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ABSTRACT
Remote sensing images are usually distributed in different depart-
ments and contain private information, so they normally cannot
be available publicly. However, it is a trend to jointly use remote
sensing images from different departments, because it normally
enables the model to capture more information and remote sensing
image analysis based on deep learning generally requires lots of
training data. To address the above problem, in this paper, we apply
a distributed asynchronized discriminator GAN framework (DGAN)
to jointly learn remote sensing images from different client nodes.
The DGAN is composed of multiple distributed discriminators and
a central generator, and only the synthetic remote sensing images
generated by the DGAN are used to train a semantic segmentation
model. Based on DGAN, we establish an experimental platform
composed of multiple different hosts, which adopts socket and
multi-process technology to realize asynchronous communication
between hosts, and visualize the training and testing process. Dur-
ing DGAN training, instead of original remote sensing images or
convolutional network model information, only synthetic images,
losses and labeled images are exchanged between nodes. Therefore,
the DGAN well protects the privacy and security of the original
remote sensing images. We verify the performance of the DGAN on
three remote sensing image datasets (City-OSM, WHU and Kaggle
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Ship). In the experiments, we take different distributions of remote
sensing images in client nodes into consideration. The experiments
show that the DGAN has a great capacity for distributed remote
sensing image learning without sharing the original remote sensing
images or the convolutional network model. Moreover, compared
with a centralized GAN trained on all remote sensing images col-
lected from all client nodes, the DGAN can achieve almost the same
performance in semantic segmentation tasks for remote sensing
images.

CCS CONCEPTS
• Security and privacy; • Human and societal aspects of secu-
rity and privacy; • Privacy protections;
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1 INTRODUCTION
With the rapid development of remote sensing technology, remote
sensing images have been widely used in the exploitation of earth
resources, territorial control and environmental monitoring. Deep
learning has been applied to remote sensing image analyses, such
as target detection [1], semantic segmentation [2], etc. It’s widely
known that a large amount of data is necessary for training a
successful deep learning model. However, remote sensing images

33

https://doi.org/10.1145/3571662.3571668
https://doi.org/10.1145/3571662.3571668
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3571662.3571668&domain=pdf&date_stamp=2023-01-03


ICCIP 2022, November 03–05, 2022, Beijing, China Mingkang Yuan et al.

Figure 1: Schematic diagram of DGAN experimental platform. (a) UI interface of the server. (b) UI interface of the client. (c)UI
interface of clients for semantic segmentation tasks

normally cannot be available publicly, because they are usually dis-
tributed in different departments and contain privacy information.
If these remote sensing images are centralized, it may lead to the
leakage of data privacy. To solve the problem of privacy protection,
we apply federated learning (FL) to remote sensing image analyses.
Instead of directly exposing users’ data, FL often communicates the
model gradients [3]. However, it has been proved in recent years
that the model gradients leak data information [8].

To solve the above problems, we apply a distributed asynchro-
nized discriminator GAN framework (DGAN) to the distributed
learning of remote sensing images. The DGAN refers to the method
proposed by Qi Chang et al. [10], which is used in brain tumor
images and cell nucleus images. In DGAN, instead of communi-
cating the gradient information, only the synthetic images, losses
and labeled images are exchanged between nodes. Finally, the syn-
thetic images generated by the DGAN are used to train a semantic
segmentation model.

To summarize, this paper makes the following contributions:

• Compared with the work proposed by Qi Chang et al. [10],
we achieve the distributed learning of remote sensing im-
ages instead of learning medical images. The remote sensing
images are normally protected privately and have more com-
plex background than the medical images, and therefore it
is necessary to further verify the DGAN’s performance on
remote sensing datasets.

• Based on the DGAN, we establish an experimental platform,
and visualize the training and testing process. A schematic
diagram of the DGAN experimental platform is shown in
Figure 1.

• In our experiments, we deploy DGAN on three indepen-
dent hosts for the distributed learning, and socket and multi-
process technology are used to realize asynchronous commu-
nication between the server and multiple clients. In the work
of Qi Chang et al. [10], they did not deploy their method in
distributed hosts. In addition, we take different distributions
of remote sensing images in client nodes into consideration
for further verification of the DGAN.

2 RELATEDWORK
FL usually realizes joint learning of distributed datasets by shar-
ing model information [4-9]. FedAvg [5] deployed the same deep

learning model at all nodes, and then averaged parameters of local
models with weights proportional to sizes of the client datasets for
achieving distributed learning. FedProx [6] shared the global model
at all nodes, and adds a proximal term to the client cost functions
for limiting the impact of local updates. But it is undeniable that
the model information (parameters, gradients) sharing exposes FL
to a new risk. For instance, poisoning attacks [18] can manipulate
a client node and add tampered data weight to the global model,
which undermine the accuracy of the global model. Backdoor at-
tacks [11] change the model’s behavior by inserting a backdoored
component directly into the model, which may affect the classifica-
tion results. S.Truex et al. [12] presented a generalized framework
for the development of a membership inference attack model, in
which a member can use the global model to infer the training data
information of other users. Therefore, sharing model information
in FL easily causes privacy disclosure of original image data.

To protect data privacy, Qi Chang et al [10] proposed the dis-
tributed GAN, which is used in brain tumor images and nucleus
images. The distributed GAN is composed of multiple distributed
discriminators and a central generator, and protects the privacy of
the original data by only communicating the labeled images, losses
and synthetic images. However, they did not deploy the distributed
GAN on multiple hosts to verify the DGAN in their experiment. In
this paper, we apply the DGAN on remote sensing images which
have more complex background than medical images. And we set
up an experimental platform to deploy DGAN on different hosts for
further verifying the DGAN’s performance. Finally, the synthetic
images generated by the generator are used as training data to train
the deep learning model.

3 METHOD
3.1 DGAN architecture
The DGAN is composed of multiple distributed discriminators and
a central generator. The central generator, denoted as G, takes the
labeled images as input and generates synthetic images to fool
the discriminators. The local discriminators, denote as D1 to Dn,
distinguish between real and fake images. In the framework, only
the synthetic images, losses, and labeled images are exchanged
between the central generator and local discriminators. In this way,
the original images of local discriminators and model information
are not shared, and therefore the privacy of the original images is
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Figure 2: The overall structure of the DGAN. It contains a central generatorG andmultiple distributed discriminators 𝑫1, . . . ,𝑫𝒏 .
This paper adopts two discriminators D1 and D2. G receives the labeled images from D1 and D2 and generates synthetic images.
D1 and D2 learn to distinguish between real and fake images and send losses.

protected. An overview of the proposed architecture is shown in
Figure 2.

The central generator consists of three convolutional layers, nine
residual blocks and two transposed convolutions. All non-residual
convolutional layers are followed by batch normalization and the
ReLU activation. Each discriminator has the same structure as that
in PatchGAN. The discriminator individually quantifies the fake or
real value of different small patches in the image.

3.2 Optimization process
The optimization process is divided into two parts: D-update and G-
update. In each iteration, the sample minibatch contains k images,
and k is fine-tuned on different datasets, roughly ranging from 2
to 5. Here, \𝐺 and \𝐷 𝑗

are the parameters of the generator G and
j-th discriminator 𝐷 𝑗 ; r denotes the original images owned by the
discriminators; l is the labeled images corresponding to the original
images; 𝑟 is the synthetic images generated by the generator; 𝑟 𝑗

𝑖
denotes the i-th original image of the minibatch of the j-th client
node; similarly to 𝑟

𝑗
𝑖
, 𝑙 𝑗
𝑖
is the labeled image; 𝑟 𝑗

𝑖
is the synthetic

image. The update steps are as follows:
D-update: Calculating the loss for j-th discriminator 𝐷 𝑗 and

updating 𝐷 𝑗 , 𝑗 = 1, 2, . . . , 𝑁 .

• Send the k labeled images 𝑙 𝑗 of 𝐷 𝑗 to the central
generator, 𝑙 𝑗 = {𝑙 𝑗1 , . . . , 𝑙

𝑗

𝑘
}.

• The central generator G takes 𝑙 𝑗 as input, and generates
k synthetic images 𝑟 𝑗 , and then sends 𝑟 𝑗 to the 𝐷 𝑗 , 𝑟 𝑗 =

{𝑟 𝑗1 , . . . , 𝑟
𝑗

𝑘
}.

Figure 3: Using the trained G as a data provider to train the
DeepLab v3+ model.

• Update the discriminator by ascending its stochastic gradi-
ent:

∇\𝐷𝑗

1
𝑘

𝑘∑︁
𝑖=1

[
log𝐷 𝑗

(
𝑟
𝑗
𝑖

)
+ log

(
1 − 𝐷 𝑗

(
𝐺

(
𝑙
𝑗
𝑖

)))]
• Repeat the above steps until all client nodes are updated.

G-update: After updating all discriminators, G will be updated
using the adversarial loss.

• The G collects all losses.
• Update G, and the loss function is as follows:

∇\𝐺
1
𝑁𝑘

𝑁∑︁
𝑗=1

𝑘∑︁
𝑖=1

log
(
1 − 𝐷 𝑗

(
𝐺

(
𝑙
𝑗
𝑖

)))
3.3 Semantic segmentation
After finishing the training of the DGAN, we collected the synthetic
images from the DGAN as the training set for different tasks. In
this paper, we use the trained G as a data provider to train DeepLab
v3+ [14] model for a semantic segmentation task on remote sensing
images, which is shown in Figure 3.
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3.4 Platform establishing
We set up an experimental platform to deploy DGAN on different
hosts, and visualize the training and testing process. Figure 1 shows
a schematic diagram of the platform. Socket and multi-process
technology are adopted to realize asynchronous communication
between the server and clients. The following experiments are
achieved based on the platform to learn the distributed remote
sensing data from multiple hosts.

4 EXPERIMENTS
In this section, we perform experiments on remote sensing datasets
to illustrate how DGAN learns the data distributions from different
subsets, and then apply synthetic datasets to train a semantic seg-
mentation model. Three different remote sensing datasets are used:
City-OSM [15], WHU building dataset [16], and Kaggle Ship [17].
We use a centralized GAN (CGAN) for comparison, and CGAN’s
generator and discriminator network is the same as DGAN. Un-
like DGAN’s distributed subsets, CGAN centralizes all subsets as a
training set.

4.1 Environment configuration
We use the central generator as a server with two Intel Xeon Gold
6244 CPUs, 128GB RAM and two NVIDIA Tesla A100 GPUs. Two
distributed discriminators act as clients, each with an Intel Xeon
Gold 6230 CPU, 128GB RAM, and an NVIDIA GeForce RTX 3090
GPU.

4.2 Evaluation metrics
We adopt the following metrics to evaluate the segmentation perfor-
mance of remote sensing datasets: Dice score (Dice), Pixel Accuracy
score (Pa), and Mean Intersection over Union score (Miou).

Dice (R, P) = 2 |𝑅 ∩ 𝑃 |
𝑅 + 𝑃

Pa (R, P) = |𝑅 ∩ 𝑃 |
𝑅

Miou (R, P) = |𝑅 ∩ 𝑃 |
𝑅 ∪ 𝑃

Where R represents the ground-truth mask and P represents the
segmentation result.

4.3 Experiments on different datasets
In this subsection, we compare the quality of distributed learning
in 3 settings: (1) Seg_Real: The original remote sensing images are
used to train the semantic segmentation model; (2) Seg_CGAN: The
remote sensing images generated by CGAN are used to train the
semantic segmentation model; (3) Seg_DGAN: The remote sensing
images generated by DGAN are used to train the semantic segmen-
tation model. In all experiments, the test set remains the same for
fair comparison.

4.3.1 City-OSM. The City-OSM dataset is city remote sensing im-
ages of Chicago, Paris, and Berlin, including 1632 images with an
image resolution of 3328 × 3072, and the annotated categories in-
clude buildings and roads. We removed some images with a large
background, and selected 640 images as the training set and 160
images as the test set. There are two distributed discriminators

Figure 4: Examples of synthetic images on the City-OSM
dataset. (a) Original remote sensing images. (b) Synthetic
images generated by DGAN. (c) Synthetic images generated
by CGAN.

Figure 5: Visualization results on City-OSM dataset for the se-
mantic segmentation task. (a) Test images. (b) Ground-truth.
(c)∼(e) are the segmentation results of three models which
are trained by using original city remote sensing images, syn-
thetic remote sensing images of DGAN, and synthetic remote
sensing images of CGAN, respectively.

in this paper, each with 320 original city remote sensing images.
We conduct the following segmentation experiments: (1) Seg_Real:
640 original remote sensing images are used to train the semantic
segmentation model; (2) Seg_CGAN: 640 synthetic remote sensing
images generated by CGAN are used to train the semantic segmen-
tation model; (3) Seg_DGAN:640 synthetic remote sensing images
generated by DGAN are used to train the semantic segmentation
model. Figure 4 and Figure 5 show the synthetic remote sensing
images and semantic segmentation results. Table 1 shows the com-
parison of semantic segmentation indexes of city-OSM city remote
sensing images.

4.3.2 WHU building dataset. The WHU City Remote Sensing
Dataset contains two subsets: The East Asian subset and the Global
Cities subset. The East Asian remote sensing subset consists of 6 ad-
jacent satellite images, covering 860 square kilometers in East Asia,
with a ground resolution of 0.45m. The entire image is seamlessly
cropped into 17,388 512×512 tiles, the annotated category only in-
cludes buildings. For convenient training and testing, we removed
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Table 1: Semantic segmentation results on the City-OSM dataset Images

Method Dice Pa Miou
Seg_Real 0.7937 0.8036 0.6594
Seg_CGAN 0.7384 0.7513 0.5866
Seg_DGAN 0.7282 0.7445 0.5751

Table 2: Semantic segmentation results on the WHU East Asia dataset Images

Method Dice Pa Miou
Seg_Real 0.9014 0.9815 0.8326
Seg_CGAN 0.8065 0.9685 0.7138
Seg_DGAN 0.8457 0.9706 0.7584

Table 3: Semantic segmentation results on the WHU Global City dataset Images

Method Dice Pa Miou
Seg_Real 0.8382 0.8797 0.7302
Seg_CGAN 0.7840 0.8427 0.6595
Seg_DGAN 0.7927 0.8444 0.6695

Figure 6: Examples of synthetic images on the WHU East
Asian dataset. (a) Original remote sensing images. (b) Syn-
thetic images generated by DGAN. (c) Synthetic images gen-
erated by CGAN.

remote sensing images that only contain the background (field, for-
est). Finally, there are 3130 remote sensing images in the training
set and 903 remote sensing images in the test set. Each discrimi-
nator has 1565 remote sensing images. Similar to City-OSM, we
conduct the segmentation experiments. Figure 6 and Figure 7 show
the synthetic remote sensing images and semantic segmentation
results. Table 2 shows the comparison of semantic segmentation
indexes of WHU East Asia remote sensing images.

The WHU Global City subset is collected from various remote
sensing resources around the world. It contains 204 remote sensing
images of 10 cities in total. The ground resolution ranges from 0.3m
to 2.5m, and the image resolution is 512× 512. We take 150 remote
sensing images as the training set and 54 remote sensing images as

Figure 7: Visualization results on WHU East Asia dataset for
the semantic segmentation task. (a) Test images. (b) Ground-
truth. (c)∼(e) are the segmentation results of three models
which are trained by using original city remote sensing im-
ages, synthetic remote sensing images of DGAN, and syn-
thetic remote sensing images of CGAN, respectively.

the test set. Considering the small amount of data, we augmented
the training set to 450 by flipping and rotating. Each discriminator
has 225 remote sensing images. Similar to City-OSM,we conduct the
segmentation experiments. Figure 8 and Figure 9 show the synthetic
remote sensing images and semantic segmentation results. Table 3
shows the comparison of semantic segmentation indexes of WHU
Global City remote sensing images.

4.3.3 Kaggle Ship. The Kaggle Ship dataset comes from the 2018
Kaggle Competition, with a total of 192,556 768×768 images, and the
annotated category only includes ships. For convenient training and
testing, we removed the images without ships, and selected 3950
remote sensing images as the training set and 1660 remote sensing
images as the test set. Two distributed discriminators are used, each
with 1975 remote sensing images. Similar to City-OSM, we conduct
the segmentation experiments. Figure 10 and Figure 11 show the
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Table 4: Semantic segmentation results on the Kaggle Ship dataset Images

Method Dice Pa Miou
Seg_Real 0.9768 0.9982 0.9555
Seg_CGAN 0.8528 0.9899 0.7706
Seg_DGAN 0.8809 0.9917 0.8063

Figure 8: Examples of synthetic images on the WHU Global
City dataset. (a) Original remote sensing images. (b) Synthetic
images generated by DGAN. (c) Synthetic images generated
by CGAN.

Figure 9: Visualization results on WHU Global City dataset
for the semantic segmentation task. (a) Test images. (b)
Ground-truth. (c)∼(e) are the segmentation results of three
models which are trained by using original city remote sens-
ing images, synthetic remote sensing images of DGAN, and
synthetic remote sensing images of CGAN, respectively.

synthetic remote sensing images and semantic segmentation results.
Table 3 shows the comparison of semantic segmentation indexes of
Ship remote sensing images.

4.3.4 Results. As shown in Tables 1∼4, compared with the model
directly trained on the original images, the semantic segmentation
accuracies of the models trained on the CGAN’s and DGAN’s syn-
thetic images decrease. Compared with the CGAN, the DGAN has
similar semantic segmentation performance, and does not transmit
the original data among the client nodes during training. Therefore,
compared with CGAN, DGAN can better protect the privacy of
original remote sensing image data while ensuring the performance
of semantic segmentation. Figures 6, 8, and 10 show that the DGAN

Figure 10: Examples of synthetic images on the Kaggle Ship
dataset. (a) Original remote sensing images. (b) Synthetic
images generated by DGAN. (c) Synthetic images generated
by CGAN.

Figure 11: Visualization results on Kaggle Ship dataset for
the semantic segmentation task. (a) Test images. (b) Ground-
truth. (c)∼(e) are the segmentation results of three models
which are trained by using original city remote sensing im-
ages, synthetic remote sensing images of DGAN, and syn-
thetic remote sensing images of CGAN, respectively.

can commendably learn the data distributions, and Figures 7, 9, and
11 prove that the synthetic images can be commendably used in
the semantic segmentation task.

4.4 Reconsider the data distribution
In the above experiments, remote sensing images of different cities
are mixed. However, the reality is that different client nodes may
have remote sensing images of different cities/regions. To get closer
to reality, we divide the images according to different cities in this
section.

4.4.1 City-OSM. In this subsection, we use the remote sensing
images of Chicago and Paris from the City-OSM. Due to the incon-
sistency in the number of images in Chicago and Paris, we culled
the images so that the number of images in Chicago and Paris is
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Figure 12: Examples of synthetic images on the City-OSM
dataset. (a) Original remote sensing images. (b) Synthetic
images generated by DGAN. (c) Synthetic images generated
by CGAN.

the same. Finally, a total of 500 remote sensing images are used
as the training set while the discriminators have remote sensing
images of different cities. Because of the different street layouts,
greening degrees and architectural styles in different cities, the data
distribution gap becomes larger. We found that if the discrimina-
tors update every iteration, it will cause the model to be difficult
to converge. We think it’s because the generator does not have
enough training to learn the data distribution owned by the cur-
rent communication node, so the discriminator is easy to judge
the real and fake images. With model training, the discriminator
loss decreases rapidly and approaches zero. Through experiments,
we found that adjusting the update frequency to one epoch would
make the model convergence easier than updating the model every
iteration. Figure 12 and Figure13 show the synthetic remote sensing
images and semantic segmentation results. Table 5 demonstrates
the comparison of semantic segmentation indexes of City-OSM
City remote sensing images.

4.4.2 WHU building dataset. The WHU Global Cities Dataset con-
tains remote sensing images of 10 cities: Wuhan, Taiwan, Los An-
geles, Ottawa, Cairo, Milan, Santiago, Cordova, Venice, and New
York. We divided the 10 cities into two subsets by their architec-
tural styles. The D1 discriminator has remote sensing images of
5 cities of Wuhan, Cairo, Milan, Cordova and Venice, the D2 dis-
criminator has remote sensing images of 5 cities of Taiwan, Los
Angeles, Ottawa, San Diego, and New York. We performed the same
data augmentation operation as above. Each discriminator has 225
remote sensing images. And we found that adjusting the update

Figure 13: Visualization results on City-OSM dataset for the
semantic segmentation task. (a) Test images. (b) Ground-
truth. (c)∼(e) are the segmentation results of three models
which are trained by using original city remote sensing im-
ages, synthetic remote sensing images of DGAN, and syn-
thetic remote sensing images of CGAN, respectively.

Figure 14: Examples of synthetic images on the WHU Global
City dataset. (a) Original remote sensing images. (b) Synthetic
images generated by DGAN. (c) Synthetic images generated
by CGAN.

frequency of the discriminators to 4 epochs makes the model easier
to converge. Figure 14 and Figure15 show the synthetic remote
sensing images and semantic segmentation results. Table 6 shows
the comparison of semantic segmentation indexes of WHU Global
City remote sensing images.

4.4.3 Results. After reconsidering data distribution (different
client nodes have remote sensing images of different cities), we
show the semantic segmentation results in Tables 5, 6. The results
demonstrate that the change mentioned above in data distribution
does not impact the performance of the DGAN. By adjusting the

Table 5: Semantic segmentation results on the City-OSM dataset Images

Method Dice Pa Miou
Seg_Real 0.8076 0.8161 0.6792
Seg_CGAN 0.7366 0.7466 0.5850
Seg_DGAN 0.7398 0.7543 0.5895
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Table 6: Semantic segmentation results on the WHU Global City dataset Images

Method Dice Pa Miou
Seg_Real 0.8376 0.8777 0.7290
Seg_CGAN 0.7815 0.8426 0.6569
Seg_DGAN 0.8041 0.8541 0.6844

Figure 15: Visualization results on WHU Global City dataset
for the semantic segmentation task. (a) Test images. (b)
Ground-truth. (c)∼(e) are the segmentation results of three
models which are trained by using original city remote sens-
ing images, synthetic remote sensing images of DGAN, and
synthetic remote sensing images of CGAN, respectively.

discriminators’ update strategy, the DGAN can commendably gen-
erate synthetic images when different discriminators have remote
sensing images of different cities. The examples of synthetic images
from DGAN and CGAN are shown in Figures 12, 14. The semantic
segmentation results of each method are shown in Figures 13, 15

5 CONCLUSION
In this paper, we apply the DGAN to the distributed learning of
remote sensing datasets, and establish an experimental platform
which deploys the DGAN on multiple hosts and visualize the train-
ing and testing process. During the DGAN training, neither the orig-
inal data nor the model information is transmitted, which strength-
ens the privacy protection of original data. Only the labeled images,
losses and synthetic images are transmitted between the server and
clients. We achieve semantic segmentation tasks for comparing
the performance of DGAN and CGAN on different remote sensing
datasets. The results show that the performance of the DGAN is
almost the same as the CGAN in the semantic segmentation tasks.
Compared with CGANwith sharing data of client nodes, the DGAN
can better protect data privacy. To get closer to reality, we divide the
remote sensing images according to different cities so that different
discriminators have the data distributions of different cities. By ad-
justing the discriminators’ update strategy, the change mentioned
above in the data distribution does not impact the performance of
the DGAN. In the future, we will improve the network structure of
the generator and the discriminator to enhance the image synthesis
capability. In addition, we will also try to compress the synthetic
images and labeled images during communicating for reducing the
amount of network traffic.
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