. This problem has been extensively studied for particular instantiations of � and P. In
this paper we consider the general property Pϕ of being planar and, additionally, being a model
of some First-Order Logic sentence ϕ (an FOL-sentence). We call the corresponding meta-
problem Graph �-Modification to Planarity and ϕ and prove the following algorithmic
meta-theorem: there exists a function f : N2 → N such that, for every � and every FOL
sentence ϕ, the Graph �-Modification to Planarity and ϕ is solvable in f(k, |ϕ|) · n2
time. The proof constitutes a hybrid of two different classic techniques in graph algorithms. The
first is the irrelevant vertex technique that is typically used in the context of Graph Minors and
deals with properties such as planarity or surface-embeddability (that are not FOL-expressible)
and the second is the use of Gaifman’s Locality Theorem that is the theoretical base for the
meta-algorithmic study of FOL-expressible problems.
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1 Introduction

The term algorithmic meta-theorems was coined by Grohe in his seminal exposition in [20] in order
to describe results providing general conditions, typically of logical and/or combinatorial nature,
that automatically guarantee the existence of certain types of algorithms for wide families of prob-
lems. Algorithmic meta-theorems reveal deep relations between logic and combinatorial structures,
which is a fundamental issue of computational complexity. Such theorems not only yield a better
understanding of the scope of general algorithmic techniques and the limits of tractability but often
provide (or induce) a variety of new algorithmic results. The archetype of algorithmic meta-theorems
is Courcelle’s theorem [5, 6] stating that all graph properties expressible in Monadic Second-Order
Logic (in short, MSOL-expressible properties) are fixed-parameter tractable when parameterized by
the size of the sentence and the treewidth of the graph.

Our meta-theorem belongs to the intersection of two algorithmic research directions: Deciding
First-Order Logic properties on sparse graphs and graph planarization algorithms.

FOL-expressible properties on sparse graphs. For graph properties expressible in First-
Order Logic (in short FOL-expressible properties), a rich family of algorithmic meta-theorems was
developed within the last decades. Each of these meta-theorems can be stated in the following form:
for a graph class C, deciding FOL-expressible properties is fixed-parameter tractable on C, i.e. there
is an algorithm running in time f(|ϕ|, hC) ·nO(1) , where |ϕ| is the size of the input FOL-sentence ϕ,
hC is a constant depending on the class C, and n is the number of vertices of the input graph. The
starting point in the chain of such meta-theorems is the work of Seese [32] for C being the class of
graphs of bounded degree [32]. The first significant extension of Seese’s theorem was obtained by
Frick and Grohe [16] for the class C of graphs of bounded local treewidth [16]. The class of graphs
of bounded local treewidth contains graphs of bounded degree, planar graphs, graphs of bounded
genus, and apex-minor-free graphs. The next step was done by Flum and Grohe [13], who panelled
these results up to graph classes excluding some minor. Dawar, Grohe, and Kreutzer [10] pushed the
tractability border up to graphs locally excluding a minor. Further extension was due to Dvořák,
Král, and Thomas, who proved tractability for the class C of being locally bounded expansion [12].
Finally, Grohe, Kreutzer, and Siebertz [22] established fixed-parameter tractability for classes that
are effectively nowhere dense. In some sense, the result of Grohe et al. is the culmination of this long
line of meta-theorems, because for somewhere dense graph classes closed under taking subgraphs
deciding first-order properties is unlikely to be fixed-parameter tractable [12,25].

Notice that the above line of results also shed some light on graph modification problems. In
particular, since many modification operations are FOL-expressible, in some situations when the
target property P is FOL-expressible, the above meta-algorithmic results can be panelled to graph
modification problems. As a concrete example, consider the problem of deleting at most k vertices
to obtain a graph of degree at most 3. All vertices of the input graph of degree at least 4 +k should
be deleted, so we delete them and adapt the parameter k accordingly. In the remaining graph all
vertices are of degree at most 3 + k and the property of deleting at most k vertices from such a
graph to obtain a graph of degree at most 3 is FOL-expressible. Hence the Seese’s theorem implies
that there is an algorithm of running time f(k) ·nO(1) solving this problem. However these theories
are not applicable with instantiations of P, like planarity, that are not FOL-expressible.

Another island of tractability for graph modification problems is provided by Courcelle’s theorem
and similar theorems on graphs of bounded widths. For example, graph modification problems
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are fixed-parameter tractable in cases where the target property P is MSOL-expressible under
the additional assumption that the graphs in P have fixed treewidth (or bounded rankwidth, for
MSOL1-properties, see e.g., [8]).

To conclude, according to the current state of the art, all known algorithmic meta-theorems
concerning fixed-parameter tractability of graph modification problems are attainable either when
the target property P is FOL-expressible and the structure is sparse or when P is MSOL/MSOL1-
expressible and the structure has bounded tree/rank-width. Interestingly, planarity is the typical
property that escapes the above pattern: it is not FOL-expressible and it has unbounded treewidth.

Graph planarization. The Planar Vertex Deletion problem is a generalization of planarity
testing. For a given graph G the goal is to find a vertex set of size at most k whose deletion
makes the resulting graph planar. Planarity is a nontrivial and hereditary graph property, hence
by the result of Lewis and Yannakakis [26], the decision version of Planar Vertex Deletion is
NP-complete. The parameterized complexity of this problem has been extensively studied.

The non-uniform fixed-parameter tractability of Planar Vertex Deletion (parameterized
by k) follows from the deep result of Robertson and Seymour in Graph Minors theory [31], that
every minor-closed graph class can be recognized in polynomial time. Since the class of graphs that
can be made planar by deleting at most k vertices is minor-closed, the result of Robertson and
Seymour implies that for Planar Vertex Deletion, for each k, there exists a (non-uniform)
algorithm that in time O(n3) solves Planar Vertex Deletion. Significant amount of work was
involved to improve the enormous constants hidden in the big-O and the polynomial dependence
on n. Marx and Schlotter [28] gave an algorithm that solves the problem in time f(k) · n2, where f
is some function of k only. Kawarabayashi [24] obtained the first linear time algorithm of running
time f(k) · n and Jansen, Lokshtanov, and Saurabh [23] obtained an algorithm of running time
O(2O(k log k) · n). For the related problem of contracting at most k edges to obtain a planar graph,
Planar Edge Contraction, an f(k) ·nO(1) time algorithm was obtained by Golovach, van ’t Hof
and Paulusma [19]. Approximation algorithms for Planar Vertex Deletion and for Planar
Edge Deletion were studied in [2–4].

Our results. Let � be one of the following operations on graphs: Vertex deletion, edge deletion,
edge contraction, or edge addition. We are interested whether, for a given graph G and an FOL-
sentence ϕ, it is possible to transform G by applying at most k �-operations, into a planar graph
with the property defined by ϕ. We refer to this problem as the Graph �-Modification to
Planarity and ϕ problem. For example, when � is the vertex deletion operation, then the
problem is Planar Vertex Deletion. Similarly, Graph �-Modification to Planarity
and ϕ generalizes Planar Edge Deletion and Planar Edge Contraction. On the other
hand, for the special case of k = 0 this is the problem of deciding FOL-expressible properties on
planar graphs.

Examples of first-order expressible properties are deciding whether there the input graph G

contains a fixed graph H as a subgraph (H-Subgraph Isomorphism), deciding whether there is a
homomorphism from a fixed graph H to G to (H-Homomorphism), satisfying degree constraints
(the degree of every vertex of the graph should be between a and b for some constants a and b),
excluding a subgraph of constant size or having a dominating set of constant size. Thus Graph
�-Modification to Planarity and ϕ encompasses the variety of graph modification problems
to planar graphs with specific properties. For example, can we delete k vertices (or edges) such
that the obtained graph is planar and each vertex belongs to a triangle? Reversely, can we delete
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at most k vertices (or edges) from a graph such that the resulting graph is a triangle-free planar
graph? Can we add (or contract) at most k edges such that the resulting graph is 4-regular and
planar? Or can we delete at most k edges resulting in a square-free or claw-free planar graph?

Informally, our main result can be stated as follows.
Theorem (Informal) Graph �-Modification to Planarity and ϕ is solvable in time f(k, ϕ) ·
n2, for some function f depending on k and ϕ only. Thus the problem is fixed-parameter tractable,
when parameterized by k + |ϕ|.

Our theorem not only implies that Planar Vertex Deletion is fixed-parameter tractable
parameterized by k (proved in [23, 28]) and that deciding whether a planar graph has a first-order
logic property ϕ is fixed-parameter tractable parameterized by |ϕ| (that follows from [10,12,16,22]).
It also implies a variety of new algorithmic results about graph modification problems to planar
graphs with some specific properties that cannot be obtained by applying the known results directly.
Of course, for some formulas ϕ, Graph �-Modification to Planarity and ϕ can be solved
by more simple techniques. For example, if ϕ defines a hereditary property characterized by a finite
family of forbidden induced subgraphs F , then deciding, whether it is possible to delete at most k
vertices to obtain a planar F-free graph, can be done by combining the straightforward branching
algorithm and, say, the algorithm of Jansen, Lokshtanov, and Saurabh [23] for Planar Vertex
Deletion. For this, we iteratively find a copy of each F ∈ F and if such a copy exists we branch
on all the possibilities to destroy this copy of F by deleting a vertex. By this procedure, we obtain
a search tree of depth at most k, whose leaves are all F-free induced subgraphs of the input graph
that could be obtained by at most k vertex deletions. Then for each leaf, we use the planarization
algorithm limited by the remaining budget. However, this does not work for edge modifications,
because deleting an edge in order to ensure planarity may result in creating a copy of a forbidden
induced subgraph. For problems with similar features, even for very “simple” ones, like deleting
k edges to obtain a claw-free planar graph, or planar graph without induced cycles of length 4,
our theorem establishes the first fixed-parameter algorithms. Also our theorem is applicable to
the situation when ϕ defines a hereditary property that requires an infinite family of forbidden
subgraphs for its characterization and for non-hereditary properties expressible in FOL.

To our knowledge this is the first time that an algorithmic meta-theorem is able to express
modification problems such as Planar Vertex Deletion and its variants.

The price we pay for such generality is the running time. While the polynomial factor in the
running time of our algorithm is comparable with the running time of the algorithm of Marx and
Schlotter [28] for Planar Vertex Deletion, it is worse than the more advanced algorithms of
Kawarabayashi [24] and Jansen et al. [23]. Similarly, the algorithms for deciding first-order logic
properties on graph classes [12,16,22] are faster than our algorithm.

The proof of the main theorem is based on a non-trivial combination of the irrelevant vertex
technique of Robertson and Seymour [29, 30] with the Gaifman’s Locality Theorem [17]. While
both techniques were widely used, see [1,9,19,21,23,27] and [10,13,16], the combination of the two
techniques requires novel ideas. Following the popular trend in Theoretical Computer Science, an
alternative title for our paper could be “Robertson and Seymour meet Gaifman”.
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2 Problem definition and preliminaries

In this section we formally define the general Graph �-Modification to Planarity and ϕ

problem (Subsection 2.1), present the theoretical background around Gaifman’s Locality Theorem
(Subsection 2.2), and provide the main algorithm supporting the proof (Subsection 2.3) whose more
precise description is postponed until Section 3.

2.1 Modifications on graphs.

We define OP := {vd, ed, ec, ea}, that is the set of graph operations of vertex deletion, edge deletion,
edge contraction, and edge addition, respectively. Given an operation � ∈ OP, a graph G, and a
vertex set R ⊆ V (G), we define the application domain of the operation � as

�〈G,R〉 =


R, if � = vd,

E(G) ∩
(
R
2

)
, if � = ed, ec, and(

R
2

)
\ E(G), if � = ea.

Notice that �〈G,R〉 is either a vertex set or a set of subsets of vertices each of size two.
Given a set S ⊆ �〈G,R〉, we define G � S as the graph obtained after applying the operation

� on the elements of S. The vertices of G that are affected by the modification of G to G � S,
denoted by A(S), are the vertices in S, in case � = vd or the endpoints of the edges of S, in case
� ∈ {ed, ec, ea}.

Given an FOL-sentence ϕ and some � ∈ OP , we define the following meta-problem:

Graph �-Modification to Planarity and ϕ (In short: G�MPϕ)
Input: A graph G and a non-negative integer k.
Question: Is there a set S ⊆ �〈G,V (G)〉 of size k such that G� S is
a planar graph and G� S |= ϕ?

Let (x1, . . . , x`) ∈ N` and f, g : N → N. We use notation f(n) = Ox1,...,x`(g(n)) to denote that
there exists a computable function h : N` → N such that f(n) = h(x1, . . . , x`) · g(n). We are ready
to give the formal statement of the main theorem of this paper.

Theorem 1. For every FOL-sentence ϕ and for every � ∈ OP, G�MPϕ is solvable in time
Ok,|ϕ|(n2).

2.2 Gaifman’s theorem

For vertices u, v of graph G, we use dG(u, v) to denote the distance between u and v in G. We also
use N (r)

G (v) to denote the set of vertices of G at distance at most r from v.
Gaifman’s locality theorem is an important ingredient of our proof. We use the shortcut FOL-

formula/sentence for logical formulas/sentences in First-Order Logic. Given an FOL-formula ψ(x)

with one free variable x, we say that ψ(x) is r-local if the validity of ψ(x) depends only on the
r-neighborhood of x, that is for every graph G and v ∈ V (G) we have

G |= ψ(v) ⇐⇒ G[N
(r)
G (v)] |= ψ(v).
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Observe that there exists an FOL-formula δr(x, y) such that for every graph G and v, u ∈ V (G), we
have dG(u, v) ≤ r ⇐⇒ G |= δr(v, u) (see [14, Lemma 12.26]).

We say that an FOL-sentence ϕ is a Gaifman sentence when it is a Boolean combination of
sentences ϕ1, . . . , ϕm such that, for every h ∈ [m],

ϕh = ∃x1 . . . ∃x`h
( ∧

1≤i<j≤`h

d(xi, xj) > 2rh ∧
∧
i∈[`h]

ψh(xi)
)
, (1)

where `h, rh ≥ 1 and ψh is an rh-local formula with one free variable. We refer to the variables
x1, . . . , x`h for each h ∈ [m] as the basic variables of ϕ. Moreover, for every h ∈ [m], we call ϕh a
basic sentence of ϕ and the formula ψh a basic local formula of ϕ.

Proposition 2 (Gaifman’s Theorem [17]). Every first-order sentence ϕ is equivalent to a Gaifman
sentence ϕ′. Furthermore, ϕ′ can be computed effectively.

2.3 Equivalent formulations

Given a Gaifman sentence ϕ combined from sentences ϕ1, . . . , ϕm and a unary relation symbol R,
we define ϕ̃ as the sentence that is the same Boolean combination of sentences ϕ̃1, . . . , ϕ̃m such that,
for every h ∈ [m],

ϕ̃h = ∃x1 . . . ∃x`h
( ∧
i∈[`h]

xi ∈ R ∧
∧

1≤i<j≤`h

d(xi, xj) > 2rh ∧
∧
i∈[`h]

ψh(xi)
)
, (2)

where `h, rh ≥ 1 and ψh is an rh-local formula with one free variable. Notice that ϕ̃ is evaluated on
annotated graphs of the form (G,R).

Let (G, k) be an instance of the G�MPϕ problem. We may assume, because of Proposition 2,
that ϕ is a Gaifman sentence. We consider an enhanced version of the G�MPϕ problem as follows.
Let (G,R, k) be a triple, where G is a graph, R ⊆ V (G), and k ∈ N. We say that (G,R, k) is
a (ϕ,�)-triple if there exists set S ⊆ �〈G,R〉 such that |S| ≤ k, G � S is a planar graph, and
(G � S,R) |= ϕ̃. It is easy to observe that the property that (G,R, k) is a (ϕ,�)-triple can be
expressed in MSOL. This is easy in case � ∈ {vd, ed, ec}. In the case where � = ea, we use some
syntactic interpretation argument, given in Section 4 (Lemma 9).

Also, we say that a set S ⊆ �〈G,V (G)〉 is a �-planarizer of G if G� S is planar. Theorem 1 is
a consequence of the following lemma.

Lemma 3. Given a Gaifman sentence ϕ and a � ∈ OP, there exists a function f1 : N2 → N, and
an algorithm with the following specifications:

Reduce_Instance(k,G, S,R)

Input: an integer k ∈ N, a graph G, a set R ⊆ V (G), and a set S ⊆ R that is a vd-planarizer of G
of size at most k.
Output: One of the following:

1. • if � ∈ {ed, ec, ea}: a report that (G, k) is a no-instance of G�MPϕ.

• if � = vd: a vertex u ∈ S such that S \ {u} is a vd-planarizer of G \ u of size at most
k − 1 and (G, k) and (G \ u, k − 1) are equivalent instances of G�MPϕ.
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2. a vertex set X ⊆ V (G) and a vertex v ∈ X such that S ⊆ R\X and (G,R, k) is a (ϕ,�)-triple
if and only if (G \ v,R \X, k) is a (ϕ,�)-triple.

3. a tree decomposition of G of width at most f1(k, |ϕ|).

Moreover, this algorithm runs in Ok,|ϕ|(n) steps.

We postpone the formal definitions of a tree decomposition and treewidth till Section 4. Given
Lemma 3, we proceed to provide the proof of Theorem 1. Before this, we present two results that
will also be used in the proof of Theorem 1.

First, we use the algorithm of Jansen, Lokshtanov, and Saurabh [23] for Planar Vertex
Deletion.

Proposition 4. There is an algorithm that, given a graph G and an integer k, outputs, in time
2O(k log k) · n, either a minimum-size vd-planarizer S of G of size at most k, or a report that there
is no vd-planarizer S of G of size at most k.

Also, the following result of Golovach, van ’t Hof, and Paulusma [19, Lemma 1] will allow us
to argue about the existence of a vr-planarizer of a graph G of size at most k, if an ec- or an
ed-planarizer of G of size at most k exists.

Proposition 5. If there is an ec- or an ed-planarizer of G of size at most k, then there is a
vr-planarizer of G of size at most k.

Proof of Theorem 1. Let ϕ be an FOL-formula. By Proposition 2, ϕ is equivalent to a Gaifman
sentence ϕ′. Using the planarization algorithm of Proposition 4, we compute, in 2O(k log k) · n steps,
a vd-planarizer S of G of size at most k. If � = ea, then S := ∅, while if � ∈ {vd, ed, ec},
then if such a set does not exist, we safely return a negative answer (for the case of � = ed, ec,
this is due to the fact that, due to Proposition 5, if there exists an ec- or an ed-planarizer of
G of size at most k then also a vd-planarizer of G of size at most k exists). We are now in
position to apply recursively the algorithm Reduce_Instance(k,G, S,R) of Lemma 3 until either
an answer or the third case appears. In the first case, we either return a negative answer, if
� ∈ {ed, ec, ea}, or set (k,G, S,R) := (k − 1, G \ v, S \ {v}, R) if � = vd, while in the second case
we set (k,G, S,R) := (k,G \ v, S,R \X). In the third case we have that tw(G) ≤ f1(k, |ϕ′|). Recall
that the property that (G,R, k) is a (ϕ,�)-triple can be expressed in MSOL, thus the status of
the final equivalent instance (G,R, k) can be evaluated in Ok,|ϕ|(n) steps by applying Courcelle’s
theorem. As the recursion takes at most n steps, we obtain the claimed running time.

3 The algorithm

In this section, we aim to present the proof of Lemma 3. In Subsection 3.1, we present the two
main lemmata (Lemma 6 and Lemma 7) that support the proof of Lemma 3 and in Subsection 3.2
we sketch the proof of Lemma 7, which contains the core of the arguments of this paper.
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3.1 Two main lemmata

We now give two lemmata, whose combination gives the proof of Lemma 3. Before we state them,
we give a series of definitions. Some of them will be given on an intuitive level, while their formal
versions are postponed to Section 4. The proofs of the two lemmata are postponed to Section 5 and
Section 6, respectively.

Let � ∈ OP, G be a graph, k ∈ N, and let S be a �-planarizer of G. We say that S is an
inclusion-minimal �-planarizer of G if none of its proper subsets is a �-planarizer of G. Notice
that, in the special case where � = ea, the unique inclusion-minimal �-planarizer of G is the empty
set of edges. We say that a set Q ⊆ V (G) is �-planarization irrelevant if for every inclusion-minimal
�-planarizer S of G that has size at most k, it holds that A(S) ∩Q = ∅. We say that a graph G is
partially disk-embedded in some closed disk ∆, if there is some subgraph K of G that is embedded in
∆ whose boundary, denoted by bd(∆), is a cycle of K and no vertex in the interior of ∆ is adjacent
to a vertex not in ∆. We use the term partially ∆-embedded graph G to denote that a graph G is
partially disk-embedded in some closed disk ∆. We also call the graph K compass of the partially
∆-embedded graph G and we always assume that we accompany a partially ∆-embedded graph G
together with an embedding of its compass in ∆ that is the set G ∩∆.

The concept of q-wall, where q is odd, is visualized in Figure 1. In the same figure are depicted
the layers (in red and blue) and the perimeter (the outermost layer) of a q-wall (the formal definitions
are postponed to Section 4). Also the branch vertices are depicted in yellow. Let W be a wall of a

Figure 1: An 11-wall and its 5 layers.

graph G. We use Perim(W ) to denote the perimeter of W . The two branch vertices of W that do
not belong to any layer and are connected by a path that does not intersect any layer are called the
central vertices of W (depicted by two orange squared vertices in Figure 1). We denote the central
vertices of W by center(W ). Let K ′ be the connected component of G \ Perim(W ) that contains
W \ Perim(W ). The compass of W , denoted by Comp(W ), is the graph G[V (K ′) ∪ V (Perim(W ))].
Observe that W is a subgraph of Comp(W ) and Comp(W ) is connected. In what follows we will
always consider walls that are drawn inside the disk of a partially ∆-embedded graph. Therefore,
we can see the compass of W as the part of the graph that is drawn inside the closed disk boundary
the perimeter of W . We are now in position to state the following two lemmata.

Lemma 6. Given a Gaifman sentence ϕ and a � ∈ OP, there exist two functions f1, f2 : N2 → N,
and an algorithm with the following specifications:
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Find_Area(k, q,G, S)

Input: a k ∈ N, an odd q ∈ N≥1, a graph G, and a set S ⊆ V (G) that is a vd-planarizer of G of
size at most k.
Output: One of the following:

1. • if � ∈ {ed, ec, ea}: a report that (G, k) is a no-instance of G�MPϕ.

• if � = vd: a vertex u ∈ S such that S \ {u} is a vd-planarizer of G \ u of size at most
k − 1 and (G, k) and (G \ u, k − 1) are equivalent instances of G�MPϕ.

2. a q-wall W of G and a closed disk ∆ such that

• the compass of W has treewidth at most f2(k, q),

• G is partially ∆-embedded, where G ∩∆ = Comp(W ), bd(∆) = Perim(W ),

• V (Comp(W )) is �-planarization irrelevant, and

• NG(S) ∩ V (Comp(W )) = ∅, or

3. a tree decomposition of G of width at most f1(k, q).

Moreover, this algorithm runs in Ok,q(n) steps.

By NG(S) we denote the vertices in G \ S that are adjacent, in G, with vertices in S. In the
first possible output of the algorithm of Lemma 6 we have either a negative answer to the G�MPϕ
problem or an equivalent instance of G�MPϕ with reduced value of k.

The proof of Lemma 6 is in Section 5 and its main steps are the following. In case, � = ea we
first check whether G is planar. If not, we report a negative answer, otherwise we find a wall W
in G whose size is a “big-enough” function of k and whose compass has “small-enough” treewidth
using [18, Lemma 4.2]. This wall contains an (also “big-enough”) subwall of W whose compass is
not affected by S. In case � = {vd, ed, ec}, we consider the neighbors of S in the planar graph G′,
this is the set NG(S). Moreover, we consider a “big-enough” triangulated grid Γ as a contraction
of G′ (using [15, Theorem 3]) and the set NΓ of the “contraction-heirs” of the vertices of NG(S)

in Γ. If |NΓ| is “big-enough”, then we prove, using the main technical result of [11], that some of
the vertices of S should be affected by every possible solution, in case � = vd, or that we have a
no-instance, in case � ∈ {ed, ec}. If |NΓ| is “small-enough”, then we can find a “big-enough” wall W
in G whose compass is not affected by S (again using the previously mentioned result of [18]). The
proof is completed by proving that this wall contains some “big-enough” subwall that is not affected
by any inclusion-minimal �-planarizer.

The next lemma deals with the second possible output of the algorithm of Lemma 6 and contains
the “core arguments” of this paper.

Lemma 7. Given a Gaifman sentence ϕ and a � ∈ OP, there exist a function f3 : N2 → N, whose
images are odd integers, and an algorithm with the following specifications:
Find_Vertex(k,∆, G,R, W̃ )

Input: a k ∈ N, a partially ∆-embedded graph G, a set of (annotated) vertices R ⊆ V (G), and a
q-wall W̃ of G such that

• q = f3(k, |ϕ|),

9



• the compass of W̃ has treewidth at most f2(k, q) (where f2 is the function of Lemma 6),

• G ∩∆ = Comp(W̃ ), bd(∆) = Perim(W̃ ),

• V (Comp(W̃ )) is �-planarization irrelevant, and

Output: a vertex set X ( V (Comp(W̃ )) and a vertex v ∈ X such that (G,R, k) is a (ϕ,�)-triple if
and only if (G \ v,R \X, k) is a (ϕ,�)-triple.
Moreover, this algorithm runs in Ok,|ϕ|(n) steps.

Notice that the above algorithm produces a (ϕ,�)-triple where both R and G are reduced.
Given Lemma 6 and Lemma 7, we proceed to prove Lemma 3.

Proof of Lemma 3. We describe the algorithm Reduce_Instance for input (k,G, S,R). First, we
call the algorithm Find_Area of Lemma 6 for input (k, q,G, S) which returns one of the following:

1. • if � ∈ {ed, ec, ea}: a report that (G, k) is a no-instance of G�MPϕ.

• if � = vd: a vertex u ∈ S such that S \ {u} is a vd-planarizer of G \ u of size at most
k − 1 and (G, k) and (G \ u, k − 1) are equivalent instances of G�MPϕ.

2. a q-wall W of G and a closed disk ∆ such that

• the compass of W has treewidth at most f2(k, q),

• G is partially ∆-embedded, where G ∩∆ = Comp(W ), bd(∆) = Perim(W ),

• V (Comp(W )) is �-planarization irrelevant, and

• NG(S) ∩ V (Comp(W )) = ∅, or

3. a tree decomposition of G of width at most f1(k, q).

If Find_Area(k, q,G, S) returns either the first or the third possible output, then our algorithm
terminates by returning the corresponding output. In the second possible output, we call the
algorithm Find_Vertex of Lemma 7 for input (k,∆, G,R,W ), which outputs a vertex set X (
V (Comp(W )) and a vertex v ∈ X such that (G,R, k) is a (ϕ,�)-triple if and only if (G\v,R\X, k)

is a (ϕ,�)-triple. Observe that since NG(S) ∩ V (Comp(W )) = ∅, then S ⊆ R \X. We insist that
while in the output of Find_Area we demand that NG(S) ∩ V (Comp(W )) = ∅, this is used only
to guarantee that S ⊆ R \ X. For the overall running time of our algorithm, recall that the two
algorithms of Lemma 6 and Lemma 7 run in Ok,|ϕ|(n) steps.

3.2 Sketch of the proof of Lemma 7

In order to prove Lemma 7, we first find a “large-enough” collection W of subwalls of W̃ each with
ρ layers (where ρ is “big-enough”), whose compasses are pairwise vertex-disjoint. We keep in mind
that every wall in W has height 2ρ+ 1 and ρ layers.

The key idea is to define a “characteristic” of each wall W ∈ W that encodes all possible ways
that a �-planarizer S of G affects Comp(W ) along with the different ways a vertex assignment to
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the basic variables of the Gaifman formula ϕ in Comp(W ) can certify G� S |= ϕ. Recall that ϕ̃ is
a Boolean combination of sentences ϕ̃1, . . . , ϕ̃m so that for every h ∈ [m],

ϕ̃h = ∃x1 . . . ∃x`h
( ∧
i∈[`h]

xi ∈ R ∧
∧

1≤i<j≤`h

d(xi, xj) > 2rh ∧
∧
i∈[`h]

ψh(xi)
)
,

where `h, rh ≥ 1 and ψh is an rh-local formula with one free variable and that ϕ̃ is evaluated on
annotated graphs of the form (G,R). Clearly, ϕ̃ is a sentence in Monadic Second Order Logic, in
short, an MSOL-sentence. We set r := maxh∈[m]{rh}, ` :=

∑
h∈[m] `h, and d := 2(r + (`+ 1)r + r).

As a first step, let SIG = 2[`1]×· · ·×2[`m]× [ρ]. Also, for every wallW ∈ W, let K := Comp(W ),
for every t ∈ [ρ], let K(t) := Comp(W (2t+1)) and P (t) := V (Perim(W (2t+1))). Here, by W (t)

we denote the subwall of W that has height t, whose layers are the innermost t−1
2 layers of W ,

and which has the same center as W . We set K = (V (K(1)), . . . , V (K(ρ))). We call the tuple
KW = (K,K) the panelled compass of the wall W in G. Given the panelled compass KW of a wall
W ∈ W in G, a set R ⊆ V (Comp(W )), an integer z ∈ [d, ρ], and a set S ⊆ �〈K,R〉 such that
A(S) ⊆ V (K(z−d+1)) ∩R, we define

sigϕ,�(KW , R, z, S) = {(Y1, . . . , Ym, t) ∈ SIG | t ≤ z and ∃ (X̃1, . . . , X̃m) such that ∀h ∈ [m]

X̃h = {xhi | i ∈ Yh},
X̃h ⊆ V ((K(t−r+1) � S) \ P (t−r+1)) ∩R,
X̃h is (|Yh|, rh)-scattered in K(t) � S, and

K(t) � S |=
∧
x∈X̃h

ψh(x)}.

In the above definition, a set X of vertices is (α, β)-scattered, if |X| = α and there are no
two vertices in X within distance ≤ 2β. Intuitively, (Y1, . . . , Ym, t) ∈ sigϕ,�(KW , R, z, S) if the
application of the operation � on G as defined by S gives rise to the existence of a collection of
scattered sets (X̃1, . . . , X̃m) in (K(t−r+1) � S) \ P (t−r+1) (one scattered set for each basic sentence
ϕh) so that when the vertices of X̃h are assigned to the basic variables of ϕh corresponding to Yh,
the local basic formula ψh is satisfied for each x ∈ X̃h in the modified graph. Let us elaborate
more on the properties that the sets (X̃1, . . . , X̃m) are asked to satisfy. First, we ask that, for every
h ∈ [m], the set X̃h is (|Yh|, rh)-scattered in K(t)�S and is a subset of V ((K(t−r+1)�S)\P (t−r+1)).
Therefore, for each h ∈ [m] and each vertex x ∈ X̃h, every vertex of G � S of distance at most r
from x is in V (K(t) � S). This implies that the satisfaction of the local basic formula ψh for each
x ∈ X̃h can be checked in the graph K(t) �S. Also, notice that (Y1, . . . , Ym, t) ∈ sigϕ,�(KW , R, z, S)

only if r ≤ t. Given that t ≤ z, we have that V (K(t−r+1) � S) ⊆ V (K(t) � S) ⊆ V (K(z) � S) and
therefore for every h ∈ [m], X̃h ⊆ V (K(z) � S).

It is now time to define the characteristic of a wall W ∈ W. Given the panelled compass KW of
a wall W ∈ W in G and a set R ⊆ V (Comp(W )), we define the (ϕ,�)-characteristic of (KW , R) as
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follows

(ϕ,�)-char(KW , R) = {(z, sig, s) ∈ [d, ρ]× 2SIG × [0, k] | ∃S ⊆ �〈K,R〉 such that,
A(S) ⊆ V (K(z−d+1)) ∩R,
|S| = s,K � S is planar, and
sigϕ,�(K, R, z, S) = sig}.

Notice that all queries in the definition of (ϕ,�)-char(KW , R) can be expressed in MSOL. Indeed,
this is easy to see when � ∈ {vd, ed, ec}, as in this case the query “Comp(W ) � S is planar” is
trivially true, since V (Comp(W̃ )) is �-planarization irrelevant. In the case where � = ea, the
MSOL expressibility is proved in Section 4 (Lemma 9). As each W ∈ W has treewidth bounded
by a function of k and |ϕ|, it follows by the theorem of Courcelle that (ϕ,�)-char(KW , R) can be
computed in Ok,|ϕ|(n) time.

For every wall Wi ∈ W, we set Ki := Comp(Wi), for every j ∈ [ρ], K(j)
i := Comp(W

(2j+1)
i )

and P (j)
i := V (Perim(W

(2j+1)
i )), Ki := KWi and Ri := R ∩ V (Comp(Wi)). We say that two walls

W1,W2 are (ϕ,�)-equivalent if (K1, R1) and (K2, R2) have the same (ϕ,�)-characteristic. Since the
collection W contains “many-enough” walls, we can find a, still “large-enough”, collection W ′ ⊆ W
of walls that are pairwise equivalent. We fix a wall W1 ∈ W ′ and we set X := V (Comp(W

(r)
1 )),

where r = maxh∈[m]{rh}, and v ∈ center(W1).
In what follows, we highlight the ideas of the proof of the fact that if (G,R, k) is a (ϕ,�)-triple,

then (G \ v,R \X, k) is a (ϕ,�)-triple. We first consider a set S ⊆ �〈G,R〉 of size at most k that
certifies that (G,R, k) is a (ϕ,�)-triple. Then, we pick a wall W2 ∈ W ′ \ {W1} whose compass is
not affected by S. We are allowed to pick this wall since there are “many-enough” walls equivalent
to W1 in W ′. Our strategy is to use the fact that W1 and W2 are (ϕ,�)-equivalent in order to state
a “replacement argument”: we can find a z ∈ [ρ], such that the subset Sin of S that affects K(z)

1 and
the set X of vertices of K(z)

1 that are assigned to the basic variables of ϕ in order to certify that
G� S |= ϕ, can be replaced by their “equivalent” sets S̃ and X̃ in K(z)

2 . As a consequence of this,
for every possible solution S and vertex assignment to the basic variables of ϕ, we can find both a
new solution and a new vertex assignment that “avoid” the “inner part” of W1. This implies that
the validity of any basic local formula of ϕ does not depend on the central vertices of W1. Thus,
we can declare one of them “irrelevant” and safely remove it from G, while storing (by reducing R
to R \X) the fact that every possible solution S and vertex assignment to the basic variables of ϕ
can “avoid” the “inner part” of W1.

To further inspect how this “replacement” is achieved, we need to dive deeper into the technicali-
ties of the proof (through an intuitive perspective). Given a wallW , we refer to a wall-annulus ofW
as the subgraph of W that is obtained from W after removing from W all its layers, except a fixed
number of consecutive layers. We think of every wall W ∈ W as divided in consecutive wall-annuli
of fixed size. Since ρ is “big-enough”, then we can find also “many enough” such wall-annuli. We
denote each one of them by Ai(W ). Given a W ∈ W, every wall-annulus Ai(W ) is divided in some
regions as depicted in Figure 2. The regions depicted in purple and green are consisting of r layers
of the wall W (recall that r = maxh∈[m]{rh}). The regions depicted in yellow and orange are both
“big-enough” so as to be able to find, in each one of them, an also “big-enough” wall-annulus that
“avoids” a given vertex assignment to the basic variables of ϕ.
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Figure 2: An example of a wall-annulus Ai(W ) of a wall W ∈ W, together with its regions referred
in the proof of Lemma 7.

Since ρ is “big-enough”, then we can find a wall-annulus Ai(W1) that is not affected by S. This
allows us to partition S in two sets, Sin and Sout in the obvious way. The fact that W1 and W2 are
(ϕ,�)-equivalent implies the existence of a set S̃ inW2 certifying that these two walls have the same
characteristic. Thus, by setting S′ := S̃ ∪ Sout, we have that S′ ⊆ �〈G,R′〉, |S′| = |S|, and G� S′

is planar. The latter is guaranteed by the fact that V (Comp(W̃ )) is �-planarization irrelevant, in
the case � ∈ {vd, ed, ec}, while in the case that � = ea, the existence of the outer purple buffer
of Ai(W1) (resp. Ai(W2)) allows us to treat Sin (resp. S̃) and Sout separately, while not spoiling
planarity. The last part of the proof requires to prove that (G� S,R) |= ϕ̃ ⇐⇒ (G� S′, R′) |= ϕ̃.

For simplicity, here we only argue why (G � S,R) |= ϕ̃h =⇒ (G � S′, R′) |= ϕ̃h holds, as
the arguments in the proof of the inverse direction are completely symmetrical. Therefore, given
an (`h, rh)-scattered set X such that ϕh is satisfied if the vertices of X are assigned to the basic
variables of ϕh, we aim to find a t ∈ [ρ] in order to “replace” the vertices in X ∩ V (K

(t)
1 ) with a set

X̃ of vertices in K(t)
2 such that the resulting vertex set X? is (`h, rh)-scattered and ϕh is satisfied if

the vertices of X? are assigned to the basic variables of ϕh. Notice that for every h ∈ [m] such that
(G� S,R) |= ϕ̃h, these “replacement arguments” are pairwise independent.

We first deal with the possibility that the given scattered set X intersects some “inner part”
of Comp(W2). Thus, in order to “clean” the “inner part” of Comp(W2), we find a wall W3 ∈
W ′ \ {W1,W2} that “avoids” both S and X (for different h ∈ [m], the choice of W3 may coincide).
Also, we consider a t̃ ∈ [ρ] corresponding to a layer in the yellow region of the wall-annulus Ai(W2)

such that the annulus of the wall-annulus of Ai(W2) bounded by the (t̃− r+ 1)-th and t̃-th layer of
W2 is not intersected by X. Then, we “replace” the vertices of X in K(t̃−r+1)

2 \P (t̃−r+1)
2 , call it Xin,

with an “equivalent” vertex set X̃ in K(t̃−r+1)
3 \P (t̃−r+1)

3 (notice that this is achieved by arguing for
S := ∅ in the notion of (ϕ,�)-characteristic). This results to an (`h, rh)-scattered set X ′ that does
not intersect K(t̃)

2 and G� S |=
∧
x∈X′ ψh(x) (see Figure 3).

Now, we are allowed to pick a t ∈ [ρ] corresponding to an “orange” layer of Ai(W1) such
that the annulus of the wall-annulus of Ai(W1) bounded by the (t − r + 1)-th and t-th layer of
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W2 W3

→

W2 W3

Figure 3: The “cleaning” of the “inner part” of Comp(W2). Left: The set A(S) is depicted in cross
vertices, the set X \Xin is depicted in blue, and the set Xin is depicted in red. Right: The set A(S)

is depicted in cross vertices, the set X ′ \Xin is depicted in blue, and the set X̃ is depicted in red.

W1 is not intersected by X. If we set Z to be the set of vertices of X ′ in K
(t′−r+1)
1 \ P (t′−r+1)

1

(P (t′−r+1)
1 is an “extremal” cycle of Ai(W1) and therefore X ′ does not intersect it), then since

sigϕ,�(K1, R1, z, Sin) = sigϕ,�(K2, R2, z, S̃), then there exists a set Z̃ in K
(t′−r+1)
2 \ P (t′−r+1)

2 that
is “equivalent” to Z (see Figure 4). Therefore, since Z̃ is in the orange region of Comp(W2) and

W2W1

→

W2W1

Figure 4: The last part of the proof. Left: The set A(Sout) is depicted in red cross vertices, the
set A(Sin) is depicted in green cross vertices, the set Y \ Yin is depicted in blue, and the set Yin is
depicted in red. Right: The set A(Sout) is depicted in red cross vertices, the set A(S̃) is depicted in
green cross vertices, the set X ′ \ Z is depicted in blue, and the set Z̃ is depicted in red.

X ′ is “avoiding” K(t̃)
2 , then we can derive that X ′ and Z̃ are “separated” by a green and a purple

region of Ai(W2). Thus, X? := (X ′ \Z)∪ Z̃ is an (`h, rh)-scattered set of G�S′ that “avoids” K(r)
1 .

Moreover, ϕh is satisfied given that the vertices of X? of G� S′ are assigned to the basic variables
of ϕh. The proof is concluded.

4 Definitions and Preliminaries

We denote by N the set of all non-negative integers. Given an n ∈ N, we denote by N≥n the set
containing all integers equal or greater than n. Given two integers x and y, we define [x, y] =

{x, x+ 1, . . . , y − 1, y}. Given an n ∈ N≥1, we also define [n] = [1, n]. For a set S, we denote by 2S

the set of all subsets of S.

4.1 Graphs, Walls, Wall-annuli, and Treewidth

Basic concepts on Graphs. All graphs in this paper are undirected, finite, and they do not have
loops or multiple edges. Given a graph G, we denote by V (G) and E(G) the set of its vertices and
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edges, respectively. If S ⊆ V (G), then we denote by G \ S the graph obtained by G after removing
from it all vertices in S, together with their incident edges. Also, we denote by G \ v the graph
G \ {v}, for some v ∈ V (G). We also denote by G[S] the graph G \ (V (G) \ S). Given a graph
G, we say that a pair (A,B) ∈ 2V (G) × 2V (G) is a separation of G if A ∪ B = V (G) and there is
no edge in G with one endpoint in A \ B and the other in B \ A. A path (cycle) in a graph G is
a connected subgraph with all vertices of degree at most (exactly) 2. Given a graph G, we define
the distance dG(u, v) between two vertices u, v of G, as the minimum number of edges of a path
between u and v in G. For r ∈ N≥1 and u ∈ V (G) we define the r-neighborhood N (≤r)

G (u) of u in G
by N (≤r)

G (u) := {v ∈ V (G) | dG(u, v) ≤ r}. We say that a set S ⊆ V (G) is (`, r)-scattered if |S| = `

and for every u, v ∈ V (G), u 6= v it holds that dG(u, v) > 2r. An annotated graph is a pair (G,R)

where G is a graph and R ⊆ V (G).

Disks, annuli and partially disk-embedded graphs. In this paper, we consider embeddings
or partial embeddings of graphs on the plane and several subsets of it. We define a closed disk (resp.
open disk) to be a subset of the plane homeomorphic to the set {(x, y) ∈ R2 | x2 + y2 ≤ 1} (resp.
{(x, y) ∈ R2 | x2+y2 < 1}) and a closed annulus (resp. open annulus) to be a subset of the plane that
is homeomorphic to the set {(x, y) ∈ R2 | 1 ≤ x2 + y2 ≤ 2} (resp. {(x, y) ∈ R2 | 1 < x2 + y2 < 2}).
Given a closed disk or a closed annulus X, we use bd(X) to denote the boundary of X (i.e., the
set of points of X for which every neighborhood around them contains some point not in X).
Notice that if X is a closed disk then bd(X) is a subset of the plane homeomorphic to the set
{(x, y) ∈ R2 | x2 + y2 = 1}, while if X is a closed annulus then bd(X) = C1 ∪ C2 where C1, C2 are
the two unique connected components of bd(X), that are two disjoint subsets of the plane, each
one homeomorphic to the set {(x, y) ∈ R2 | x2 + y2 = 1}. We call these sets boundaries of X. Also
given a closed disk (resp. closed annulus) X, we use int(X) to denote the open disk X \ bd(X).
When we embed a graph G in a closed disk or in a closed annulus, we treat G as a set of points.
This permits us to make set operations between graphs and sets of points.

We say that a graph G is partially disk-embedded in some closed disk ∆, if there is some subgraph
K of G that is embedded in ∆ such that bd(∆) is a cycle of K and (V (G) ∩∆, V (G) \ int(∆)) is
a separation of G. From now on, we use the term partially ∆-embedded graph G to denote that a
graph G is partially disk-embedded in some closed disk ∆. We also call the graph K compass of the
partially ∆-embedded graph G and we always assume that we accompany a partially ∆-embedded
graph G together with an embedding of its compass in ∆, that is the set G ∩∆.

Grids and walls. Let k, r ∈ N. The (k × r)-grid is the Cartesian product of two paths on k and
r vertices respectively. We use the term k-grid for the (k× k)-grid. An elementary r-wall, for some
odd integer r ≥ 3, is the graph obtained from a (2r × r)-grid with vertices (x, y), x ∈ [2r] × [r],

after the removal of the “vertical” edges {(x, y), (x, y + 1)} for odd x + y, and then the removal
of all vertices of degree one. Notice that, as r ≥ 3, an elementary r-wall is a planar graph that
has a unique (up to topological isomorphism) embedding in the plane such that all its finite faces
are incident to exactly six edges. The perimeter of an elementary r-wall is the cycle bounding
its infinite face, while the cycles bounding its finite faces are called bricks. Given an elementary
wall W, a vertical path of W is one whose vertices, in ordering of appearance, are (i, 1), (i, 2), (i +

1, 2), (i + 1, 3), (i, 3), (i, 4), (i + 1, 4), (i + 1, 5), (i, 5), . . . , (i, r − 2), (i, r − 1), (i + 1, r − 1), (i + 1, r),
for some i ∈ {1, 3, . . . , 2r − 1}. Also an horizontal path of W is the one whose vertices, in ordering
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of appearance, are (1, j), (2, j), . . . , (2r, j), for some j ∈ [2, r − 1], or (1, 1), (2, 1), . . . , (2r − 1, 1) or
(2, r), (2, r), . . . , (2r, r).

An r-wall is any graph W obtained from an elementary r-wall W by subdividing edges (see
Figure 1). We call the vertices that where added after the subdivision operations subdivision vertices,
while we call the rest of the vertices (i.e., those of W ) branch vertices. The perimeter of W , denoted
by Perim(W ), is the cycle of W whose non-subdivision vertices are the vertices of the perimeter of
W . Also, a vertical (resp. horizontal) path of W is a subdivided vertical (resp. horizontal) path of
W .

A graph W is a wall if it is an r-wall for some odd integer r ≥ 3 and we refer to r as the height
of W . Given a graph G, a wall of G is a subgraph of G that is a wall. We insist that, for every
r-wall, the number r is always odd.

LetW be a wall of a graph G and K ′ be the connected component of G\Perim(W ) that contains
W \ Perim(W ). The compass of W , denoted by Comp(W ), is the graph G[V (K ′) ∪ V (Perim(W ))].
Observe that W is a subgraph of Comp(W ) and Comp(W ) is connected.

The layers of an r-wallW are recursively defined as follows. The first layer ofW is its perimeter.
For i = 2, . . . , (r− 1)/2, the i-th layer of W is the (i− 1)-th layer of the subwall W ′ obtained from
W after removing from W its perimeter and all occurring vertices of degree one. Notice that each
(2r + 1)-wall has r layers (see Figure 1). The central vertices of W , denoted by center(W ), are the
two branch vertices of W that do not belong to any of its layers and that are connected by a path
of W that does not intersect any layer.

Treewidth. A tree decomposition of a graph G is a pair (T, χ) where T is a tree and χ : V (T )→
2V (G) such that

1.
⋃
t∈V (T ) χ(t) = V (G),

2. for every edge e of G there is a t ∈ V (T ) such that χ(t) contains both endpoints of e, and

3. for every v ∈ V (G), the subgraph of T induced by {t ∈ V (T ) | v ∈ χ(t)} is connected.

The width of (T, χ) is defined as w(T, χ) := max
{
|χ(t)| − 1

∣∣ t ∈ V (T )
}
. The treewidth of G is

defined as
tw(G) := min

{
w(T, χ)

∣∣ (T, χ) is a tree decomposition of G
}
.

The following result from [18] intuitively states that given an odd q ∈ N≥3 and a graph G of
“big-enough” treewidth, we can find a q-wall of G whose compass has “small enough” treewidth.

Proposition 8 ( [18]). There exists a constant c1 and an algorithm with the following specifications:
Find_Wall(G, q)
Input: a planar graph G and an odd q ∈ N≥3.
Output:

1. A q-wall W of G whose compass has treewidth at most c1 · q or

2. a tree decomposition of G of width at most c1 · q.

Moreover, this algorithm runs in Oq(n) steps.
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4.2 Definitions and preliminary results on logic

First-order and monadic second-order logic on graphs. In this paper we deal with logic
formulas on graphs. In particular we deal with formulas of first-order logic (FOL) and monadic
second-order logic (MSOL). The syntax of FOL-formulas includes the logical connectives ∨,∧,¬,
a set of variables for vertices, the quantifiers ∀,∃ that are applied to these variables, the predicate
u ∼ v, where u and v are vertex variables and whose interpretation is that u and v are adjacent,
and the equality of variables representing vertices. A MSOL-formula, in addition to the variables
for vertices of FOL-formulas, may also contain variables for subsets of vertices or subsets of edges.
The syntax of MSOL-formulas is obtained by enhancing the syntax of FOL-formulas so to further
allow quantification on subsets of vertices or subsets of edges and introducing the predicates v ∈ S
(resp. e ∈ F ) whose interpretation is that the vertex v belongs in the vertex set S (resp. the edge
e belongs in the edge set F ).

An FOL-formula ϕ is in prenex normal form if it is written as ϕ = Q1x1 . . . Qnxnψ such that for
every i ∈ [n], Qi ∈ {∀,∃} and ψ is a quantifier-free formula such that x1, . . . , xn appear as variables
in ψ. Then Q1x1 . . . Qnxn is referred as the prefix of ϕ. For the rest of the paper, when we mention
the term “FOL-formula”, we mean an FOL-formula on graphs that is in prenex normal form. Given
an FOL-formula ϕ, we say that a variable x is a free variable in ϕ if it does not occur in the prefix
of ϕ. We write ϕ(x1, . . . , xr) to denote that ϕ is a formula with free variables x1, . . . , xr. We call
a formula without free variables a sentence. For a sentence ϕ and a graph G, we write G |= ϕ to
denote that ϕ evaluates to true on G. Also, for a sentence ϕ we denote its length by |ϕ|.

We now prove that the property whether a given (planar) graph remains planar after making
adjacent some given pairs of vertices can be expressed by an MSOL-formula.

Lemma 9. Let � = ea, G be a graph, and S ⊆ �〈G,V (G)〉 where S = {{v1, u1}, . . . , {vr, ur}}.
Then there exists an MSOL-formula ϕP,S that is evaluated on structures of type (G, x1, y1, . . . , xr, yr)

such that
G� S is a planar graph ⇐⇒ (G, v1, u1, . . . , vr, ur) |= ϕP,S .

Proof. Notice that there exists an MSOL-formula ϕP on graphs such that G is planar if and only if
G |= ϕP (this holds since planarity is characterized by a finite set of forbidden topological minors,
see also [7, Corollary 1.15]).

Now, modify the formula ϕP in order to transform it to a formula evaluated on structures of
type (G, v1, u1, . . . , vr, ur). We define a new predicate x ∼′ y, where x, y are vertex variables such
that

x ∼′ y := (x ∼ y) ∨
∨
i∈[r]

(
(x = vi ∧ y = ui) ∨ (x = ui ∧ y = vi)

)
and replace in ϕP every occurrence of the predicate x ∼ y with x ∼′ y. In other words, given two
vertices u, v of G and two variables x, y in ϕP,S , where the variables x, y are interpreted as the
vertices u, v, the predicate x ∼′ y is true if and only if u, v are adjacent or {u, v} ∈ S. This implies
that G� S is a planar graph ⇐⇒ (G, v1, u1, . . . , vr, ur) |= ϕP,S .
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5 Proof of Lemma 6

In the proof Lemma 6, the most intriguing part after finding a “big-enough” wall W in G such that
G∩Comp(W ) is a “flat” part of G, is to prove that every inclusion-minimal planarizer of G “avoids”
the compass of W . In order to prove the latter, we define some notions regarding graphs that are
“partially embedded” in an annulus and prove that we can “glue” together two such planar graphs
on a way that the resulting graph is planar. This is materialized in Lemma 10 that we state and
prove before we proceed to the proof of Lemma 6.

Central subwalls and wall-annuli. Let W be an r-wall of G, for some odd integer r ≥ 3, and
L1, . . . , L(r−1)/2 be the layers ofW . Let q be an odd integer in [3, r]. We define the central q-subwall
of W , which we denote by W (q), to be the graph obtained from W after removing from W its first
(r − q)/2 layers and all occurring vertices of degree one (see Figure 5 for an example).

Figure 5: A 13-wall W , the central 5-subwall W (5) of W (depicted in green), and the (5, 3)-wall-
annulus A(3)

5 (W ) of W (depicted in green).

Let r ∈ N≥7 be an odd integer, p ∈ [3, (r− 1)/2] and ` ∈ [3, p]. We define the (p, `)-wall-annulus
of W , denoted by A(`)

p (W ), to be the graph obtained from W (2p+1) after removing the vertices of
W (2(p−`)+1) and all occurring vertices of degree one (see Figure 5 for an example). Observe that, for
every i ∈ [p−`+1, p], A(`)

p (W ) contains the i-th layer ofW as a subgraph. A brick of the (p, `)-wall-
annulus A(`)

p (W ) of W is a subgraph of A(`)
p (W ) that is also a brick of W . A 3-wall-annulus of W is

a (p, 3)-wall-annulus of W for some p ∈ [3, (r − 1)/2]. Notice that every (p, `)-wall-annulus contains
two “boundary” cycles that we call its extremal cycles. Since ` ≥ 3, then A(`)

p (W ) is a subdivision of
a 3-connected graph and therefore has a unique embedding in the plane. Thus, given the embedding
of A(`)

p (W ) in the plane, we define the annulus of A(`)
p (W ), denoted by ann(A(`)

p (W )), to be the
closed annulus in the plane bounded by the two extremal cycles of A(`)

p (W ).

Oriented annuli. An oriented closed annulus is a triple A = (A,Cin, Cout) where A is a closed
annulus and Cin, Cout are its boundaries, such that the connected component of R2 \ Cin that
does not intersect A, which we call the inner compass of A and we denote by Compin(A), is an
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open disk. Also, we define the outer compass of A as the connected component of R2 \ Cout that
intersects Cin and denote it by Compout(A). Given an oriented annulus A = (A,Cin, Cout) we define
rev(A) = (A,Cout, Cin).

Annulus-boundaried graphs. An annulus-boundaried graph is a quadruple (G,K, Y,A) (see
Figure 6), where

• G is a graph,

• K is a connected subgraph of G,

• Y is a 3-wall-annulus that is a subgraph of K,

• A = (A,Cin, Cout) is an oriented closed annulus,

• Y is embedded in A such that Cin and Cout are the two extremal cycles of Y , and G∩A = K.

We call the cycle of Y that is identical to Cin (resp. Cout) the inner (resp. outer) cycle of (G,K, Y,A).

Wall-components of annulus-boundaried graphs Let (G,K, Y,A) be an annulus-boundaried
graph. We now define the notion of a wall-component of (G,K, Y,A). We define two types of wall-
components: edges of the form e = uv ∈ E(G) \ E(Y ) such that u, v ∈ V (Y ) and subgraphs of K
that are maximal connected components of K \ V (Y ). A wall-component Q is attached to a vertex
v ∈ V (Y ) if it has a vertex adjacent to v, or (if Q is an edge) one of its endpoints is v. We say that
a wall-component Q of (G,K, Y,A) is a brick-component if there exists a brick B of Y such that Q
is attached only to vertices in V (B). Given a subgraph H of Y , let att(H) denote the subgraph of
G induced by the vertices of H and the vertices of the wall-components which are only attached to
H.

The fact that Y is a subdivision of a 3-connected graph and all embedding of the latter are
equivalent implies the following result:

Observation 1. Let (G,K, Y,A) be an annulus-boundaried graph and let H be a subgraph of Y .
If att(H) is planar, then every wall-component of (G,K, Y,A) that is a subgraph of att(H) is either
attached only to vertices of the inner/outer cycle of (G,K, Y,A) or is a brick-component.

Annulus-embedded separators. Let G be a graph. Let also (K,Y,A) be a triple where K
is a graph, Y is a subgraph of K and A is an oriented closed annulus. We say that (K,Y,A)

is an annulus-embedded separator of G if there are two subgraphs Gin and Gout of G such that
V (Gin) ∪ V (Gout) = V (G), V (Gin) ∩ V (Gout) = V (K), (V (Gin), V (Gout)) is a separation of G,
and both (Gin,K, Y,A) and (Gout,K, Y, rev(A)) are annulus-boundaried graphs. We call Gin (resp.
Gout) the inner (resp. outer) component of (K,Y,A) in G.

We now prove the following result:

Lemma 10. Let G be a graph and let (K,Y,A) be an annulus-embedded separator of G. Let also
Gin and Gout be the inner and outer component of (K,Y,A) in G, respectively. Then G is a planar
graph if and only if Gin and Gout are planar graphs.
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Figure 6: An example of an annulus-boundaried graph (G,K, Y,A). The annulus A is depicted in
blue. Two wall-components of (G,K, Y,A) are depicted in red: An edge attached to v ∈ V (G) and
a subgraph of K attached to u1, u2 ∈ V (G).

Proof. Observe that if G is a planar graph then, trivially, Gin and Gout are planar graphs. We now
prove that if Gin and Gout are planar graphs, then G is also planar.

Suppose that Gin and Gout are planar graphs and also keep in mind that, since Gin and Gout are
the inner and outer component of (K,Y,A) in G, both (Gin,K, Y,A) and (Gout,K, Y, rev(A)) are
annulus-boundaried graphs. Also, let Rin (resp. Rout) be the subgraph of G induced the union of
the vertex sets of all bricks of Y that intersect the inner (resp. outer) cycle of (G,K, Y,A).

We begin by fixing a planar embedding θ of Gout. Keep in mind that since Y is a subdivision of
a 3-connected planar graph, then all its plane embeddings are equivalent. Observe that θ(Rout) is
a region that divides the plane in two other regions (one finite and one infinite). Assume that the
graph Gout \K is embedded in the infinite region.

Let Qin := att(Rin) and let U denote the vertices of Qin that are adjacent to some vertex of
Gout \ V (Qin). For more intuition, notice that U is a subset of V (Rin) ∩ V (Rout). To prove the
latter, suppose towards a contradiction that there is a vertex v ∈ U that is not in V (Rin)∩V (Rout).
Observe that v is a vertex of a wall-component H of (Gout,K, Y, rev(A)) that is also a subgraph of
Qin. Since v ∈ U , there exists a vertex u of Gout \ V (Qin) such that v and u are adjacent. Notice
that by the definition of wall-component, it follows that u ∈ V (Y ). But then H is attached to u and
since u /∈ V (Qin), we arrive to a contradiction to the definition of Qin and Observation 1. Observe
that the restriction of θ to G1 := Gout \ V (Qin \ U) has a face whose boundary contains U .

Now let ϕ be a planar embedding of Gin and let us restrict ϕ to G2 := G \ V (G1 \ U). Observe
that Qin ⊆ V (G2). Note that U contains only vertices that are adjacent to some vertex in Rout or
are adjacent to brick-components belonging to a brick of Rout. But ϕ embeds Rout and its brick-
components also, and therefore the restriction of ϕ to G2 results in a face whose boundary contains
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U .
Now observe that by combining θ and ϕ in such a way that we embed G1 according to θ and G2

according to ϕ and then “match” them by identifying θ(u) and ϕ(u) for all u ∈ U , we get a planar
embedding of G.

Before we proceed with the proof of Lemma 6, we need some more definitions.

Graph contractions. Let G and H be graphs and let ρ : V (G)→ V (H) be a surjective mapping
such that:

1. for every vertex v ∈ V (H), its codomain ρ−1(v) induces a connected graph G[ρ−1(v)],

2. for every edge {u, v} ∈ E(H), the graph G[ρ−1(u) ∪ ρ−1(v)] is connected, and

3. for every edge {u, v} ∈ E(G), either ρ(u) = ρ(v) or {ρ(u), ρ(v)} ∈ E(H).

We say that H is a contraction of G (via ρ) and for a vertex v ∈ V (H) we call the codomain ρ−1(v)

the model of v in G.

Central grids. Let k, r ∈ N≥2. We define the perimeter of a (k × r)-grid to be the unique cycle
of the grid of length at least three that that does not contain vertices of degree four. Let r ∈ N≥2

and H be an r-grid. Given an i ∈ d r2e, we define the i-th layer of H recursively as follows. The
first layer of H is its perimeter, while, if i ≥ 2, the i-th layer of H is the (i− 1)-th layer of the grid
created if we remove from H its perimeter. Given two odd integers q, r ∈ N≥3 such that q ≤ r and
an r-grid H, we define the central q-grid of H to be the graph obtained from H if we remove from
H its r−q

2 first layers.

Triangulated grids. We now define the triangulated k-grid Γk. Consider a plane embedding of
the k-grid such that all external vertices are on the boundary of the infinite face. We triangulate the
internal faces of the k-grid (the faces that are incident to exactly four edges) such that all internal
vertices have degree 4 in the obtained graph and all non-corner external vertices have degree 4.
Finally, one corner of degree 2 is joined by edges with all the extremal vertices and we call this
vertex loaded (see example in Figure 7). We refer to the initial k-grid as the underlying grid of Γk.

Before we proceed to the proof of Lemma 6, we need two results that will be useful.

Proposition 11 ( [15]). Let G be a connected planar graph and k be a positive integer. There is a
constant c2 such that if tw(G) > c2 · k, then G contains Γk as a contraction.

Proposition 12 ( [11]). Let H be the m-grid and a subset U of vertices in the central (m−2`)-grid
Ĥ of H, where |U | = s and ` = b 4

√
sc. Then H contains the `-grid R as a minor such that the

model of each vertex of R intersects U .

In the following proof, we use c1, c2 to denote the constants in Proposition 8 and Proposition 11,
respectively.
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Figure 7: The graph Γ5.

Proof of Lemma 6. We set m = 3 · (2k + 1),

r := 2 · (2m+ q) + 1, z := c1 · r + 2, f2(k, q) := z − 2,

` := 4d
√
k + 1e − 1, b := 2`+

√
`4 · k · z, and f1(k, q) := max{c2 · b+ k, c1 · q}.

We begin with the case where � = ea. Observe that if G is not planar, then (G, k) is a no-instance
of G�MPϕ. If G is planar and if it is the case that tw(G) > f1(k, q) ≥ c1 · q, we call the algorithm
Find_Wall(G, q) of Proposition 8 and we get a q-wall W of G whose compass has treewidth at
most c1 · q. Since c1 · q < f2(k, q), the claimed bound on the treewidth of Comp(W ) follows. We
also set ∆ := Perim(W ) ∪ J , where J is the connected component of R2 \ Perim(W ) that contains
W \V (Perim(W )). Observe that ∆ is a closed disk and therefore G is partially ∆-embedded, where
G ∩∆ = Comp(W ) and bd(∆) = Perim(W ).

Therefore, in the rest of the proof we consider the case where � ∈ {vd, ed, ec}. We consider
an embedding θ of G \ S in the plane. Suppose that tw(G) > f1(k, q). Let G′ be a connected
component of G \ S (if G \ S is connected, G′ := G \ S) such that tw(G′) = tw(G \ S). Therefore,
we have that tw(G′) > f1(k, q)−k ≥ c2 ·b. Then, by Proposition 11, G′ contains Γb as a contraction.
Let H be the underlying grid of Γb and Ĥ be the central (b− 2`)-grid of H.

For every vertex u ∈ S, let

Nu := {v ∈ V (Ĥ) | the model of v intersects NG′(u)}.

Let N :=
⋃
u∈S Nu. We consider the following cases, concerning the size of N :

Case 1: |N | ≥ `4 · k.
In this case, there exists a vertex u ∈ S such that |Nu| ≥ `4. Let U be a subset of Nu such

that |U | = `4. Then, by Proposition 12, H contains the `-grid as a minor and every vertex of the
latter is adjacent to u. This, together with the fact that ` = 4d

√
k + 1e−1, implies that G contains

a (K5, k + 1)-star1 as a minor with u as its central vertex. Observe that if � = ed, ec, the latter
1Given an r ≥ 1 we define the graph (K5, r)-star as the graph obtained by taking r copies of K4 (that is the

complete graph on 4 vertices) and a vertex v and making v adjacent to all vertices of the r copies of K4. We call v
the central vertex of the (K5, r)-star.
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implies that (G, k) is a no-instance (since we can not eliminate all k + 1 copies of K5 from G by
deleting/contracting k edges), while if � = vd, for every vd-planarizer S′ of G of size at most k
it holds that u ∈ S′ (intuitively, u is an “obligatory” vertex for every vd-planarizer of G of size at
most k). Also, observe that S \ {u} is a vd-planarizer of G \ u of size at most k− 1 and notice that
(G, k) and (G\u, k−1) are equivalent instances of G�MPϕ. The above consitute the first possible
output of the algorithm Find_Area(k, q,G, S) of Lemma 6 and this concludes Case 1.

Case 2: |N | < `4 · k.
In this case, we first argue that the following holds:

Claim 1: There exists a wall W̃ of G′ of height 2m+ q such that NG′(S) ∩ V (Comp(W̃ )) = ∅.
Proof of Claim 1: Since |N | < `4 · k, Ĥ is a (b − 2`)-grid, and b − 2` =

√
`4 · k · z, there exists a

z-grid H ′ that is a subgraph of Ĥ such that N ∩ V (H ′) = ∅.
Let w denote some corner of H ′. Consider a surjective mapping ρ : V (Γb)→ V (H ′) that maps

every vertex in V (H ′) to itself and every vertex in V (Γb) \ V (H ′) to w. This results to a graph R
that is a contraction of G′ (via ρ). Notice that R ∼= Γz, where the model of its loaded vertex w
contains NG′(S), and tw(R) ≥ z.

Consider now the set Vw := {v ∈ V (G′) | v is in the model of w}, and observe that G′[Vw] is a
connected graph. Since tw(R) ≥ z, then tw(G′ \ Vw) ≥ z − 1 > c1 · r. By applying the algorithm
Find_Wall(G, q) of Proposition 8 for G′ \ Vw and r, we get a r-wall W ′ of G′ \ Vw whose compass
has treewidth at most c1 · r = f2(k, q). Notice that, since G′[Vw] is connected and G′ is planar, then
NG′(S) (being a subset of Vw) is entirely contained in a unique face of W ′ (recall that since we fixed
an embedding θ of G′, we can treat the vertices of G′ as points on the plane). Therefore, since W ′

has height r = 2 · (2m + q) + 1, there exists a subwall W̃ of W ′ of height 2m + q that is a wall of
G′ and NG′(S) ∩ V (Comp(W̃ )) = ∅. Claim 1 follows. �

By Claim 1, there exists a wall W̃ of G′ of height 2m+ q such that NG′(S)∩V (Comp(W̃ )) = ∅.
Therefore, by restricting the embedding θ of G \ S in Comp(W̃ ), we get that Comp(W̃ ) is a planar
graph. Let W be the central q-subwall of W̃ . We now argue that the following holds:

Claim 2: The set V (Comp(W )) is �-planarization irrelevant.

Proof of Claim 2: Suppose, towards a contradiction, that there is a set Z ⊆ �〈G,V (G)〉 such that
Z is an inclusion-minimal �-planarizer and A(Z) ∩ V (Comp(W )) 6= ∅.

Since W̃ is a wall of height 2m+ q, it has at least m layers. For every i ∈ [m], let Ci be the i-th
layer of W̃ . For every i ∈ [m− 2], let Ai be the finite region of R2 bounded by ϕ(Ci) and ϕ(Ci+2)

(the wall W̃ is a subdivision of a 3-connected graph and therefore all its embeddings in the plane
are equivalent) and let Ai := (Ai, Ci+2, Ci).

Since |A(Z)| ≤ 2k and m = 3 · (2k + 1), then there exists an iZ ∈ [m− 2] and a subgraph Y of
W̃ such that A(Z) ∩AiZ = ∅ and Y is a 3-wall-annulus whose extremal cycles are CiZ , CiZ+2. For
simplicity, we denote A := AiZ and A := AiZ .

Let K be the maximal connected subgraph of G such that G ∩ A = K. We denote by Gin

the graph G[(V (G) ∩ Compout(A)) ∪ V (CiZ+2)] and with Gout the graph G \ (V (G) ∩ Compin(A))

and consider the annulus-boundaried graphs (Gin,K, Y,A) and (Gout,K, Y, rev(A)). Notice that
(K,Y,A) is an annulus-embedded separator of G. Also, since S is a vd-planarizer of G and NG′(S)∩
V (Comp(W̃ )) = ∅, then Gin is planar (since Gin is a subgraph of G′ and G′ is planar).

23



Notice that since A(Z) ∩ A = ∅, Comp(W̃ ) is planar and Y is a 3-wall-annulus of G′ whose
extremal cycles are the boundaries of A, then there is no x ∈ Z that affects vertices of G in both
connected components of R2 \ A. In other words, Z is partitioned in two sets Zin and Zout, where
A(Zin) is in Compin(A) and A(Zout) is in R2 \ Compout(A). Now, observe that since Comp(W ) is
a graph embedded in a subset of Compin(A) and A(Z) ∩ V (Comp(W )) 6= ∅, then Zin 6= ∅. Thus
Zout is a proper subset of Z. Also, the fact that Z is a �-planarizer of G, implies that Zout is a
�-planarizer of Gout. Hence, Gout � Zout is planar. Moreover, (K,Y,A) is an annulus-embedded
separator of G� Zout.

Therefore, since (K,Y,A) is an annulus-embedded separator of G�Zout and Gin and Gout�Zout

are planar graphs, by Lemma 10 we have that G � Zout is a planar graph, a contradiction to the
minimality of Z. Claim 2 follows. �

Following Claim 2, W is a q-wall of G whose compass has treewidth at most f2(k, q) and
V (Comp(W )) is�-planarization irrelevant. Keep in mind that Comp(W ) is a planar graph, since it is
a subgraph of the planar graph Comp(W̃ ). Now, let J be the connected component of R2\Perim(W )

that contains W \ Perim(W ). Observe that ∆ := Perim(W ) ∪ J is a closed disk and therefore G is
partially ∆-embedded, where G∩∆ = Comp(W ). Therefore, the algorithm Find_Area(k, q,G, S)

of Lemma 6 returns W and ∆ and this completes the proof of the lemma.

6 Proof of Lemma 7

In this section we present the proof of Lemma 7, that is the main technical result of this paper.
In Subsection 6.1, we define the notion of characteristic of the panelled compass of a wall, that
encodes all possible ways that a �-planarizer S of G affects Comp(W ) along with the different ways a
vertex assignment to the basic variables of the Gaifman formula ϕ in Comp(W ) can certifyG�S |= ϕ.
In Subsection 6.2 we describe the algorithm Find_Vertex of Lemma 7 and in Subsection 6.3 we
prove its correctness. Also, throughout this section, we use f2 to denote the function in Lemma 6,
bounding the treewidth of the compass of the wall that the claimed algorithm outputs.

6.1 Characteristic of the panelled compass of a wall

Panelled compass of a wall. Let ρ ∈ N≥1, let G be a partially ∆-embedded graph, let W be a
(2ρ + 1)-wall of G such that Comp(W ) ⊆ ∆. We set K = Comp(W ) and, for every t ∈ [ρ], we set
K(t) = Comp(W (2t+1)) and P (t) = V (Perim(W (2t+1))). Let K = (V (K(1)), . . . , V (K(ρ))). We call
the tuple KW = (K,K) the panelled compass of the wall W in G.

Characteristics. Let ϕ be a Gaifman sentence. By definition, ϕ is a Boolean combination of
sentences ϕ1, . . . , ϕm such that, for every h ∈ [m],

ϕh = ∃x1 . . . ∃x`h
( ∧

1≤i<j≤`h

d(xi, xj) > 2rh ∧
∧
i∈[`h]

ψh(xi)
)
,

where `h, rh ≥ 1 and ψh(x) is rh-local. We consider the sentence ϕ̃ and recall that it is the same
Boolean combination of sentences ϕ̃1, . . . , ϕ̃m such that, for every h ∈ [m],

ϕ̃h = ∃x1 . . . ∃x`h
( ∧
i∈[`h]

xi ∈ R ∧
∧

1≤i<j≤`h

d(xi, xj) > 2rh ∧
∧
i∈[`h]

ψh(xi)
)
,
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and the formulas ϕ̃ and ϕ̃1, . . . , ϕ̃m are evaluated on annotated graphs of the form (G,R).
We set r := maxh∈[m]{rh} and ` :=

∑
h∈[m] `h and

d := 2 (r + (`+ 1)r + r) ,

ρ := (2k + 1) · d.

Let
SIG = 2[`1] × · · · × 2[`m] × [ρ].

Let � ∈ OP. Let G be a partially ∆-embedded graph, let W be a (2ρ+ 1)-wall of G such that
Comp(W ) ⊆ ∆. Given the panelled compass KW of W in G, a set R ⊆ V (Comp(W )), an integer
z ∈ [d, ρ], and a set S ⊆ �〈K,R〉 such that A(S) ⊆ V (K(z−d+1)) ∩R, we define

sigϕ,�(KW , R, z, S) = {(Y1, . . . , Ym, t) ∈ SIG | t ≤ z and ∃ (X̃1, . . . , X̃m) such that ∀h ∈ [m]

X̃h = {xhi | i ∈ Yh},
X̃h ⊆ V ((K(t−r+1) � S) \ P (t−r+1)) ∩R,
X̃h is (|Yh|, rh)-scattered in K(t) � S, and

K(t) � S |=
∧
x∈X̃h

ψh(x)}.

Notice that (Y1, . . . , Ym, t) ∈ sigϕ,�(KW , R, z, S) only if for every h ∈ [m], X̃h ⊆ V (K(z−r+1)�S)

(since, otherwise, K(z) � S can not be a model of
∧
x∈X̃h ψh(x)). Recall that ρ = (2k + 1) · d. We

also define the (ϕ,�)-characteristic of (KW , R) as follows

(ϕ,�)-char(KW , R) = {(z, sig, s) ∈ [d, ρ]× 2SIG × [0, k] | ∃S ⊆ �〈K,R〉 such that,
A(S) ⊆ V (K(z−d+1)) ∩R,
|S| = s,K � S is planar, and
sigϕ,�(K, R, z, S) = sig}.

Notice that all queries in the definition of (ϕ,�)-char(KW , R) can be expressed in MSOL. Indeed,
this is easy to see when � ∈ {vd, ed, ec}, as in this case the query “K�S is planar” is trivially true,
since V (Comp(W̃ )) is �-planarization irrelevant. In the case where � = ea, MSOL expressibility
follows from Lemma 9.

6.2 An algorithm for finding irrelevant vertices

In this subsection, we present the algorithm Find_Vertex of Lemma 7. Throughout the rest of this
section we assume that we are given a Gaifman sentence ϕ and a � ∈ OP.

The algorithm Find_Vertex. The algorithm Find_Vertex receives as an input a k ∈ N, a
partially ∆-embedded graph G, a set of (annotated) vertices R ⊆ V (G), and a q-wall W̃ of G such
that

• q = f3(k, |ϕ|),
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• the compass of W̃ has treewidth at most f2(k, q) (where f2 is the function of Lemma 6),

• G ∩∆ = Comp(W̃ ), bd(∆) = Perim(W̃ ),

• V (Comp(W̃ )) is �-planarization irrelevant, and

The algorithm has four steps. First, recall that any given Gaifman sentence ϕ is a Boolean combi-
nation of sentences ϕ1, . . . , ϕm such that, for every h ∈ [m],

ϕh = ∃x1 . . . ∃x`h
( ∧

1≤i<j≤`h

d(xi, xj) > 2rh ∧
∧
i∈[`h]

ψh(xi)
)
,

where `h, rh ≥ 1 and ψh(x) is rh-local. We consider the sentence ϕ̃ and recall that it is the same
Boolean combination of sentences ϕ̃1, . . . , ϕ̃m such that, for every h ∈ [m],

ϕ̃h = ∃x1 . . . ∃x`h
( ∧
i∈[`h]

xi ∈ R ∧
∧

1≤i<j≤`h

d(xi, xj) > 2rh ∧
∧
i∈[`h]

ψh(xi)
)
,

and the formulas ϕ̃ and ϕ̃1, . . . , ϕ̃m are evaluated on annotated graphs of the form (G,R).
We set r := maxh∈[m]{rh}, ` :=

∑
h∈[m] `h,

d := 2 (r + (`+ 1)r + r) ,

ρ := (2k + 1) · d,

w := 2ρ·(k+1)·22`·ρ · (2k + 1)(`+ 3), and
f3(k, |ϕ|) := d(2ρ+ 1) ·

√
we.

Step 1. We first find a collection W of w-many (2ρ + 1)-subwalls of W̃ whose compasses are
pairwise disjoint. This collection exists because W̃ is a q-wall, where q = f3(k, |ϕ|) = d(2ρ+1)·

√
we.

Observe that W can be computed in linear time.

Step 2. We check whether there is a wall W ∈ W such that V (Comp(W )) ∩ R = ∅. If there is
such a wall W , we set X := V (Comp(W (ρ−1))) and v to be a vertex in center(W ) and our algorithm
returns the vertex set X and the vertex v. If V (Comp(W )) ∩R 6= ∅ for every W ∈ W, we continue
to Step 3.

At this point, we wish to argue about the correctness of Step 2. First, note that for every
u /∈ V (Comp(W (ρ−1))) we have that d(u, v) ≥ ρ − 1. This holds since Comp(W (ρ−1)) is a planar
graph and there exist at least ρ − 1 layers of W separating a vertex u /∈ V (Comp(W (ρ−1))) and
v. Thus, given that for every u /∈ V (Comp(W (ρ−1))) it holds that d(u, v) ≥ ρ − 1 > r and for
every h ∈ [m], the formula ψh(x) is rh-local, we derive that (G,R, k) is a (ϕ,�)-triple if and only if
(G \ v,R \X, k) is a (ϕ,�)-triple. Therefore, our algorithm can safely return the vertex set X and
the vertex v.

Step 3. For every i ∈ [w], we set Ri = R ∩ V (Comp(Wi)) and (Ki, Ri) be the panelled compass
of Wi in G, where Ki := KWi , Ki := Comp(Wi), and for every j ∈ [ρ], K(j)

i := Comp(W
(2j+1)
i ).

Also, for every j ∈ [ρ], K(j)
i := Comp(W

(2j+1)
i ) , we set P (j)

i := V (Perim(W
(2j+1)
i )). Then, for
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every i ∈ [w], we compute (ϕ,�)-char(Ki, Ri). As all queries in the definition of (ϕ,�)-char(KW , R)

can be expressed in MSOL and, by the hypothesis of the lemma, the compass of each W ∈ W has
treewidth at most f2(k, q), it follows by the theorem of Courcelle that (ϕ,�)-char(Ki, Ri), i ∈ [w]

can be computed in Ok,|ϕ|(n) time. We say that two walls Wi,Wj ∈ W are (ϕ,�)-equivalent if
(ϕ,�)-char(Ki, Ri) = (ϕ,�)-char(Kj , Rj), and we denote this by Wi ∼ϕ,� Wj .

Step 4. We find a collection W ′ ⊆ W of (2k+ 1)(`+ 3) walls that are pairwise (ϕ,�)-equivalent.
This can be done since w = 2ρ·(k+1)·22`·ρ · (2k+ 1)(`+ 3) and for every i ∈ [w], (ϕ,�)-char(Ki, Ri) ⊆
[d+1, ρ]×2SIG× [0, k]. Observe thatW ′ can be computed in time Ok,|ϕ|(n). We fix a wallW1 ∈ W ′,
and set X := V (K

(r)
1 ). Our algorithm returns X and a vertex v ∈ center(W

(r)
1 ).

6.3 Proof of correctness of the algorithm

To complete the proof of Lemma 7, we have to prove that (G,R, k) is a (ϕ,�)-triple if and only if
(G \ v,R \X, k) is a (ϕ,�)-triple.

Let R′ := R \X. We now prove that the following holds:

Claim: If S is a subset of �〈G,R〉, where |S| = k and G� S is a planar graph, then there exists a
set S′ ⊆ �〈G,R′〉 such that

• |S| = |S′|,

• G� S′ is a planar graph, and

• (G� S,R) |= ϕ̃ if and only if (G� S′, R′) |= ϕ̃.

Proof of Claim: Let S be a subset of �〈G,R〉, where |S| = k and G� S is a planar graph.

Finding an equivalent panelled compass that is disjoint from S. Since the collection W ′
of walls that are (ϕ,�)-equivalent with W1 has size (2k + 1)(`+ 3) and |A(S)| ≤ 2k, there exists a
collection W ′′ ⊆ W ′ \ {W1} of size (`+ 2), such that for every Ŵ ∈ W ′′, it holds that Ŵ ∼ϕ,� W1

and V (Comp(Ŵ )) ∩A(S) = ∅. Let W2 ∈ W ′′.

Every solution S leaves an intact buffer in W1. Since W1 has height 2ρ + 1, where ρ =

(2k + 1) · d, observe that there is a collection of 2k + 1 closed annuli {ann(A(d)
i·d (W1)) | i ∈ [2k + 1]}

that are pairwise disjoint and keep in mind that each ann(A(d)
i·d (W1)) is a closed annulus that is a

subset of ∆ and, intuitively, “crops” an area of d consecutive layers of W1. Therefore, the fact that
|A(S)| ≤ 2k implies that there exists an i ∈ [2k+1] such that A(S) does not intersect ann(A(d)

i·d (W1)).
Notice that, since G � S is planar and d ≥ 3, S is partitioned into the sets Sin and Sout, where
A(Sin) ⊆ V (K

(i·d−d+1)
1 ) ∩R and A(Sout) ∩ V (K

(i·d)
1 ) = ∅. We set z := i · d.

Finding a substitute for Sin in the compass of W2. Since Sin ⊆ �〈K1, R1〉, A(Sin) ⊆
V (K

(z−d+1)
1 ) ∩ R = V (K

(z−d+1)
1 ) ∩ R1, and K1 � S is planar, the fact that W1 ∼ϕ,� W2 im-

plies that there exists a set S̃ ⊆ �〈K2, R2〉, such that |S̃| = |Sin|, A(S̃) ⊆ V (K
(z−d+1)
2 )∩R2, K2 � S̃

is planar, and sigϕ,�(K2, R2, z, S̃) = sigϕ,�(K1, R1, z, Sin). We set

S′ := S̃ ∪ Sout.
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Planarity is preserved by replacing S with S′. Notice that S′ ⊆ �〈G,R′〉, |S′| = k, and
G � S′ is planar. As a proof of the latter, in the case where � = vd, ed, or ec, since V (Comp(W̃ ))

is �-planarization irrelevant, every inclusion-minimal �-planarizer of G is a subset of Sout. Also,
in the case where � = ea, G� S′ is planar since (G \ V (K

(z−d+1)
2 )) � Sout and K

(z)
2 � S̃ are planar

and d ≥ 3 (due to Lemma 10 presented in Section 5). Therefore, our goal now is to prove that
(G� S,R) |= ϕ̃ if and only if (G� S′, R′) |= ϕ̃.

Satisfiability of ϕ̃ is preserved by replacing S with S′. Since (G � S,R) |= ϕ̃ and ϕ̃ is a
Boolean combination of the formulas ϕ̃1, . . . , ϕ̃m, there is a set J ⊆ [m] such that for every j ∈ J it
holds (G � S,R) |= ϕ̃j and for every j /∈ J it holds that (G � S,R) |= ¬ϕ̃j . In order to show that
(G � S′, R′) |= ϕ̃, we show that for every j ∈ J it holds (G � S′, R′) |= ϕ̃j and for every j /∈ J it
holds that (G� S′, R′) |= ¬ϕ̃j . Therefore, we distinguish two cases.

Case 1: j ∈ J . We aim to prove that (G�S,R) |= ϕ̃j ⇐⇒ (G�S′, R′) |= ϕ̃j . In other words, we
will prove that there exists an (`j , rj)-scattered set Xj ⊆ R in G�S such that G�S |=

∧
x∈Xj ψj(x)

if and only if there is an (`j , rj)-scattered set X ⊆ R′ in G � S′ such that G � S′ |=
∧
x∈X ψj(x).

Let Xj ⊆ R be an (`j , rj)-scattered set in G � S such that G � S |=
∧
x∈Xj ψj(x). Recall that

S′ := S̃ ∪ Sout, where A(S̃) ⊆ V (K
(z−d+1)
2 )∩R2 and A(Sout)∩ V (K2) = ∅. We prove the following,

which intuitively states that, given the set Xj , we can find an other set X ′j that “behaves” in the
same way as Xj but also “avoids” some inner part of K2.

Subclaim: There exists a t ∈ [z − d
2 + 2r + 1, z − r] and an (`j , rj)-scattered set X ′j ⊆ R in G � S

such that G� S |=
∧
x∈Xj ψj(x) ⇐⇒ G� S |=

∧
x∈X′j

ψj(x) and X ′j ∩ V (K
(t)
2 ) = ∅.

Proof of Subclaim: Recall that there is a collection W ′′ of size (`+ 2) of walls (ϕ,�)-equivalent to
W1 whose compasses are disjoint from A(S). Therefore, since Xj has size at most `, there exists a
wall W3 ∈ W ′′ \ {W2} such that V (K3) ∩ (A(S) ∪Xj) = ∅.

We now focus on the closed annulus ann(A(d)
z (W2)), which, since A(S) ∩ V (K2) = ∅, does not

intersect A(S). We have that d = 2(r + (` + 1)r + r) and |Xj | ≤ ` and therefore there exists a
t ∈ [z− d

2 + 2r+ 1, z− r] (see Figure 8) such that Xj does not intersect ann(A(r)
t (W2)). Intuitively,

we separate the d layers of W2 that are in ann(A(d)
z (W2)) into two parts, the first d/2 layers and

the second d/2 layers, and then we find some layer among the “central” (` + 1)r layers of the
second part (t corresponds to a layer in the yellow area of Figure 8). This layer (corresponding
to t) together with its preceding r − 1 layers define an annulus of size r, ann(A(r)

t (W2)), which Xj

“avoids”. Since ann(A(r)
t (W2)) ⊆ ann(A(d)

z (W2)) and A(S) ∩ ann(A(d)
z (W2)) = ∅, it also holds that

A(S) ∩ ann(A(r)
t (W2)) = ∅).

We set X?
j := Xj ∩ V (K

(t−r+1)
2 ) and Yj ⊆ [`j ] to be the set of indices of the vertices in X?

j .

Notice that X?
j ⊆ R ∩ V (K

(t−r+1)
2 ) ⊆ R2 and that, since Xj does not intersect ann(A(r)

t (W2)), also

X?
j does not intersect P (t−r+1)

2 (that is an extremal cycle of ann(A(r)
t (W2))). Also, observe that,

since A(S) ∩ V (K2) = ∅, we have that V (K2) ⊆ V (G � S) and G � S[V (K2)] = K2. Therefore,
since X?

j ⊆ V (K
(t−r+1)
2 \P (t−r+1)

2 ), ψj(x) is an rj-local formula, and r ≥ rj , we have that G�S |=∧
x∈X?

j
ψj(x) ⇐⇒ K

(t)
2 |=

∧
x∈X?

j
ψj(x). To sum up, we have that the set X?

j is a subset of
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P
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2

P
(z−d+1)
2

Figure 8: Visualization of the layers of W2 that are subsets of ann(A(d)
z (W2)). For every h ∈ [ρ],

Ph := Perim(W (2h+1)). The color-shadowed areas follow the colors in Figure 2.

V (K
(t−r+1)
2 \ P (t−r+1)

2 ) ∩ R2 that is (|Yj |, rj)-scattered in K(t)
2 (being a subset of Xj) and K(t)

2 |=∧
x∈X?

j
ψj(x).

Notice that, since A(S) ∩ V (K2) = ∅ and W2 ∼ϕ,� W3, we have that sigϕ,�(K2, R2, t
′, ∅) =

sigϕ,�(K3, R3, t
′, ∅), for every t′ ∈ [ρ]. Therefore, we have that sigϕ,�(K2, R2, t, ∅) = sigϕ,�(K3, R3, t, ∅)

and this implies that there is a set X̃j ⊆ V (K
(t−r+1)
3 \ P (t−r+1)

3 ) ∩ R3 such that X̃j is (|Yj |, rj)-
scattered in K

(t)
3 and K

(t)
2 |=

∧
x∈X?

j
ψj(x) ⇐⇒ K

(t)
3 |=

∧
x∈X̃j ψj(x). Observe that since

A(S) ∩ V (K3) = ∅ and X̃j ⊆ V (K
(t−r+1)
3 \ P (t−r+1)

3 ) ⊆ V (K
(ρ−r)
3 ), for every x ∈ X̃j it holds

that N (≤r)
G�S(x) ∩ A(S) = ∅. Thus, since every ψh(x), h ∈ [m] is rh-local, it follows that K(t)

3 |=∧
x∈X̃j ψj(x) ⇐⇒ G� S |=

∧
x∈X̃j ψj(x).

We now consider the set
X ′j :=

(
Xj \X?

j

)
∪ X̃j .

Since V (K3)∩(Xj∪A(S)) = ∅ and r ≥ rj , for every x ∈ Xj , and thus for every x ∈ Xj \X?
j , it holds

that N (≤rj)
G�S (x)∩V (K

(ρ−r+1)
3 ) = ∅. Also, since t ≤ ρ− r and X̃j ⊆ V (K

(t−r+1)
3 \P (t−r+1)

3 ), for every
x ∈ X̃j it holds thatN

(≤rj)
G�S (x) ⊆ V (K

(ρ−r+1)
3 ). Thus, for every x ∈ Xj\X?

j and x
′ ∈ X̃j we have that

N
(≤rj)
G�S (x)∩N (≤rj)

G�S (x′) = ∅. The latter, together with the fact that the set Xj \X?
j is (`j − |Yj |, rj)-

scattered in G� S, X̃j is (|Yj |, rj)-scattered in K(t)
3 , and K(t)

3 = G� S[V (K
(t)
3 )], implies that X ′j is

an (`j , rj)-scattered set in G � S. Moreover, by definition, we have that X ′j ⊆ R and X ′j does not

intersect V (K
(t)
2 ), while we already argued why G�S |=

∧
x∈Xj ψj(x) ⇐⇒ G�S |=

∧
x∈X′j

ψj(x).
Subclaim follows.

Following the above subclaim, let a t ∈ [z− d
2 +2r+1, z−r] and an (`j , rj)-scattered set X ′j ⊆ R

in G� S such that G� S |=
∧
x∈Xj ψj(x) ⇐⇒ G� S |=

∧
x∈X′j

ψj(x) and X ′j ∩ V (K
(t)
2 ) = ∅.

Since d = 2(r + (` + 1)r + r) and |X ′j | ≤ `, there exists a t′ ∈ [z − d + 2r + 1, z − d
2 − r] such

that X ′j does not intersect ann(A(r)
t′ (W1)) (t′ corresponds to a layer in the orange area in Figure 8).

Now, consider the set Z := X ′j ∩ V (K
(t′−r+1)
1 � Sin). Observe that Z ⊆ R1 and therefore
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Z ⊆ V (K
(t′−r+1)
1 � Sin)∩R1. Also, notice that, since A(Sin) ⊆ V (Kz−d+1

1 ) and t′ ≥ z − d+ 2r+ 1,
P

(t′−r+1)
1 ⊆ V (K

(t′−r+1)
1 � Sin). Thus, Z ⊆ V ((K

(t′−r+1)
1 � Sin) \ P (t′−r+1)

1 ) ∩ R1. Recall that
R′ = R \ V (K

(r)
1 ) and observe that, since (X ′j \ Z) ∩ V (K

(t′)
1 ) = ∅ and t′ > r, it holds that

X ′j \ Z ⊆ R′. Let Y ′j ⊆ [`j ] be the set of the indices of the vertices of X ′j in Z. Also, notice that

since Z ⊆ V ((K
(t′−r+1)
1 � Sin) \ P (t′−r+1)

1 ) ∩ R1, Z is a subset of X ′j , and X ′j is (`j , rj)-scattered

in G � S, it holds that Z is (|Y ′j |, rj)-scattered in K
(t′)
1 � Sin and K

(t′)
1 � Sin |=

∧
x∈Z ψj(x). As

we mentioned before, sigϕ,�(K2, R2, z, S̃) = sigϕ,�(K1, R1, z, Sin). This implies the existence of a set
Z̃ ⊆ V ((K

(t′−r+1)
2 � S̃) \ P (t′−r+1)

2 ) ∩ R2 ⊆ R′ such that Z̃ is (|Y ′j |, rj)-scattered in K(t′)
2 � S̃ and

K
(t′)
1 � Sin |=

∧
x∈Z ψj(x) ⇐⇒ K

(t′)
2 � S̃ |=

∧
x∈Z̃ ψj(x). At this point, observe that, since the

formula ψj(x) is rj-local and Z ⊆ V ((K
(t′−r+1)
1 � Sin) \ P (t′−r+1)

1 ), N (≤rj)
G�S (x) ⊆ V (K

(t′)
1 � Sin), for

every x ∈ Z. Also, A(Sout) ∩ V (K
(z)
1 ) = ∅, which implies that K(t′)

1 � Sin |=
∧
x∈Z ψj(x) ⇐⇒

G� S |=
∧
x∈Z ψj(x). Thus, K(t′)

2 � S̃ |=
∧
x∈Z̃ ψj(x) ⇐⇒ G� S |=

∧
x∈Z ψj(x).

Also, since S′ = S̃ ∪ Sout, where A(Sout)∩ V (K2) = ∅, and Z̃ is (|Y ′j |, rj)-scattered in K(t′)
2 � S̃,

where Z̃ ⊆ V ((K
(t′−r+1)
2 � S̃)\P (t′−r+1)

2 ) and t′ ≤ ρ− r, we notice that Z̃ is also (|Y ′j |, rj)-scattered
in G � S′. Moreover, the formula ψj(x) is rj-local, so K

(t′)
2 � S̃ |=

∧
x∈Z̃ ψj(x) ⇐⇒ G � S′ |=∧

x∈Z̃ ψj(x). Therefore, we have G� S |=
∧
x∈Z ψj(x) ⇐⇒ G� S′ |=

∧
x∈Z̃ ψj(x).

Consider the set
X := (X ′j \ Z) ∪ Z̃.

Notice that since X ′j \Z is an (`j−|Y ′j |, rj)-scattered set in G�S and it does not intersect neither

V (K
(z−d+1)
2 ) (where A(S̃) lies), nor V (K

(t′−r+1)
1 ) (where A(Sin) lies), it is also an (`j − |Y ′j |, rj)-

scattered set in G�S′. Since Z̃ ⊆ V ((K
(t′−r+1)
2 � S̃)\P (t′−r+1)

2 ), X ′j ∩V (K
(t)
2 ) = ∅, and t′ < t−2r,

for every x ∈ X ′j \ Z and x′ ∈ Z̃ it holds that N (≤rj)
G�S′ (x) ∩ N (≤rj)

G�S′ (x
′) = ∅. The latter, together

with the fact that X ′j \Z is an (`j − |Y ′j |, rj)-scattered set in G� S′ and Z̃ is (|Y ′j |, rj)-scattered in
G� S′, implies that X ⊆ R′ is an (`h, rh)-scattered set in G� S′. Furthermore, since the formula
ψj(x) is rj-local, we obtain G� S′ |=

∧
x∈Xj ψj(x) ⇐⇒ G� S′ |=

∧
x∈X ψj(x).

Thus, assuming that there is an (`j , rj)-scattered set Xj ⊆ R in G � S such that G � S |=∧
x∈Xj ψj(x), we proved that there is an (`j , rj)-scattered set X ⊆ R′ in G�S′ such that G�S′ |=∧
x∈X ψj(x). To conclude Case 1, notice that we can prove the inverse implication analogously.

That is, by assuming the existence of an (`j , rj)-scattered set Xj ⊆ R′ in G � S′ such that G �
S′ |=

∧
x∈Xj ψj(x) and using the same arguments as above (replacing W1 with W2, S with S′ and

R with R′), we can prove the existence of an (`j , rj)-scattered set X ⊆ R in G � S such that
G� S |=

∧
x∈X ψj(x).

Case 2: j /∈ J . We aim to prove that (G� S,R) |= ¬ϕ̃j ⇐⇒ (G� S′, R′) |= ¬ϕ̃j .
In other words, we need to prove that for every (`j , rj)-scattered set Xj ⊆ R in G�S, G�S |=

¬ψj(x), for some x ∈ Xj if and only if for every (`j , rj)-scattered set Xj ⊆ R′ in G� S′, G� S′ |=
¬ψj(x), for some x ∈ Xj . In Case 1 we argued that there is an (`j , rj)-scattered set Xj ⊆ R in G�S
such that G�S |=

∧
x∈Xj ψj(x) if and only if there is an (`j , rj)-scattered set Xj ⊆ R′ in G�S′ such

that G�S′ |=
∧
x∈Xj ψj(x). This directly implies that (G�S,R) |= ¬ϕ̃j ⇐⇒ (G�S′, R′) |= ¬ϕ̃j .

This concludes Case 2 and completes the proof of our claim.
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We conclude the proof of the lemma by proving that (G,R, k) is a (ϕ,�)-triple if and only if
(G \ v,R′, k) is a (ϕ,�)-triple. As a proof of the latter, notice that by the above claim, we get that
(G,R, k) is a (ϕ,�)-triple if and only if (G,R′, k) is a (ϕ,�)-triple. By the definition of the (ϕ,�)-
triple, (G,R′, k) is a (ϕ,�)-triple if and only if there exists an S ⊆ �〈G,R′〉 such that |S| = k,
G � S is a planar graph, and (G � S,R′) |= ϕ̃. Since for every h ∈ [m] the FOL-formula ψh(x)

is rh-local, then the validity of ψh(x) does not depend on the central vertex v of W (r)
1 . Therefore,

(G,R′, k) is a (ϕ,�)-triple if and only if (G \ v,R′, k) is a (ϕ,�)-triple.
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