
111

DecVi: Adaptive Video Conferencing on Open Peer-to-Peer
Networks
JINGREN WEI∗ and SHAILESHH BOJJA VENKATAKRISHNAN∗, The Ohio State University, USA

Video conferencing has become the preferred way of interacting virtually, especially since the pandemic.

Current video conferencing applications—the likes of Zoom, Teams, Webex or Meet—are centralized, cloud-

based platforms whose performance crucially depends on the proximity of clients to their data centers. Clients

from low-income countries are particularly affected as most data centers from major cloud providers are

located in economically advanced nations (e.g,. Google has no data centers in Africa). Centralized conferencing

applications also suffer from occasional massive outages and are embattled by serious privacy violation

allegations. In recent years, decentralized video conferencing applications built over peer-to-peer networks

and incentivized through blockchain technology are becoming popular. A key characteristic of these networks

is their openness: anyone can host a media server on the network and gain monetary reward (through crypto-

tokens) for providing conferencing service. Strong economic incentives combined with a relative low entry

barrier to join the network, makes increasing server coverage to even remote regions of the world possible

with these applications. On the other hand, these very same reasons also lead to a security problem—a media

server may obfuscate its true location (e.g., using proxy servers or VPNs) in order to gain an unfair business

advantage. In this paper, we consider the problem of multicast tree construction for video conferencing

sessions in open, p2p conferencing applications. We propose DecVi, a decentralized multicast tree construction

protocol that adaptively discovers efficient tree structures based on an exploration-exploitation framework.

DecVi is motivated by the combinatorial multi-armed bandit problem and uses a succinct learning model to

compute effective actions. Despite operating in a multi-agent setting with each server having only limited

knowledge of the global network and without cooperation among servers, experimentally we show DecVi

achieves similar quality-of-experience compared to a centralized globally optimal algorithm while achieving

higher reliability and flexibility.

Additional Key Words and Phrases: video conferencing, decentralization, peer-to-peer

ACM Reference Format:

Jingren Wei and Shaileshh Bojja Venkatakrishnan. 2022. DecVi: Adaptive Video Conferencing on Open Peer-

to-Peer Networks. J. ACM 37, 4, Article 111 (August 2022), 23 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Video conferencing has become an ubiquitous method of virtual interaction for many–with millions

of meetings happening daily for work, education and leisure–especially since the global pandemic.

The global video conferencing market was valued at more than 6 billion US dollars in 2021, and is

projected to rise to 14 billion US dollars by 2029 [28]. Emerging technologies notably the Internet-

of-Things and augmented/virtual reality are further expected to drive this growth over the coming

years [29, 30, 41].

∗
Both authors contributed equally to this research.

Authors’ address: Jingren Wei, wei.1276@osu.edu; Shaileshh Bojja Venkatakrishnan, bojjavenkatakrishnan.2@osu.edu, The

Ohio State University, Columbus, Ohio, USA, 43210.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

0004-5411/2022/8-ART111 $15.00

https://doi.org/XXXXXXX.XXXXXXX

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2022.

ar
X

iv
:2

20
9.

00
69

5v
1

 [
cs

.N
I]

 1
 S

ep
 2

02
2

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

111:2 Jingren Wei and Shaileshh Bojja Venkatakrishnan

A bulk of the video conferencing sessions today occurs over cloud-based platforms such as Zoom,

Microsoft Teams, Google Meet and Cisco Webex. In these systems, media servers housed in massive

data centers act as central points of aggregation for receiving and distributing video streams across

participants of a conferencing session [42]. Fueled by the emergence of blockchain technology, in

recent years a number of decentralized and open peer-to-peer (p2p) video conferencing platforms

are also being developed in the industry [5, 7, 10–12, 14, 15, 18, 19, 24, 25, 27]. In an open p2p

conferencing system, media servers owned by individuals serve clients at various geographical

locations by relaying their streams to appropriate endpoints in exchange for a fee provided through

a blockchain. E.g., Livepeer’s decentralized network includes servers from individuals with their

aggregate capacity exceeding 70,000 GPUs today [15]. While still in their infancy [10, 22], decentral-

ized conferencing solutions carry unique benefits making them promising as alternative platforms

to existing centralized counterparts. Some of the important benefits include:

• Quality-of-experience (QoE). Centralized video conferencing frameworks employ only a

limited number of data center regions (fewer than 20, worldwide [31]) for media service,

which causes disruptions to sessions under high demands, and excessive streaming lag. E.g., a

recent study [45] reports Zoom users in Canada experiencing significant disruptions under a

surge in demand, due to Zoom’s media servers being overloaded. Also, the extent of lag clients

experience exhibits considerable variation depending on where clients are located. Another

study [42] shows clients on the west coast in the US experiencing more delay compared to

clients on the east coast on Zoom andWebex, as only media servers on the east coast are used

for all conferences in these platforms (in their free-tier service category). The latency between

two users both located on the west coast is therefore higher than the latency between a west

coast user and an east coast user. It is also reported that Zoom and Webex predominantly use

data centers in the US even for routing international traffic, resulting in European clients

seeing 55–75 ms and 45–65 ms higher median lags on Zoom and Webex respectively. Further,

excessive jitter due to long packet travel times affects the fluidity of conversations, and causes

“Zoom fatigue" [40, 46]. Low-income nations distant from major data center regions suffer

even more.

In p2p video conferencing systems, on the other hand, the relatively low entry barrier for

hosting servers creates incentives for placing servers at diverse geographical locations and

close to client hot spots, even in developing nations [20]. Increased proximity of servers to

clients leads to lower packet latencies, lesser jitter and fewer frames dropped, compared to

the status quo thus improving QoE. The turnaround time for augmenting the network with

more server capacity is also faster in a p2p network, compared to centralized systems.

• Availability. In a p2p network it is unlikely for multiple, independent servers to go down

at the same time, minimizing chances of a network-wide outage. Whereas in centralized

platforms outages are not uncommon, affecting millions of clients each time [3, 17, 33].

• Pricing. A p2p conferencing system is also likely to be cheaper (by up to 10–100× according

to reports [23]) for end users due to a lack of need for a dedicated server infrastructure and a

more open, transparent market. Centralized conferencing systems, on the other hand, require

adequate server provisioning that must be paid for even if the servers are not being fully

used; this cost ultimately get passed on to end users [1, 2].

• Privacy and censorship. There is also a growing concern about the privacy and censorship

practices of centralized video conferencing providers [4, 6]. In contrast, the open nature of

p2p conferencing systems makes it a fully transparent medium where no single party has the

ability to unilaterally censor users or collect their data.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2022.

DecVi: Adaptive Video Conferencing on Open Peer-to-Peer Networks 111:3

A key challenge in building a large scale and open p2p conferencing network is how to determine

efficient paths over which to deliver client media streams. For good QoE, a streaming path must

have low latency and sufficient bandwidth available to carry video chunks of appropriate quality,

as requested by a receiving client’s application. Further, servers often have only limited compute

and bandwidth capacities which restrict the maximum number of streams that can be relayed by

any one server. Thus, for conferencing sessions involving a large number of clients it becomes

necessary to route streams over multiple (potentially geographically separated) servers structured

as a multicast tree. Determining a good subset of servers for the multicast tree, and how to structure

the multicast tree to maximize QoE, are nontrivial problems whose solution depends on various

factors including the geographic location of clients and servers, video quality desired by each client,

network bandwidth available at the clients and servers, and amount of compute available at the

servers. These factors are not only highly heterogeneous across peers but can also be time varying

which further complicates the problem.

In an open system, clients and servers are free to join or leave the network at will. The potentially

large number of servers and peer churn make it impractical for a central entity to keep track of the

servers and compute the routing paths for clients. Centralized route computation is also a single

point of failure which diminishes system availability under an attack. It is therefore desirable to

use a fully decentralized route computation mechanism.

We present DecVi, a fully decentralized and efficient route computation algorithm for large

scale, p2p conferencing networks. In DecVi a multicast tree of servers is built for each source

of a video stream in a conferencing session, with the source as the root and all other clients in

the session as leaves. A multicast tree is initialized arbitrarily, but is iteratively refined over time

using an exploration-exploitation framework for increasing client QoE. DecVi is inspired by the

combinatorial multi-armed bandit problem [44, 64], with a server in a multicast tree treating

downstream servers to whom it must forward streams to and the corresponding stream qualities,

as the ‘arms’ of a bandit problem. The streaming latency and quality of stream received by a client

form the ‘reward’ earned, which is communicated by the client to the multicast tree servers as

feedback. The adaptive approach of DecVi results in multicast trees that are automatically tuned to

the various heterogeneities in the network without explicit human input. Our proposed protocol

can scale to networks of several thousand clients and servers due to its decentralized design.

Prior works have proposed distributed algorithms based on analytical models for multiparty

video conferencing with multiple media servers for relaying [55, 60, 69]. A model-based algorithm

requires clients and servers to have knowledge of the model parameters (available bandwidth,

number of servers etc.) to run. Moreover, the model itself may not be a good approximation of the

system. In contrast, DecVi is an entirely adaptive solution which does not require clients or servers

to have knowledge of the system parameters.

More recently, a number of works have presented p2p conferencing designs for WebRTC [58, 59].

These designs, however, consider only a single media server for connecting the clients. With the

development of scalable video coding [38], selective forwarding units (SFUs) are emerging as

lightweight, low-delay media servers (with forwarding delay typically < 20ms [35, 36, 39]). The

low complexity of SFUs has encouraged operators to deploy a cascade of SFUs for geo-distributed

conferencing sessions for efficiency [21, 48]. Dynamically deciding which SFUs to utilize for a

conferencing session with cascaded SFUs is still an active area of research. Our work addresses this

problem for open, permissionless systems where anyone is free to join the network and host SFUs.

The contributions of this paper are:

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2022.

111:4 Jingren Wei and Shaileshh Bojja Venkatakrishnan

(1) We formulate multicast tree construction for video conferencing in open, p2p systems as a

distributed learning problem. A learning approach to p2p design for streaming video has not

been previously proposed, to our best knowledge.

(2) We propose a decentralized algorithm for tree construction inspired by the combinatorial

multi-armed bandit problem. However, our work is different from standard multi-agent

bandit settings which consider all agents working on instances of the same bandit problem or

sharing the same reward function globally. The algorithm and empirical results we provide

may be of independent interest to the multi-agent bandit research community.

(3) Experimentally, we build a custom event-driven simulator and show that DecVi achieves

a 19% latency speedup compared to centralized conferencing applications whose multicast

trees are structured as a star topology with a data center as the hub node.

(4) In smaller conference settings (5 to 10 clients involved), DecVi achieves the globally optimal

topology, while in larger settings (with 50 clients) it achieves about 85.2% of QoE performance

compared to an omniscient centralized baseline.

2 BACKGROUND
2.1 Video Stream Compression and Encoding
Motivated by emerging p2p video conferencing systems [10, 15, 24], we consider a system where

clients in a conferencing session are connected to an open network of media servers for sending and

receiving media streams (Figure 1(a)). Servers are required as directly sending streams from each

client to all other clients consumes too much bandwidth at the clients for large conferences. Even

with servers, transporting raw video over the Internet is bandwidth intensive—it is common for

conferencing systems today to use a video compression protocol (e.g., H.264/AVC, VP9, H.265/HEVC

and AV1 are popular video compression standards) for reducing video bandwidth by 1000× or

more. Compression must be done at a bit rate that suits the video resolution and quality desired by

receiving clients. If clients have heterogeneous bit rate requirements, then it becomes necessary to

simultaneously encode video at different bit rates, sending an appropriate bit rate stream to each

client. Traditionally, the computationally expensive operation of encoding video in to multiple

bit rates (called transcoding) was done at a media server, which increased the complexity and

cost of media servers. A key computational challenge here is that the transcoding operation

must be repeated for each distinct bit rate desired. Scalable video coding is therefore becoming

a popular alternative for achieving heterogeneous bit rate requirements with a low media server

complexity [56, 63]. In scalable video coding, video is encoded in to multiple bit stream “layers”,

including a base layer and a sequence of enhancement layers. Video can be decoded using the

base layer and any number of consecutive enhancement layers, with more enhancement layers

providing a greater video quality. Compared to single-layer coding schemes, scalable video coding

incurs a small bit rate overhead (about ∼10%) for the same video quality; it has been included as

extensions to the popular H.264/AVC, H.265/HEVC, VP9 and AV1 codecs and is beginning to see

widespread adoption in mainstream video conferencing applications [9, 34]. With scalable video

coding, media servers are significantly reduced in complexity performing only the job of forwarding

video packets without any transcoding. Media servers are also called as selective forwarding units

(SFU) in a scalable video coding system—depending on the video quality desired by a client an SFU

chooses the base layer and an appropriate subset of enhancement layers and forwards to the client.

2.2 Open P2P Video Conferencing
Decentralized video conferencing systems with multiple geo-distributed servers are naturally more

scalable and have lower streaming delays compared to centralized systems. While decentralized

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2022.

DecVi: Adaptive Video Conferencing on Open Peer-to-Peer Networks 111:5

conferencing systems have been deployed in the past, they are typically closed systems managed

by a single central authority [16, 26]. The economic models of these systems make a pervasive

deployment of media servers prohibitively expensive, limiting client QoE in many regions. With

the development of blockchains and smart-contract technology, decentralized video conferencing

systems not managed by any one entity are emerging. These systems are characterized by their: (1)

openness—any operator may freely join the system and use their servers for providing conferencing

service to clients, (2) incentives—operators earn monetary compensation (typically through crypto-

tokens) for providing computation and bandwidth services to clients, and (3) security—parties cannot
deviate from protocol to obtain unfair monetary gains. Verification that a server has correctly

provided service for a conference occurs through cryptographic primitives on smart contracts.

These smart contracts are either directly implemented over a blockchain [15] or implemented

off-chain [14, 61] for additional scalability.

Clients and media servers discover IP addresses of other media servers through a peer discovery

mechanism using gossip. Server IPs can also be published on chain as part of the smart contract

between clients and servers. An open system is susceptible to Sybil attacks where an adversary

spawns a large number of SFU process instances (assigning fake identities to each instance) over

potentially multiple server machines [65]. E.g., using proxies/VPN a server may claim to be at a

location which is different from its true location to gain unfair rewards. Whereas selecting media

servers in close proximity to clients is crucial for achieving low streaming delay. Existing open p2p

systems use a reputation mechanism realized through delegated staking (i.e., participants stake

their personal funds vouching for the correct operation of certain servers based on past experience

with the servers) to identify reliable servers with high available bandwidth. Even so, determining a

media server’s true location based on a client’s past experience with the server, is considerably

challenging and has not been implemented. DecVi’s adaptive server selection protocol is therefore

well suited to open p2p settings.

3 SYSTEMMODEL
We consider a video conferencing session between a set of clients 𝐶 , streamed using a subset of

media servers from a set 𝑆 of available media servers. Each client 𝑐 ∈ 𝐶 is the source of a video

stream that it seeks to distribute to all the other clients in 𝐶 . A client distributes its stream by

forming a multicast tree with the client as the root, all the other clients as the leaves, and one

or more media servers as the interior nodes of the tree (Figure 1). Each client forms its multicast

tree independently of the multicast trees of other clients.
1
In the remainder we therefore restrict

ourselves to a single client source 𝑐0 ∈ 𝐶 , and focus on how to construct an efficient multicast tree

for 𝑐0.

3.1 Network Model
We model the streaming network as a graph 𝐺 with SFUs 𝑆 and clients 𝐶 forming the nodes. For

two nodes 𝑢, 𝑣 ∈ 𝐺 , there is a link (𝑢, 𝑣) ∈ 𝐺 between the nodes if 𝑢 sends a stream to 𝑣 in the

multicast tree for 𝑐0. Each link (𝑢, 𝑣) ∈ 𝐺 has a latency 𝑙 (𝑢, 𝑣) ≥ 0, which is the time it takes for

packets sent from 𝑢 to reach 𝑣 . Node pairs 𝑢 ′, 𝑣 ′ that do not form a link, i.e., (𝑢 ′, 𝑣 ′) ∉ 𝐺 , also have

an associated latency 𝑙 (𝑢 ′, 𝑣 ′) which is the time it takes for packets to go from 𝑢 ′ to 𝑣 ′ if 𝑢 ′ were
to forward the stream to 𝑣 ′. We do not model jitter or packet loss in this model. Each SFU 𝑠 ∈ 𝑆
has a bandwidth limit of 𝑏𝑠 ∈ N = {0, 1, 2, . . .} ≥ 0, which is the maximum rate at which it can

upload streams to other nodes. We assume download bandwidth is not constrained, as download

1
Our approach can be generalized to construct a single, common multicast tree to disseminate all streams. We leave a

systematic study of such an approach to future work.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2022.

111:6 Jingren Wei and Shaileshh Bojja Venkatakrishnan

bandwidth is typically greater than upload bandwidth in practice. Nodes a priori do not have any

knowledge of the link latencies or bandwidth limits of other nodes in the network. However, we

assume the IP addresses of SFUs 𝑆 is public knowledge and an SFU can connect with any other SFU.

Video is encoded through scalable video coding at the source with a maximum of 𝑄 ∈ N layers.

We assume each layer (base or enhancement) in the stream consumes 1 unit of bandwidth while

uploading or downloading. An SFU 𝑠 ∈ 𝑆 that receives 𝑞 layers of the stream may forward at most

𝑞 layers to each of its downstream nodes in the multicast tree. Moreover, the total number of layers

forwarded cannot exceed the bandwidth 𝑏𝑠 available at the server. Each client 𝑐 ≠ 𝑐0, 𝑐 ∈ 𝐶 has

a requirement for receiving at least 𝑞∗ (𝑐) > 0, 𝑞∗ (𝑐) ≤ 𝑄,𝑞𝑐 ∈ N layers, with a packet latency

as small as possible. Latency of a path 𝑐0, 𝑠0, 𝑠1, . . . , 𝑠𝑘 , 𝑐 in the multicast tree is the overall delay

𝑙 (𝑐0, 𝑠0) +
∑𝑘−1

𝑖=0 𝑙 (𝑠𝑖 , 𝑠𝑖+1) + 𝑙 (𝑠𝑘 , 𝑐) incurred by video packets from the source to the destination

client. Note that each client has a unique path from 𝑐0 in the multicast tree. For simplicity we do

not consider the forwarding delay incurred at each SFU for buffering, processing and relaying

video frames; nor do we consider packet transmission delays during upload or download at a node.

These details can be included in the model without causing any significant changes to the proposed

algorithm, due to the adaptive nature of DecVi.

3.2 Multicast Tree Construction
We consider fully distributed algorithms for the multicast tree construction. Initially the tree

comprises of just a single SFU which disseminates the stream to all clients. The choice of this initial

SFU is up to the source client 𝑐0 (e.g., 𝑐0 can choose an SFU located close to her). We assume the IP

address of the initial SFU is shared with all conference participants offline before the conference

begins, so that the participants can connect to it and receive the stream. Along with the video

packets, 𝑐0 also sends various meta data to the SFU: sending client’s identifier, number of layers

sent, list of recipients clients in the session and their IP addresses, and number of layers requested

by each recipient client.

Once a tree is constructed, subsequently we allow the SFU(s) in the tree to augment the tree by

including new SFUs or removing existing SFUs from the tree. While augmenting a tree, each SFU

can only decide its immediate (1-hop) downstream nodes in the tree. A downstream node for an

SFU is either another SFU or a client. However only an SFU can forward streams; a client may only

receive a stream and cannot forward it. While deciding the downstream nodes, the SFU must also

decide the number of layers to send to each of the nodes, and the subset of clients each node (that

is not a client) is responsible for distributing the stream to. We call these decisions as the SFU’s

action. Along with the video stream, the SFU sends the following metadata to a downstream SFU:

client 𝑐0’s identifier, number of layers sent to the downstream SFU, list of recipients clients the

downstream SFU is responsible for and their IP addresses, and number of layers requested by each

recipient client in the list. If a node is responsible for distributing the stream to a client 𝑐 ∈ 𝐶 , the
node must take actions such that the node is an ancestor of 𝑐 in the multicast tree. The source 𝑐0 can

also change its immediate downstream SFU. We assume 𝑐0 always sends its stream to a single SFU,

which can then distribute the stream to other SFUs if needed. SFU and 𝑐0’s actions are executed

such that the video stream is received uninterrupted by the other clients at all times. Actions are

also taken such that no cycles form in the multicast tree. E.g., before making a connection to a new

node, a node verifies that the new node is not already receiving a stream with client 𝑐0 as the source.

To alter the multicast tree, the source 𝑐0 sends a special trigger_action packet along with the

video stream down the existing multicast tree. When a node receives a trigger_action packet, it

takes an action and forwards the trigger_action message to its latest set of downstream nodes.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2022.

DecVi: Adaptive Video Conferencing on Open Peer-to-Peer Networks 111:7

(a) (b) (c)

Fig. 1. (a) DecVi considers an open, p2p network of media servers over a wide area for relaying video streams
between clients. (b) An example of an optimal streaming network. (c) A sub-optimal connection compared
with (b), the latency of clients 2, 3, 4 are higher.

We call each trigger_action packet sent by 𝑐0 as a round. Note that retaining the same set of

neighbors as in the previous round is a valid action for an SFU.

A client periodically sends a feedback to each SFU responsible for the client, on the path from 𝑐0
to the client. The feedback contains the number of layers the client is receiving, and a specially

marked packet that allows an SFU to estimate the delay in sending packets from the SFU to the

client. To estimate the delay, an SFU 𝑠 sends a get_delay packet containing the SFU’s identifier and
the current timestamp at 𝑠 , to all its children, who then forward the packet down the multicast tree

to the clients. When a client receives a get_delay packet, it immediately appends its own identifier

to the packet and echos it back to 𝑠 . Based on the timestamp mentioned in the received packet,

and the time when the response is received by 𝑠 , the SFU 𝑠 computes the delay for forwarding a

packet from 𝑠 to the client through the multicast tree and getting a feedback response back. We

call the computed delay as the latency between the SFU 𝑠 and the client. Based on these feedback

information received from clients, SFUs decide how best to update their connections in the next

round.

3.3 Objective
The objective is to construct a multicast tree which maximizes the aggregate reward (utility) of the

clients. From the feedback received from clients, each SFU 𝑠 on the multicast tree computes the

reward for client 𝑐 ∈ 𝐶𝑠 as

𝑟𝑠 (𝑐) = −𝑑 (𝑠, 𝑐) + 𝛼𝑞(𝑐)/𝑞∗ (𝑐), (1)

where𝐶𝑠 is the set of clients that 𝑠 is responsible for, 𝑑 (𝑠, 𝑐) is the delay between 𝑠 and 𝑐 as estimated

from the get_delay packet and 𝑞(𝑐) is the number of layers 𝑐 receives. 𝛼 ≥ 0 is a user-defined

parameter that dictates the trade-off between optimizing delay and video quality. The SFU chooses

its actions so that the aggregate reward

∑
𝑐∈𝐶𝑠

𝑟𝑠 (𝑐) is maximized.

4 MOTIVATION
To illustrate the problem and its challenges, consider the example of a conference session with 5

clients and four SFUs as shown in Figure 1(b). Suppose the nodes are located on a two-dimensional

space with the Euclidean distance between two nodes signifying the latency of sending a packet

between the nodes if they are connected to each other. We focus on client 0 as the source in this

example. Each SFU has a bandwidth limit of 6 units, while each client requests to receive 3 layers

of the video stream with as low a latency as possible. The source client generates 5 layers. In a

centralized system, the source sends the stream to a central SFU which then forwards the stream

to all other clients. However, with a bandwidth limit of 6 units, the central SFU cannot support

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2022.

111:8 Jingren Wei and Shaileshh Bojja Venkatakrishnan

Algorithm 1: DecVi: Algorithm outline for computing action at SFU 𝑠 during a round.

input :trigger_action packet from parent node, number of layers 𝑞in (𝑠) received from

parent node of 𝑠 , set of clients 𝐶𝑠 that 𝑠 is responsible for, IP addresses of clients in

𝐶𝑠 , layer requirements of clients in 𝐶𝑠 , exploration parameter 𝜖 ∈ (0, 1)
output :action = { set of nodes Γ𝑠 to forward stream to, number of layers to forward to

each 𝑠 ′ ∈ Γ𝑠 , set of clients 𝐶𝑠′ each 𝑠
′ ∈ Γ𝑠 is responsible for }

/* Update model based on feedback received since last model update. */

model← UpdateModel(model, feedback)
/* Compute action balancing exploitation and exploration */

𝑟 ← sample random number uniformly in [0, 1]
if 𝑟 ≤ 1 − 𝜖 then

action← EstimateBestAction(model)
else

action← RandomAction()
end

Execute action and send trigger_action to all downstream nodes Γ𝑠 ∈ action

high quality streams (3 layers) to all 4 clients. Whereas by using 3 SFUs in the multicast tree, we

can deliver 3 layer streams to all 4 clients at the cost of a marginal increase in latency compared

to the centralized case. The key challenge is how we can discover such efficient multicast tree

structures through decentralized algorithms in an open setting, where comprehensive knowledge

of locations of all SFUs currently online and their capacities are not known. Even with global

knowledge, computing optimal tree structures is computationally expensive (§6). In our proposed

algorithm DecVi (§5), starting from an initial distribution tree SFUs gradually updates the tree to

the state shown in Figure 1(b). In this state, each client receives the full 3 layers it requested, while

the latency is close to the latency of the direct link from client 0 to the client. This example also

illustrates that streaming via a multicast tree is bandwidth and latency efficient when there are

clusters of clients located in different geographical regions. For clients within the same geographic

region, it also illustrates the benefit of choosing SFUs from the same region. Figure 1(c) shows an

example of a multicast tree that is suboptimal for this setting. Whereas DecVi automatically learns

to ignore SFU 3 to produce the best tree configuration.

5 DECVI DESIGN
We present DecVi, an adaptive, decentralized algorithm to compute efficient multicast routing trees

in a short amount of time. DecVi is motivated by the combinatorial multi-armed bandit problem

(with semi-bandit feedback) applied to a decentralized setting with multiple independent agents

in a shared environment [64]. Each agent (i.e., an SFU or 𝑐0) maintains a succint model of the

environment based on its past interactions with the network (past actions, and observed rewards)

using which it computes the best action to take next. Using a model provides a convenient way to

summarize observations from past interactions, without significant loss of useful information, while

consuming minimal storage. DecVi also balances exploitative actions with exploratory actions, in

which an action is randomly selected, which helps discover unseen SFU candidates with potentially

good performance. An outline of DecVi is presented in Algorithm 1.

When an SFU 𝑠 in the multicast tree receives a trigger_action message, it uses the current

model to estimate what is the best action to take. To encourage exploration, the best action predicted

by the model is executed with probability 1 − 𝜖 , where 𝜖 ∈ (0, 1) is a configurable parameter. With

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2022.

DecVi: Adaptive Video Conferencing on Open Peer-to-Peer Networks 111:9

probability 𝜖 a random action is taken. The model is updated each time the SFU receives a feedback

from a client. In our experiments (§6) we observe DecVi takes a few hundred rounds to converge

to an efficient multicast tree. Each time the tree is reorganized, there is a potential for the video

to experience disruptions at clients. To avoid frequent tree updates, in practice we can run DecVi

in the background to discover new, efficient trees while using a stale tree to perform the actual

video streaming. Occasionally (e.g., every 15 min), the streaming tree can be updated to the best

tree found by DecVi so far. Another approach to minimize video disruptions is to have a setup

phase lasting for a few minutes before the start of the conferencing session, during which we can

run DecVi to determine an efficient multicast tree. Subsequently, we can fix the tree to be the best

tree found during the setup phase for the entire duration of the conference. We leave a systematic

evaluation of such implementation choices to future work.

The main technical challenges with DecVi’s approach in Algorithm 1 are (1) what model to use

to summarize the environment state? (2) how to update the model with each interaction? and (3)

how to compute optimal actions from the model?

Model (model in Algorithm 1). Maintaining a detailed model of the global network (e.g., where

each SFU is located, their churn patterns, type of server hardware used etc.) at each agent is

infeasible, as the sparse reward feedback from clients are inadequate to accurately update all

model parameters. On the other hand, a trivial model where each candidate action is considered an

independent ‘arm’ fails to capture the rich structure in the actions which increases complexity and

reduces efficiency.

At each SFU 𝑠 (and client 𝑐0), we consider a complete bipartite graph model G(S,𝐶𝑠) where
S is the set of SFUs known to 𝑠 (including itself) and 𝐶𝑠 is the set of clients 𝑠 is responsible for.

For simplicity, in our evaluations we assume S = 𝑆 , the global set of SFUs. In practice, if the size

of S is large, heuristics may be used to prune down the set of candidate SFUs considered. Each

edge (𝑠 ′, 𝑐 ′) ∈ G has two weights associated with it:
ˆ𝑑 (𝑠, 𝑠 ′, 𝑐 ′) which is an estimate of the latency

between 𝑠 and 𝑐 ′ if the stream is forwarded through 𝑠 ′ (and 𝑠 ′ is responsible for delivering the stream

to 𝑐 ′), and ˆ𝜙 (𝑠 ′, 𝑐 ′) which is an estimate of the average number of layers 𝑐 ′ receives if 𝑠 forwards the
stream to 𝑠 ′ (and 𝑠 ′ is responsible for delivering the stream to 𝑐 ′) per unit layer sent to 𝑠 ′. In other

words, if 𝑠 sends 𝑞(𝑠, 𝑠 ′) layers to 𝑠 ′ and makes 𝑠 ′ responsible for 𝑐 ′, we estimate 𝑞(𝑠, 𝑠 ′) × ˆ𝜙 (𝑠 ′, 𝑐 ′) as
the number of layers 𝑐 ′ receives. Maintaining an estimate

ˆ𝜙 (𝑠 ′, 𝑐 ′) of the number of layers received

by 𝑐 ′ per unit layer sent to 𝑠 ′ allows us to estimate the number of layers received by 𝑐 ′ based on

the action 𝑞(𝑠, 𝑠 ′) at 𝑠 ′.
Computing the best action (EstimateBestAction() in Algorithm 1). An action at SFU 𝑠

can be represented using two functions: a client assignment map 𝑎(𝑠, ·) : C → S and number of

layers forwarded 𝑞(𝑠, ·) : S ∪ C → N where N = {0, 1, 2, . . .}. If 𝑎(𝑠, 𝑐 ′) = 𝑠 ′, it means 𝑠 forwards a

non-zero number of layers to 𝑠 ′ while also informing 𝑠 ′ to be responsible for 𝑐 ′. If 𝑞(𝑠, 𝑠 ′) > 0 for

𝑠 ′ ∈ S, it means SFU 𝑠 forwards 𝑞(𝑠, 𝑠 ′) layers to 𝑠 ′. Similarly, if 𝑞(𝑠, 𝑐 ′) > 0 for 𝑐 ′ ∈ C, it means 𝑠

forwards 𝑞(𝑠, 𝑐 ′) layers directly to 𝑐 ′. For consistency, we must have 𝑞(𝑠, 𝑠 ′) > 0 iff ∃ 𝑐 ′ ∈ C such

that 𝑎(𝑠, 𝑐 ′) = 𝑠 ′ for any 𝑠 ′ ∈ S. Similarly, 𝑞(𝑠, 𝑐 ′) > 0 iff 𝑎(𝑠, 𝑐 ′) = 𝑠 for any 𝑐 ′ ∈ C.
For any candidate action (𝑎(𝑠, ·), 𝑞(𝑠, ·)) where 𝑎, 𝑞 are consistent with each other as noted above,

we can estimate the reward incurred by the action as∑︁
𝑐′∈𝐶𝑠

(
− ˆ𝑑 (𝑠, 𝑎(𝑠, 𝑐 ′), 𝑐 ′) + 𝛼1𝑎 (𝑠,𝑐′)≠𝑠

min(𝑞(𝑠, 𝑎(𝑠, 𝑐 ′)) ˆ𝜙 (𝑎(𝑠, 𝑐 ′), 𝑐 ′), 𝑞(𝑐 ′))
𝑞(𝑐 ′)

+ 𝛼1𝑎 (𝑠,𝑐′)=𝑠
min(𝑞(𝑠, 𝑐 ′), 𝑞(𝑐 ′))

𝑞(𝑐 ′)

)
(2)

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2022.

111:10 Jingren Wei and Shaileshh Bojja Venkatakrishnan

following our reward model (§3.3). The EstimateBestAction() outputs the action with the highest

estimated reward. A naïve method to find the best action is to exhaustively compute the reward for

all possible actions and choose the best one. However, the set of possible actions grows prohibitively

large in size even for moderate sized problem instances. We use an integer-quadratic-program (IQP)

to compute the best action as follows:

max

∑︁
𝑐′∈𝐶𝑠

©­­«−
∑︁
𝑠′∈S

𝑥 (𝑠 ′, 𝑐 ′) ˆ𝑑 (𝑠, 𝑠 ′, 𝑐 ′) +
∑︁
𝑠′∈S
𝑠′≠𝑠

𝛼𝑥 (𝑠 ′, 𝑐 ′)𝑞(𝑠, 𝑠
′, 𝑐 ′)

𝑞(𝑐 ′) + 𝛼𝑥 (𝑠, 𝑐 ′)𝑞(𝑠, 𝑐
′)

𝑞(𝑐 ′)
ª®®¬ (3)

such that 𝑥 (𝑠 ′, 𝑐 ′) ∈ {0, 1} ∀𝑠 ′ ∈ S, 𝑐 ′ ∈ 𝐶𝑠 (4)

𝑞(𝑠, 𝑠 ′) ∈ N ∀𝑠 ′ ∈ S, 𝑠 ′ ≠ 𝑠 (5)

𝑞(𝑠, 𝑠 ′, 𝑐 ′) ∈ N ∀𝑠 ′ ∈ S, 𝑠 ′ ≠ 𝑠, 𝑐 ′ ∈ 𝐶𝑠 (6)

𝑞(𝑠, 𝑐 ′) ∈ N ∀𝑐 ′ ∈ 𝐶𝑠 (7)

𝑞(𝑠, 𝑠 ′, 𝑐 ′) = min(𝑞(𝑠, 𝑠 ′) ˆ𝜙 (𝑠 ′, 𝑐 ′), 𝑞(𝑐 ′)) ∀𝑠 ′ ∈ S, 𝑠 ′ ≠ 𝑠, 𝑐 ′ ∈ 𝐶𝑠 (8)

𝑞(𝑠, 𝑐 ′) ≤ 𝑞(𝑐 ′) ∀𝑐 ′ ∈ 𝐶𝑠 (9)∑︁
𝑠′∈S
𝑠′≠𝑠

𝑞(𝑠, 𝑠 ′) +
∑︁
𝑐′∈𝐶𝑠

𝑞(𝑠, 𝑐 ′) ≤ min(𝑏𝑠 , 𝑞in (𝑠)) . (10)

Here, 𝑥 (𝑠 ′, 𝑐 ′) is an indicator variable that denotes whether client 𝑐 ′ is mapped to SFU 𝑠; 𝑞(𝑠, 𝑠 ′)
denotes the number of layers 𝑠 sends to a downstream neighbors 𝑠 ′; 𝑞(𝑠, 𝑠 ′, 𝑐 ′) is an estimate of

the number of layers client 𝑐 ′ receives if the stream for 𝑐 ′ is sent through 𝑠 ′; 𝑞(𝑠, 𝑐 ′) is the number

of layers 𝑠 sends to client 𝑐 ′ if 𝑠 forms a direct connection to 𝑐 ′. Eq. (8) says that if 𝑞(𝑠, 𝑠 ′) layers
are sent by 𝑠 to 𝑠 ′ and 𝑠 ′ is responsible for 𝑐 ′, then the number of layers received by 𝑐 ′ is at most

𝑞(𝑠, 𝑠 ′) ˆ𝜙 (𝑠 ′, 𝑐 ′) and at most 𝑞(𝑐 ′) (number of layers requested by 𝑐 ′). Similarly Eq. (9) says the

number of layers sent by 𝑠 directly to a client 𝑐 ′ cannot exceed client 𝑐 ′’s demand 𝑞(𝑐 ′). Finally
Eq. (10) says the total number of layers sent by 𝑠 cannot exceed the bandwidth limit of 𝑠 . Note

that despite the non-linear min function in Eq. (8), the constraint can be converted in to a linear

constraint using auxiliary variables. In our experiments, we observe the above IQP finds the exact

optimal solution for small to moderate sized problem instances with few tens of nodes (see §6). For

larger networks, we run the above optimization with a time cutoff specified.

Updating the model (UpdateModel() in Algorithm 1). The edge weight parameters in our

bipartite graph model must be estimated, as SFU 𝑠 may not have exact information on downstream

nodes’ locations or their subtree topologies. When a client or SFU is first included in the bipartite

graph model G, the latency and quality parameters are initialized to zero. Each time an action is

played, the SFU updates its model using the feedback received from the clients as follows. If the

stream for client 𝑐 ′ ∈ 𝐶𝑠 is routed through SFU 𝑠 ′ ∈ S, we have
ˆ𝑑 (𝑠, 𝑠 ′, 𝑐 ′) = ˆ𝑑 (𝑠, 𝑠 ′, 𝑐 ′) + 𝜂 (𝑑 (𝑠, 𝑐 ′) − ˆ𝑑 (𝑠, 𝑠 ′, 𝑐 ′)) (11)

ˆ𝜙 (𝑠 ′, 𝑐 ′) = ˆ𝜙 (𝑠 ′, 𝑐 ′) + 𝜂 ′(𝑞(𝑐
′)

𝑞(𝑠, 𝑠 ′) −
ˆ𝜙 (𝑠 ′, 𝑐 ′)), (12)

where 𝜂, 𝜂 ′ are step size parameters. Similarly, for a client 𝑐 ′ ∈ 𝐶𝑠 that is directly sent the stream

from 𝑠 , we have

ˆ𝑑 (𝑠, 𝑐 ′) = ˆ𝑑 (𝑠, 𝑐 ′) + 𝜂 (𝑑 (𝑠, 𝑐 ′) − ˆ𝑑 (𝑠, 𝑐 ′)) (13)

ˆ𝜙 (𝑠, 𝑐 ′) = 1. (14)

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2022.

DecVi: Adaptive Video Conferencing on Open Peer-to-Peer Networks 111:11

Fig. 2. Diagram of the EventQueue Model.

To encourage exploration, we also include an additive bonus term to the edge weights based on the

number of times the edge has been selected [37]. It is possible for a feedback message from a client

to take a long time to be received by SFU 𝑠 , due to inefficient, long paths to the client from 𝑠 . To

prevent stalling, we therefore set a deadline and update the model parameters using default target

values if a feedback is not received by the deadline.

Increasing stability. Depending on the depth of an SFU in the multicast tree, it can take several

rounds to evaluate the true quality of the SFU’s actions. E.g., consider an SFU 𝑠 that has 3 levels

of other SFUs below it in the subtree rooted at the 𝑠 . SFUs in each of those levels must perform

sufficient exploration and exploitation rounds in their respective action spaces to determine an

efficient topology for the subtree. Only when this subtree converges to an efficient topology, does

the true impact of SFU 𝑠’s action becomes known. The higher up SFU 𝑠 is in the subtree, the greater

could be the number of rounds necessary to assess the true quality of 𝑠’s action.

To avoid underestimating the performance of an action, we consider a variant of our proposed

algorithm when an SFU makes a new action only after a fixed number of rounds have elapsed

since the last action. This interval between successive actions is decided based on the depth of the

subtree rooted at the SFU with deeper subtrees requiring a longer interval.

6 EVALUATION
6.1 Simulator Design
We evaluate DecVi on a custom event-based simulator written in Python.

2
Each packet (message)

sent or received by a node in the network is an event. Events are scheduled to occur following the

network’s stipulated link delays using a linked list of queues datastructure (Figure 2). Each node of

the linked list is associated with a time stamp and an event queue. The nodes are ordered by the

time stamp. An event is first scheduled by adding the event to the event queue and then evaluated

when the event queue is being evaluated. The nodes of events are evaluated based on the order

of the nodes, which is the chronological order. A new event could be triggered when evaluating

the current event. For example, when evaluating the event ‘client receives a packet’, a new event,

‘client sends a feedback’ is triggered. The new event is inserted into the linked list based on the

time it will be evaluated.

6.2 Experiment Setup
We consider a p2p network of clients and SFUs, with each node assumed to be located at a point on

a two-dimensional plane. For any two nodes, the latency of sending a packet between the nodes

2
The simulator will be made publicly available in the final version of the paper.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2022.

111:12 Jingren Wei and Shaileshh Bojja Venkatakrishnan

is set to be proportional to the Euclidean distance between the nodes on the 2D plane. We vary

the number of clients between 5–50 and the number of SFUs between 3–10 in the experiments.

The bandwidth of each SFU is chosen such that multiple SFUs are required in a multicast tree to

achieve good QoS. In practice, a single SFU can support over 30 participants in a session with a 500

Mbps link [13]. However, if there are many concurrent conference sessions served by the same SFU,

the amount of available bandwidth to any one conference diminishes. Each client has a quality

(number of layers) requirement as discussed in §3. Every 5s, a client initiates a trigger_action
command which is propagated down its multicast tree trigerring actions at the SFUs. We use a

step size proportional to the number of SFUs involved in each setting, and we set 𝛼 = 0.7. Each

time when the algorithm is activated, it is recorded as one round. The model converges in a short

amount of time in all experiment settings and remains stable after the converge point.

Baselines. We compare DecVi’s QoE against the global optimum computed using integer pro-

gramming. The global optimum is a centralized scheme that takes complete information about the

SFUs and clients locations, SFU bandwidth limits and client QoE requirements as input to compute

the best multicast trees and routing. Constraining the distribution paths to be a tree introduces

an exponential number of constraints in the integer program. Thus, we are able to compute the

global optimum only for small networks. The complete integer programming formulation has been

presented in Appendix A. We use Gurobi Optimization Toolbox to solve this problem. A time cut-off

of 300s is set for large settings (10 SFUs, 50 clients).

We also consider a nearest-server baseline, in which the source client selects a server that is closest

to it, to which all other clients connect forming a star topology. Many cloud-based conferencing

application follow this policy.

Conference configurations. We consider various node location settings to illustrate the QoE

provided by DecVi and its convergence behavior:

(1) Structured node locations. In this setting, we place clients and SFUs at carefully chosen locations

such that it is intuitively clear what the optimal multicast tree should be. Specifically, we arrange the

nodes as a tree (placed over the 2D plane) with client 0 as the root, the SFUs as interior nodes and

all other clients as leaves. We evaluate whether DecVi automatically discovers this tree. The global

optimum baseline also computes the planted trees as optimum. We consider 3 settings representing

small (3 SFUs, 5 clients), medium (7 SFUs, 11 clients) and large (10 SFUs, 50 clients) conference

scenarios.

(2) Random node locations. Next, we consider a setting where nodes are randomly placed on the

2D plane. As before we evaluate the small, medium and large conference sizes. The random node

location setting is designed to mimic the distribution of nodes in real-world wide-area p2p networks.

(3) Real-world locations. To compare against popular centralized conferencing system today (e.g.,

Zoom), we consider a setting where clients and SFUs are located at various major cities around the

world, with round-trip-times between cities obtained from a ping measurement dataset [8]. We

also include Zoom data center locations [32] to simulate Zoom’s stream forwarding policy.

6.3 Results
DecVi’s QoS is comparable to the global optimum baseline in all the three scenarios. The time

DecVi takes to converge depends on the size of setting and model hyper-parameters; a small or

medium setting converges in 100 to 200 rounds, while for large settings it takes 300 to 500 rounds

to converge.

6.3.1 Structured Settings. Figure 3 and 5 show the connections of structured settings. Figure 3(a)

and 5(a) show the connection given by the proposed model, Figure 3(b) and 5(b) show the connection

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2022.

DecVi: Adaptive Video Conferencing on Open Peer-to-Peer Networks 111:13

(a) (b)

Fig. 3. Connection of 7 SFUs, 11 clients structured setting. (a) Connection generated by DecVi. (b) Connection
generated by the Baseline.

(a) (b)

Fig. 4. CDF comparison between DecVi and baseline under the 7 SFUs, 11 clients structured setting. (a) CDF
of latency. (b) CDF of bandwidth.

given by the global optimum baseline, respectively. The connections generated by DecVi closely

match the optimal connections. The shade of edge color represents the number of layers actually

sent through that streaming connection. Figure 4 and 6 show the comparison of the latency and

bandwidth of each client between DecVi and the baseline, given by CDF.

Performance comparison between DecVi and the baseline are shown by CDF of latency and

bandwidth respectively. The CDF of latency comparison, which is in (a), shows that DecVi has a

comparable latency QoS to the baseline.

6.3.2 Connections under Different QoS Preferences. Figure 7 shows the different connection topol-

ogy for the 7 SFUs, 11 clients structured settings under different QoS parameters (𝛼 = 0, 𝛼 = 50).

Figure 8 shows the different connection topology for the 10 SFUs, 50 clients structured settings

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2022.

111:14 Jingren Wei and Shaileshh Bojja Venkatakrishnan

(a) (b)

Fig. 5. Connection of 10 SFUs, 50 clients structured setting. (a) Connection generated by DecVi. (b) Connection
generated by the baseline.

(a) (b)

Fig. 6. CDF comparison between DecVi and baseline under the 10 SFUs, 50 clients structured setting. (a) CDF
of latency. (b) CDF of bandwidth.

when 𝛼 = 0 and 𝛼 = 50. A higher 𝛼 means higher preference on bandwidth while a lower 𝛼 indicates

higher preference on latency. In both settings DecVi chooses to connect to receiver clients more

directly with less intermediate SFUs involved when 𝛼 = 0, while more layers are sent when 𝛼 = 50,

with more SFUs involved in the multicast tree.

6.3.3 Randomized Settings. Results of randomly generated settings for small, medium and large

scales are shown in Figure 9, 10, 11. DecVi achieves the global optimal in the small and medium

settings, and gives a connection close to the global optimal in the large setting. Average latency of

each receiver clients are shown in (c). The model converges in 200 rounds in the small and medium

settings, while it takes about 500 rounds to converge in the large setting.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2022.

DecVi: Adaptive Video Conferencing on Open Peer-to-Peer Networks 111:15

(a) (b)

Fig. 7. DecVi’s performance on 7 SFUs, 11 clients structured setting under different QoS parameters. (a) 𝛼 = 0.
(b) 𝛼 = 50.

(a) (b)

Fig. 8. DecVi’s performance on 10 SFUs, 50 clients structured setting under different QoS parameters. (a)
𝛼 = 0. (b) 𝛼 = 50.

6.3.4 A Setting with Multiple Sources Streaming. To simulate a scenario where multiple users are

talking at the same time, a setting is generated (Figure 12) with multiple sources sending streams.

Two clients (client 0, client 6), are sending streams simultaneously, while all other clients being

the receivers (including themselves). The color of the edges in Figure 12(a) represents the streams

sent from different source clients, the shade of color represents the number of layers sent. The

performance of latency by each source client with respect to rounds is shown in 12(b), given by the

average latency from each source client to receiver clients.

6.3.5 Real World Video Conferencing Setting. A real-world video conferencing setting is shown in

Table 1. The clients and data centers are located in the cities listed in the table. Clients and data

centers in this setting are geographically scattered on different continents so that a scheduling

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2022.

111:16 Jingren Wei and Shaileshh Bojja Venkatakrishnan

(a) (b) (c)

Fig. 9. A randomly generated setting with 3 SFUs and 5 clients. (a) Connection generated by DecVi. (b)
Connection generated by baseline. (c) Average latency of DecVi with respect to rounds.

(a) (b) (c)

Fig. 10. A randomly generated setting with 7 SFUs and 11 clients. (a) Connection generated by DecVi. (b)
Connection generated by baseline. (c) Average latency of DecVi with respect to rounds.

(a) (b) (c)

Fig. 11. A randomly generated setting with 10 SFUs and 50 clients. (a) Connection generated by DecVi. (b)
Connection generated by baseline. (c) Average latency of DecVi with respect to rounds.

is needed to achieve a good QoE. Latency between every two nodes are acquired from global

ping data [8]. The proposed model is compared against a centralized baseline model which is the

model structure of currently widely used conferencing applications. For this baseline model, it is

assumed to involve one data center which serves as the central node: each client sends stream to

this node and receives stream from this node. Without the loss of generality, the client located

in Paris is chosen to be the host of conference. The central data center is chosen to be the data

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2022.

DecVi: Adaptive Video Conferencing on Open Peer-to-Peer Networks 111:17

(a) (b)

Fig. 12. The multiple source streaming setting. (a) Connections generated by DecVi. (b) Latency with respect
to rounds, the source is identified by gateway SFUs, which are SFU 1 and SFU 2.

Table 1. Location of each SFU and clients.

Location Role Region

Frankfurt SFU/Data Center Europe

Hong Kong SFU Asia

San Jose SFU North America

Paris Client Europe

Singapore Client Asia

Taipei Client Asia

Seattle Client North America

Table 2. Latency by DecVi and common conferencing application model baseline.

Source’s Location Receiver’s Location Baseline’s Latency DecVi’s Latency

Paris

Seattle 154.65ms 169.03ms

Singapore 177.64ms 242.81ms

Taipei 248.97ms 233.29ms

Seattle

Paris 154.64ms 158.24ms

Singapore 312.20ms 183.86ms

Taipei 383.53ms 174.34ms

center geographically closest to the host from the available data centers of the application, which

is located in Frankfurt. For DecVi, we assume that for each client, there exists SFUs (located in San

Jose, Frankfurt and Hong Kong) geographically close to it. Two clients, located in Seattle and Paris,

are streaming at the same time, with all other participants being the receivers.

Table 2 shows the latency for each client to receive the streams from the two sources. The

average latency for the baseline model is 238.61ms, while for DecVi it is 193.60ms. Compared

with the baseline model, DecVi has a lower overall latency since it utilizes the decentralized SFUs

world-wide located to help forward the streams.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2022.

111:18 Jingren Wei and Shaileshh Bojja Venkatakrishnan

7 RELATEDWORK
P2P video conferencing. A number of early works have proposed decentralized algorithms for

p2p video conferencing [55, 60, 69]. Kurdoglu et al. [52] consider a user bandwidth heterogeneity

aware peer-to-peer video conferencing model, and design an algorithm to determine video rates in

the multi-cast trees. The algorithm is, however, centralized while the tree paths have at most two

hops. Kirmizioglu et al. [51] also propose a centralized algorithm for multicast tree generation in a

setting where video service providers cooperate with network service providers. Grozev et al. [50]

discuss the problem of selecting video conferencing servers based on geographic location. This

work mainly considers latency in server selection, and is not bandwidth aware. Another work [49]

introduces a stream forwarding strategy in which only streams of the last 𝑁 active speakers are

forwarded to participants, thus saving bandwidth and CPU processing cost.

Combinatorial multi-armed bandits.DecVi is inspired by a recent line of work in combinatorial

multi-armed bandits. In Chen et al. [44], the authors propose a combinatorial upper confidence

bound (CUCB) algorithm for a setting with stochastic arm rewards assuming existence of an 𝛼, 𝛽

approximation oracle to compute the best action each round. Qin et al. [62] present a contextual

combinatorial UCB algorithm assuming the reward for each arm is a linear function of its features.

Chen et al. [43] study a setting where the reward for a super arm depends not only on the mean

score of each arm but on the entire distribution. They propose a stochastic dominant confidence

bound algorithm following the optimism under uncertainty principle. The combinatorial bandit

problem has also been extensively applied to various resource allocation and utility maximization

problems. E.g., Gai et al. [47] propose algorithms for deciding channel allocations in multiuser

cognitive radio networks.

Multi-agent bandits and learning. Though our work involves multiple agents making bandit

decisions, it only has weak connections with existing literature on multi-agent multi-armed bandits.

Most works on multi-agent bandits assume each agent is working on the same instance of a bandit

problem, which is not true in our setting. E.g., the works [53, 57, 66] consider agents cooperating to

find the best arm through communication over a network. Wu et al. [67] use a multi-agent bandit

algorithm for deciding job allocation in edge computing, but they use the cloud as a centralized

coordinator. Lauer et al. [54] propose an algorithm for distributed reinforcement learning with

independent learners, where each agent has no information about other agent’s behavior, in

a cooperative setting where the reward functions are identical for the agents. Our algorithm,

however, is not cooperative and has combinatorial actions. There are few works on the multi-agent

combinatorial bandit problem.

8 CONCLUSION
We have presented DecVi a decentralized algorithm for efficient multicast tree construction in

open, p2p video conferencing systems. Due to the trustless model in open, p2p systems, DecVi is a

non-cooperative algorithm that makes actions purely based on its own past observations of the

effects of past actions, without collaboration with media servers. The adaptive design followed

by DecVi finds routing paths that are automatically tuned to the heterogeneities of media servers

and clients in where they are located, their processing and bandwidth capabilities etc. without

requiring any explicit manual input. In practice, additional information about servers may be

known such as their reputation score (e.g., derived based on the amount of stake placed on them

by other peers [15]). Such information can essentially serve to form prior probabilities for selecting

SFUs, and accelerate convergence. In many cases, clients have scheduled meetings on a regular or

semi-regular basis. If a meeting occurs repetitively, information learned from previous meetings

may be used to bootstrap the multicast trees. We leave an evaluation of these techniques for

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2022.

DecVi: Adaptive Video Conferencing on Open Peer-to-Peer Networks 111:19

accelerating convergence to future work. While servers are not trustworthy in an open network,

it may be reasonable to assume clients within a conference session trust each other. Designing

efficient algorithms where clients mutually share useful information (e.g., a client can provide a

list of SFUs close to her, computed based on ping times to the SFUs, to other clients) is another

direction for future work. Such interactions between clients can be used to construct a single, global

multicast tree (carrying bidirectional traffic), instead of a separate tree per client source, which

reduces complexity. Our work is motivated by the combinatorial multi-armed bandit problem with

time-varying contexts [68]. A theoretical understanding of DecVi’s regret in this setting is also an

important direction for future work.

REFERENCES
[1] 2020. How much does it cost to maintain Zoom servers infrastructure? https://trembit.com/blog/how-much-does-it-

cost-to-maintain-zoom-servers-infrastructure/.

[2] 2020. Zoom: Plans and Pricing. https://zoom.us/pricing.

[3] 2021. Some Google services are down for many users. https://mashable.com/article/google-services-down-december-

2021.

[4] 2021. Video-conferencing data concerns: Privacy watchdog issues Zoom warning to state govern-

ment. https://www.zdnet.com/article/video-conferencing-data-concerns-privacy-watchdog-issues-zoom-warning-

to-state-government/.

[5] 2022. Crewdle. https://crewdle.com/.

[6] 2022. Elon Musk’s SpaceX bans Zoom over privacy concerns -memo. https://www.reuters.com/article/us-spacex-

zoom-video-commn/elon-musks-spacex-bans-zoom-over-privacy-concerns-memo-idUSKBN21J71H.

[7] 2022. Gem4me. https://gem4me.com/?lang=en.

[8] 2022. Global Ping Statistics. https://wondernetwork.com/pings.

[9] 2022. Google and Vidyo Bring VP9 to WebRTC. https://blog.vidyo.com/vidyo-news/google-vidyo-vp9-webrtc/.

[10] 2022. Huddle01. https://huddle01.com/.

[11] 2022. Impervious. https://www.impervious.ai/.

[12] 2022. Jami. https://jami.net/.

[13] 2022. Jitsi Videobridge Performance Evaluation. https://jitsi.org/jitsi-videobridge-performance-evaluation/.

[14] 2022. Keet Peer-to-Peer Chat. https://keet.io/.

[15] 2022. Livepeer. https://livepeer.org/.

[16] 2022. Matrix. https://matrix.org/.

[17] 2022. Microsoft 365 outage affects Microsoft Teams and Exchange Online. https://www.bleepingcomputer.com/news/

microsoft/microsoft-365-outage-affects-microsoft-teams-and-exchange-online/.

[18] 2022. P2P Chat. https://p2p.chat/.

[19] 2022. Peer5. https://www.peer5.com/.

[20] 2022. Self-host Jitsi Meet. https://www.geekinsta.com/self-host-jitsi-meet/.

[21] 2022. Some Google services are down for many users. https://vidyo.io/blog/features/vidyo-io-delivers-massive-

scalability-maintaining-reliability-quality-cascading-sfus/.

[22] 2022. State of Livepeer 2022. https://messari.io/article/state-of-livepeer-q2-2022?referrer=category:web3.

[23] 2022. State of Livepeer Q4 Analyst Call Transcript. https://messari.io/report/state-of-livepeer-q4-analyst-call-

transcript.

[24] 2022. Theta Network. https://www.thetatoken.org/.

[25] 2022. Tox Chat. https://tox.chat/.

[26] 2022. TrueConf. https://trueconf.com/.

[27] 2022. Utopia. https://u.is/en/.

[28] 2022. Video Conferencing Market Size, Share and Covid-19 Impact Analysis. https://www.fortunebusinessinsights.

com/industry-reports/video-conferencing-market-100293.

[29] 2022. Videoconferencing and IoT: the future of virtual meetings. https://iotworlds.com/videoconferencing-and-iot-

the-future-of-virtual-meetings/.

[30] 2022. VR Video Conferencing: The Future of Workplace Collaboration. https://hqsoftwarelab.com/blog/vr-video-

conferencing/.

[31] 2022. Webex data center locations. https://help.webex.com/en-us/article/WBX28754/Where-are-the-Webex-Data-

Centers-and-iPOP-Locations?.

[32] 2022. Zoom data centers. https://support.zoom.us/hc/en-us/articles/360059254691-Datacenter-abbreviation-list.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2022.

https://trembit.com/blog/how-much-does-it-cost-to-maintain-zoom-servers-infrastructure/
https://trembit.com/blog/how-much-does-it-cost-to-maintain-zoom-servers-infrastructure/
https://zoom.us/pricing
https://mashable.com/article/google-services-down-december-2021
https://mashable.com/article/google-services-down-december-2021
https://www.zdnet.com/article/video-conferencing-data-concerns-privacy-watchdog-issues-zoom-warning-to-state-government/
https://www.zdnet.com/article/video-conferencing-data-concerns-privacy-watchdog-issues-zoom-warning-to-state-government/
https://crewdle.com/
https://www.reuters.com/article/us-spacex-zoom-video-commn/elon-musks-spacex-bans-zoom-over-privacy-concerns-memo-idUSKBN21J71H
https://www.reuters.com/article/us-spacex-zoom-video-commn/elon-musks-spacex-bans-zoom-over-privacy-concerns-memo-idUSKBN21J71H
https://gem4me.com/?lang=en
https://wondernetwork.com/pings
https://blog.vidyo.com/vidyo-news/google-vidyo-vp9-webrtc/
https://huddle01.com/
https://www.impervious.ai/
https://jami.net/
https://jitsi.org/jitsi-videobridge-performance-evaluation/
https://keet.io/
https://livepeer.org/
https://matrix.org/
https://www.bleepingcomputer.com/news/microsoft/microsoft-365-outage-affects-microsoft-teams-and-exchange-online/
https://www.bleepingcomputer.com/news/microsoft/microsoft-365-outage-affects-microsoft-teams-and-exchange-online/
https://p2p.chat/
https://www.peer5.com/
https://www.geekinsta.com/self-host-jitsi-meet/
https://vidyo.io/blog/features/vidyo-io-delivers-massive-scalability-maintaining-reliability-quality-cascading-sfus/
https://vidyo.io/blog/features/vidyo-io-delivers-massive-scalability-maintaining-reliability-quality-cascading-sfus/
https://messari.io/article/state-of-livepeer-q2-2022?referrer=category:web3
https://messari.io/report/state-of-livepeer-q4-analyst-call-transcript
https://messari.io/report/state-of-livepeer-q4-analyst-call-transcript
https://www.thetatoken.org/
https://tox.chat/
https://trueconf.com/
https://u.is/en/
https://www.fortunebusinessinsights.com/industry-reports/video-conferencing-market-100293
https://www.fortunebusinessinsights.com/industry-reports/video-conferencing-market-100293
https://iotworlds.com/videoconferencing-and-iot-the-future-of-virtual-meetings/
https://iotworlds.com/videoconferencing-and-iot-the-future-of-virtual-meetings/
https://hqsoftwarelab.com/blog/vr-video-conferencing/
https://hqsoftwarelab.com/blog/vr-video-conferencing/
https://help.webex.com/en-us/article/WBX28754/Where-are-the-Webex-Data-Centers-and-iPOP-Locations?
https://help.webex.com/en-us/article/WBX28754/Where-are-the-Webex-Data-Centers-and-iPOP-Locations?
https://support.zoom.us/hc/en-us/articles/360059254691-Datacenter-abbreviation-list

111:20 Jingren Wei and Shaileshh Bojja Venkatakrishnan

[33] 2022. Zoom down: Video call app breaks in the middle of the working day. https://www.independent.co.uk/tech/zoom-

down-video-call-app-b2106020.html.

[34] 2022. Zoom—Video conf app at scale. https://medium.com/@vsachdeva/zoom-video-conf-tool-at-scale-e86289c290b8.

[35] Alessandro Amirante, Tobia Castaldi, Lorenzo Miniero, and Simon Pietro Romano. 2015. Performance analysis of the

Janus WebRTC gateway. In Proceedings of the 1st Workshop on All-Web Real-Time Systems. 1–7.
[36] Emmanuel André, Nicolas Le Breton, Augustin Lemesle, Ludovic Roux, and Alexandre Gouaillard. 2018. Compar-

ative study of WebRTC open source SFUs for video conferencing. In 2018 Principles, Systems and Applications of IP
Telecommunications (IPTComm). IEEE, 1–8.

[37] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of the multiarmed bandit problem.

Machine learning 47, 2 (2002), 235–256.

[38] Gonca Bakar, Riza Arda Kirmizioglu, and A Murat Tekalp. 2018. Motion-based rate adaptation in WebRTC videocon-

ferencing using scalable video coding. IEEE Transactions on Multimedia 21, 2 (2018), 429–441.
[39] George Baltas and George Xylomenos. 2014. Ultra low delay switching for networked music performance. In IISA 2014,

The 5th International Conference on Information, Intelligence, Systems and Applications. IEEE, 70–74.
[40] Julie E Boland, Pedro Fonseca, Ilana Mermelstein, and Myles Williamson. 2021. Zoom disrupts the rhythm of

conversation. Journal of Experimental Psychology: General (2021).
[41] Asit Chakraborti, Syed Obaid Amin, Aytac Azgin, Satyajayant Misra, and Ravishankar Ravindran. 2018. Using icn

slicing framework to build an iot edge network. In Proceedings of the 5th ACM Conference on Information-Centric
Networking. 214–215.

[42] Hyunseok Chang, Matteo Varvello, Fang Hao, and Sarit Mukherjee. 2021. Can you see me now? A measurement study

of Zoom, Webex, and Meet. In Proceedings of the 21st ACM Internet Measurement Conference. 216–228.
[43] Wei Chen, Wei Hu, Fu Li, Jian Li, Yu Liu, and Pinyan Lu. 2016. Combinatorial multi-armed bandit with general reward

functions. Advances in Neural Information Processing Systems 29 (2016).
[44] Wei Chen, Yajun Wang, and Yang Yuan. 2013. Combinatorial multi-armed bandit: General framework and applications.

In International conference on machine learning. PMLR, 151–159.

[45] Albert Choi, Mehdi Karamollahi, Carey Williamson, and Martin Arlitt. 2022. Zoom Session Quality: A Network-Level

View. In International Conference on Passive and Active Network Measurement. Springer, 555–572.
[46] Geraldine Fauville, Mufan Luo, Anna CM Queiroz, Jeremy N Bailenson, and Jeff Hancock. 2021. Zoom exhaustion &

fatigue scale. Computers in Human Behavior Reports 4 (2021), 100119.
[47] Yi Gai, Bhaskar Krishnamachari, and Rahul Jain. 2010. Learning multiuser channel allocations in cognitive radio

networks: A combinatorial multi-armed bandit formulation. In 2010 IEEE Symposium on New Frontiers in Dynamic
Spectrum (DySPAN). IEEE, 1–9.

[48] Boris Grozev. 2019. Efficient and scalable video conferences with selective forwarding units and webRTC. Ph. D. Dissertation.
Université de Strasbourg.

[49] Boris Grozev, Lyubomir Marinov, Varun Singh, and Emil Ivov. 2015. Last n: relevance-based selectivity for forwarding

video in multimedia conferences. In Proceedings of the 25th ACM Workshop on Network and Operating Systems Support
for Digital Audio and Video. 19–24.

[50] Boris Grozev, George Politis, Emil Ivov, and Thomas Noel. 2018. Considerations for deploying a geographically

distributed video conferencing system. In 2018 IEEE 8th Annual Computing and CommunicationWorkshop and Conference
(CCWC). IEEE, 357–361.

[51] Riza Arda Kirmizioglu and A Murat Tekalp. 2019. Multi-party WebRTC services using delay and bandwidth aware

SDN-assisted IP multicasting of scalable video over 5G networks. IEEE Transactions on Multimedia 22, 4 (2019),

1005–1015.

[52] Eymen Kurdoglu, Yong Liu, and YaoWang. 2015. Dealing with user heterogeneity in P2Pmulti-party video conferencing:

Layered distribution versus partitioned simulcast. IEEE Transactions on Multimedia 18, 1 (2015), 90–101.
[53] Peter Landgren, Vaibhav Srivastava, and Naomi Ehrich Leonard. 2021. Distributed cooperative decision making in

multi-agent multi-armed bandits. Automatica 125 (2021), 109445.
[54] Martin Lauer and Martin Riedmiller. 2000. An algorithm for distributed reinforcement learning in cooperative

multi-agent systems. In In Proceedings of the Seventeenth International Conference on Machine Learning. Citeseer.
[55] Chao Liang, Miao Zhao, and Yong Liu. 2011. Optimal bandwidth sharing in multiswarm multiparty p2p video-

conferencing systems. IEEE/ACM Transactions On Networking 19, 6 (2011), 1704–1716.

[56] Yunzhuo Liu, Bo Jiang, Tian Guo, Ramesh K Sitaraman, Don Towsley, and Xinbing Wang. 2020. Grad: Learning for

overhead-aware adaptive video streaming with scalable video coding. In Proceedings of the 28th ACM International
Conference on Multimedia. 349–357.

[57] Udari Madhushani and Naomi Ehrich Leonard. 2020. A dynamic observation strategy for multi-agent multi-armed

bandit problem. In 2020 European Control Conference (ECC). IEEE, 1677–1682.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2022.

https://www.independent.co.uk/tech/zoom-down-video-call-app-b2106020.html
https://www.independent.co.uk/tech/zoom-down-video-call-app-b2106020.html
https://medium.com/@vsachdeva/zoom-video-conf-tool-at-scale-e86289c290b8

DecVi: Adaptive Video Conferencing on Open Peer-to-Peer Networks 111:21

[58] Kwok-Fai Ng, Man-Yan Ching, Yang Liu, Tao Cai, Li Li, and Wu Chou. 2014. A P2P-MCU approach to multi-party

video conference with WebRTC. International Journal of Future Computer and Communication 3, 5 (2014), 319.

[59] Jukka K Nurminen, Antony JR Meyn, Eetu Jalonen, Yrjo Raivio, and Raúl Garcıa Marrero. 2013. P2P media streaming

with HTML5 and WebRTC. In 2013 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).
IEEE, 63–64.

[60] Miroslav Ponec, Sudipta Sengupta, Minghua Chen, Jin Li, and Philip A Chou. 2009. Multi-rate peer-to-peer video

conferencing: A distributed approach using scalable coding. In 2009 IEEE International Conference on Multimedia and
Expo. IEEE, 1406–1413.

[61] Joseph Poon and Thaddeus Dryja. 2016. The bitcoin lightning network: Scalable off-chain instant payments.

[62] Lijing Qin, Shouyuan Chen, and Xiaoyan Zhu. 2014. Contextual combinatorial bandit and its application on diversified

online recommendation. In Proceedings of the 2014 SIAM International Conference on Data Mining. SIAM, 461–469.

[63] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand. 2007. Overview of the scalable video coding extension of the H.

264/AVC standard. IEEE Transactions on circuits and systems for video technology 17, 9 (2007), 1103–1120.

[64] Aleksandrs Slivkins et al. 2019. Introduction to multi-armed bandits. Foundations and Trends® in Machine Learning 12,

1-2 (2019), 1–286.

[65] P Swathi, Chirag Modi, and Dhiren Patel. 2019. Preventing sybil attack in blockchain using distributed behavior

monitoring of miners. In 2019 10th International Conference on Computing, Communication and Networking Technologies
(ICCCNT). IEEE, 1–6.

[66] Daniel Vial, Sanjay Shakkottai, and R Srikant. 2021. Robust multi-agent multi-armed bandits. In Proceedings of the
Twenty-second International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks
and Mobile Computing. 161–170.

[67] BochunWu, Tianyi Chen,Wei Ni, and XinWang. 2021. Multi-agent multi-armed bandit learning for online management

of edge-assisted computing. IEEE Transactions on Communications 69, 12 (2021), 8188–8199.
[68] Chunqiu Zeng, Qing Wang, Shekoofeh Mokhtari, and Tao Li. 2016. Online context-aware recommendation with time

varying multi-armed bandit. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery
and data mining. 2025–2034.

[69] Yongxiang Zhao, Yong Liu, Changjia Chen, and Jianyin Zhang. 2013. Enabling P2P one-view multiparty video

conferencing. IEEE Transactions on Parallel and Distributed Systems 25, 1 (2013), 73–82.

A INTEGER PROGRAM BASELINE
For any nodes 𝑖, 𝑗 with 𝑖 ∈ 𝑆 ∪ {𝑐0} and 𝑗 ∈ 𝑆 ∪ 𝐶\𝑐0, let 𝑦𝑖, 𝑗 ∈ {0, 1} be a binary variable that

denotes whether node 𝑖 forwards a stream to node 𝑗 , 𝑥𝑖, 𝑗 be a non-negative integer denoting the

number of layers sent from node 𝑖 to node 𝑗 , and 𝑙 (𝑖, 𝑗) be the latency of sending a packet from 𝑖

to 𝑗 . For 𝑠 ∈ 𝑆 , 𝑏𝑠 ∈ N is the bandwidth limit of SFU 𝑠 . For a client 𝑐 ∈ 𝐶 , 𝑞∗ (𝑐) is the number of

layers requested by 𝑐 while 𝑞(𝑐) is the number of layers received by 𝑐 . For 𝑖 ∈ 𝑆, 𝑗 ∈ 𝑆 ∪𝐶, 𝑗 ≠ 𝑐0

and 𝑐 ∈ 𝐶 , 𝑧𝑖, 𝑗𝑐 ∈ {0, 1} is a binary variable that denotes whether node 𝑖 makes node 𝑗 responsible

for client 𝑐 . 𝑑 (𝑐) is the latency of the path from 𝑐0 to 𝑐 on the multicast tree, for 𝑐 ∈ 𝐶, 𝑐 ≠ 𝑐0. 𝑄 is

the number of layers the stream is encoded in to at the source 𝑐0. An integer program to compute

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2022.

111:22 Jingren Wei and Shaileshh Bojja Venkatakrishnan

an optimal tree can be written as

max

∑︁
𝑐∈𝐶
𝑐≠𝑐0

(
−𝑑 (𝑐) + 𝛼 𝑞(𝑐)

𝑞∗ (𝑐)

)
(15)

such that

∑︁
𝑖∈𝑆
𝑖≠𝑗

𝑥𝑖, 𝑗 ≥ 𝑥 𝑗,𝑘 ∀𝑗 ∈ 𝑆, 𝑘 ∈ 𝑆 ∪𝐶, 𝑘 ≠ 𝑐0, 𝑗 ≠ 𝑘 (16)

𝑥𝑖, 𝑗 ≤ 𝑄 ∗ 𝑦𝑖, 𝑗 ∀𝑖 ∈ 𝑆, 𝑗 ∈ 𝑆 ∪𝐶, 𝑗 ≠ 𝑐0, 𝑖 ≠ 𝑗 (17)

𝑥𝑖, 𝑗 ≥ 𝑦𝑖, 𝑗 ∀𝑖 ∈ 𝑆, 𝑗 ∈ 𝑆 ∪𝐶, 𝑗 ≠ 𝑐0, 𝑖 ≠ 𝑗 (18)∑︁
𝑗 ∈𝑆∪𝐶
𝑗≠𝑐0, 𝑗≠𝑖

𝑥𝑖, 𝑗 ≤ 𝑏 𝑗 ∀𝑖 ∈ 𝑆 ∪ {𝑐0} (19)

∑︁
𝑖∈𝑆∪{𝑐0 }

𝑖≠𝑗

𝑦𝑖, 𝑗 ≤ 1 ∀𝑗 ∈ 𝑆 ∪𝐶, 𝑗 ≠ 𝑐0 (20)

∑︁
𝑖∈𝑆

𝑧𝑖,𝑐𝑐 = 1 ∀𝑐 ∈ 𝐶, 𝑐 ≠ 𝑐0 (21)∑︁
𝑖∈𝑆

𝑖≠𝑐0,𝑖≠𝑗

𝑧
𝑖, 𝑗
𝑐 =

∑︁
𝑘∈𝑆∪𝐶
𝑘≠𝑐0,𝑘≠𝑗

𝑧
𝑗,𝑘
𝑐 ∀𝑗 ∈ 𝑆, 𝑐 ∈ 𝐶, 𝑐 ≠ 𝑐0 (22)

∑︁
𝑐∈𝐶
𝑐≠𝑐0

𝑧
𝑖, 𝑗
𝑐 ≥ 𝑦𝑖, 𝑗 ∀𝑖 ∈ 𝑆 ∪ {𝑐0}, 𝑗 ∈ 𝑆 ∪𝐶, 𝑗 ≠ 𝑐0, 𝑖 ≠ 𝑗 (23)

∑︁
𝑗 ∈𝑆∪𝐶
𝑗≠𝑐0, 𝑗≠𝑖

𝑧
𝑖, 𝑗
𝑐 ≤ 1 ∀𝑖 ∈ 𝑆 ∪ {𝑐0}, 𝑐 ∈ 𝐶, 𝑐 ≠ 𝑐0 (24)

∑︁
𝑐′∈𝐶
𝑐′≠𝑐0

𝑧
𝑐0,𝑖

𝑐′ = (|𝐶 | − 1)𝑧𝑐0,𝑖𝑐 ∀𝑖 ∈ 𝑆, 𝑐 ∈ 𝐶, 𝑐 ≠ 𝑐0 (25)

∑︁
𝑖∈𝑆

𝑧𝑐0,𝑖𝑐 = 1 ∀𝑐 ∈ 𝐶, 𝑐 ≠ 𝑐0 (26)

𝑧
𝑖, 𝑗
𝑐 ≤ 𝑦𝑖, 𝑗 ∀𝑖 ∈ 𝑆 ∪ {𝑐0}, 𝑗 ∈ 𝑆 ∪𝐶, 𝑗 ≠ 𝑐0, 𝑐 ∈ 𝐶, 𝑐 ≠ 𝑐0, 𝑖 ≠ 𝑗 (27)

𝑞(𝑐) =
∑︁
𝑖∈𝑆

𝑥𝑖,𝑐 ∀𝑐 ∈ 𝐶, 𝑐 ≠ 𝑐0 (28)

𝑞(𝑐) ≤ 𝑞∗ (𝑐) ∀𝑐 ∈ 𝐶, 𝑐 ≠ 𝑐0 (29)

𝑑 (𝑐) =
∑︁

𝑖, 𝑗 ∈𝑆∪𝐶
𝑖≠𝑗

𝑧
𝑖, 𝑗
𝑐 𝑙 (𝑖, 𝑗) ∀𝑐 ∈ 𝐶, 𝑐 ≠ 𝑐0 (30)

∑︁
𝑖, 𝑗 ∈𝑇
𝑖≠𝑗

𝑥𝑖, 𝑗 ≤ |𝑇 | − 1 ∀𝑇 ⊆ 𝑆 ∪𝐶, |𝑇 | ≥ 2 (31)

𝑦𝑖, 𝑗 ∈ {0, 1}, 𝑥𝑖, 𝑗 ∈ N ∀𝑖, 𝑗 ∈ 𝑆 ∪𝐶, 𝑖 ≠ 𝑗 (32)

𝑧
𝑖, 𝑗
𝑐 ∈ {0, 1} ∀𝑖 ∈ 𝑆 ∪ {𝑐0}, 𝑗 ∈ 𝑆 ∪𝐶, 𝑗 ≠ 𝑐0, 𝑗 ≠ 𝑖, 𝑐 ∈ 𝐶, 𝑐 ≠ 𝑐0 (33)

𝑑 (𝑐) ≥ 0, 𝑞(𝑐) ∈ N ∀𝑐 ∈ 𝐶, 𝑐 ≠ 𝑐0 (34)

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2022.

DecVi: Adaptive Video Conferencing on Open Peer-to-Peer Networks 111:23

Eq. (16) says the total number of layers forwarded by an SFU 𝑗 cannot exceed the number of layers

received by 𝑗 . Eq. (17) says that if 𝑦𝑖, 𝑗 is zero then 𝑥𝑖, 𝑗 must also be zero, i.e., if 𝑖 is not connected

with 𝑗 then 𝑖 must not send any positive number of layers to 𝑗 . Similarly Eq. (18) says that if 𝑦𝑖, 𝑗 = 1,

then 𝑥𝑖, 𝑗 must also be at least 1. Eq. (19) is a bandwidth constraint that requires the total number of

layers sent by an SFU to be at most its bandwidth limit. Since we are interested in constructing a

directed tree, where each node in the tree has exactly one parent node and each node outside of

the tree has no parent nodes, we have the constraint in Eq. (20). Eq. (21) stipulates each client must

receive a stream from exactly one SFU. An SFU is allowed to make a downstream node reponsible

for client 𝑐 iff the SFU is itself responsible for 𝑐 . This requirement is encoded in Eq. (22). A node 𝑖

forwads a stream to node 𝑗 only if node 𝑗 is responsible for one or more clients, as in Eq. (23). Eq. (24)

says that a node can make at most one downstream node responsible for that client. Equations (25)

and (26) say that the source 𝑐0 forwards the stream to exactly one SFU making that SFU responsible

for all clients. If node 𝑖 makes node 𝑗 responsible for a client, then there must exist a connection

between 𝑖 and 𝑗 . This is captured through Eq. (27). The number of layers 𝑞(𝑐) received by client 𝑐

is given by Eq. (28), which must not exceed the number of layers 𝑞∗ (𝑐) requested by 𝑐 (Eq. (29)).

The overall latency from the source 𝑐0 to a client 𝑐 is given by Eq. (30). Lastly Eq. (31) specifies that

the computed routing paths must be a tree (i.e., have no cycles).

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2022.

	Abstract
	1 Introduction
	2 Background
	2.1 Video Stream Compression and Encoding
	2.2 Open P2P Video Conferencing

	3 System Model
	3.1 Network Model
	3.2 Multicast Tree Construction
	3.3 Objective

	4 Motivation
	5 DecVi Design
	6 Evaluation
	6.1 Simulator Design
	6.2 Experiment Setup
	6.3 Results

	7 Related Work
	8 Conclusion
	References
	A Integer Program Baseline

