
Organizational governance: Resolving insufficient practice and
quality expectation in Small Software Companies.

MICHEAL, TUAPE∗
Department of software engineering,
Lappeenranta-Lahti University of

Technology, Finland
micheal.tuape@lut.fi

PETRUS, T, Iiyambo
Dept of Computing, Maths and
Statistical Sciences University of
Namibia, Windhoek, Namibia

piiyambo@unam.na

JUSSI, Kasurinen
Department of software engineering,
Lappeenranta-Lahti University of

Technology, Finland
Jussi.kasurinen@lut.fi

ABSTRACT
The quality of software products is among the most prevalent chal-
lenges threatening the software development primarily in small
software companies (SSCs). These challenges are associated with
insufficient practices affecting the production of software and the
development processes. This paper explores the role of governance
in streamlining software processes and practices to produce better
quality software products. In a cross-sectional survey (n = 127),
we reached out to software practitioners working in SSCs from
four countries. We examined how SSCs engage in oversight and
accountability and how SSCs perform management roles and ac-
tivities, such as controlling, directing, and guiding in the process
of developing software. Our findings indicate that although the
SSCs minimally embrace governance practices, the smaller compa-
nies have a more challenging task embracing governance practices
from the complexities arising out of these companies’ structures.
This study highlights the aspects of governance that need atten-
tion in the smaller category of SSCs. It proposes an organizational
governance model to facilitate the SSCs in developing governance
strategies to take advantage of the benefits of governance during
software development.

CCS CONCEPTS
• Software and its engineering; • Software creation and man-
agement; • Software development process management;

KEYWORDS
Software Organizational governance, Software processes, Small
Software Companies

ACM Reference Format:
MICHEAL, TUAPE, PETRUS, T, Iiyambo, and JUSSI, Kasurinen. 2022. Organi-
zational governance: Resolving insufficient practice and quality expectation
in Small Software Companies.. In 2022 The 3rd European Symposium on
Software Engineering (ESSE 2022), October 27–29, 2022, Rome, Italy. ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/3571697.3571700

∗Place the footnote text for the author (if applicable) here.

This work is licensed under a Creative Commons Attribution International
4.0 License.

ESSE 2022, October 27–29, 2022, Rome, Italy
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9730-8/22/10.
https://doi.org/10.1145/3571697.3571700

1 INTRODUCTION
Software plays a central role in the growth and advancement of
humanity in today’s world, where technology has become part and
parcel of every aspect of society [1]. The small software companies
(SSCs) are at the center of the evolution of the software industry
to the extent that the industry has experienced significant growth
of the SSCs and a noticeable dominance of the entire industry [2],
[3]. The SSCs represent almost 90% of the software companies in
industry and are responsible for about 80% of the software products
produced on the market [4]. The SSCs contribute significantly to
the growth of the software industry and other businesses, leading
to increased employment and substantial economic development
in most economies of the world [5].

Although the influence of software continues to get more en-
trenched in our livelihood, the industry is grappling with quality
challenges, including the high failure rate of software under con-
struction, researchers [1], [3] suggests that over 70% of software
under construction fails to meet the expected quality. Tamburri
et al. [6] put software failure during construction as one of the
key and least understood challenges of the software industry and
practice. Software failure during development is considered higher
in SSCs [7], [8], and the causes of this high failure are due to insuf-
ficient processes and practice in building software [8]. Researchers
indicate that software developer productivity is among the critical
challenges of software companies, caused by a lack of commitment,
motivation [9], [10], and intentional neglect of quality practices
by the developers [11]. The challenges associated with software
productivity are intrinsically associated with software quality and
cost [9]. A typical productivity challenge is seen through source
code defects that translate into time and cost consuming aspects of
software development [12]. The Cambridge Judge Business School
estimates that over 600 million hours are spent on debugging code
annually, translating to 61 billion United States dollars in North
America alone. Nevertheless, these such errors are caused by a
human error related to productivity, which can be mitigated by
paying attention to the non-technical factors like organizational
governance.

The bad governance practice in software organizations, pointed
out by Perscheid et al. [12] and Juiz and Toomey [13], is what
exposes companies to deterioration of performance, breeding in-
stability in processes, and reduced developer productivity. These
challenges are synonymous with SSCs and have compromised the
quality of software produced by the SSCs, as noted in Tuape et
al. [14]. The absence of governance exposes organizations to risks
hindering growth, and destroying reputation and trust, among the

17

https://doi.org/10.1145/3571697.3571700
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3571697.3571700
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3571697.3571700&domain=pdf&date_stamp=2023-02-06


ESSE 2022, October 27–29, 2022, Rome, Italy Micheal Tuape et al.

software team. Although most SSCs have few employees and pri-
marily focus on creating software that works, the organizational
structure in most cases disadvantages the SSCs. It is complex to im-
plement effective governance under such circumstances, as cited by
[1], [15]. Governance entails providing leadership and management.
Furthermore, the attributes of governance like oversight ensures
the effective application of procedures and processes to attain de-
sired results [13]. In addition, it ensures that the applied methods
and techniques provide the intended value for the customer [16].

We used the activities that enhance the leadership and manage-
ment of SSCs, to answer the question of governance in practice
concerning the respective size categories of SSCs. We sent out sur-
vey questions to software practitioners (n=127) in four countries
(Finland, Ghana, Namibia, and Tanzania). This study answers two
research questions: (1) How do the SSCs engage in oversight and
accountability while developing software products in the respective
size categories? (2) How SSCs perform management roles and ac-
tivities, such as controlling, directing, and guiding in the respective
size categories? The rational of these research questions is from
the understanding that leadership and management are aspects of
governance responsible for assembling, organizing, and integrating
the necessary resources to execute tasks and direct group efforts
to achieve the desired goals. The limited usage of these threatens
the possibility of attaining the required culture and responsible
practices for producing quality products within the respective size
categories of SSCs.

This study is important for research and practice in SSCs because
we have not come across any study specific to SSCs discussing gov-
ernance. Moreover, most of the challenges in practice are related
to governance. Our work is expected to make several theoreti-
cal and practical contributions. First, we advance the research on
organizational governance in SSCs to indicate that the lack of a
structured approach to leadership and management roles in the
software processes seriously impacts the processes and quality of
software produced by the SSCs. Secondly, we propose an organiza-
tional governance model that can be useful to structure governance
in the SSCs. This would prepare the SSCs to take up the governance
and management roles even when the staffing is at minimal. The
practical contribution to software practice is that the model will
enable SSCs to deal with the structural complexities in practice by
providing a framework for developing a governance strategy to
support the leadership and guide the development team in devel-
oping goals and expectations, policies, rules, best practices, and
metrics based on feedback.

The rest of the paper is structured as follows: Section 2 presents
the related literature, and Section 3 presents the methodology. We
present the survey results in Section 4, discuss the findings, and
propose an organizational governancemodel for the SSCs in Section
5.

2 RELATEDWORKS
Although most of the challenges cited in the literature associated
with software engineering can be related to governance, the at-
tempt to specifically resolve governance-related challenges has
received minimal attention in software practice. We summarize
evidence from the literature that discusses challenges associated

with software engineering and suggest the relationship between
these challenges and software governance [2], [8], [17]. Secondly,
we identify the few studies [16], [18], [19] that explicitly discuss
governance issues in software engineering. Comparing our work
with what has been done in literature, we emphasize two impor-
tant aspects of the challenges of engineering processes and how
governance can be used to streamline processes in SSCs.

Khokhar et al. [2] present an investigation in a Systematic Litera-
ture Review (SLR) protocol in which they studied software process
improvement (SPI) factors for SSCs. Their study identified critical
success factors (CSF) that positively impact the successful imple-
mentation of SPI. Their findings indicate 7 CSFs: (1) leadership
involvement, (2) employee participation, (3) management commit-
ment, (4) training, (5) business orientation, (6) organizational pro-
cess focus, and (7) lack of quality conscious people (management
skills). All the 7 CSF turn out to be non-technical factors and sig-
nificantly related to governance in SSCs. They also identify critical
barriers (CBs) as crucial for SPI initiation in SSCs and list three
factors, (1) SPI understanding, (2) organizational structure and (3)
project management. Their findings are in tandemwith the findings
of Dyba [17], who lists factors that highlight governance or mostly
non-technical factors. Similarly, Tuape and Ayalew [8], in another
SLR protocol, study SSCs and discuss the factors that affect the
software processes in SSCs and mention organizational governance
as a significant factor. Just as Khokhar et al. [2] highlight up to 75
percent of non-technical factors that relate to governance in the
SSCs.

Juiz and Colomo-Palacios [18] proposed an enhanced software
development governance model adopted from the ISO/IEC 38500,
which is an international standard published jointly by the Inter-
national Organization for Standardization (ISO) and the Interna-
tional Electrotechnical Commission (IEC) for Corporate Informa-
tion Technology (IT) Governance. This standard acknowledges the
importance of governance. Although it takes care of preparing and
implementing plans and policies, it also emphasizes the importance
of monitoring conformance to policies and performance against
the plans in an organization about IT in general. The Juiz and
Colomo-Palacios model proposes new considerations beyond those
proposed by Chulani et al. [16]. The researchers Nguyen et al. [19]
present a generic framework to map IT governance principles to
the GI-Tropos software processes, which adopts the COBIT 5, a
famous IT governance and control framework that is formalized
by the IT Governance Institute (ITGI). Generally, COBIT offers a
reference model of 37 IT processes found in an organization. This
framework provides a process reference model which defines gov-
ernance and management processes in detail and operates with
a full view of helping software organizations’ business processes
meet their strategic requirements.

The frameworks and models proposed by Chulani et al. [16], Juiz
and Colomo-Palacios [18], and Nguyen et al. [19] herein address
governance concerns in software engineering generally; however,
the specific nature and uniqueness of the SSCs pose unique chal-
lenges as pointed out by Khokhar et al. [2], Tuape and Ayalew
[8] and Dyba [17] in the respective studies may require unique
solutions specific to SSCs.

18



Organizational governance: Resolving insufficient practice and quality expectation in Small Software Companies. ESSE 2022, October 27–29, 2022, Rome, Italy

3 METHODOLOGY
We used a quantitative cross-sectional study design to help answer
the research questions regarding the implementation of governance
activities during software practice in SSCs. The study uses closed-
ended questions answered with a type 5-Likert scale. In this section,
we present and discuss the population and sample of the study, we
describe the participants, we discuss the design of the survey, and
lastly, we discuss the method of analysis of the data used in the
study.

3.1 Population and Sample
For this study, we implemented a set of criteria for selecting the
appropriate sample for the study. We identified developer groups
from four countries: Finland (F), Ghana (G), Namibia (N) and Tan-
zania (T) for the study sites. Although the sites were not exclusive
to SSCs, the sites included a mix of software companies, academic
institutions interested in software practice, and other organizations
supportive of SMEs in software development. For the target popu-
lation, we focused on SSCs (1-50 employees) developing software
for various markets in the four study sites.

The purpose of the sample was to ensure that the participants
gave the researchers a varied experience on governance in software
practices within the different categories of SSCs. The researchers
chose the participants through purposive sampling based on three
criteria: (1) SSCs developing software-intensive products (1-50 em-
ployees), (2) the company must have existed for at least five years,
and (3) respondents must have at least five years of experience.
Based on these criteria, we identified 390 companies that fit within
the study’s sample of interest. From the loose groups, we could
not establish the ultimate number of SSCs that met the set criteria;
however, to achieve the purpose of the sample, we further profiled
the selected companies into three categories: 1-25, 26-30, and 31-50
employees. The category choice was to look out for the diverse
characters described in Tuape et al. [14]. By categorizing and subdi-
viding the companies into these categories, we intended to evaluate
governance in software practices within the different categories
with different viewpoints.

Software engineering studies typically use a purposeful (het-
erogeneous) sampling approach, as advocated for in Baltes and
Ralf [20] and used by researchers [21], [22]. Since the researchers
wanted as much insight as possible into the phenomenon, includ-
ing the different size profiles of SSCs in the study, would meet the
researcher’s expectation to uncover unique and diverse experiences
of the participants from which to develop a governance model.

The researchers sent out survey questionnaires to a total of
390 companies, 108(F), 103(G), 84(N) and 95(T). After reviewing
163 datasets, the researchers determined that some datasets did
not fit the set criteria, so the researchers excluded them from the
ultimate analysis. We carefully considered the three categories’
profiles as a basis for diversity in governance experiences, although
the numbers of companies in the two categories, 26-30 and 31-50,
were significantly small. Nonetheless, the researchers considered
127 participants representing 29, 35, 28 and 35 participants and 22.8,
27.6, 22.0 and 27.6 percent, respectively.

We combined several well-proven techniques for improving the
response rate of mailed questionnaires, including contacting the

participants on the phone and requesting participation in the study
before mailing the questionnaire link on the Webropol survey sys-
tem. A pilot study of the survey questionnaire revealed that respon-
dents needed about 15 to 20 minutes to complete it. The results
in this study are within the limits of adequate statistical power
and generalizability. In addition, this represents an effective re-
sponse rate of 41.8 percent, slightly above the minimum 40 percent
suggested in [21].

3.2 Characteristics of Respondents
Although there was a set criterion for identifying the participants,
parts of the survey questionnaire asked characteristic questions to
define the characteristics of the respondents (products produced by
the company, her gender, her level of education, and the country
from which the data was collected).

Most companies are involved in producing more than one
software-intensive product, predominantly software solutions and
web applications. The developers and software engineers are the
dominant roles representing 66.9 and 47.2%, respectively. Consid-
ering the gender of the participants, 74% were male, 25.2% were
female, and for the level of education, the participants with bach-
elor’s degrees were dominant, followed by those with master’s
degrees representing 62.2 and 29.1%, respectively. The other aspect
which is significant about the characteristics of the participants is
that we categorized the companies by the number of professionals
employed in the company, and of the 127 participants, representing
74.8, 13.4 and 11.8% from the companies with 1-25, 26-30 and 31-50
employees.

3.3 Survey Questions
The online survey questionnaire was designed to investigate soft-
ware practice. The section of the questionnaire used in this part
of the study was specifically to take care of the elements of orga-
nizational governance in the practice of the SSCs and the extent
to which the respective categories of SSCs use governance in the
development processes to produce quality software. We developed
a draft set of questions to comprehensively cover the software
practice, considering the questionnaire’s size and the number of
questions, following the guidelines and experiences of other re-
searchers in conducting online surveys [22]. The questionnaire was
sent to fifteen practitioners in the industry to ensure that the lan-
guage used in the study was familiar to the intended participants.
There is evidence in the literature showing that [23] researchers
and industrial practitioners often use different terminologies, and,
when conducting industry research, there is a need for consen-
sus on terminology. Early feedback from the practitioners helped
ensure the proper context for the survey and the familiarity of
the terminology used the questionnaire for industrial respondents.
This was used to develop the second set of survey questions that
were subjected to review by five other experts with over 5 years of
experience in software engineering surveys. After improving the
questions based on the feedback from the industry practitioners
in the pilot study, the instrument ended up having 28 questions. A
set of questions was dedicated to the profiles and demographics of
the respondents. The other questions probed the software practice
while focusing on organizational governance and quality practice.

19



ESSE 2022, October 27–29, 2022, Rome, Italy Micheal Tuape et al.

Consent of every respondent to take part in the survey was sought,
and each of the respondents was informed that the data from the
survey would be used for research purposes.

3.4 Data Analysis Techniques
Cross-tabulation sometimes referred to as cross-tab or contingency
tables, is used to analyze the relationship between categorical vari-
ables. This type of data involves categories of variables that are
mutually exclusive from each other. Nominal and ordinal data were
collected in numbers, but numbers have no quantifiable value unless
they mean something also used in [24]. A Pearson Chi-Square test
of independence was used to determine if there exists a significant
relationship between the response variable (the number of employ-
ees in the respective company sizes) and the proposed explanatory
variables of the study (the different attribute of governance). All
analyses were conducted using SPSS version 26.

4 RESULTS
This section presents the investigation results of the two research
questions in two subsections. Subsection 4.1 presents the extent
to which SSCs embrace oversight and accountability activities in
software practice. Subsection 4.2 presents the findings from the
investigation of howmanagement roles through activities of control,
directing and guiding are implemented during software practice
in the SSCs. Based on the company’s number of employees, the
results are discussed in three categories of company sizes.

4.1 Oversight and Accountability in Software
Development Practice

4.1.1 Oversight. To investigate how SSCs have embraced over-
sight practices, we asked the respondents how frequently they used
feedback in informing their oversight function to evaluate the pro-
cesses for expected results and value for money of both the software
product and process. The results show the cross-tabulation results
between the number of employees in the company and the frequent
use of feedback as a mechanism of oversight. Of 127 respondents,
43.3 % confirmed that they always get feedback as a mechanism of
oversight, 29.1 % indicated that they often received feedback, and
18.9 % responded with a neutral answer (sometimes). In contrast,
8.7 % responded with rarely, and none embraced feedback for over-
sight purposes. The results also show that there are no significant
differences in the proportion of SSCs that incorporate oversight and
accountability activities in practice across the three categories of
company sizes (1-25, 26-30, and 31-50) (Pearson Chi-Square value
= 3.133, degrees of freedom = 6, p-value = 0.792).

4.1.2 Accountability. Accountability is about reviewing the results
of the processes in retrospection; it is from this that the lists of
lessons learnt during software development projects are drawn to
establish and review metrics and best practices in an organization.
The results show that overall, 54.3% of the respondents answered
this question to the affirmative (often and always), 20.5% of the
respondents answered neutrally (sometimes), and 25.3% of the re-
spondents answered not to have or rarely used lessons learnt in
their organizations. Comparing the use of lessons learned across

the number of employees in a company, there seems to be insuffi-
cient evidence to conclude that there is a significant relationship
between the number of software professionals and lessons learned
in a project (Pearson Chi-Square value = 14.248, degrees of freedom
= 8, p-value = 0.076).

4.2 Control, Direct and Guide Processes During
Development

The respondents were asked three questions to investigate the
implementation of controlling, directing, and guiding the software
development processes. The subsequent subsections present the
results.

4.2.1 Control. In investigating the extent to which management
exerted control during software development, we examined the
arrangements of formal meetings to discuss lessons learnt, 35.4%
of the respondents responded to having either always or often had
formal meetings with management. In comparison, 37% responded
with a neutral answer, and 27.6% indicated that the management
either never or rarely organized formal meetings to adopt lessons
learnt as a control mechanism within the organization. However,
there is insufficient evidence to suggest a significant association be-
tween the extent to which management organized formal meetings
to adopt lessons learnt and the number of software professionals
employed in the company (Pearson Chi-Square =13.704, degrees of
freedom = 8, p-value =0.090).

4.2.2 Directing. Overall, 39.4 percent of the respondents reaffirmed
that the use of meetings to make changes symbolizes a structured
approach to directing activities in the organization, 37% indicated
that is often the case, while 23% responded neutrally. Moreover,
35.8% of those employed by organizations with 1-25 software pro-
fessionals agreed that management conducted meetings to make
changes as a method of directing activities. Similarly, for SSCs em-
ploying 26-30 and 31-50 software professionals, 41.2% and 60% of
the respondents reaffirmed that management conducted meetings
to make changes to direct activities in the organizations, respec-
tively. The neutral (sometimes) respondents represent 28.4%, 5.9%,
and 13.3% of the SSCs employing 1-25, 26-30 and 31-50 software
professionals, respectively.

4.2.3 Guiding Processes. Our findings show that overall, 57.5%,
26.8%, and 15.8% of the respondents affirmed having either often or
always neutral and rarely or never used contingency planning to
guide software development. The proportions of respondents who
either always or often use contingency planning to guide software
development in SSCs are 54.8%, 52.9% and 80% for SSCs employing
1-25, 26-30 and 31-50 software professionals, respectively.

4.3 DISCUSSION
In this section, we analyze, explore the meaning, and discuss the
significance of our findings while answering the research questions
and proposing remedies to some of the challenges highlighted
in the data presented in the previous section. The overall aim of
this study was to understand how organizational governance is
conducted in the respective company categories of SSCs. To fulfil
this aim, we address the research questions and attempt to relate
our findings with earlier studies that have highlighted software

20



Organizational governance: Resolving insufficient practice and quality expectation in Small Software Companies. ESSE 2022, October 27–29, 2022, Rome, Italy

development challenges related to governance specific to SSCs. This
section has two parts explaining our findings regarding research
questions one and two, and the second part presents and discusses
the significance of our proposed organizational governance model
in solving some of the challenges associated with organizational
governance highlighted in this study.

4.4 Discussion of the Research Questions
4.4.1 Oversight and Accountability. Overall, results show that SSCs
relatively embrace accountability and oversight with 54.3% and
43.3%, respectively. This finding means that leadership functions
are moderately prevalent in the SSCs; this contrasts with the find-
ings of Nørbjerg et al. [25], who, in their case study, point out that
lack of oversight, among other factors, has an effect of reducing the
capability of SSCs to adapt project management processes and prac-
tices in response to changes at the company level. The difference in
result could be because the authors conducted a single case study on
a software company which is different from our study with multiple
SSCs. The contrast, however, indicates that the SSCs in the category
that is closer to the one in the case study portray significant usage
of oversight. The likely explanation for this contrast is perhaps
because Nørbjerg et al. studied only one company. It is generally
known in governance in organizations that both accountability
and oversight must be used concurrently to mutually support each
other to attain the benefits they offer an organization. This means
that oversight and accountability are expected to complement each
other. The former resolves challenges like skill gaps, volatility in
requirements, violations of best practices and overall compromise
in quality that impair software quality and make software hard
to maintain affecting software evolution. While the latter helps
identify requirements mismanagement, poor requirements docu-
mentation, insufficient planning and all the associated challenges.
The implication of volatility in requirements is observed through
project delays, cost overruns and high defect density on software
products, while violations in practice and processes increase the
chances of failure and vulnerabilities in software products, gener-
ally compromising the overall quality of software.

The revelation that the categories of software companies em-
ploying 0-12 and 26 to 30 suggest less usage of accountability and
oversight practices and it is perhaps related to instability witnessed
in the practice of the SSCs in these categories, as highlighted by
Tuape et al. [14] and Chulani et al. [16]. The authors highlight the
confusion in understanding how software development practices
related to governance and what could constitute effective organiza-
tional governance in SSCs, especially in the smaller categories. This
is seen with the isolated result of SSCs with 31 to 50 employees
that present relatively higher incidences in both accountability and
oversight. Indeed, this is in tandem with other findings measuring
quality and maturity in processes in the same categories that seem
to have more structured mechanisms to ensure accountability and
oversight in the software development practice.

Despite the lack of statistically significant effect on the relation-
ship of oversight compared to the categories classified by several
software development professionals employed in the companies,
nonetheless, there is a pronounced trend illustrated by similar re-
sults indicated in literaturewhereMuñoz et al. [26], cite poor quality

software products by the Very Small Entities (VSE) due to lack skill
and failure to follow best practices. This is likely to be because of the
skewness of the data, given that up to 87 percent of the respondents
fall in the two lower categories of companies employing 30 persons
and below. The other likelihood is that the sample size was small,
and a remedy to this would be further studies with larger sample
size. On the other hand, accountability has a statistically significant
effect on the categories. This is also seen in the literature indicating
that the quality of products and processes in these categories remain
a challenge, as cited in studies by Melegati et al. [27], and Tuape
et al. [15]. Boehm and Turner [28] add that lack of accountability
could lead to low morale among the individual developers or the
software team. The authors further argue that unclear priorities
across the team, minimal employee engagement, unachievable team
and individual goals, low levels of trust and high turnover could
pose a challenge as far as implementing measurement and control.

A software team cannot be accountable if they do not know why
they are taking accountability. A remedy is that an explicit set of
goals and expectations is a good starting point for software compa-
nies to ensure accountability. Goals must be set for the individuals
and the development team; the goals must be clear and measurable
so that all involved know what they are trying to achieve. It is there-
fore imperative to establish the usage of rules, metrics and best
practices as a mechanism implemented through accountability and
oversight using transformational leadership to foster relationships
with the developers to guide and nurture their skills as alluded to
by Eseryel and Eseryel [29], proposed in the model, in Figure 1.

4.4.2 Control, Directing and Guiding. The results indicate that the
overall implementation of management roles and activities of con-
trol, directing and guiding during software development practice
in the SSCs is moderate. Control, directing, and guiding is at 35.4%,
39.4%, and 57.5%, respectively, of the respondents across all cate-
gories of the number of software professionals employed in the
organizations. Like the leadership roles, the management roles
indicate high incidences of practice in all the aspects considered
except for the control. This means that SSCs are not likely to hit
goals because of a lack of effective control. Some evidence of this is
suggested by Khokhar et al. [2]. They cite limitations in software
practices in SSCs due to lack of control and insufficient leadership
involvement, which affects employee commitment. Control allows
SSCs to check errors, implement corrective actions, minimize de-
viations from methods, and keep software projects on track. This
means that SSCs would not enjoy these benefits without control.
Ultimately having less control means the companies cannot lead to
increased productivity, as highlighted by Paiva et al. [10].

The interpretation of these results considers that there is no
statistical significance between the control and the categories by
the number of employees. However, the findings can be seen as
relevant based on the evidence from previous work that highlights
challenges in software development practice synonymous with
SSCs like leadership involvement, employee participation and lack
of quality conscious people to be key impediments to quality and
critical success factors highlighted by Khokhar et al. [2] and also
emphasized Tuape and Ayalew [8] in another study.

As a remedy to the challenges in the findings, SSCs need to
be assisted in mitigating the challenges of governance that affect

21



ESSE 2022, October 27–29, 2022, Rome, Italy Micheal Tuape et al.

Figure 1: Proposed organizational governance model, it applies elements from the theory of transformational leadership and
focuses on the leadership and management to inspire and drive

software practice and the quality of products by introducing mech-
anisms that are cognizant of the uniqueness of SSCs and can also
facilitate them in adopting practices that foster control within the
organizations, particularly during software practice.

4.5 Organizational Governance Model for Small
Software Companies

Figure 1 represents the proposed governance model for SSCs; the
model focuses on the leadership, management, and the software
development team as critical aspects of organizational governance.
It presents governance as a responsibility of executives to provide
leadership, managers are responsible for organizing the routine
running of the company, and the software development team is
responsible for the execution of the tasks of developing quality soft-
ware to the satisfaction of the customers. Unlike Juiz and Colomo-
Palacios’s [18] proposed software development governance model
that focuses on leadership and management, our model proposes
the application of transformational leadership while focusing on
the leaders and managers to inspire positive change in the

software team. The application of transformational leadership is
to enable a push for the encouragement of a small team to realize
overall success. By raising a team’s morale and self-confidence, the
team can align itself to an overall vision or common purpose.

The efforts are geared towards taking a struggling or stagnant
team and completely transforming it into a productive and dynamic
team that develops quality software to the satisfaction of the clients.

Hashmi et al. argue that transformational leadership is recipro-
cal, iterative and ideal for small teams [30]. It begins with working
closely with the team to facilitate the identification of the team or
individual’s weaknesses to establish a clear pathway for improve-
ment. The transformational leader works closely with the software
development team to support, evaluate, and redirect the team’s
effort to achieve the overall goal. This offers additional positive
effects, including nurturing company culture, increasing creativity,
reducing developer turnover, and nurturing loyalty among the soft-
ware development team. The model focuses on the 3 aspects, and
each of the aspects takes up responsibility, as discussed below.

4.5.1 Leadership. First is idealized influence, where the leaders
have the charisma to rally the software developers around a shared

22



Organizational governance: Resolving insufficient practice and quality expectation in Small Software Companies. ESSE 2022, October 27–29, 2022, Rome, Italy

vision. The availability of separate teams to take responsibility for
the separate governance attributes. Separating leadership and man-
agement promotes accountability at all levels. The model envisages
two scenarios to take care of the challenge highlighted in litera-
ture in which Khokhar et al. [2] discuss organizational structure in
SSCs and a limitation to process improvement and affecting overall
software development; responsible for establishing and reviewing
processes and tools used during software development, policy, and
procedure to guide the processes, the goals and expectations that
the developers/software development team must achieve.

Scenario 1: ad hoc leadership
This focuses on the extreme cases where there are few mem-

bers within an organization and, in most cases, no clear distinction
between executives and management. The situation may be dif-
ferent for some SSCs, especially those with less staff; for instance,
SSCs with less than 10 employees may have no clear separation
between managerial and executive roles. The non-existence of ex-
ecutives and managers in most cases become involved in software
production due to resource constraints. In scenarios the roles for
internal control should be assigned to a quasi-executive to pro-
vide oversight and ensure accountability when it is required. This
would mean team members assume the leadership roles, which
reduces conflict of interest and clarifies accountability. To achieve
this, managers can execute their leadership role by inspiring, mo-
tivating and leading the team involved in software development.
Thus, given that scenario 1, managers may double as executives in
most cases, managers should endeavor to separate themselves from
their managerial role when acting as part of the governing body or
executives.

Scenario 2: lean leadership
In this case, the team may have more employees more than 10,

which makes it possible to separate the executive, management, and
the software development team. The number of persons involved
in the leadership and management team may not be important,
provided the roles are well taken care of. Just like in Scenario 1,
the responsibility of executives is to set organizational goals and
priorities, chart direction, and set limitations and boundaries, which
all constitute an accountability framework. The clear separation of
roles also provides a mechanism for good governance that focuses
on stakeholder value by balancing performance and conformance.

4.5.2 Management. Managers need to support the development
team through planning, organizing, directing, guiding, and con-
trolling as a remedy to the management commitment addressed
by Khokhar et al. [2]. By using the functions, managers work to
increase the efficiency and effectiveness of their development team,
the processes and tools, the projects, and the organization in general.
Inspirational motivation is attained through the encouragement of
the software development team to commit to this vision by raising
team spirit, fostering community and a sense of purpose. Man-
agement also improves the team’s effectiveness by enabling good
communication and effective measurement and control while keep-
ing an eye on the metrics, the set goals and expectations, the best
practices, and constantly looking out for feedback to improve the
team and the whole organization. It is also the responsibility of man-
agement to intellectually stimulate and encourage the development
team to think out of the box and be innovative.

4.5.3 Software Development Team. The software development
team should individually consider focusing on how each devel-
oper connects with the overall goal of the organization, sorting
out employee participation pointed out by Khokhar et al. [2]. The
individual developers/development team need to be involved in
establishing and reviewing the policy and procedure to guide the
processes in setting the goals and expectations, metrics, and best
practices. Their participation leads to a better understanding of
what is being done versus what is supposed to be done. Notably,
one can then take responsibility for their actions. Mistakes can
be easily visible for the induvial or team to acknowledge the mis-
takes made; this also empowers one to recognize that they have
the power to fix that mistake, which is essential for inspiration
and motivation within the organization. The model proposes feed-
back to the software development team as a basis for accountability
for the development team and enables effective resource planning.
Additionally, metrics, best practices and a mechanism of feedback
must be in place, as illustrated in Figure 1. The efficiency of all these
is dependent on the inputs of the developers.

5 CONCLUSIONS
Governance is pivotal to the team’s success in saving time and
ensuring better productivity. We studied how SSCs embrace gov-
ernance in practices of the different categories of SSCs, and our
findings reveal that the smaller companies take up less of these
practices compared to the stable companies in the upper category.
This explains the difficulty in process utilisation and the persisted
quality issues on processes and product prevalent in both categories
with less than 30 employees. The SSCs should accept that if they
must mature and grow, then governance should be considered as
a powerful instrument for success, without which they could face
loss of opportunity and potential failure.

For the SSCs to benefit from the governance practices, we pro-
pose an organizational governance model that can be useful for the
SSCs in developing company-specific governance strategies to com-
plement the software development methodologies and processes
in ensuring high productivity and quality software. The absence
of governance structures should not deter attaining the benefits
of the governance to the SSCs; however, what should be taken
importantly is to enforce the practices and activities involved in
governance to attain competitive advantage, as also suggested by
Chulani et al. [16].

Our model offers an avenue for the SSCs to establish respon-
sibility, authority, and channels of communication for effective
interaction and empowerment of individuals and teams involved
in software development within an organization. The model also
establishes a basis to guide the utilization of process for develop-
ment and reviewing metrics, goals, and expectations to streamline
measurement and control mechanisms that will enable software
developers, project managers and teams to perform respective roles
and responsibilities with accountability.

Our next steps will be to subject the proposed model to indus-
try experiments to evaluate the model’s efficiency in the different
contexts in which the SSCs develop software. We also intend to inte-
grate the model into the adaptable framework for quality software
development for SSCs.

23



ESSE 2022, October 27–29, 2022, Rome, Italy Micheal Tuape et al.

ACKNOWLEDGMENTS
We sincerely thank all the participants who offered their valuable
time to take part in the survey during the data collection. We also
extend our gratitude to the experts who supported the development
of the questionnaire.

REFERENCES
[1] M. Tuape, V. Hasheela-Mufeti, A. Kayanda, J. Porras, and J. Kasurinen, “Soft-

ware Engineering in Small Software Companies: Consolidating and Integrating
Empirical Literature into a Process Tool Adoption Framework,” IEEE Access,
2021.

[2] M. N. Khokhar, K. Zeshan, and J. Aamir, “Literature review on the software
process improvement factors in the small organizations,” in 4th International
Conference on New Trends in Information Science and Service Science, 2010, pp.
592–598.

[3] N. Tripathi, E. Annanperä, M. Oivo, and K. Liukkunen, “Exploring Processes in
Small Software Companies: {A} Systematic Review,” in Software Process Improve-
ment and Capability Determination - 16th International Conference, {SPICE}
2016, Dublin, Ireland, June 9-10, 2016, Proceedings, 2016, vol. 609, pp. 150–165,
doi: 10.1007/978-3-319-38980-6_12.

[4] M. Tuape, V. Hasheela-Mufeti, A. Kayanda, and J. Kasurinen, “Software De-
velopment in Small Software Companies: Exploring the Usage of Procedures,
Techniques, Methods and Models in Practice,” in 2021 2nd European Symposium
on Software Engineering, 2021, pp. 29–38, doi: 10.1145/3501774.3501779.

[5] N. Tripathi, E. Annanperä, M. Oivo, and K. Liukkunen, “Exploring Processes in
Small Software Companies: A Systematic Review BT - Software Process Improve-
ment and Capability Determination,” 2016, pp. 150–165.

[6] D. A. Tamburri, F. Palomba, and R. Kazman, “Success and failure in software
engineering: a followup systematic literature review,” IEEE Trans. Eng. Manag.,
vol. 68, no. 2, pp. 599–611, 2020.

[7] V. Berg, J. Birkeland, A. Nguyen-Duc, I. O. Pappas, and L. Jaccheri, “Software
startup engineering: A systematic mapping study,” J. Syst. Softw., vol. 144, no.
January 2019, pp. 255–274, 2018, doi: 10.1016/j.jss.2018.06.043.

[8] M. Tuape and Y. Ayalew, “Factors Affecting Development Process in Small Soft-
ware Companies,” Proc. - 2019 IEEE/ACM Symp. Softw. Eng. Africa, SEiA 2019,
pp. 16–23, 2019, doi: 10.1109/SEiA.2019.00011.

[9] E. D. Canedo and G. A. Santos, “Factors Affecting Software Development Produc-
tivity: An Empirical Study,” in Proceedings of the XXXIII Brazilian Symposium
on Software Engineering, 2019, pp. 307–316, doi: 10.1145/3350768.3352491.

[10] E. Paiva, D. Barbosa, R. Lima, and A. Albuquerque, “Factors that Influence the
Productivity of Software Developers in a Developer View BT - Innovations in
Computing Sciences and Software Engineering,” 2010, pp. 99–104.

[11] H. Ghanbari, T. Vartiainen, and M. Siponen, “Omission of Quality Software
Development Practices: A Systematic Literature Review,” ACM Comput. Surv.,
vol. 51, no. 2, Feb. 2018, doi: 10.1145/3177746.

[12] M. Perscheid, B. Siegmund, M. Taeumel, and R. Hirschfeld, “Studying the ad-
vancement in debugging practice of professional software developers,” Softw.
Qual. J., vol. 25, no. 1, pp. 83–110, 2017.

[13] C. Juiz and M. Toomey, “To govern IT, or not to govern IT?,” Commun. ACM, vol.
58, no. 2, pp. 58–64, 2015.

[14] M. Tuape, P. Ntebane, and P. Majoo, “Does Context Matter? Assessing the Cur-
rent State of Quality Practice During Software Development in Small Software
Companies,” in Proceedings of the Future Technologies Conference, 2020, pp.

341–356.
[15] M. Tuape, V. Hasheela-Mufeti, P. Iiyambo, A. Kayanda, and J. Kasurinen, “Soft-

ware Development Practice: How Organisation Dynamics Inhibit the Utilization
of Process Tools in Small Software Companies,” in 2021 10th International Con-
ference on Software and Information Engineering (ICSIE), 2021, pp. 35–40, doi:
10.1145/3512716.3512722.

[16] S. Chulani, C. Williams, and A. Yaeli, “Software development governance and
its concerns,” in Proceedings of the 1st international workshop on Software
development governance, 2008, pp. 3–6.

[17] T. Dybå, “Factors of software process improvement success in small and large
organizations: an empirical study in the scandinavian context,” in Proceedings
of the 11th {ACM} {SIGSOFT} Symposium on Foundations of Software Engi-
neering 2003 held jointly with 9th European Software Engineering Conference,
{ESEC/FSE} 2003, Helsinki, Finland, September 1-5, 2003, 2003, pp. 148–157, doi:
10.1145/940071.940092.

[18] C. Juiz and R. Colomo-Palacios, “Extending Software Development Governance
to meet IT Governance,” in Proceedings of the IEEE/ACM 42nd International
Conference on Software Engineering Workshops, 2020, pp. 295–298.

[19] V. H. A. Nguyen, M. Kolp, Y. Wautelet, and S. Heng, “Mapping IT Governance to
Software Development Process: From COBIT 5 to GI-Tropos.,” in ICEIS (2), 2018,
pp. 665–672.

[20] S. Baltes and P. Ralph, “Sampling in software engineering research: A critical
review and guidelines,” arXiv Prepr. arXiv2002.07764, 2020.

[21] S. Baltes and S. Diehl, “Towards a Theory of Software Development Expertise,”
in Proceedings of the 2018 26th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering,
2018, pp. 187–200, doi: 10.1145/3236024.3236061.

[22] V. Garousi and J. Zhi, “A survey of software testing practices in Canada,” J. Syst.
Softw., vol. 86, no. 5, pp. 1354–1376, May 2013, doi: 10.1016/j.jss.2012.12.051.

[23] V. Garousi, K. Petersen, and B. Ozkan, “Challenges and best practices in industry-
academia collaborations in software engineering: A systematic literature review,”
Inf. Softw. Technol., vol. 79, pp. 106–127, 2016.

[24] T. Javed, M. e Maqsood, and Q. S. Durrani, “A study to investigate the impact of
requirements instability on software defects,” ACM SIGSOFT Softw. Eng. Notes,
vol. 29, no. 3, pp. 1–7, 2004.

[25] J. Nørbjerg, P. A. Nielsen, and J. S. Persson, “Dynamic Capabilities and Project
Management in Small Software Firms,” in 50th Hawaii International Conference
on System Sciences, {HICSS} 2017, HiltonWaikoloa Village, Hawaii, USA, January
4-7, 2017, 2017, pp. 1–10, [Online]. Available: http://hdl.handle.net/10125/41817.

[26] M. Muñoz, A. Peña, J. Mejia, G. P. G. Hurtado, M. C. Gómez-Alvarez, and C.
Y. Laporte, “Analysis of 13 implementations of the software engineering man-
agement and engineering basic profile guide of {ISO/IEC} 29110 in very small
entities using different life cycles,” J. Softw. Evol. Process., vol. 32, no. 11, 2020,
doi: 10.1002/smr.2300.

[27] J. Melegati, A. Goldman, F. Kon, and X. Wang, “A model of requirements engi-
neering in software startups,” Inf. Softw. Technol., vol. 109, pp. 92–107, 2019.

[28] B. Boehm and R. Turner, “Balancing agility and discipline: Evaluating and in-
tegrating agile and plan-driven methods,” in Proceedings. 26th International
Conference on Software Engineering, 2004, pp. 718–719.

[29] U. Y. Eseryel and D. Eseryel, “Action-embedded transformational leadership in
self-managing global information systems development teams,” J. Strateg. Inf.
Syst., vol. 22, no. 2, pp. 103–120, 2013, doi: https://doi.org/10.1016/j.jsis.2013.02.
001.

[30] A. Hashmi, S. Ishak, and H. B. Hassan, “Role of team size as a contextual variable
for the relationship of transformational leadership and teamwork quality,” Asian
J. Multidiscip. Stud., vol. 6, no. 5, pp. 76–81, 2018.

24

http://hdl.handle.net/10125/41817
https://doi.org/10.1016/j.jsis.2013.02.001
https://doi.org/10.1016/j.jsis.2013.02.001

	Abstract
	1 INTRODUCTION
	2 RELATED WORKS
	3 METHODOLOGY
	3.1 Population and Sample
	3.2 Characteristics of Respondents
	3.3 Survey Questions
	3.4 Data Analysis Techniques

	4 RESULTS
	4.1 Oversight and Accountability in Software Development Practice
	4.2 Control, Direct and Guide Processes During Development
	4.3 DISCUSSION
	4.4 Discussion of the Research Questions
	4.5 Organizational Governance Model for Small Software Companies

	5 CONCLUSIONS
	Acknowledgments
	References

