
URegM: a unified prediction model of resource
consumption for refactoring software smells in open

source cloud
Asif Imran

aimran@csusm.edu
California State University San Marcos

San Marcos, California, USA

Tevfik Kosar
tkosar@buffalo.edu
University at Buffalo

Buffalo, New York, USA

Abstract
The low cost and rapid provisioning capabilities have made
the cloud a desirable platform to launch complex scientific
applications. However, resource utilization optimization is a
significant challenge for cloud service providers, since the
earlier focus is provided on optimizing resources for the
applications that run on the cloud, with a low emphasis be-
ing provided on optimizing resource utilization of the cloud
computing internal processes. Code refactoring has been as-
sociated with improving the maintenance and understanding
of software code. However, analyzing the impact of the refac-
toring source code of the cloud and studying its impact on
cloud resource usage require further analysis. In this paper,
we propose a framework called Unified Regression Modelling
(URegM) which predicts the impact of code smell refactor-
ing on cloud resource usage. We test our experiments in a
real-life cloud environment using a complex scientific appli-
cation as a workload. Results show that URegM is capable
of accurately predicting resource consumption due to code
smell refactoring. This will permit cloud service providers
with advanced knowledge about the impact of refactoring
code smells on resource consumption, thus allowing them to
plan their resource provisioning and code refactoring more
effectively.

CCS Concepts: • Software and its engineering→Main-
taining software.

Keywords: resource usage prediction, scientific application
in cloud, unified regression modelling
ACM Reference Format:
Asif Imran and Tevfik Kosar. 2022. URegM: a unified prediction
model of resource consumption for refactoring software smells in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ESSE 2022, October 27–29, 2022, Italy
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9730-8/22/10. . . $15.00
https://doi.org/10.1145/3571697.3571705

open source cloud. In 2022 The 3rd European Symposium on Software
Engineering (ESSE 2022), October 27–29, 2022, Rome, Italy.ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3571697.3571705

1 Introduction
Cloud computing is the dynamic provisioning of resources
from a shared resource pool, which can be provisioned by
a pay-as-you go mechanism [1]. The dynamic nature and
rapid provisioning of resources have made the cloud a desir-
able platform to run distributed scientific applications which
are resource intensive. However, cloud service providers
are constantly aiming to optimize resource consumption at
the system end to make more resources available to its cus-
tomers. Recent studies have shown that positive relationship
exists between code smells and resource usage [6]. However,
predicting this change of resource usage due to refactoring
of code smells present in source code of the cloud have not
been conducted. In this paper, we propose a model called
Unified Regression Model (URegM) that predicts the impact
of code smell refactoring on resource consumption of cloud
computing processes. To the best of our knowledge, relation-
ship between code smell refactoring of cloud source code
and establishing its relationship to resource consumption at
the data center level have been conducted to a limited extent.
In the cloud environment, optimizing resource usage of

the cloud’s own processes will provide business edge to the
cloud service providers as they can provision the excess re-
source to perform the tasks of the cloud customers. However,
the impact needs to be tested by running real life applica-
tions in the cloud. In this paper, we use a real-life scientific
application as a workload to test the proposed framework.
The selected scientific application is designed to perform
in distributed environment and it can harness the power
of the cloud to complete the jobs. The tasks in this appli-
cation is divided in groups and distributed across multiple
virtual machine (vm) instances of the cloud for parallel and
collaborative computing. As a result, using the scientific ap-
plication as a workload to test the resource usage of the
cloud will provide an ideal and real life scenario to analyze
performance.

Earlier techniques primarily focus on predicting resource
provisioning for running scientific applications in cloud.
However, effective framework is required that will provide

ar
X

iv
:2

31
0.

14
44

4v
1 

 [
cs

.S
E

] 
 2

2 
O

ct
 2

02
3

https://orcid.org/0000-0002-1780-0296
https://orcid.org/0000-0002-1780-0296
https://doi.org/10.1145/3571697.3571705
https://doi.org/10.1145/3571697.3571705


ESSE 2022, October 27–29, 2022, Italy Asif Imran and Tevfik Kosar

advanced knowledge on the impact of refactoring code smells
on resource consumption as this will enable cloud service
providers to utilize the extra resource saved by refactoring.
Alternatively, if certain refactoring increases resource con-
sumption, this prediction framework will update the cloud
service provider about it. Code smells have been traditionally
refactored to improve maintainability and understandability
of source codes. Exiting studies focus on extensively testing
software code to identify bugs that may result in code smells
[12]. However, code smells can be refactored in cloud to opti-
mize resource usage by the cloud computing processes. This
extra resource can be provisioned to support the resource re-
quirement of resource intensive scientific applications. To the
best of our knowledge, existing methods cannot accurately
predict the impact of refactoring code smells on resource
consumption in cloud environment.

To address the above problem, a novel prediction approach
to analyze impact of code smell refactoring on resource usage
is proposed which focuses on selection of features using
Genetic Algorithm (GA) and unifies 4 regression algorithms
to improve performance. The framework is tested using a
real-life workload called WildfireDB which is a scientific
application designed to simulate wildfire situations using
large volume of historical and vegetation data. This tool has
simulation components to analyze wildfire situations to be
studied by climate change ecologists. The main contributions
of this paper are provided below:
• URegM is a framework to predict the change in re-
source consumption due to code smell refactoring of
cloud source code. The performance of the framework
is tested for running real life scientific applications in
cloud.
• A dataset is used with selection of correct features of
the cloud platform such as CPU, memory, weighted
methods per class, lookaheadwhich is used for training
URegM model.
• Comparative analysis of URegM to existing models like
REAP [13] show that the proposed model outperforms
the current models in terms ofmse, rmse, accuracy, and
execution time.

Rest of the paper proceeds as follows. Section 2 identifies
the related research conducted in the field of predicting re-
source usage and highlights the importance of optimizing
cloud resource consumption. Section 3 provides details of the
proposed URegM framework and the prediction approach.
Section 4 highlights the setup of experimental environment
and analyzes obtained results. Section 5 concludes the paper
and identifies scope of future research.

2 Related Work
Park et al. investigated whether existing refactoring tech-
niques support resource-efficient software creation or not
[10]. Since resource efficient software was critical in mobile

environments, they focused their study on mobile applica-
tions. Results showed that specific refactoring techniques
like Extract Class and Extract Method worsened energy con-
sumption because they did not consider power consumption
in their refactoring process. The goal was to analyze the
resource efficiency of the refactoring techniques themselves,
and they stated the need for resource-efficient refactoring
mechanisms for code smells. Imran et al. conducted a study
on the impact of code smell refactoring on resource usage [5].
They used automatic refactoring tool to detect and remove
code smells, followed by calculating resource consumption
change for a specific workload. However, they did not apply
machine learning to predict the impact.

Platform-specific code smells in High-Performance Com-
puting (HPC) applications were determined by Wang et al.
[18]. AST-based matching was used to determine smells
present in HPC software. The authors claimed that the re-
moval of such smells would increase the speedup of the
software. The assumption was that specific code blocks per-
formed well in terms of speedup in a given platform. Perez-
Castillo et al. stated that excessive message traffic derived
from refactoring god class increased a system’s power con-
sumption [11]. It was observed that power consumption
increased by 1.91% (message traffic = 5.26%) and 1.64% (mes-
sage traffic = 22.27%), respectively, for the two applications
they analyzed. The heavy message-passing traffic increased
the processor usage, which proved to be in line with the
increase in the power consumption during the execution of
those two applications.
An automatic refactoring tool that applied the Extract

Class module to divide god class smell into smaller cohesive
classes was proposed in [3]. The tool aimed to improve code
design by ensuring no classes were large enough, which was
challenging to maintain and contained a lot of responsibil-
ities. The tool refactored code by suggesting Extract Class
modifications to the users through a User Interface. The tool
was incorporated into the Eclipse IDE via a plugin. The au-
thors consulted an expert in the software quality assessment
field who gave his expert opinion to identify the effective-
ness of the tool. Despite the existing effort in refactoring
code smells, however, impact prediction of code smell refac-
toring on cloud resource consumption had been analyzed to
a limited extent.
Liu et al. [9] enabled automatic resource maintenance in

a cloud environment via forecasting the workload in ad-
vance. The cluster trace data from Google was used as a
dataset in this regard. Ghobaei-Arani et al. [4] used rein-
forcement learning to predict future resource requirements
based on the current workload on the cloud. Chen et al. [2]
proposed a Fuzzy Neural Network (FNN) to analyze current
resource demand in the cloud and predicted future resource
requirements. Shaw et al. [14] proposed a novel predictive
anti-correlated placement algorithm which made the cloud
energy efficient by managing resources effectively. We saw



URegM: a unified prediction model of resource consumption for refactoring software smells in open source cloud ESSE 2022, October 27–29, 2022, Italy

that most of the prediction frameworks for the cloud were fo-
cused on effective resource provisioning for tasks that were
executed on the cloud, however, research needed to be done
to analyze and predict resource usage requirements for the
cloud environment itself.

3 Resource prediction: URegM method
In this section, we present a case study where we amalga-
mate the four regression models to improve performance in
terms ofmse, rmse, accuracy, and execution time. We base our
case study on one scientific application discussed later in
this paper. The cloud environment has been specified to be
OpenStack. Since cloud computing has become a significant
paradigm where many real-life applications are executed,
we select the open source cloud computing platform for
our study. Cloud also offers a ubiquitous and parallel in-
frastructure to run critical scientific applications which are
resource-intensive. Predicting the impact of cloud resource
requirements after refactoring code smells of the cloud plat-
form itself will be a significant contribution. This will enable
cloud service providers to improve the resource scheduling
scheme of the cloud.

Also, software engineers are placing time and effort to re-
move code smells in cloud platforms. As a result, predicting
the change in resource requirement of the cloud after refac-
toring code smells is important to automatically and correctly
provision future resource requirements and refactoring ac-
tivities [8]. It will be beneficial from both the technical and
financial perspectives of the cloud service provider. The ML
approach used to predict CPU and memory usage in cloud
for different workloads is called Unified Regression Model
(URegM) based prediction. The various methods, classes, and
data in cloud are dependent on each other. The resource
consumption of a particular component before and after
elimination of code smells may be caused by the other con-
nected components. This potential dependency is modeled
using regression techniques and the flow of the proposed
model is shown in Figure 1. We compare our obtained results
to the existing individual models and REAP [7] approach to
analyze performance.

3.1 Feature Selection
The important components of our Machine Learning (ML)
prediction for resource usage are the population, feature se-
lection, and ML algorithm. Feature selection is an important
task of ML activity in various research. We use genetic algo-
rithm (GA) for feature selection, which is a greedy approach
that selects the best features based on produced output. Fea-
ture selection using GA provides the constraints and inputs
of software which has significant impact on the resource
consumption of the software. We provide the procedure of
GA in Algorithm 1.

Initially, random list of features is selected to form the
population. Next the correctness of those features is deter-
mined by their fitness values. Acceptable fitness score range
from 76.0 to 89.0 [17]. The fitness values are scaled in an
acceptable range which is called expectation scores. These
scores are used to select the features for prediction of re-
source consumption. The features which get low scores will
be removed and can be used together with the next set of pop-
ulation. New set of features can be obtained by conducting
mutation and crossover on the correct population. Mutation
and crossover can be done individually or together. The pro-
cess can be repeated and if the current set of population of
features outperforms the earlier set, then the current set of
features will replace the previous set of features.

3.2 Workload description
WildfireDB is a tool for modeling fire occurrence and spread
by analyzing data about locations, sizes, vegetation, field,
and other topographic features [16]. The architecture of the
tool is shown in Figure 2. The dataset includes 2,367,209 data
points of California wildfires. Each data point corresponds
to a specific 375m X 375m polygon area at a given time, and
it also records the condition of the neighboring cells at that
time frame. The relevant covariates are also present for anal-
ysis. Similar statistics are provided regarding topographic
information of vegetation, fuel, etc which includes the maxi-
mum, minimum,median, sum, mode, count, andmean values.
Firesim is incorporated with the database to simulate wild-
fire situations for climate change ecological analysis. Total
simulation run was conducted for 5001.68 seconds.
Climate change ecologists face significant challenges in

analyzing wildfire data because fire occurrence and covari-
ates are available in various frameworks. Amalgamating the
different frameworks and analyzing them require very high
computation power. Secondly, the raster data in this dataset
have more that two million data points for the state of Cali-
fornia alone. Mining large scale feature data is a significant
bottleneck in terms of computational resources. Third, the
large size of data further complicates the resources required
to combine them for analysis. Combining data sources from
various frameworks require conversion of the data into a
uniform representation. This conversion is computationally
expensive and due to being two-dimensional data, the size
will increase by 4 times when combined to a single uniform
format. The computational complexity of combining the
dataset of raster and vector data inWildfireDB is

𝑂 (𝑛𝑝2 .𝑐 .𝑟 )

Here np is the number of polygons, and c and r are the
number of rows and columns in the dataset.

WildfireDB is designed to conduct this data fusion activity
followed by analysis in a fully decentralized approach. To en-
sure that computer scientists can define systems which can



ESSE 2022, October 27–29, 2022, Italy Asif Imran and Tevfik Kosar

application of
workload on cloud

platform
start feature detection

using GA train ML algorithms

apply URegM to
amalgamate multiple

models

test model's
performance

setup Openstack
environment and run

WildfireDB
applicable feature set

training data set from
WildfireDB

test data setend obtained results

Figure 1. Workflow of the machine learning procedure

Figure 2. WildfireDB workload description [16].

make this process more resource friendly, WildfireDB pro-
vides the distributed algorithms and data structures which
can be run to stress the resources of cloud computing envi-
ronment to analyze resource bottlenecks on the cloud pro-
cesses. The simulation models which can be run to amalga-
mate the vector and raster data for generating the computa-
tionally expensive 4-dimensional dataset has been provided.
At the same time it provides an algorithm which forms two
parallel data sets to be used at run time. Those operations
stress the exascale supercomputers like Frontera of Texas Ad-
vanced Computing Center (TACC) and BlueWaters ofNational
Science Foundation (NSF). Hence, the workload is substantial
to test the impact on cloud resources.

3.3 URegM framework
The ML approach used to predict CPU and memory usage in
cloud for different workloads is called URegM. The various

methods, classes, and data in cloud are dependent on each
other. The resource consumption of a particular component
before and after elimination of code smells may be caused by
the other connected components. This potential dependency
is modeled using regression techniques. The regression anal-
ysis helps us to detect change in CPU and memory usage for
each clock cycle on the same workload for varying data sizes.
Initially the workload is applied on vm instances launched in
Openstack and after a number of experimentation with the
workload data, a regression based analysis of CPU and mem-
ory usage is obtained. Also, the null values in the dataset are
removed as part of cleaning the dataset. Next, based on the
obtained values of resource usage, GA is applied to select
the features in the software code which affect the resource
consumption.
At the same time, only the components of the software

where code smells are found and refactored are considered in



URegM: a unified prediction model of resource consumption for refactoring software smells in open source cloud ESSE 2022, October 27–29, 2022, Italy

Cloud architecture

automated refactoring

 
CPU memory usage dataset

Machine Learning models of
regression to predict

resource usage
Polynomial
Regression URegMLasso

regression
Linear

regression
Random
Forest

Individual model's
performance

analysis

wildfire dataset

Figure 3. Application of workload and URegM approach in Openstack.

the dataset, thereby significantly reducing the overall size of
the dataset and removing redundant code blocks. Next, the
ML algorithms are applied on the final dataset and regression
models are trained. We divide the dataset into two halves.
One half which contains 80% of the data is used for training
and 20% of the data is kept in other half which is used for test-
ing. Algorithm 1 is provided which explains theML approach.
The model is trained on the training dataset and tested on
the test dataset, and the metrics such as mse, rmse, accuracy
and execution time are used to test its performance. The train-
ing dataset is obtained from the benchmarking study where
code smells in 31 open source software are refactored using
automated tools and the change in resource consumption
is monitored before and after refactoring for each method
of the software where refactoring was conducted [6]. Pre-
specified workloads are used for the benchmark study. The
researchers establish a benchmark where individual types
of code smells are detected and refactored in each software,
followed by an analysis of CPU and memory consumption
impact. Afterward, they conducted a batch refactoring of
smells and analyze their collective impact on resource us-
age. We use the dataset of 31 open source software to train
URegM. Finally, the performance of the four ML models on
the dataset together with the proposed URegM approach are
recorded on cloud environment.
In Algorithm 1, 𝐵𝑆𝐶 is a variable which represent the

accuracy of the various combination of the four individual
models, 𝐵𝑀𝑆𝑐 represent the combination of models which

has highest accuracy,𝑚𝑜𝑑𝑒𝑙𝑠 is an array which lists all the
models used for making the combination. 𝐷𝑆 contains the
results of the prediction dataset which is applied to the vari-
ous models for the training operation, datasets from 0 to n-1
is considered, which is used and 𝑇𝑟𝑎𝑖𝑛 contains the combi-
nation of regression models which is produced from the four
individual regression approaches. Next, the 𝑇𝑒𝑠𝑡 process as-
sembles the models and compares the accuracy. In case the
calculated accuracy is better than the 𝐵𝑆𝐶 , then the value
of 𝐵𝑆𝐶 is overwritten and the combination of models which
gave the new accuracy is used to replace the existing set of
models in 𝐵𝑀𝑆𝑐 .
URegM combines prediction results from various algo-

rithms to obtain overall better results and get stronger pre-
dictions. It is a supervised learning approach which can be
trained and improved. Unifying the various models through
URegM will yield better results if the individual models are
different from each other in terms of algorithmic design and
data analysis. The ML procedure is shown in Figure 3. The
input workload is the WildFireDB which consists of 268 GB
of data and multiple files with various operations which are
executed in cloud. Overall the CPU usage, memory usage,
and file sizes are shown in Table 1. The experimentation is
conducted with various number of tasks executed by the
workload on the cloud and the CPU and memory usages are
predicted.



ESSE 2022, October 27–29, 2022, Italy Asif Imran and Tevfik Kosar

Algorithm 1 URegM algorithm
Require: 𝐵𝑆𝑐 ≥ 0
𝐵𝑀𝑆𝑐 = 𝑁𝑈𝐿𝐿

𝑚𝑜𝑑𝑒𝑙𝑠 [𝑖] ← [𝐿𝑖𝑅, 𝑃𝑅, 𝐿𝑅, 𝑅𝐹,𝑈𝑅𝑒𝑔𝑀]
𝐷𝑆 ← 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑆𝑒𝑡 []
𝑀𝑎𝑖𝑛 ← 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑆𝑒𝑡 [1]
while 𝑁 ≠ 0 do

while x in 1...n do
𝑇𝑟𝑎𝑖𝑛 ←𝑚𝑜𝑑𝑒𝑙𝑠 [0..𝑛 − 1] × 𝑋
𝑇𝑒𝑠𝑡 ←|= [𝑛]
URegM[Test]
if 𝑀𝑆𝑐 is URegM == predictionSet[0,1]*0.1 then

if 𝐵𝑀𝑆𝑐 < 𝑀𝑆𝑐 then
𝐵𝑀𝑆𝑐 ← 𝑀𝑆𝑐

𝐵𝑆𝑐 ← 𝐷𝑆

end if
end if

end while
end while
return 𝐵𝑀𝑆𝑐 𝑎𝑛𝑑 𝑈𝑅𝑒𝑔𝑀 [𝑟𝑒𝑠𝑢𝑙𝑡𝑠]

VMid vCPU RAM (GB) Disk (GB) OS
1 1 0.5 50 Ubuntu 18.04
2 1 1 256 CentOS 7
3 2 2 500 Ubuntu 18.04
4 2 4 500 CentOS 7
5 4 4 500 Ubuntu 18.04
6 4 6 500 CentOS 7

Table 1. Description of virtual machines launched in Open-
Stack

A positive correlation is determined between the number
of tasks and the CPU usage, on the other hand, positive cor-
relation is determined between the size of data and memory
usage. For example, CPU usage for 500 tasks came out to
be 3.6% whereas for 1500 tasks the usage incremented to
4.2%. It increased to 5.0% for 2000 tasks, then again jumped
to 7.8% for 4000 tasks as observed. It must be mentioned
that CPU and memory usage is monitored for the methods
and classes which are impacted due to batch refactoring, the
resource usage by the other parts of the code are ignored
within the scope of this research. It can be determined that
CPU resource usage is dependent on the number of tasks.
After refactoring code smell, memory usage for 500, 1500,
2000, and 4000 tasks came out to be 2.9%, 3.8%, 4.3%, and
7.4% respectively.

4 Experimental setup
In this section, the experimental process of URegM approach
is discussed. Initially, the experimental environment is high-
lighted, followed by discussion on the obtained results.

Tasks Predicted % of CPU Actual % of CPU
500 3.6 3.8
1000 4.0 4.1
1500 4.2 4.6
2000 5 5.3
2500 5.9 5.9
3000 6.6 6.7
3500 7.3 7.6
4000 7.8 8.2

Table 2. Prediction of CPU usage

Tasks Predicted % of memory Actual % of memory
500 2.9 3.4
1000 3.4 3.7
1500 3.8 3.10
2000 4.3 4.5
2500 4.9 4.16
3000 6.2 6.9
3500 6.12 6.28
4000 7.4 7.9

Table 3. Prediction of memory usage

4.0.1 Experimental environment. We runmultiple tasks
ofWildFireDB in cloud virtual machines to generate thework-
load and test the resource consumption before and after refac-
toring. OpenStack cloud platform is used to run the work-
load ofWildFireDB. OpenStack is setup in HP Proliant DL380P
server which had 8 cores and 32 GB RAM. We launched
6 virtual machine instances using kernel virtual machine
(kvm) based virtualisation. The 6 virtual machine instances
were setup and the workload was executed in those. The
virtual machine instances were heterogeneous. We justify
the obtained results of resource consumption prediction by
running the workload in cloud environment.

The 6 virtual machines are described in Table 1. It is seen
from the properties of the virtual machines that they have
different configurations. This simulates the distributed en-
vironment in which the applications run in cloud. This also
helps us to generate a real life scenario and so we can pro-
ceed to obtain the resource usage of cloud which will reflect
real life consumption of CPU and memory. We aim to pre-
dict the CPU and memory usage change due to refactoring
code smells for low, medium, and high workload. This is be-
cause the number of tasks performed by the workload may
impact the resource usage. Table 2 highlights the predicted
CPU usage change of the different VMs with various work-
loads before and after eliminating code smells. The various
workloads applied are firesim_500, firesim_1000, firesim_1500,
firesim_2000, firesim_2500, firesim_3000, firesim_ 3500, and
firesim_4000 which are deployed in the 6 virtual machine



URegM: a unified prediction model of resource consumption for refactoring software smells in open source cloud ESSE 2022, October 27–29, 2022, Italy

Metrics LiR PR LR RF REAP URegM
mse 1.47 0.72 0.56 0.40 0.27 0.21
rmse 1.66 0.94 0.74 0.60 0.37 0.29
accuracy (%) 86.70 90.60 88.91 93.31 95.41 96.22
time (s) 3.60 1.54 1.67 1.89 0.48 0.33

Table 4. Performance of the ML models. (LiR:=Linear Regression; PR:= Polynomial Regression; LR:= Lasso Regression; RF:=
Random Forest; REAP:= Regressive Ensemble Approach for Prediction); URegM (Unified Regressive Model)

instances starting VMid_1 to VMid_6. This covers all possible
situations in which the resource usage prediction models
may face in real life cloud environment. Each workload was
executed 6 times and the average CPU and memory usage
was calculated. In Table 3 we identify the memory usage
difference before and after refactoring code smells of the
class files where the code smells were refactored. We pro-
ceeded on analyzing the impact of refactoring 5 code smell
types namely god class, god method, cyclic dependency, long
parameter, and spaghetti code.

4.0.2 Results Analysis. The outcome of extensive experi-
mental analysis of the proposed approach is described in this
section. The unified model is applied so that it can combine
the strengths of the individual models and obtain effective
performance of predicting resource usage changes due to
code smell refactoring. Initially, we analyze the performance
of the individual regression models. Next, we assess the per-
formance of the ensemble model. The experimental results
are shown in Table 4. Among the various regression models,
we selected these 4 models to form the unified model based
on their effectiveness and ease of implementation using the
Algorithm 1 shown in this chapter. The REAP model is an
ensembled model for prediction which is also executed on
the dataset to compare the performance of our proposed
framework.

It is seen that individual models do not perform to the ex-
tent of the unified approach. The performance of the models
depend on the training dataset which is used in the Wild-
FireDB workload. With the change in dataset, the selected
evaluation metrics may show different results. It is seen that
individual model may have better error rate than unified
models, however, they have worse accuracy and execution
time. To obtain the best performance, the individual algo-
rithms are combined together to form the unified model. The
accuracy of the proposed algorithm is seen to be highest at
96.22% and it has an average execution time of 0.33 seconds.
The overall performance in terms of accuracy is increased
by 1.8% and the execution time is decreased by 14.2%. Hence
it can be concluded that for this task, URegM outperforms
the individual regression models. The results of the predic-
tion technique is promising and it shows that estimation of
resource consumption due to refactoring code smells even
before those smells are refactored will help the software

engineers decide on the refactoring. The approach can be
applied for other workloads besides the WildFireDB. As a
result, this study helps the correct resource provisioning and
decisions for large scientific applications in cloud computing
environment.

5 Conclusion
In this paper, we proposed a method to predict change in
computing resource requirements due to the refactoring of
cloud source code. High accuracy of CPU and memory us-
age change prediction due to refactoring code smells was
obtained by URegM which used GA to remove noise and
irrelevant information from the dataset. A cloud computing
environment was setup with a real-life scientific application
to analyze the performance of the intelligent URegM algo-
rithm. It was seen that although the individual algorithms
were effective,URegM outperformed those by improved error
rate and faster execution rate. Also, accuracy was improved
by 2.3% using URegM, whereas the execution time was re-
duced by 10.9%. The results showed that URegM had better
accuracy and execution time compared to both the individual
learning automata-based approaches and REAP model.
In the future, an incremental learning paradigm may be

added to enable URegM to accommodate the different types
of code smells that are refactored by different auto-refactoring
tools. This will make the prediction approach more adaptive.
Also, we will study the relationship between refactoring code
smells and its impact on software complexity [15]. We will
also aim to test the performance of the proposed model on
other cloud platforms.

Acknowledgments
This project is in part sponsored by the National Science
Foundation (NSF) under award numbers OAC-1724898, OAC-
1842054 and CCF-2007829.

References
[1] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph,

Randy H Katz, Andrew Konwinski, Gunho Lee, David A Patterson,
Ariel Rabkin, Ion Stoica, et al. 2009. Above the clouds: A berkeley view
of cloud computing. Technical Report. Technical Report UCB/EECS-
2009-28, EECS Department, University of California, Berkeley.

[2] Zhijia Chen, Yuanchang Zhu, Yanqiang Di, and Shaochong Feng. 2015.
Self-adaptive prediction of cloud resource demands using ensemble



ESSE 2022, October 27–29, 2022, Italy Asif Imran and Tevfik Kosar

model and subtractive-fuzzy clustering based fuzzy neural network.
Computational intelligence and neuroscience 2015 (2015).

[3] Marios Fokaefs, Nikolaos Tsantalis, Eleni Stroulia, and Alexander
Chatzigeorgiou. 2011. JDeodorant: identification and application of
extract class refactorings. In 2011 33rd International Conference on
Software Engineering (ICSE). IEEE, 1037–1039.

[4] Mostafa Ghobaei-Arani, Sam Jabbehdari, and Mohammad Ali Pour-
mina. 2018. An autonomic resource provisioning approach for service-
based cloud applications: A hybrid approach. Future Generation Com-
puter Systems 78 (2018), 191–210.

[5] Asif Imran and Tevfik Kosar. 2020. The Impact of Auto-Refactoring
Code Smells on the Resource Utilization of Cloud Software. In The
32nd International Conference on Software Engineering and Knowledge
Engineering, SEKE 2020, KSIR Virtual Conference Center, USA, July 9-19,
2020, Raúl García-Castro (Ed.). KSI Research Inc., 299–304. https:
//doi.org/10.18293/SEKE2020-138

[6] Asif Imran and Tevfik Kosar. 2021. The Impact of Human Factors on
Software Sustainability. In Software Sustainability. Springer, 287–300.

[7] Gurleen Kaur, Anju Bala, and Inderveer Chana. 2019. An intelligent
regressive ensemble approach for predicting resource usage in cloud
computing. J. Parallel and Distrib. Comput. 123 (2019), 1–12.

[8] Maria Kretsou, Elvira-Maria Arvanitou, Apostolos Ampatzoglou, Ig-
natios Deligiannis, and Vassilis C. Gerogiannis. 2021. Change impact
analysis: A systematic mapping study. Journal of Systems and Software
174 (2021), 110892. https://doi.org/10.1016/j.jss.2020.110892

[9] Chunhong Liu, Chuanchang Liu, Yanlei Shang, Shiping Chen, Bo
Cheng, and Junliang Chen. 2017. An adaptive prediction approach
based on workload pattern discrimination in the cloud. Journal of
Network and Computer Applications 80 (2017), 35–44.

[10] Jae Jin Park, Jang-Eui Hong, and Sang-Ho Lee. 2014. Investigation
for Software Power Consumption of Code Refactoring Techniques.. In

SEKE. 717–722.
[11] Ricardo Pérez-Castillo and Mario Piattini. 2014. Analyzing the harmful

effect of god class refactoring on power consumption. IEEE software
31, 3 (2014), 48–54.

[12] Chadatarn Raksawat and Pattama Charoenporn. 2021. Software testing
system development based on ISO 29119. Journal of Advances in
Information Technology 12, 2 (2021).

[13] Izzet F Senturk, Ponnuraman Balakrishnan, Anas Abu-Doleh, Kamer
Kaya, Qutaibah Malluhi, and Ümit V Çatalyürek. 2018. A resource
provisioning framework for bioinformatics applications in multi-cloud
environments. Future Generation Computer Systems 78 (2018), 379–391.

[14] Rachael Shaw, Enda Howley, and Enda Barrett. 2019. An energy
efficient anti-correlated virtual machine placement algorithm using
resource usage predictions. Simulation Modelling Practice and Theory
93 (2019), 322–342.

[15] Mohammed A Shehab, Yahya M Tashtoush, Wegdan A Hussien, Mo-
hammed N Alandoli, and Yaser Jararweh. 2015. An accumulated cog-
nitive approach to measure software complexity. Journal of Advances
in Information Technology 6, 1 (2015), 27–34.

[16] Samriddhi Singla, Tina Diao, Ayan Mukhopadhyay, Ahmed Eldawy,
Ross Shachter, and Mykel Kochenderfer. 2020. WildfireDB: A Spatio-
Temporal Dataset Combining Wildfire Occurrence with Relevant Co-
variates. In 34th Conference on Neural Information Processing Systems
(NeurIPS 2020).

[17] Roberto Verdecchia, René Aparicio Saez, Giuseppe Procaccianti, and
Patricia Lago. 2018. Empirical Evaluation of the Energy Impact of
Refactoring Code Smells.. In ICT4S. 365–383.

[18] Chunyan Wang, Shoichi Hirasawa, Hiroyuki Takizawa, and Hiroaki
Kobayashi. 2014. A platform-specific code smell alert system for
high performance computing applications. In 2014 IEEE International
Parallel & Distributed Processing SymposiumWorkshops. IEEE, 652–661.

https://doi.org/10.18293/SEKE2020-138
https://doi.org/10.18293/SEKE2020-138
https://doi.org/10.1016/j.jss.2020.110892

	Abstract
	1 Introduction
	2 Related Work
	3 Resource prediction: URegM method
	3.1 Feature Selection
	3.2 Workload description
	3.3 URegM framework

	4 Experimental setup
	5 Conclusion
	Acknowledgments
	References

