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Abstract—COVID-19 has created a pandemic around the
world, paused the path of building the future, and still ongoing
without having any long-term solution shortly. The time taken
in vaccine distribution is too slow compared to the spread of
COVID-19. Hence, it is important to aware and take precautions
on time without delaying and waiting for long-duration after
getting infected with the virus. Currently used technology is
more advanced than ever before. Almost everyone has access
to at least one mobile device with an Internet connection.
Therefore, we propose a Fog Server (FS) based system that
can be used to create awareness about the spread of COVID-
19 within the surroundings of individuals utilizing the concept of
Hidden Markov Models (HMM) and Bluetooth contact tracing,
in polynomial computational time complexity. Moreover, we
evaluate the effectiveness of the proposed model through real-
world data analysis on different simulation parameter settings.

Index Terms—COVID-19 Identification, Pandemic, Fog Server,
HMM, Probability.

I. INTRODUCTION

The COVID-19 disease started to spread in 2019 and has
spread to over 180 countries. Some countries are facing the
second wave of the virus spread right now. As of the 18th May
2021, a total of 164,355,605 cases and 3,406,601 deaths were
reported [1]. The virus spreads through respiratory droplets
or air from one person to another. These droplets spread
when an infected person sneezes, coughs, or speaks to one
or many. Infection can also spread if a person touches a
contaminated surface and then eyes, nose, or mouth. Most
common symptoms of COVID-19 include fever, dry cough,
tiredness etc. If the lungs get completely infected the chances
of death become high.

The COVID-19 is an infectious disease caused by the
coronavirus which is a group of Ribonucleic Acid (RNA)
viruses. Many people, if gather at places tends to get in-
fected with COVID-19 in a short time and can experience
respiratory illness and possibly recover without the need for
special treatment. Elderly people tend to have more impact
on COVID-19 as they have weaker immune systems and
most have underlying medical problems such as diabetes,
cancer and some other respiratory-related diseases. These
medical problems can develop more weakness and increase
the sickness along with COVID-19. It is known that COVID-
19 affects different people in different ways, most people who
are infected will develop illness and possibly recover without
any special medication treatment. It is observed that fever, dry
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cough, and tiredness are the most common symptoms among
infected people and symptoms like pains, soreness throat,
diarrhea, dizziness, headache, loss of taste and smell, rashes
over the skin are less common among the infected people.
Serious symptoms are such as difficulty in breathing, chest
pain, loss of speech and few other symptoms can be noticed
among the infected people. On average it takes 2-14 days for
the symptoms to show after meeting the infected person [2].
Therefore early identification of an infected person is very
important to stop the further spread of the virus by imposing
certain measures.

With the help of Fog Servers (FS), our system will make
people aware of their health conditions and their surroundings
[3]. Those who live in crowded areas like urban cities, mostly
have access to at least one mobile device with internet, so
it is possible to set up an application into their device to
track their movements and their contact with others using
Bluetooth options. It can be efficient to design an algorithm
that works with this technology to aware people from time to
time. Thus, motivated by the above-mentioned scenarios, this
paper evolves the technique to create awareness among people
by using contact traced data and their data with an algorithm
framework that can find accurate results and track COVID-19
spread. We have designed the spread of the COVID-19 virus
phenomenon by applying Hidden Markov Model (HMM) and
Bluetooth contact tracing framework. This statistical tool is
used for modeling the generative sequences characterized by
a set of observable sequences. However, HMM framework is
used to model all stochastic processes in real time problems. In
our proposed model, the non-observable state of the system is
controlled by a Markov process and the observable sequences
of the system have underlying probabilistic dependencies.

In the current situation of the COVID-19 pandemic, a
solution is needed to prevent and control virus spread. In this
regard, the proposed framework can be used to aware people
of the COVID situation around them. In nutshell, the main
contributions of the work are summarised in the following:

• FS to detect COVID-19 spread: An FS framework is
used with HMM and Bluetooth contact tracing enabled
to track every individual user. Fog interacts with all users
and serves them with the best precautions and guidance
needed as per the user’s conditions.

• Detect initial infected users: Exponential spread of virus
needs a solution to stop the spread in early stages. A chain
starts from one user but may last up to million users,
which means breaking the chain initially will help control
virus spread. The proposed solution helps detecting initial
infected users and prevent them to meet others so that
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their contribution to virus spread can be reduced.
• Evaluate individual’s infection probability: Evaluation

of individual’s infection probability as well as risk levels.
Probability helps identifying the user’s status if a user
is allowed to get in touch with others or not. Risk
levels help creating health reports of users containing the
best precautions needed and all necessary guidance from
health exports according to the user’s conditions.

• Future prediction: Future prediction is done with cur-
rent data based on meetups, fixed thresholds of time of
contact, Bluetooth signal strength and threshold infec-
tion probability, which helps to get prepared for future
conditions in advance and to fight against the virus with
pre-planned strategies.

The rest of the paper is organized as follows: Section II
reviews the relevant work. The system model and the problem
definition are introduced in Sections III. The proposed solution
and performance study are given in Sections IV and V,
respectively. Finally, Section VI offers conclusions and future
research directions.

II. RELATED WORKS

Recently researchers at SMU have come up with a ’Lab on
a Chip’ test which can identify COVID-19 immune response
faster than current antibody tests [4]. When someone gets
infected, his body produces some antibodies to fight the virus,
in that case, if these antibodies are present, it means that the
person is infected with virus. This test is done by applying
a blood drop to a micro-fluid chip and once applied a filter
embedded in that chip extracts plasma from the sample of
blood. This chip is then placed in an electronic instrument to
detect the presence of specific antibodies in plasma. While the
Defense Advanced Research Projects Agency (DARPA) devel-
oped a microchip to detect COVID-19 [5]. This microchip is
used to constantly check an individual’s blood for virus and
once it detects COVID-19, it will alert the patient and the
patient is advised to go for a blood test to confirm if the virus
is present in the blood. But, it is hard to implant chips in
everyone’s body. It can take much time to do such operations.
Thus, it is necessary to aware people of their surroundings.
People these days are carrying smartphones everywhere they
go and they use the internet which can be an opportunity for us
in utilizing the power of technology to aware of the COVID-19
situation. It is possible to add an application into millions of
mobile phones than implanting microchips into million people.
There are still many other kind of researches going on, but
taking advantage of technology, we would like to use mobile
phones with internet connection and Bluetooth contact tracing
to identify whether a person is infected with COVID-19 or
not. Our method utilizes an algorithmic approach and contact
tracing mechanism. Bluetooth is used in contact tracing. FS
interacts with all users from time to time and serves them with
the best precautions and guidance needed as per the user’s
conditions.

HMM [6] has been used in many fields and applications,
such as speech recognition, visual speech recognition, to
identify contamination in water networks [7], predicting traffic

Fig. 1: Fog based system model for COVID-19 spread identi-
fication.

conditions [8], analyzing nosocomial pathogens transmission
[9], predicting transmembrane helices [10], analyzing evolu-
tionary rates in molecular sequences [11], etc. Contact tracing
[12] can drastically improve the analysis of the COVID-19
virus spread. It can tell people if they come into contact with
an infected person. Then the person can quickly take action so
that spread of the virus to their surroundings slows down/stops.
Contact tracing is very useful and is being used in controlling
infectious diseases [13], impact of delays on virus spread de-
escalation strategies [14], Bluetooth-based contact tracing [15],
person-to-person covid-19 tracing [16]. In the case of COVID-
19, we have a hidden state and an observable state in virus
spread, thus, the use of HMM is a better approach in finding
COVID-19 spread.

III. SYSTEM MODEL AND PROBLEM DEFINITION

To detect and control the spread of COVID-19, we use FSs
which utilize algorithms for detecting and controlling virus
spread as well as prediction of future conditions. We further
consider use of contact tracing for monitoring each user, that
helps in predicting the chances of a user being infected with
COVID-19 so that necessary actions can be taken in advance
like the government imposing guidelines such as lockdown,
strict use of masks or early distribution of vaccines in those
locations to prevent further spread of the virus.

The system model represented in Fig. 1 shows the mecha-
nism of user data collection, user-given data uploading, data
computation, storing the results and reporting, and further re-
porting the final results to the respective user and cloud server.
The whole procedure is described in three sub-processes as
follows:

• Data collection and uploading to FS.
• Data computation at FS.
• Result analysis and reporting.

Details of the above-mentioned sub-processes are discussed in
the following sections:

1) Data collection and uploading to FS: Our first aim is to
collect user-given data. Initially, our system model registers
a new user in the database with some identity as contact
number, his current location, age, etc. Now user is asked to
fill in some healthcare details, such as if the user has any
symptoms related to COVID-19, if he had traveled to other
infected countries/places within the last two weeks, and if



3

user had any previous diseases. One more important input is
the number of infected users, a user gets in touch with. It’s
obvious that a user can’t predict whether the person near to
him is infected with COVID-19 or not. In such a situation
the system model needs some better way to find out the
number of positive users, a person has got in touch with.
Therefore, contact tracing is the best solution here to trace a
person. Thus, we use Bluetooth connectivity for tracing other
users near a particular user. When two persons come in the
range of Bluetooth connectivity, it is called a meetup. After
a meetup, both user’s devices connect and exchange some
digital signatures. If any one of them is COVID-19 positive,
our model sends an alert message to the user so that the user
can get out of that particular location otherwise the user can
also be infected. Thus, in this way, user given data and contact
traced data are collected from users at the FS.

Fig. 2: HMM model.

2) Data computation at FS: In this section, we compute
the probability of infection by user-given data and contact
traced data. The spreading of the virus can be modeled as
an exponential problem as shown in Fig. 2, which shows two
states h(t1) and h(t2). Here state means scenario of virus
spread at a particular time slot. State h(t1) shows spreading
of virus on time slot containing time t1 and state h(t2) shows
further spreading of virus on time slot containing time t2.
Fig. 2 contains a table having hidden state and observed state
named two states for each of h(t1) and h(t2) where H is a
set of infected users and O is a set of each user’s observations
or set of all user given data and contact traced data. It is
obvious that future conditions depend only on the current rate
of virus spread and on the actions, we take today to control
it. So, we have an exponential problem with some states and
all the data (user-given data as well as contact tracing data) of
those states. Now, we need to work on the current state’s data
and predict the most probable next state and also to analyze
the results and provide the reports to users with all necessary
precautions, medication and current conditions of particular
user. Hence, we need to formulate algorithms, which work on
user-given data as well as traced data to calculate probabilities
of users being infected. Since the model works on previous
states with all of their observed data (user given and traced
data) and finds the most probable next state, so we formulate
this future prediction as an HMM inference problem.

3) Result analysis and reporting: After computing the user
given and contact traced data at FS, system upload the results
in a centralized cloud server for all users. After that, results
are analyzed and reports are generated for each user and are
sent to respective users. A report contains the risk level (in
the form of low, moderate, high, very high) of a user being
infected, all necessary precautions and medications based on
user’s conditions. The results are containing the probability
of a user being infected which was computed at FS, contact
traced data, user’s previous diseases and current symptoms.

IV. PROPOSED SOLUTION

As discussed in the above subsection III-2, we use HMM
modeling the problem. In order to achieve that, let there be
N users represented using a set U = {U1, · · · , UN}. Further,
we define three sets as follows: The first set having M users
represented in a set of infected users I = {I1, · · · , IM} which
contains all the users having probability more than some
threshold probability value Θ or have been tested positive
and second one is a set of the traced number of users
T = {T1, · · · , TN} where Tn means nth user Un has met
Tn number of users with some infection probability till time
t or in other words, user Un had Tn number of meetups with
other infected users and the third one is set of symptom status
S = {S1, · · · , SN} where Sn ∈ {0, 1}, which means if nth

user Un is having any virus related serious symptoms, then
Sn = 1 otherwise Sn = 0. All of these sets may change their
data according to the changes in time/states.

The proposed algorithmic solution is divided into three parts
as follows:

• Probability calculation with contact traced data.
• Probability calculation with user’s symptoms and evalu-

ating total probability of infection.
• Result analysis and reporting to users and cloud.

Fig. 3: Probability calculations.

1) Probability calculation with contact traced data.: In this
part, we aim to compute the probability of each user according
to the previous state’s results and current state’s traced data.
The basic idea and derivation of the equations are described
with help of one example below.

An illustrative example: As given in Fig. 3, there is a
non-infected user Ui and three infected users U1, U2, U5

with probability of more than some fixed threshold value Θ.
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When user Ui gets in touch with user U1, then Ui gains
some probability, and if Ui meets U2, then also Ui gets
some more probability and so on. For further calculation, let
probabilities of infection of users U1, U2, U5 be p1, p2, p5,
respectively. Now, we aim to find that how much part of these
probabilities should be added to the probability of user Ui.
An optimal solution to this problem should be a variable that
is dependent on several conditions like time for which two
devices get connected (τ ), connection strength (ν) (to get the
space between two users based on signal strength), and some
more measurements can also be used. For having an ideal
solution and assuming ideal conditions, we use time of contact
(τ ) and signal strength (ν) as variables to define µ, which
would be called infection transition fraction and value of µ
increases as the time of contact and signal strength increases.
So, let µi(t) = {µ1, µ2, µ5}, part of their probability is added
to Ui, where 0 ≤ µ ≤ 1 which means that if user Ui meets
user U1, then Ui can only get maximum of p1 probability from
user U1. Obviously, the probability can be at most 1, so if user
meets so many infected users, then, at last, his probability
gets 1 but it could also be greater than 1, so to prevent this
condition, we use a boundary condition 0 ≤ pi,t ≤ 1, and if
pi,t > 1, then pi,t ← 1.

For using HMM, we need two states, the first one is the
hidden state (Ht) and the second one is the observed state
(Ot) at time t. The set of infected users, described above as
I = {I1, · · · , IM} is used as a hidden state because the model
can’t ensure whether a user is COVID-19 positive or not since
our model can only predict some probability, as it can only be
ensured after a lab test, that’s why it can be called a hidden
state. For the observed state, it should be directly observed by
the model, as we can directly get the data by contact tracing
then it is considered as an observed state. In our case, we use
the set T = {T1, · · · , TN} as observed state.

Let’s calculate probability for nth user Un at time t. Let,
at time t, hidden state is Ht and observed state is Ot and
next future hidden state is Ht+1, then pn(Ht+1|Ot) repre-
sents next state’s probability of infection of user Un due to
meeting infected users of current state. Here we introduce a
new set of sets of probabilities of traced infected users as
C = {C1, · · ·CN} which contains sets of probabilities of
traced infected users, where Cn is set, containing all infected
user’s probability, who were traced within range of nth user
and Cn,k is kth user’s probability of infection, who got in
contact with nth user.

When user Un meets Tn number of infected users, he gets
some amount of each infected user’s probability of infection.
Let, µ distribution for nth user is µn = {µn,1, · · · , µn,Tn

}.
Thus, probability of user Un of being infected can be:

pn(Ht+1|Ot) = (µn,1 × Cn,1) + (µn,2 × Cn,2)

+ · · ·+ (µn,Tn × Cn,Tn)

=

Tn∑
k=1

µn,k × Cn,k
(1)

Now, we aim to find values of µn,k ∀ 1 ≤ k ≤ Tn.
As we have discussed the dependencies of µ over time of
contact and signal strength, we’ll calculate µ with help of

those dependencies. Let, τ0 be threshold time for a user to
be infected after being in touch with infected user, ν0 be the
threshold signal strength (after certain experiments, we have
µ0 = −0.55 dBm Received Signal Strength Indicator (RSSI)
value, which is calculated for two meter distance between two
users), and if signal strength is more than threshold, then only
a user can be infected by meeting an infected user. Let τn,k be
the time for which users Un and Uk get connected and νn,k
is signal strength. If signal strength νn,k is less than threshold
ν0, means they are at a distance of more than two meters, and
user cannot be infected (in ideal cases, when there is not any
other reason), and in that case value of µn,k will directly be
assumed 0, but if the signal strength is more than or equal to
threshold then only we can say that in this case a user gets
more infected as time of contact increases. So, in the case of
more than threshold signal strength, infection spread to user
is directly dependent on time of contact. Therefore we write:

µn,k = {
0: νn,k < ν0

µn,k ∝ τn,k: νn,k ≥ ν0
}

Now, for dealing with signal strength, we need a new
variable, let λ ∈ {0, 1}, such that if the signal strength is
less than the threshold, then λ = 0, otherwise, λ = 1. For
the time of contact, where we have assumed that if time of
contact is less than or equal to the threshold, then user gains
some part of infected user’s probability, otherwise, if time of
contact exceeds threshold limit, then user gains whole part of
infected user’s probability. Here also, we need a new variable,
let ω, where 0 ≤ ω ≤ 1, which deals with the time of contact
and provides a fraction value which is the fraction of infected
user’s probability. So,
ωn,k = {

τn,k

τ0
: τn,k ≤ τ0

1: τn,k > τ0

}
Here, ω is the fraction value of infection probability which

needs to be added to not-infected user, when he meets an
infected user. So, keeping in mind all of the above constraints,
we come to a solution given below:

µn,k = λn,k × ωn,k (2)

From the above Eqs. (1) and (2), we get:

pn(Ht+1|Ot) =

Tn∑
k=1

(λn,k × ωn,k × Cn,k) . (3)

Algorithm 1 calculates probability of infection which a user
gets after getting in contact with infected users. As input, it
takes contact traced data as time of contact, Bluetooth signal
strength and probabilities of infected users. Here, probability is
calculated for an individual user, based on their meetups with
other users. For each user, first the signal strength is evaluated
and if it passes the threshold, then time of contact is used
to calculate probability. Finally, probability due to meeting
infected users, for each user is calculated. In the worst case,
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time complexity for algorithm 1 would be O(N × Tn), where
N is the total number of user in the database and Tn is the
maximum number of meetups among all users.

Algorithm 1 Probability calculation with traced data

1: Input: Contact traced data Tt or set of meetups of each
user, time of contact set τt, signal strength set νt, contact
traced probabilities set Ct.

2: Output: Probability distribution p(Ht+1|Ot), Eq. (3).
3: Initialize: Initializing Probability Distribution
pn(Ht+1|Ot) = 0 ∀ 0 ≤ n ≤ N , µn,k = 0 ∀ 1 ≤
k ≤ Tn

4: for n = 1, · · · , N do
5: for k = 1, · · · , Tn,t
6: if νn,k ≥ ν0 then
7: λn,k = 1
8: if τn,k ≤ τ0 then
9: ωn,k =

τn,k

τ0
10: else
11: ωn,k = 1
12: else
13: λn,k = 0
14: ωn,k = 0
15: µn,k = λn,k × νn,k
16: pn(Ht+1|Ot) = pn(Ht+1|Ot) + (µn,k × Cn,k)
17: if pn(Ht+1|Ot) > 1 then
18: pn(Ht+1|Ot) = 1

2) Probability calculation from user’s symptoms and eval-
uating total probability of infection: Since, it may be the
case that without even being in touch with any other infected
user, a user can be infected by the virus. When we talk about
the COVID-19 virus, we shouldn’t neglect that this virus can
live for hours and days on some surfaces or objects. As it is
obvious that after having some symptoms only, a user goes for
a health checkup, and then he finds the results. So, it is also
important to keep track of user symptoms for better results.
For example: let us take two users U1 and U2 and both are
having some symptoms of the virus, but user U1 didn’t meet
any infected user means T1 = 0 for user U1 and user U2 has
met T2 number of infected users. In this case, obviously user
U2 has more probability of being infected but we can’t neglect
user U1 also. So, we need a probability function that calculates
the probability of infection a user gets due to his symptoms.

Further, we use a symptom status of each user as set S =
{S1, · · · , SN}, which was described in above Section III. Its
obvious that in situations like COVID-19, no one wants to get
in touch with a user having any of the symptoms which are
related to COVID-19 even if the user is really positive or not,
and it would also be very helpful if we prevent users to meet
those users who are having any COVID-19 related symptoms.
So, if a user is having any symptoms then we are directly
assuming the user infected and prevent other users to meet
him. In other words, we are adding all users with symptoms
in the set of infected users I, because then only we can prevent
other users to meet them.

Now, we aim to derive a probability equation such that
it works on symptom status for each user and results in a
probability that shows additional chances of infection due to
symptoms. In the previous example of two users U1 and U2,
both have serious symptoms but contact traced data for user
U1 is T1 = 0 and for user U2 is T2 > 0. Now, we want
to add both of them to the set of infected users, even if any
one of them didn’t meet a single infected user. Their current
probabilities of being infected according to contact traced data
are:

(i) U1: p1 = 0, since he didn’t meet any infected user.
(ii) U2: p2 =

∑T2

k=1 µ2,k×C2,k for traced data T2 and C2.
Let the threshold probability for assuming a user infected

is Θ, then we need an equation which calculates probability
in such a way that after adding that probability in p1 and p2,
both of these users U1 and U2 gain more than Θ probability.

Let, probability due to symptoms is αn and total probability
of infection is Pn (probability due to contact tracing (pn,t) +
probability due to symptoms (αn,t)) for nth user Un at time
t.

(i) For user U1, contact tracing data as T1 = 0, total
probability of infection is: P1 = p1 + α1; where P1 ≥ Θ
and p1 = 0, so α1 ≥ Θ.

(ii) For user U2, contact tracing data as T2 > 0, total
probability of infection is: P2 = p2 + α2; where P2 ≥ Θ
and p2 > 0, so α2 ≥ Θ− p2.

(iii) For users having no symptoms as such: symptom status
is S = 0 and probability due to symptoms is α = 0.

So, at last we come to an optimal solution which is
satisfying each of the above constraints as well as probability
constraints, is derived below as:

αn,t = Sn,t × (1− pn,t)×Θ (4)

where Eq. (4) shows the probability of infection of nth user
due to his symptoms. Hence, total probability can be calculated
as:

Pn,t = pn,t + αn,t (5)

From above Eqs. (3), (4) and (5) we can write:

Pn,t =

(
Tn∑
i=1

λn,i × ωn,i × Cn,i

)
+(

Sn,t ×

(
1−

(
Tn∑
i=1

λn,i × ωn,i × Cn,i

))
×Θ

)
.

(6)

We use number of newly infected users of each day as a
result to compare model’s work with real world data. In the
following Algorithm 2, we evaluate newly infected users of
each day, where fd shows number of newly infected users on
day d.

In algorithm 2, probability due to the user’s symptoms is
calculated. First, symptom distribution is calculated, then with
the proposed Eq. (4), symptoms probability is calculated and
total probability via adding both probabilities (probability due
to traced infected users and probability due to symptoms) is
calculated. After that, the number of newly infected users (total
probability more than Θ) is evaluated, and based on these
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Algorithm 2 Probability calculation due to symptoms and
evaluating total probability of infection

1: Input: probability distribution pn,t (from algorithm 1),
symptom status S, threshold probability Θ

2: Output: probability due to symptoms αn,t, total probabil-
ity Pn,t, ∀ n ∈ {1, · · · , N}, time t and number of infected
users fd on day d

3: Initialize: initialize αn,t = 0 ∀ n ∈ {1, · · · , N}, fd = 0

4: for n = 1, · · · , N do
5: if symptoms are there then
6: Sn,t = 1
7: else
8: Sn,t = 0
9: αn,t = Sn,t × (1− pn,t)×Θ

10: Pn,t = pn,t + αn,t
11: if Pn,t ≥ Θ then
12: fd = fd + 1

results, graphs are plotted. Time complexity for Algorithm 2
with total of N users in the database is O(N ).

3) Result analysis and reporting: Now, aim is to analyze
the results, create reports for each user and send the reports to
respective users. Results are also sent to the cloud to keep track
of each user’s health history and based on these results, reports
are generated for individual user and reports are sent to them.
These reports contain infection level of the respective users,
precautions, medication and all necessary guidelines based on
user’s infection level, which help preparing the users to fight
against the virus. The infection levels are initially divided
into 4 parts: low, moderate, high, very high. Obviously, a
low infection level means very few chances of being infected,
moderate infection level means average chances of infection,
high infection level means high chances of infection, and very
high infection level means a user is infected. Moreover, the
risk levels of all users are computed as follows:
Infection level = {

”Low” : 0 ≤ Pn,t < Pl

”Moderate” : Pl ≤ Pn,t < Pavg

”High” : Pavg ≤ Pn,t < Ph

”Very High” : Ph ≤ Pn,t ≤ 1
}

where thresholds for low is Pl, for moderate is Pavg , for
high is Ph and for very high is 1, which helps creating a report
based on user’s current risk levels.

Let, at time t, Lt be a set of N elements, having values
”low”, ”moderate”, ”high” or ”very high”, which means that
user Un is having Ln,t chances of being infected at time t. This
result is provided to each user to make them ensure whether or
not they are infected with virus or what are the chances or risks
of infection. Separating users according to their risk levels is
important because in this case a user is directly provided a
report which tells him his current condition and the ways to
be safe in the form of precautions, medications and many more
healthcare benefits and help a user to make him aware of his
condition.

Algorithm 3 Infection level calculation
1: Input: Probability Pt of all users being infected at time
t, Pl, Pavg , Ph thresholds

2: Output: Infection level Lt = {L1,t, · · · , LN,t} at time t
3: Initialize: initialize Lt = [φ]

4: for n = 1, · · · , N do
5: if 0 ≤ Pn,t < Pl then
6: Ln,t = ”low”
7: if Pl ≤ Pn,t < Pavg then
8: Ln,t = ”moderate”
9: if Pavg ≤ Pn,t < Ph then

10: Ln,t = ”high”
11: else
12: Ln,t = ”very high”

Finally, FS has a set of infection levels, which helps FS
creating reports for each user in an efficient way according to
their infection level.

In Algorithm 3, aim is to get each user’s risk levels based
on their probability of infection. Each user is categorized in
one of the four risk levels, and according to the user’s risk
level, reports containing precautions, healthcare medications,
needed guidelines are generated and sent to respective users.
Time complexity for Algorithm 3 is O(N ).

If we talk about overall time complexity of our proposed
scheme, then in worst case, it would be O(N × Tn), where
N is the total number of users in the database and Tn is the
maximum number of meetups among all users, as described
before.

V. PERFORMANCE STUDY

In this section, we illustrate the proposed scheme with help
of different simulation parameters on real-time data. Here, we
use two place’s data of virus spread of 15 days. So, first,
we evaluate those place’s results with our model and then we
compare them with real-world data. The data we are going
to use are of two places, one is Pinal, Arizona, USA and the
second one is Maricopa, Arizona, USA [17].

We have taken 15 days of data of virus spread. For Pinal,
the data is from the 20th March 2020 to 4th April 2020, and
for Maricopa, it is from 15th March 2020 to 30th March 2020.
The data shows the number of new COVID-19 confirmed cases
on each day and are shown below in Fig. 5 for Pinal and
Maricopa.

A. Model Setup

In the simulation environment, 10,000 users are considered.
Out of them, some may be suffering from the COVID-19 virus.
On the first day, there will be a number of meetups, and after
each meetup between two users, if any one of them is infected,
then the second user will gain some amount of infected
user’s infection probability according to the signal strength
and time of contact which was described in Algorithms 1.
After that, if the second user’s probability of infection gets
more than the fixed threshold (Θ), then that user will also be
assumed infected for future evaluations. Likewise, our model
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will evaluate for each day, for each meetup, and for each user.
One more thing that is very important, is the distribution of the
symptoms of users. As described in Algorithm 2, if someone
gets any kind of COVID-19 related symptoms, probability
due to that particular symptom is evaluated and added in the
probability due to contact tracing. And finally, based on the
results, reports are generated for each user with the help of
Algorithm 3. So, this is how the infection spreads between
several users and our model calculates each user’s probability
so that a user can be informed on early stages, which will help
a user to take necessary precautions in advance and to fight
easily against COVID-19.

One most dangerous situation that is prevented by our model
is that it helps in breaking the chain. For example, as given in
Fig. 4, if a single user can be prevented from being infected
in the early stages, then users who got infected by that user,
can be saved and this can help to control the spread of the
virus. So, our model alerts each user if he is going to meet an
infected user which helps in breaking the chain and to control
virus spread on the initial stage itself.

Fig. 4: Infection chain

B. Evaluation of Results

As given in Algorithm 1, first probability of infection
due to traced infected users is calculated then according to
Algorithm 2, if symptoms are there for a particular user then
probability due to those symptoms is added to that user and
total probability is calculated. After applying both Algorithm 1
and Algorithm 2 on data of Pinal and Maricopa, the evaluated
and real results are discussed below:

Fig. 5: Real time results of virus spread at Pinal and Maricopa.

Fig. 5 show the real-world data in form of a graph showing
each day’s number of newly infected users in Pinal and
Maricopa. For example, in Pinal, on the first day (20th March
2020), the number of newly infected patients is 10, on the
next day 14, and so on and in Maricopa, on the first day (15th
March 2020), the number of newly infected patients are 8,
on next day 9, and so on. Since, virus-infected users normally
show symptoms after a long time of around 1 week to 2 weeks,
which means that the results which are shown by graph are
of 1 to 2 weeks earlier, means users had been infected 1 or 2
weeks before but it took some time for the virus to be exposed.
In that case, if a user would be using the proposed model, then
just after having some probability of infection, that user could
be informed so that the user can easily fight against COVID-19
in earlier stages only.

Now, in the evaluation of results with our model, we use
the term meetups, which was described above. Obviously, we
can’t know how many times a user will meet another user,
in that case, we assume different cases but we can’t only be
dependent on just one case. So, here we work on 8 cases, from
that 4 cases are for Pinal and 4 cases are for Maricopa. We
use the different number of average meetups for each case and
then finally for each case, graphs are plotted and comparisons
are done. Moreover, the simulation parameters are shown in
Table I. In Table I, rows 1-4 represents the simulation setup
for the Pinal data set whereas the remaining rows are set up
for the Maricopa data set for finding out the simulation results.

TABLE I: Simulation Parameters

Cases theta Θ
τ0 (min-
utes) ν0 (dBm) Meetups a day

1 0.9 2 -0.55 1225 and 1250
2 0.9 2 -0.55 1275 and 1300
3 0.9 1 -0.50 1225 and 1250
4 0.9 1 -0.50 1275 and 1300
5 0.9 2 -0.55 2300 and 2330
6 0.9 2 -0.55 2345 and 2360
7 0.9 1 -0.50 2300 and 2330
8 0.9 1 -0.50 2345 and 2500

Here a question arises about the number of meetups like
why only these number of meetups are assumed and why there
is a difference between them. In answer to this question, we
say that without deploying the system between people, we
can’t know which users are going to meet which and how
many other users. So, here we have assumed that on an average
day, there is an average of 1225 to 1300 meetups a day in
Pinal and 2300 to 2360 meetups in Maricopa. The main reason
behind the selection of these numbers is that these parameters
are providing very good and satisfying results. If we talk about
the difference between these meetups, then the reason is the
population of both Pinal and Maricopa. With a population of
0.49 million in Pinal, it has less number of meetups compared
to Maricopa with a 4.5 million population as it’s obvious that
highly populated areas will have a high number of meetups.

With all the parameters in the above simulation Table I and
for each case, we evaluate results which are in form of several
infected users of all days, after that a graph is plotted for each
day’s number of newly infected users. Each case having its
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separate parameters and data as given in the above table. So,
evaluated results for each case are shown below in graphs.

Case-I: In case-I, we work on Pinal dataset with threshold
probability of infection Θ = 0.9, threshold time of contact
τ0 = 2 minutes, threshold signal strength ν0 = −0.55 dBm
and assuming number of meetups as 1225 and 1250. As given
in Fig. 6, three curves are plotted, first is for 1225 meetups,
the second is for 1250 meetups and the third is for real-world
results of Pinal.

Fig. 6: Case-1

Case-II: In this case, we work on Pinal dataset with
threshold probability of infection Θ = 0.9, threshold time of
contact τ0 = 2 minutes, threshold signal strength ν0 = −0.55
dBm and assuming number of meetups as 1275 and 1300.
As given in Fig. 7, three curves are plotted, first is for 1275
meetups, the second is for 1300 meetups and the third is for
real-world results of Pinal.

Fig. 7: Case-2

Case-III: In this case, we work on Pinal dataset with
threshold probability of infection Θ = 0.9, threshold time of
contact τ0 = 1 minutes, threshold signal strength ν0 = −0.50
dBm and assuming number of meetups as 1225 and 1250.
As given in Fig. 8, three curves are plotted, first is for 1225
meetups, the second is for 1250 meetups and the third is for
real-world results of Pinal.

Case-IV: In this case, we work on Pinal dataset with
threshold probability of infection Θ = 0.9, threshold time of
contact τ0 = 1 minutes, threshold signal strength ν0 = −0.50
dBm and assuming number of meetups as 1275 and 1300.
As given in Fig. 9, three curves are plotted, first is for 1275
meetups, the second is for 1300 meetups and the third is for
real-world results of Pinal.

Fig. 8: Case-3

Fig. 9: Case-4

Case-V: In this case, we work on Maricopa dataset with
threshold probability of infection Θ = 0.9, threshold time of
contact τ0 = 2 minutes, threshold signal strength ν0 = −0.55
dBm and assuming number of meetups as 2300 and 2330. As
given in Fig. 10, three curves are plotted, first is for 2300
meetups, the second is for 2330 meetups and the third is for
real-world results of Maricopa.

Fig. 10: Case-5

Case-VI: In this case, we work on Maricopa dataset with
threshold probability of infection Θ = 0.9, threshold time of
contact τ0 = 2 minutes, threshold signal strength ν0 = −0.55
dBm and assuming number of meetups as 2345 and 2360. As
given in Fig. 11, three curves are plotted, first is for 2345
meetups, the second is for 2360 meetups and the third is for
real-world results of Maricopa.

Case-VII: In this case, we work on Maricopa dataset with
threshold probability of infection Θ = 0.9, threshold time of
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Fig. 11: Case-6

contact τ0 = 1 minutes, threshold signal strength ν0 = −0.50
dBm and assuming number of meetups as 2300 and 2330. As
given in Fig. 12, three curves are plotted, first is for 2300
meetups, the second is for 2330 meetups and the third is for
real-world results of Maricopa.

Fig. 12: Case-7

Case-VIII: In this case, we work on Maricopa dataset with
threshold probability of infection Θ = 0.9, threshold time of
contact τ0 = 1 minutes, threshold signal strength ν0 = −0.50
dBm and assuming number of meetups as 2345 and 2360. As
given in Fig. 13, three curves are plotted, first is for 2345
meetups, the second is for 2360 meetups and the third is for
real-world results of Maricopa.

Fig. 13: Case-8

As we can see that the accuracy of the graphs is very
good for some parameters like in case-1 and case-4 etc, but
it doesn’t mean that they always provide the right solution
because meetups are directly dependent on people but in

case, maybe with some government-imposed guidelines like
lockdown, curfew can also be used to reduce the number of
meetings between people. So, our model is used to track every
user, so that the next chains can be broken and the spread of
the virus can be reduced in the early stages only. It also takes
care of each user individually by sending them their reports
and all the needed precautions according to the risk levels
of the individual user. And one more important thing to be
noticed is that if at a certain day, according to the conditions
of that day, future cases can also be calculated roughly just
by taking the average number of meetups according to the
condition, like in the condition of lockdown or curfew, the
average number of meetups will be decreased and on a normal
day, meetups can be more. So, with a rough idea of the current
situation ( number of meetups nowadays), future prediction
can also be done with our model. After having an average
number of meetups, randomly two users are selected for each
meetup and if any one of them is infected then with the help
of algorithms, probabilities are calculated and finally, the rate
of virus spread can be calculated and based on the results,
actions can be taken like lockdown, curfew, vaccination, etc
so that disastrous situations can be avoided. This also helps
us get prepared for future conditions.

VI. CONCLUSION AND FUTURE WORK

In this work, we present a fog support framework, which
can help individuals by keeping them safe and away from
infected people and by advising them with the best precau-
tions, guidelines, and medications. It also helps us predicting
future conditions according to the present scenario of virus
spread. In this model, we have used HMM and contact tracing
via Bluetooth, and finally, implemented the framework with
real-world data. From the real-world data analysis, we have
concluded the effectiveness of the proposed model on different
simulation settings for helping out taking precautionary steps
in advance to stop the spread of the virus.

In the future, we’ll propose a mechanism that can also
take care of asymptomatic scenarios of COVID-19 infection.
Moreover, we are also targeting to include the wider real-world
data set from different countries to see the effectiveness of our
proposed domain. Furthermore, the proposed model can also
be extended to post real-time monitoring, prediction, and treat-
ment of COVID-19 patients remotely with the involvement of
doctors. To avoid the different drawbacks of Bluetooth, we also
believe that the connectivity of the devices over cellular 5G
technology [18], [19] could further improve the transmission
and the computation latencies in the networking model.
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