
A Flexible Notation for
M. HOWARD WILLIAMS

Rhodes University

Syntactic Definitions

In view of the proliferation of notations for defining the syntax of programming languages, it has been
suggested that a simple notation should be adopted as a standard. However, any notation adopted as
a standard should also be as versatile as possible. For this reason, a notation is presented here which
is both simple and versatile and which has additional benefits when specifying the static semantic
rules of a language.

Categories and Subject Descriptors: D.3.1 [P rog ramming Languages]: Formal Definitions and
Theory--syntax; F.4.2 [Mathemat ical Logic and Formal Languages]: Grammars and Other
Rewriting Systems

General Terms: Languages

Additional Key Words and Phrases: BNF

1. INTRODUCTION

When ALGOL 60 was developed, its syntax was formally specified using the
notation known as BNF [12]. Since then a wide range of different notations has
been used by different authors for specifying the syntax of programming languages
(e.g., the notation used for defining the syntax of COBOL [10], the two-level
grammar approach used in the definition of ALGOL 68 [14, 15], the syntax
diagrams used in the specification of PASCAL [4], extended BNF [1, 9], or the
canonic system notation [2, 3, 8]). Although in some cases the reasons for the
differences in notation can be easily understood (e.g., [9]), in others variations
appear to have been introduced merely to satisfy the personal tastes and ego of
the author rather than to further any clear objective.

This rapidly expanding plethora of notations is unnecessary, bewildering for
the novice, and annoying for the more experienced. In 1977 Wirth [18] attacked
the situation and put forward a simple notation suitable for adoption as a
standard. The salient features of his notation are that

(1) nonterminals are written as identifiers without enclosing angle brackets;
(2) terminals are contained within quotation marks;
(3) braces--{ }--are used to denote "zero or more repetitions of";
(4) square brackets--[]--are used to denote "zero or one occurrence of"; and
(5) parentheses--()--are used for grouping in the usual way.

This paper presents an alternative notation which is almost as simple but
which has some additional advantages.

Author's present address: Computer Science Department, Heriot-Watt University, 79 Grassmarket,
Edinburgh EH1 2HJ, Scotland.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1982 ACM 0164-0925/82/0100-0113 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982, Pages 113-119.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F357153.357159&domain=pdf&date_stamp=1982-01-01

1 14 M. Howard Williams

2. THE NOTATION

At the heart of any formal notation for describing the syntax of programming
languages must lie a mechanism for specifying repetition. This mechanism may
be simple (catering only for the three basic types of repetition or choice which
are most common in the specification of programming languages, namely, "zero
or one occurrence of, zero or more occurrences of," and "one or more occur-
rences of"), or it may be general, taking account of these three special cases and
all other cases. In the notation presented here two mechanisms are provided: a
simple one to handle the commonly occurring special cases and a more general
one to take care of the exceptions.

In this notation terminals are written as character strings within quotation
marks. To maintain generality, single or double quotes may be used provided
that the use is consistent, for example, "(" or '('. If a quotation mark appears
within a literal which is enclosed by the same type of quotation marks, the
quotation mark must be written twice, for example, '

Again for the purpose of generality, nonterminals may be written as identifiers
with or without enclosing angle brackets, provided that, if enclosing angle brackets
are used, they are used consistently throughout. An identifier consists of a
sequence of upper- or lowercase letters, digits, underlines, and hyphens {starting
with a letter and ending with a letter or digit), for example,

assign-statement or (ASSIGN-STATEMENT).

Since there is some confusion over the use of the term "production," the term
"string equation" is used here to refer to the composite definition of a nonterminal,
while the term "production" is restricted to an instance of that definition which
might be substituted directly in a parse. A string equation is written in the
following form: nonterminal followed by "::=" followed by a string expression,
optionally terminated by a period. The symbol "::=" has been adhered to because
the properties of string equations do differ slightly from those of numeric
equations ("=") and considerably from those of assignment statements (":="). A
string expression consists of a sequence of options separated by vertical bars, for
example,

add-operator ::= "+"] " - "

An option consists of a sequence of ~erms concatenated together. If nonterminal
identifiers are not enclosed in angle brackets, then two successive nonterminals
concatenated together must be separated by at least one space. Square brackets
are used to denote "zero or one occurrence of" whatever is contained within
them; for example,

["+" I " - "]
represents a plus sign, or a minus sign, or nothing. The postfix operators "*" and
"+" are used to denote, respectively, "zero to oo occurrences of" and "one to oo
occurrences of" the item which each follows. Round brackets are used for
grouping; for example,

definition ::-- option (" [" option)*.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

A Flexible Notation for Syntactic Definitions 1 15

Syntax ::-- production+.
production ::= nonterminal "::--" definition [";" relations] ["."].

definition ::= option ("] " option)*.
option ::= term+.

term ::= "[" definition "]"l i tem ["+"1"*"1].
i tem ::= "(" definition ")" I nonterminal] terminal.

nonterminal ::= " (" identifier ") " I identifier.
terminal ::= (........ character+)+] (..... character+)+.
counter ::= identifier.

relations ::= relation ("," relation)*.
relation ::= limit " _ " counter " _ " limit.

limit ::= l imterm ((" + " 1 " - ") l imterm)* I"~" .
l imterm ::= integer] identifier.

integer ::= digit+.
identifier ::= let ter ((hyphenlunder l ine)* (let ter ldigi t)+)*.

Figure 1

states tha t a definition consists of an option followed by a sequence of zero or
more groups, each consisting of a vertical bar symbol followed by an option.

The more general mechanism for repeti t ion involves the notion of a counter. A
counter is a variable used to indicate repeti t ion and is represented by an identifier
without angle brackets. Repet i t ion is denoted by writing a counter as a superscript
af ter the i tem to be repeated and adding a relation defining the limits of the
counter at the end of the string equation. A semicolon is used to separate the
definition par t from the relations, for example,

syntax ::-- productioni; 1 _ i _ oo.

In this definition counters are t reated as being local to the productions in which
they are used. There may, however, be some point in treat ing them as global
variables, a l though at this stage no reason can be seen for doing so. Also, where
counters are nested, every ins tance of the inner counter must satisfy the relations
given at the end of the production.

The full definition of the notat ion using itself is given in Figure 1. Spaces are
un impor tan t except within quotat ion marks.

3. FLEXIBILITY

This notat ion provides for flexibility with respect to both the lower and u p p e r
limits. Thus, besides the three s tandard cases, the notat ion also handles cases
such as the following:

(1) Upper L imi t ~ 1 or oo. A simple example is the definition of an identifier
in FORTRAN, where the length of an identifier is constrained to a maximum of
six characters:

identifier ::-- le t ter (letter I digit)len; 0 -- len _ 5.

(2) Lower L imi t ~ 0 or 1. Although this does not occur very often, there are
cases where it might be useful to have a lower limit greater than 1. An example

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

1 16 M. Howard Williams

is the switchon command in BCPL [13], which might be defined as follows:

switchon ::ffi "SWITCHON" expression "INTO $(" case' "$)"; 2 _< i __ oo.

case ::= {"CASE" constant ":")+ (command "newline")+.

(3) More Complex Situations. A data-name in COBOL [10] is a contiguous
sequence of up to 30 characters (letters, digits, or hyphens), provided tha t a
hyphen does not occur in the first or last position of the sequence and at least one
of the characters in the sequence is a letter. To define this formally, one may
write

data-name ::= (digit (digit I hyphen} i)j letter

((digit I hyphen I letter) m (letter I digit))k;

0__ i_< 28, 0----j-- < 1, 0---- k - < 1, 0 - - m-< 28 - i - j .

Another complex situation arises in the case of the multiple assignment
s ta tement in BCPL, in which the destinations are written as a list to the left of
the assignation symbol (:=} while the values occur in a list to the right of it, for
example,

VAL, LEFT, R I G H T := K, 0, I + 1

This causes the value K to be assigned to VAL, 0 to be assigned to LEFT, and
I + 1 to RIGHT. One could certainly define this construction as follows:

assigu-stm ::= destination "," assign-stm "," value

I destination " = " value.

However, the parse tree which this would produce wrongly associates the value
K with the variable R I G H T and the value I + 1 with the variable VAL. A better
way of defining this construction would be as follows:

assign-stm ::= destination ("," dest inat ion)i": = ' ' value ("," value)i;
0_<i_<~.

4. EXTENSION TO STATIC SEMANTIC RULES

Besides the syntax there are two other asloects of programming languages which
need formal specification: the static semantics and the semantics. The static
semantic rules are closely related to the syntax rules, and the formal specification
of the static semantics of a language is usually an extension of the formal
specification of the syntax.

Any notation for formally specifying the static semantic rules of a language
must provide some mechanism for counting [17]. This is necessary in order to
check the length of a formal parameter list against the length of each list of actual
parameters or to ensure tha t a subscripted variable has the correct number of
subscripts.

However, the counting mechanism in some static semantic notations is fairly
crude and tends to complicate the specification. For example, in the two-leVel
grammar notat ion [6, 14, 15] counting is performed by successively concatenating
one or more symbols to a nonterminal name. A simple illustration is the require-

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

A Flexible Notation for Syntactic Definitions 1 1 7

ment that an identifier be no more than six characters in length. In this case the
symbols of the identifier are accumulated within the nonterminal name, for
example,

Metasyntax

LETTER :: a; b; . . . ; z.

VAR :: LETTER; LETTER VAR.

Syntax

VAR partid : LETTER symbol; LETTER symbol, VAR partid.

and the check on the length of an identifier would be specified by enumerating
the possible differing-length sequences.

Using a variation of the notation proposed here, this specification might be
written as

Metasyntax

LETTER ::= a[b[. . . [z.

VAR ::= LETTER+.

Syntax

VAR-id ::= LETTER-symbol~e"; 1 _< len _< 6.

This approach has also been used to count the number of dimensions in an
array definition and check this against the number of subscripts in a subscripted
variable in the definition for ALGOL 68. The resulting specification requires
fewer string equations. But what is more important is that the counting function
has been disentangled from the rest of the specification and set apart in an easily
recognizable form, thereby making it more readable.

Another important notation for specifying static semantics is attribute gram-
mars [5, 7, 11, 16]. There, counting is performed by explicitly performing an
action which causes 1 to be added to a variable. For example, the previous
illustration of an identifier of not more than six characters in length may be
written as an attribute grammar in which (1) condition precedes a predicate on
attributes, (2) 1' prefixes attribute names passed up the parse tree and $ prefixes
attributes passed down the tree, (3) attributes can be subscripted to distinguish
occurrences, and (4) attribute evaluation rules have the form of function calls
where J, precedes the arguments and 1' precedes the newly defined attribute.

(ID) 1'name ::= (IDENTIFIER) 1'name l'noletters
condition: noletters < 7

(IDENTIFIER) 1'name1 l'nolettersl ::= (LETTER) 1'name1
give value to attribute $1 l'noletters~
I(IDENTIFIER) 1'name2 l'noletters2
(LETTER) tname3
concatenate ~name2 Sname3 1'name1
add one letter ~noletters2 l'nolettersl

add one letter Snolettersl l'noletterse ~ noletters2 = noletters~ + 1

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

1 18 M. Howard Williams

This example may be rewritten in a variation of the notation proposed here as
follows:

(ID) 1'name, ::= (LETTER) 1'name,

((LETTER) 1'name2

conca tena te Sname, ~name2 l'namel) i; 0 _< i ___ 5.

Once again, separation of the counting mechanism can simplify the notation,
thereby improving readability.

5. CONCLUSIONS

A notation for defining the syntax of programming languages which is both simple
and flexible has been presented. It could also have certain advantages when
extending a syntax specification to include static semantic rules.

From the point of view of teaching, the notation is an extension of the notation
for regular expressions which makes it easier for students to see the relationship
between string equations and regular expressions. It is important that these
concepts, which form part of a continuum, are not regarded as completely
separate entities, each with its own notation.

In this notation as it has been presented, counters have been written as
superscripts in productions to aid readability. However, if one wanted to enter a
definition in this notation into a computer system, one would need a few minor
modifications. First, the symbol "1'" (or even "**") could be used to precede a
counter to indicate a superscript (as it is used in the case of exponentiation in
computer languages). Second, "_<" should be written as "<--". Finally, if the
upper limit in a relation is infinity, the limit and its preceding "_<" can be omitted.
None of these alterations causes any ambiguity. The definition in Figure 1 need
only be modified by substituting for the string equations for term, relation, and
limit the equations

term ::-- "[" definition "]" I item ["+"1 "*" I superscript-op counter].

superscript-op ::= "1'" I"**"

relation ::= limit "<=" counter ["<=" limit].

limit ::-- limterm (("+"[" - ") limterm)*.

It is hoped that this paper will not be viewed simply as a presentation of yet
another notation for syntactic definitions. The main purpose of the paper has
been to look closely at the advantages of the notation proposed, and it is hoped
that in the future, before adopting any syntactic notation, readers will give careful
consideration to the advantages of such a notation and avoid the introduction of
new notations or variations on existing ones unless the advantages can be clearly
spelled out.

REFERENCES

1. BULL, G.M., FREEMAN, W., AND GARLAND, S. Specificatiort for Standard BASIC. NCC Publi-
cations, Manchester, England, 1973.

2. DONOVAN, J.J. Systems Programming. McGraw-Hill, New York, 1972.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

A Flexible Notation for Syntactic Definitions 119

3. DONOVAN, J.J., AND LEDGARD, H.F. A formal system for the specification of the syntax and
translation of computer languages. In Proe. 1967 Fall Jt. Computer Conf., vol. 31. AFIPS Press,
Arlington, Va., 1967, pp. 553-569.

4. JENSEN, K., AND WIRTH, N. Pascal User Manual and Report. Springer-Verlag, New York,
1976.

5. KNUTH, D.E. Semantics of context free languages. Math. Syst. Theory 2 (1968), 127-145.
6. KOSTER, C.H.A. Two-level grammars. In Compiler Construction, An Advanced Course, G. Goos

and J. Hartmanis (Eds.). Springer-Verlag, New York, 1974, pp. 146-156.
7. KOSTER, C.H.A. Affix grammars. In Algol68 Implementation, J.E.L. Peck (Ed.). Elsevier North-

Holland, New York, 1971, p. 95.
8. LEDGARD, H.F. A Formal System for Defining the Syntax and Semantics of Computer Lan-

guages. Ph.D. dissertation, M.I.T., Cambridge, Mass., 1969.
9. LEE, J.A.N. The formal definition of the BASIC language. Comput. J. 15, 1 (Feb. 1972), 37-41.

10. MAGINNIS, J.B. Fundamental ANSI COBOL Programming. Prentice-Hall, Englewood Cliffs,
N.J., 1972.

11. MARCOTTY, M., LEDGARD, H.F., AND BOCHMANN, G.V. A sampler of formal definitions. Comput.
Surv. (ACM) 8, 2 (June 1976), 191-276.

12. NAUR, P., ET AL. Revised report on the algorithmic language ALGOL60. Comput. J. 5, 4 (Jan.
1963), 349-367.

13. RICHARDS, M. The BCPL programming manual. Univ. Cambridge Computer Laboratory, Cam-
bridge, England, 1973.

14. VAN WIJNGAARDEN, A., MAILLOUX, B.J., PECK, J.E.L., KOSTER, C.H.A., SINTZOFF, M., LINDSEY,
C.H., MEERTENS, L.G.LT., AND FISKER, R.G. Revised report on the algorithmic language
ALGOL68. Springer-Veriag, New York, 1976.

15. VAN WIJNGAARDEN, A., MAILLOUX, B.J., PECK, J.E.L., KOSTER, C.H.A., SINTZOFF, M., LINDSEY,
C.H., MEERTENS, L.G.L.T., AND FISKER, R.G. Report on the algorithmic language ALGOL68.
Numer. Math. 14 (1969), 79-218.

16. WATT, D.A. An extended attribute grammar for Pascal. SIGPLAN Notices (ACM) 14, 2 (Feb.
1979), 60-74.

17. WILLIAMS, M.H. Methods for specifying static semantics. Comput. Lang. 6, 1 (1981), 1-17.
18. WIRTH, N. What can we do about the unnecessary diversity of notation for syntactic definitions?

Commun. ACM20, 11 (Nov. 1977), 822-823.

Received December 1980; revised July 1981; accepted August 1981

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

