
Benchmark Generation with VEVOS: A Coverage Analysis of
Evolution Scenarios in Variant-Rich Systems
Alexander Schultheiß

Humboldt-Universität zu Berlin
Germany

alexander.schultheiss@informatik.hu-berlin.de

Paul Maximilian Bittner
University of Ulm

Germany
paul.bittner@uni-ulm.de

Sandra Greiner
University of Bern

Switzerland
sandra.greiner@unibe.ch

Timo Kehrer
University of Bern

Switzerland
timo.kehrer@unibe.ch

ABSTRACT
Clone-and-own development is a simple and flexible approach to
realize multi-variant software systems in practice but typically pro-
vokes costly challenges in maintaining a continuously evolving set
of variants. Therefore, managed clone-and-own development is key
to efficiently mitigate these problems. While supporting techniques
have been proposed in the literature, hardly any of them have been
evaluated in a realistic setting due to a substantial lack of publicly
available clone-and-own projects which could be used as experi-
mental subjects. Recently, we presented the benchmark generation
framework VEVOS for simulating clone-and-own development.
However, it is yet unclear to which extent VEVOS can cover key
scenarios for evaluating evolving variant-rich systems. This paper
examines to what extent benchmarks created by VEVOS satisfy
evaluation requirements for evolution scenarios demanded by the
community. In addition, we report on our own experiences when
employing VEVOS within six studies and elaborate on necessary
extensions we implemented into VEVOS.

CCS CONCEPTS
• Software and its engineering → Software configuration
management and version control systems; • General and ref-
erence→ Evaluation.

KEYWORDS
Clone-and-own, software product lines, empirical evaluation

ACM Reference Format:
Alexander Schultheiß, Paul Maximilian Bittner, Sandra Greiner, and Timo
Kehrer. 2023. Benchmark Generation with VEVOS: A Coverage Analysis of
Evolution Scenarios in Variant-Rich Systems. In 17th International Working
Conference on Variability Modelling of Software-Intensive Systems (VaMoS
2023), January 25–27, 2023, Odense, Denmark. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3571788.3571793

This work is licensed under a Creative Commons Attribution International
4.0 License.

VaMoS 2023, January 25–27, 2023, Odense, Denmark
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0001-9/23/01.
https://doi.org/10.1145/3571788.3571793

1 INTRODUCTION
To meet specific customer requirements, today’s software systems
compose a significant amount of inherent variability. Software
product line engineering offers a systematic solution to customize
and reuse software by relying on variability expressed in form
of features which describe common and variable parts of such
variant-rich systems [3, 32]. Despite the promised benefits, such
as reduced maintenance costs, practitioners frequently employ the
ad-hoc principle of copying an existing variant and modifying it
to meet new requirements. This development strategy, known as
clone-and-own [2, 7, 34, 46], may be chosen to reduce the time to
market and high upfront investments [2, 7, 20, 21, 34] or because
the need for systematic variability support is unknown at the be-
ginning of development. While not requiring upfront investments,
maintaining a family of cloned variants without automated support
becomes infeasible once a critical number of variants is reached [2].

Given this observation, recent research investigates the con-
tinuum between software product line engineering and ad-hoc
clone-and-own development. The efforts for supporting managed
clone-and-own range from the controlled generation of new vari-
ants [19, 22, 34] and the synchronization of evolving cloned vari-
ants [13, 24] to the migration of clones to a software product
line [8, 14, 18, 25], or systematic support for variant development
in terms of filtered product lines [41] or variation control systems
[20, 23, 42, 45, 48].

While these research efforts promise beneficial maintenance sup-
port, they are hardly evaluated exhaustively due to a substantial
lack of demanding evaluation data. On the one hand, this fact is
caused by missing openly available clone-and-own projects [37].
On the other hand, existing repositories miss a ground truth in
form of explicit variation-aware data, such as feature mappings or
explicit feature models [37]. For that reason, it is indispensable to
come up with suitable benchmarks to thoroughly evaluate managed
clone-and-own approaches. The community agrees that scenarios
for benchmarking variant-rich systems should include the syn-
chronization and integration of variants, the extraction of features
and synthesis of a feature model, as well as the recovery of the
architecture and testing scenarios, among others [44].

Recently, we proposed the benchmark generator VEVOS [37]
as a framework to simulate clone-and-own development. In the
proposed state, VEVOS promises to extract ground truth data from
a C preprocessor-based software product line repository, such as

13

https://doi.org/10.1145/3571788.3571793
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3571788.3571793
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3571788.3571793&domain=pdf&date_stamp=2023-01-25

VaMoS 2023, January 25–27, 2023, Odense, Denmark Schultheiß et al.

the Linux kernel, and simulates its evolution by generating variants
across the version history. VEVOS provides the required ground
truth data in terms of a feature model and presence conditions [3]
for each revision. The variant generation samples the feature mod-
els to generate feature-aware variants, comprising configurations,
feature mappings, presence conditions, and traces to the original
product line’s code. While VEVOS claims to simulate clone-and-
own development and to produce beneficial benchmark data, it is
yet unclear to what extent VEVOS can satisfy key requirements
for evaluating evolving variant-rich systems as demanded by the
software product line engineering community [44].

This paper evaluates the capabilities of the benchmark genera-
tion framework VEVOS and reports current experiences. Particu-
larly, we qualitatively evaluate to which extent VEVOS covers the re-
quirements of scenarios postulated for evaluating evolving variant-
rich systems [44] in Sec. 3. This includes scenarios for variant-rich
systems that do not use clone-and-own development (i.e., SPLs). In
addition, we report experiences from past and ongoing studies that
use VEVOS, and report on required extensions to the framework
we implemented in Sec. 4.

2 MOTIVATION AND RELATEDWORK
Managed clone-and-own resides between the two extremes of clone-
and-own development and systematic software product line engi-
neering. This section briefly describes the difference between both
approaches, first. Second, it illuminates the state of the art in eval-
uating prototypes which support the maintenance of variant-rich
systems, in general, and of managed clone-and-own, in particular.
The latter concludes that a substantial lack of thorough evaluation
of the prototypes exists because of missing demanding benchmarks.
Lastly, we give an overview of VEVOS [37].

2.1 Clone-and-Own Development
The workflow of clone-and-own is a practical straightforward ap-
proach. Given a new requirement, existing source code is copied
and modified to satisfy the new requirement. When developing and
maintaining multiple variants with a version control system, an
existing branch is cloned and the requirements of the new variant
are added to the cloned branch. As a branch is typically associ-
ated with one variant, the development of each variant may run in
parallel and without merging. Despite the flexibility and speed of
integrating a new feature in the short-term, maintaining such an
evolving variant-rich repository may prove complex and costly in
the long-term [49]. Research on managed clone-and-own develop-
ment [5, 13, 16, 22, 24, 29, 52] addresses problems, such as synchro-
nizing common changes [5, 6, 12, 13, 31, 33, 34, 36] on branches or
migrating to an integrated platform as a product line [8, 14, 18].

2.2 Software Product Line Engineering
In contrast to clone-and-own, software product line engineering
defines a set of similar software variants systematically and upfront.
The development is split into two major phases, referred to as
domain engineering and application engineering [3].

At the level of domain engineering, a variability model, such as a
feature model [3], declares common conceptual features which are

shared between different subsets of variants. Furthermore, a vari-
ability mechanism establishes a common platform to implement,
maintain, and compose the different features. Preprocessor direc-
tives (e.g., #if, #ifdef, etc) are a common means to implement
an annotative variability mechanism [3]. The resulting superim-
posed source code is divided into blocks which may contain block
conditions declared by the directives. We refer to the directive con-
straining a code block as feature mapping. If conditional blocks
are nested, they implement a feature interaction which requires
a certain combination of features to be fulfilled for the presence
in a derived variant. Besides, build files may comprise file condi-
tions which constrain the presence of the entire file. File and block
conditions combined are denoted as presence conditions [3].

In the application engineering, a variant of the product line is
derived, at best automatically. Given a total configuration of the
variability model (i.e., a selection or deselection of every feature
satisfying the variability model’s constraints), a generator derives
a variant according to the employed variability mechanism. For
example, when preprocessor directives are chosen as variability
mechanism, as described above, a preprocessor takes the role of
the generator to resolve all directives before the compilation of the
actual variant. The preprocessor includes only files and code blocks
whose presence condition are satisfied by the given configuration.

2.3 Evaluating Research on Evolving
Variant-Rich Systems

As every software, also variant-rich systems are subject to frequent
change during software development. While research on main-
taining managed and unmanaged clone-and-own has advanced, it
lacks suitable evaluation data which is in turn necessary for the
research’s adoption. Strüber et al. [44] recognized this fact and
conducted a community survey to identify requirements for bench-
marks and classified existing benchmarks according to the identified
requirements. They proposed a catalog of evolution scenarios that
should be covered by benchmarks (cf., Sec. 3). Out of the 17 ex-
isting benchmark candidates proposed by the survey participants,
only nine were considered suitable by Strüber et al. [44]. However,
we found that they cannot serve to evaluate evolving variant-rich
systems thoroughly [37], because they encompass either only a
low number of revisions (e.g., [1, 27, 35, 51]) or no revisions at all
(e.g., [11, 17, 26]).

Similar restrictions apply to other benchmark candidates pro-
posed in the literature. The DoSC [53] data set comprises no vari-
ants, but only histories of independent subject systems. Berger
et al. [4] collected a set of 128 feature models from open-source
projects, but without source code and presence conditions. The
ClaferWebTools benchmark comprises only academic projects de-
veloped by students [10]. A more recent benchmark by Michelon
et al. [30] targets the evolution of systems in time and space [43] (i.e.,
version history and existing configurations). Two classes of variant
sets exist in their benchmark: Sets addressing evolution in space
and sets addressing evolution in time. Therefore, the benchmark
contains the variants’ source code and history. However, the pro-
vided ground truth has no feature model and contains only partial
presence conditions; they resolve the nesting of block conditions
but do not encompass presence conditions of source files.

14

Benchmark Generation with VEVOS: A Coverage Analysis of Evolution Scenarios in Variant-Rich Systems VaMoS 2023, January 25–27, 2023, Odense, Denmark

VCS repository of a
so�ware product line

Ground truth
extraction

Ground truth
dataset

Research prototype
for evaluation

Variant
simulation

V0 V1

V2 V3

Vn

V0 V1

V2 V3

Vn

Variants generated
for di�erent revisions

1 2

V0 V1

V2 V3

Vn

provides ground
truth to

calls

is evaluated
on

VEVOS

Figure 1: Overview of VEVOS.

Furthermore, Wolfart et al. [50] assessed the occurrence of open
source software among the subject systems listed in the ESPLA
catalog [25]. They found that about one third (44) of the case stud-
ies in the catalog stem from open source projects, of which more
than half (28) comprise source code. According to their findings,
the majority of the open-source case studies is used for research
on feature model synthesis, feature identification, and feature loca-
tion. On the contrary, we examined the ESPLA catalog in January
2022 in search for benchmarks to evaluate research on clone-and-
own [37]. Thereby we found that only three out of the 135 case
studies, namely, uCLib, BusyBox and the Linux kernel,1 can serve
as proper benchmarks because they comprise variable source code,
a version history, and they are publicly available. As explicit feature
models and presence conditions are missing in these subjects, addi-
tional tool support is necessary to extract this information which
is required to generate ground truth data.

For simulating clone-and-own development by generating bench-
marks, we proposed to extract ground truth data and employ it to
generate new variants of the extracted feature models and anno-
tated source code files [37]. We give an overview of our benchmark
generation framework called VEVOS in the following section. Up
to this point, despite our introduction of the tool as benchmark
generation framework, we conducted only a preliminary study to
demonstrate the technical feasibility of our approach. From a con-
ceptual point of view, it is yet unclear to which extent VEVOS is
suitable in evaluating research on evolving variant-rich systems.
Therefore, we examine VEVOS’ capabilities and check whether it
meets the requirements for thorough benchmarks postulated by
the community [44].

2.4 The VEVOS Framework
The benchmark generation framework VEVOS targets the simula-
tion of clone-and-own development. Fig. 1 provides an overview
of VEVOS which consists of two main building blocks, the ground
truth extraction and the variant simulation.

Ground-Truth Extraction. To simulate an evolving variant-
rich system, such as a clone-and-own project, VEVOS first extracts
variability information from the version history of a software prod-
uct line in which variability is implemented with the C preprocessor.

1https://www.uclibc.org/, https://busybox.net/, https://github.com/torvalds/linux

The ground truth extraction retrieves a feature model, feature map-
pings, and presence conditions at each revision within a specified
range of the commit history.2 VEVOS exports all this data to a single
dataset. Internally, the ground truth extraction builds on tooling
for the analyses of software product lines, including KernelHaven,
CodeBlockExtractor, KBuildMiner, and KConfigReader, explained
in detail in the original VEVOS paper [37].

Variant Simulation. Given a dataset provided by the ground
truth extraction, the second key component of VEVOS, the vari-
ant simulation, simulates the evolution of different variants of the
original software product line. Therefore, the variant simulation
can generate variants at each revision of the input history by inter-
preting and resolving conditional preprocessor directives [37]. The
generated variants are feature-aware in the sense that they consist
not only of source code but also the variant’s configuration, feature
mappings, and presence conditions. These feature mappings and
presence conditions differ from those in the input product line be-
cause variants are generated by removing certain code blocks, caus-
ing offsets in the source code’s line numbers. To this end, VEVOS
also provides a matching of each variant’s source code line numbers
and the source code line numbers in the respective revision of the
product line.

To generate variants, the variant simulation provides an exten-
sible mechanism for sampling configurations (i.e., selections of
features). This mechanism decides at each revision which configu-
rations should be used to generate variants. The default strategy is
to randomly sample the feature model at each revision to obtain
random variants. Alternatively, a custom, predefined set of config-
urations may be used, or custom strategies may be implemented.

3 EVOLUTION SCENARIO COVERAGE
3.1 Coverage Assessment
In this section, we qualitatively assess VEVOS’ capabilities to gen-
erate benchmarks for common evolution scenarios of variant-rich
systems. As a community effort, Strüber et al. [44] distilled eleven
key scenarios of evolving variant-rich systems. The authors identify
key requirements a benchmark should meet to empirically evaluate
a respective scenario. We discuss VEVOS’ suitability as a bench-
mark generator for all proposed scenarios. In Table 1, we summarize
all scenarios and benchmark capabilities as classified by Strüber
et al. [44] as well as the capabilities of VEVOS [37]. Following the
notation of Strüber et al., marks a scenario as fully supported by
VEVOS, G# as partially supported, and # as not supported.

The first two evolution scenarios consider clone-and-own devel-
opment and the migration to an integrated platform:
 1.Variant Synchronization (VS) [13] targets the synchro-

nization of variants with respect to common code when a change
to one variant occurred. For instance, if the code belonging to a
certain feature has been modified, the change should be propagated
to all variants implementing the affected feature. A benchmark is
required to contain the source code of variants before and after the
propagation of changes to be able to evaluate custom change prop-
agation operators. Therefore, the entire benchmark requires [44]:
 R1.1 Source code of at least two variants
2While the input repository may consists of multiple branches only the main

branch is used for the ground truth extraction.

15

https://www.uclibc.org/
https://busybox.net/
https://github.com/torvalds/linux

VaMoS 2023, January 25–27, 2023, Odense, Denmark Schultheiß et al.

Table 1: Benchmark capabilities as classified by Strüber et al. [44] (gray background) compared to our assessment of VEVOS [37]

Benchmark Original Context VS VI FIL CE FMS AR TR FT ANF VZ CPS
ArgoUML-SPL FLBench [26] Feature location # #

G#

#
Drupal [35] Bug detection # # # # # # # #

G#

#
Eclipse FLBench [27] Feature location # #

G# G# G#

#
LinuxKernel FLBench [51] Feature location # #

G# G# G#

#
Marlin & BCWallet [17] Feature location # #

G#

#

G#

#
ClaferWebTools [10] Traceability # #

G#

#

G#

#

G#

#
DoSC [53] Change discovery #

G# G#

#

G#

#

G#

#

G#

#
SystemsSwVarModels [4] FM synthesis #

G#

#

G#

#
TraceLab CoEST [11] Traceability # #

G#

#
Variability bug database [1] Bug detection # #

G#

#

G#

#
VEVOS [37] Clone-and-Own

G#
 # # # #

 R1.2 Ground-truth source code of variants after correct prop-
agation

 R1.3 Modifications occurring in at least one variant
 R1.4 Feature locations of at least one variant

As the filled circle shows, VEVOS satisfies all requirements: It
generates the source code of any desired amount of variants (R1.1)
and can simulate the evolution of variants: The variant simulation
library implements the evolution of the product line in single evolu-
tion steps between two commits of the input product line. Thereby,
the source code of a variant at the next evolution step serves as the
ground truth for the result of a propagation and synchronization
technique (R1.2). By diffing the state of the variant before and
after the evolution step, a set of changes can be obtained to meet
requirement R1.3. The location of the feature is part of the ground
truth (R1.4).
 2.Variant Integration (VI) represents the key task in ex-

tractive software product-line engineering [15] or variant-preserving
migration [9]. It aims to integrate the variants of a clone-and-own
project into a common code platform to migrate to a software prod-
uct line. The overall task may be split into two sub-tasks: First,
integrating a given set of products to an integrated platform. Sec-
ond, due to evolution, it may be necessary to iteratively integrate
further variants into the platform. The latter allows to still develop
single products and is a typical scenario occurring in variation con-
trol systems. Thus, variant integration benchmarks require [44]:

 R2.1 Set of individual variants
 R2.2 Set of revisions of a software product line
 R2.3 Ground-truth software product line after correct inte-

gration

As discussed for variant synchronization, VEVOS may provide an
arbitrary amount of variants from each revision of the product line
history, which satisfies R2.1 and R2.2. Secondly, the state of the
product line after a correct integration is available by retrieving the
product line’s code base at the subsequent evolution step (R2.3).
However, the product line comprises the correct integration of all
possible variants, and researchers may require the correct integra-
tion of only a subset of variants instead. To this end, the variant
simulation of VEVOS supports the derivation of partial variants

from partial configurations. A partial variant describes an interme-
diate state where the in- or exclusion of features into a variant is
decided for some but not all features of the product line. Thus, par-
tial variants describe a subset of all valid variants and can be used as
the correct integration for a subset of variants into the product line.
Thus, VEVOS satisfies the third requirement and, consequently, all
requirements for the variant integration benchmark.
 3.Feature Identification and Location (FIL) describe the

tasks of identifying the names of implemented features, and lo-
cating their implementation, respectively. Thus, feature location
aims to detect forgotten or unspecified feature mappings and pres-
ence conditions. Feature identification and location are a crucial
step for variant synchronization and integration. A benchmark for
evaluating corresponding techniques requires [44]:

 R3.1 Variant assets, such as version-control history, source
code, requirements, documentation, change logs, or is-
sue tracker data

 R3.2 Ground truth feature list
 R3.3 Ground-truth feature mappings or presence conditions

The variant simulation of VEVOS provides the source code of gen-
erated variants, the initial commit messages of the input software
product line (change logs), as well as any inline documentation (e.g.,
comments), all across the version-control history. While VEVOS
cannot extract further assets, such as requirements, documentation,
and issue tracker data, it could be implemented as a future exten-
sion. Since the variants’ source code is the most relevant input data
for feature identification and location, we consider R3.1 as satisfied.
VEVOS fulfills R3.2 because it provides the configuration of each
generated variant as well as the product line’s feature model at each
evolution step. As VEVOS provides feature mappings and presence
conditions for files and code blocks, it also satisfies R3.3.G#

4.Constraints Extraction (CE) is a subsequent task to fea-
ture identification in which the constraints and dependencies be-
tween features are derived from any assets within cloned vari-
ants, notably their source code. Sub-tasks include the extraction of
constraints either from exemplary configurations, source code or
natural-language assets. Constraint extraction is an intermediate
step towards feature model synthesis (next paragraph) to shrink

16

Benchmark Generation with VEVOS: A Coverage Analysis of Evolution Scenarios in Variant-Rich Systems VaMoS 2023, January 25–27, 2023, Odense, Denmark

the variant space and enable analyses, even if a full feature model is
unavailable. A benchmark for constraints extraction requires [44]:
 R4.1 Set of configurations
 R4.2 Source code of at least one variantG#

R4.3 Natural-language assets, such as documentation
 R4.4 Ground-truth constraints formula

VEVOS uses the FeatureIDE library to provide random sampling of
configurations from the extracted feature models and also supports
pre-defined sets of configurations, thus, satisfying R4.1. As before,
R4.2 is also satisfied. Feature models encode all constraints on
features. Therefore, the feature models extracted by VEVOS can
serve as ground truth, thus, satisfying R4.4.

Regarding R4.3, VEVOS provides two kinds of natural language
assets. First, VEVOS extracts all commit messages of the input soft-
ware product line. Second, inline documentation of the input source
code (e.g., comments on methods) of the product line is included in
the respective generated variants. While the input software product
line may contain further natural language assets, they are not re-
lated with and integrated into variant-specific assets by VEVOS. In
conclusion, constraint extraction from configurations, source code,
and some natural-language assets is possible and can be validated
against the feature model.
 5.Feature Model Synthesis (FMS) describes the task of even-

tually deriving a feature model from variants or their configurations.
As the feature model is mainly computed from extracted constraints,
the requirements to benchmarks for feature model synthesis match
those for constraint extraction mostly [44]:
 R5.1 Set of configurations
 R5.2 Source code of at least one variant
 R5.3 Product matrix
 R5.4 Ground-truth feature model

For the same reasons explained for the constraint extraction bench-
mark, VEVOS satisfies requirementsR5.1,R5.2 andR5.4. A product
matrix maps features (rows) to their variants (columns), thereby
describing the entirety of configurations of all variants. As a con-
sequence, a product matrix can be computed from (e.g., randomly
sampled) configurations as done by VEVOS (R5.3). Hence, VEVOS
supports all requirements for feature model synthesis benchmarks.
6.ArchitectureRecovery (AR) identifies architecturemodels

in source code. Such models describe the architecture of a code
base at the level of modules and their relations, among others.
Benchmark requirements for techniques on architecture recovery
are [44]:
 R6.1 Source code of at least one variant
 R6.2 Source code of a software product line
R6.3 Ground-truth architectural models

As software architecture is not a design goal of VEVOS, it is not
supported. While VEVOS generates the source code from an input
software product line (thus, meeting requirements R6.1 and R6.2),
it does not provide architectural models as ground truth (R6.3).
 7.Transformations (TR) refer to the automated transfor-

mation of source code, ranging from lightweight refactorings (e.g.,
consistent renaming of variables across the code base) to model
transformations. Requirements to benchmarks comprise [44]:
 R7.1 Feature model and source code of software product line

 R7.2 Transformation specification, such as reference imple-
mentations

 R7.3 Ground-truth transformed implementation

VEVOS meets all requirements. It satisfies R7.1 as the ground truth
extraction yields the product line’s source code and feature model at
each revision of the considered sub-history. While transformation
specifications (e.g., patches) are not included explicitly in VEVOS’
ground truth datasets, it includes reference implementations in
terms of variants before and after a transformation. The ground
truth for transformations between variants (i.e., two generated vari-
ants at the same revision) as well as versions of variants (i.e., the
same variant at different points in the evolution history) may be
obtained by diffing. In conclusion, R7.2 and R7.3 are satisfied in
the context of variability, but VEVOS does not serve other transfor-
mation scenarios.
8.Functional Testing (FT) refers to research on any tests for

functional requirements of the software system under study, such
as unit, regression, or integration tests. In the context of variability
in software, bugs might not only arise from errors in source code
but also from wrong feature mappings or an ill-formed feature
model [1]. The requirements encompass [44]:

 R8.1 Source code of a software product line
R8.2 Ground-truth known faultsG#

R8.3 Co-evolving tests cases

As VEVOS is not explicitly designed for testing, testing is not well
supported.WhileR8.1 is satisfied by the input software product line,
no data is available on known faults: VEVOS does not document
known bugs and how they are caused (R8.2). Nevertheless, as long
as the input software product line exposes tests (e.g., unit tests)
researchers can still investigate the evolution of tests and their co-
evolution with the remaining code base (R8.3). If feature mappings
for the product line’s tests are known, VEVOS will even generate
different tests for respective variants.
9.Analysis of Non-Functional Properties (ANF) addresses

requirements such as memory consumption, response time, or
safety aspects. Non-functional properties are an orthogonal concern
to the systematic support of clone-and-own development. Thus,
they are out of the scope of VEVOS and not supported.
10.Visualization (VZ) aids developers in understanding soft-

ware but also its variability [28]. While VEVOS offers various data
which may be used for visualization tasks, it is not its primary con-
cern to include specific visualizations for the simulation of clone-
and-own development. Therefore, it does not meet the requirements
postulated for supporting this scenario.
 11.Co-Evolution of Problem Space and Solution Space

(CPS) refers to any research on how source code, feature mappings,
and feature models evolve in parallel in software product lines or
clone-and-own projects. A benchmark requires [44]:

 R11.1 Feature model and source code of software product line
 R11.2 Ground-truth revision sequence for feature model and

source code

As all this data is available in VEVOS for the input product line and
every generated variant, VEVOS satisfies both requirements.

Conclusion. Based on our assessment of VEVOS, summarized
in the bottom row of Table 1, we conclude the following:

17

VaMoS 2023, January 25–27, 2023, Odense, Denmark Schultheiß et al.

The coverage analysis demonstrates that VEVOS can generate
benchmarks for the majority of evolution scenarios of variant-
rich systems: variant synchronization, variant integration,
feature identification and location, constraints extraction, and
feature model synthesis.

3.2 Threats to Validity
Internal Validity. Our assessment of VEVOS’ scenario coverage
depends on our understanding of the scenarios defined by Strüber
et al. [44]. We might have misinterpreted scenarios or their re-
quirements, and Strüber et al. [44] might not have identified all
requirements for a scenario. Furthermore, we assessed the coverage
without the involvement of an impartial referee. Thus, our assess-
ment might be biased by our desire to cover as many scenarios as
possible. However, we did a conservative assessment: If VEVOS
failed to fulfill at least one requirement completely, we rated this
scenario as unsupported (as for (AR) and (FT)).

External Validity. VEVOS has certain technical constraints
(e.g., the extraction is built for product lines using the C prepro-
cessor). Thus, a scenario being fully-supported does not mean that
every possible case of the scenario is supported. Instead, it means
that there is at least one case in which VEVOS provides full support.
On this note, we based the assessment on our own experiences and
subject systems known to us, and there might be cases that fulfill
VEVOS’ technical constraints, but are still not supported.

4 APPLICATION EXPERIENCES
In this section, we present our experiences with employing VEVOS
for clone-and-own research.

4.1 Application in Research Studies
We used VEVOS as a benchmark generation framework in a large-
scale empirical study [39] (S1) and in several minor research studies
(S2-6). Each of theminor studies is related to a bachelor’s or master’s
thesis and primarily conducted by a single student. Each student
had to download and use VEVOS independently and without prior
introduction to the tooling. The only sources of information were
the original VEVOS paper [37] and the README files of VEVOS’
GitHub projects.

An overview of how each study is related to the benchmark
scenarios by Strüber et al. [44] is shown in Table 2. Most of the
studies investigate variant synchronization (S1, S2, S4, and S6).
One scenario investigates variant integration, feature identification
and location (S3), and one scenario investigates the transformation
of source code through refactoring. In the following, we shortly
discuss the studies and the experiences we made.

(S1) Variant Synchronization Study. In this large-scale em-
pirical study, we quantified the potential to automate the synchro-
nization of clone-and-own variants [39]. We investigated to which
extent existing context-based patching techniques can be used to
propagate changes from one variant to another. Whenever a variant
evolved, all changes to the variant are automatically propagated to
the remaining variants. In terms of the automation potential, we
were interested in the applicability and correctness of patching.

Table 2: Benchmark scenarios by Strüber et al. [44] related
to the research studies in which we applied VEVOS.

Study Variant Variant Feature Identification TransformationSynchronization Integration and Location
S1 ✓
S2 ✓
S3 ✓ ✓
S4 ✓
S5 ✓ ✓
S6 ✓

For conducting the study, we used VEVOS to sample a random set
of valid variants at each revision. Due to the considerable runtime
overhead of generating all source files for each variant, we extended
VEVOS by implementing variant slicing capabilities in terms of a file
filter for the variant generation. Based on the filter, it is possible to
generate only a desired subset of files for each variant. We consider
this to be a useful feature for research in which only some files are
of interest (e.g., changed files when considering evolution, or files
implementing certain features). In the case of our study, VEVOS
only generates files that have changed.

To simulate the evolution of individual variants, we replayed
changes from BusyBox’ history. We were able to evaluate the cor-
rectness of the change propagation with the help of the ground
truth provided by VEVOS. In total, we were able to simulate and
evaluate half a billion evolution scenarios, which would not have
been possible with any of the other benchmarks known to us.

(S2) Conflict Scenarios During Variant Synchronization. In
this study, the student investigated conflict scenarios that can arise
due to the differences between variants when trying to propagate
changes between them. The study focuses on change propagation
conflicts that may occur when different features are developed in
different variants in parallel.

For this purpose, the student applies VEVOS to simulate the
parallel evolution of features on different BusyBox variants. Using
the ground truth of VEVOS, the student was able to automatically
identify conflicts and their correct resolution. The main drawback,
experienced by the student, is that the simulated parallel evolution is
artificial. VEVOS considers only the main branch of a product line’s
repository and omits information about parallel branches. Thus,
the investigated conflicts were not directly reflected by BusyBox’
history, introducing additional threats to the validity of the results.
We conclude that the simulation could be improved by extending
VEVOS’ functionality so that all development branches are regarded
in order to track the parallel evolution of features.

(S3) Utilizing Partial Feature Traces for Product-Line Mi-
gration. The goal of this study is to detect the impact of explicit
knowledge about feature traces during the migration of clone-and-
own variants to a software product line. The student considers a
scenario in which developers documented feature mappings for
some parts of the variants’ code base over time and now want to
migrate to a software product line with the help of ECCO [22].
As subject system, the student considers ArgoUML, a modeling
tool for UML models.3 Originally, the student wanted to use the
ArgoUML benchmark [26], but they found the benchmark’s ground

3ArgoUML: https://argouml-tigris-org.github.io/tigris/argouml/

18

https://argouml-tigris-org.github.io/tigris/argouml/

Benchmark Generation with VEVOS: A Coverage Analysis of Evolution Scenarios in Variant-Rich Systems VaMoS 2023, January 25–27, 2023, Odense, Denmark

truth unsuitable because it lacks feature mappings and presence
conditions for individual source code lines.

Yet, as VEVOS was built for C preprocessor-based product lines,
it could not immediately be applied to ArgoUML. Therefore, the
student extended VEVOS by a custom ground truth extraction
for the JavaPP preprocessor that is used to handle variability in
ArgoUML.4 Using VEVOS, the student was able to generate all
256 ArgoUML variants with an enhanced ground truth containing
feature mappings and presence conditions for each line of code.

In retrospective, it appears feasible to extend VEVOS’ extraction
capabilities to other types of preprocessor-based software prod-
uct lines. In the case of ArgoUML, the preprocessor annotations
are simple and all features are known to be optional. This made
the implementation straightforward, leading to an implementation
effort of about six hours. The implementation of a ground truth
extraction will prove more challenging if the product line employs
a more sophisticated build system with conditional compilation and
constraints between features. Moreover, the student did not have
to change VEVOS’ variant simulation, which is empirical evidence
that the variant simulation can simulate variants for any kind of
preprocessor-based product line, as long as a ground truth dataset
is available.

(S4)Matching-based Patch Context Resolution. In this study,
the student investigates the effectiveness of code matching tech-
niques during the propagation of changes (e.g., bug fixes, feature
changes) between variants. The goal is to apply code matching to
determine the correct location for a change. By focusing on the
evolution of one variant, changes can be observed that should be
propagated to other variants in the system.

We found that VEVOS was perfectly applicable for the scenario
investigated by the student and no further changes were required.
Similar to our empirical study [39], the student employs VEVOS to
simulate the evolution of BusyBox variants, and uses the ground
truth provided by VEVOS to determine whether changes in one
variant have been propagated correctly to a target variant.

(S5) Effect of Variant Drift on Change Propagation. In this
study, the student investigates the effect of unintentional variant
drift on automated change propagation. Unintentional variant drift
may occur by refactoring code only in some variants although the
code is also contained in other variants [38]. To study the effect of
variant drift on change propagation, the student employs VEVOS
to simulate the evolution of variants of LibSSH, a multiplatform C
library for the ssh (secure shell) protocol.

To simulate variant drift, the student tries to integrate automated
refactoring operations into VEVOS’ simulation process. However,
the student faces unresolved technical challenges, because VEVOS’
ground truth references locations in a variant based on file paths
and line numbers. Some refactorings (e.g., moving functions or
files) change the code’s structure, thereby, invalidating the feature
mappings in VEVOS’ ground truth, which references line numbers.
This problem has to be addressed before we can fully integrate the
simulation of variant drift into VEVOS.

(S6) Applying Product Line Tooling in Clone-and-Own.
In this study, the student tries to apply an analysis tool for soft-
ware product lines to clone-and-own variants to detect potential

4JavaPP: https://www.slashdev.ca/javapp/

errors prior to variant synchronization. The key idea is to exploit a
technical similarity: Product line tools which analyze source code
with preprocessor directives could be applied to variants if the vari-
ants also include preprocessor directives. Therefore, we extended
VEVOS to optionally embed feature mappings into a generated
variant’s source code in terms of C preprocessor directives. While
preprocessor directives in product lines imply configurability, they
document feature mappings in the variants generated by VEVOS.

The student experienced that in principle, product line tooling
might be applicable to clone-and-own variants. However, further
dependencies of the product line tool can introduce a technical
barrier which is hard to overcome. For example, the dependency
of the subject product-line tool on the product-line’s build system
(here: kconfig) could not be met in generated variants. For such
tasks, the variant simulation has to be extended to derive not only
the source code but also related artifacts with variability. Whether
this is possible for build files, is not yet known to us.

4.2 General Experiences
In this section, we report on general experiences we made during
all the previously discussed studies.

Study Integration. Almost all studies using VEVOS use Java
as their main implementation language. One study uses C++. The
variant simulation of VEVOS is a Java library and could therefore
be simply used in other studies implemented in JVM languages.
Integrating VEVOS into the C++-based study proved to be chal-
lenging and is still work-in-progress. As a workaround, the student
implements an adapter for the library in Java, which also controls
the execution of their C++ executable. In order to increase the ac-
cessibility of the simulation in other programming languages, a
rudimentary command line interface for sampling and generating
variants should be implemented in the future.

Ground Truth Extraction. The build model analysis is the
main challenge of the extraction of a full ground truth that includes
a correct feature model, as well as presence conditions for files
and code lines. Initially, VEVOS could only extract a ground truth
for BusyBox and Linux. To do so, VEVOS uses the KConfigReader
and KBuildMiner plugins of KernelHaven. These plugins are not
very robust and easily fail because they try to parse files that are
only generated when executing Kbuild’s build process successfully.
Based on our work with VEVOS and by having a closer look at
Linux’ and BusyBox’ build process, we conclude that writing im-
proved extractor plugins is feasible. While the required domain
knowledge about the feature model and build system can be read
in the generated files, it can also be found in the existing build and
configuration files. Here, a more sophisticated parser for Kbuild
files could be implemented. By using such a parser, it should be
possible to extract the desired domain knowledge for a much larger
fraction of the histories of BusyBox and Linux. When inspecting
further software product lines, it may be possible to determine
further popular build systems and implement more sophisticated
parsers for those as well.

As a simple workaround, we extended VEVOS and KernelHaven
by removing the need to extract sophisticated feature and build
models. This enables the extraction of a partial ground truth for
repositories of arbitrary C preprocessor-based software product

19

https://www.slashdev.ca/javapp/

VaMoS 2023, January 25–27, 2023, Odense, Denmark Schultheiß et al.

lines. Instead of crashing when considering a repository besides
BusyBox or Linux, the extraction now falls back to a naïve fea-
ture model extraction while the build model extraction is omitted.
The naïve feature model extraction assumes that all encountered
variables in a preprocessor macro are optional features (e.g., when
parsing #if A & B, the variables A and B are added as optional
features to the feature model as children of an artificial, abstract
root feature). While this process does not incorporate any depen-
dencies among features, it serves as a fallback in case extracting
required knowledge fails. As a result, VEVOS can now be applied
to any C preprocessor-based project by potentially sacrificing some
accuracy, and with potential reduction of scenario coverage.

Omitting the build model extraction leads to loss of the knowl-
edge about the condition under which a source file is included in
a variant. However, not all product lines make use of their build
system to implement variability. Moreover, different projects use dif-
ferent build processes, requiring a custom parser would be needed
for each project.

We applied this workaround in scenario (S5). For (S3), we used a
custom ground truth extraction that applies the workaround only to
the feature model. For the remaining scenarios, we applied VEVOS’
original extraction using KBuildMiner and KConfigReader.

Understanding the Data. While conducting the ground truth
extraction was no problem, several students struggled with under-
standing the organization and contents of the extracted dataset. One
reason is that the extraction also stored additional (and partially re-
dundant) metadata, and students had a difficult time telling which
data was relevant to them and which was not. Another reason
is that students had no prior experience with preprocessor-based
product lines and were unfamiliar with conditional compilation.
This caused misunderstandings regarding the mapping of presence
conditions to certain blocks of source code in the software product
line. To address these issues, we suggest that a detailed explanation
of the extracted data should be included, which provides more in-
sight into how the ground truth’s data corresponds to artifacts of
the software product line, and how the data could be used. More-
over, we suggest that the community should strive for a unified
data format for benchmarks. Such a unified format could lower the
difficulty of integrating different benchmarks in research studies.

Variant Simulation.While the simulation of variants is, in prin-
ciple, possible for any study for which we have a ground truth, not
all studies are equally attractive for simulation. The main limiting
factor is the time required to extract a ground truth, and once it has
been extracted, the time and the disk space required for the genera-
tion of the variants. For example, while Linux is a popular instance
of a preprocessor-based product line, it is an unattractive subject
for variant simulation because of its size. Extracting a ground truth
for a single commit requires several minutes, sampling a set of five
variants requires about two minutes, and generating the variants
also requires several seconds. For most other subjects, on the other
hand, it is possible to extract a ground truth for their entire history
in less than a day, while sampling and generating variants is a
matter of milliseconds.

4.3 Key Takeaways
By employing VEVOS for benchmark generation in six research
studies, we collected the following experiences:

First, not all studies need to consider variants in their entirety.
For our study on variant synchronization, we implemented variant
slicing to concentrate only on changed artifacts of a variant.

Second, we found it challenging to correctly simulate the par-
allel evolution of variants stemming from a software product line.
Considering all of a product line’s development branches might
improve this simulation.

Third, we were able to extend VEVOS’ ground truth extraction
to JavaPP-based product lines (i.e., ArgoUML) with little effort. This
provides evidence that VEVOS can simulate variants for any kind
of preprocessor-based product line.

Fourth, simulating variant drift still poses unresolved technical
challenges because structural changes to the artifacts can invalidate
the ground truth.

Fifth, some studies might require that the feature mappings are
embedded into the variants’ source code in form of annotations
(e.g., preprocessor directives, comments). We extended VEVOS’
generation capabilities to support this functionality.

Sixth, integrating VEVOS’ simulation library into non-JVM-
based languages is challenging. A simple command line interface
could improve the accessibility of the library in other languages.

Seventh, the extraction of a feature model and build model with
KConfigReader and KBuildMiner is not robust; it only works for
certain projects and commits. While a naïve implementation might
serve as temporary workaround (cf. Sec. 4.2), a more robust imple-
mentation should be provided for common build systems.

Lastly, the ground truth data should be accompanied by a more
detailed explanation, and the community should strive towards a
unified data format for benchmarks, to aid researchers in integrating
benchmarks. For such a format, existing standardization efforts (e.g.,
the variability exchange language (VEL) [40, 47]) could be extended.

5 CONCLUSION
We examined to which extent the framework VEVOS can aid re-
searchers in generating benchmarks for the empirical evaluation of
clone-and-own techniques. For this purpose, we classified VEVOS’
capabilities according to the eleven evolution scenarios for bench-
marks presented by Strüber et al. [44]. We reported our experiences
from six different studies using VEVOS in these evolution scenarios.

We found that VEVOS fully addresses the requirements of six
out of eleven scenarios, and partially addresses the requirements of
a further scenario. This is a considerable improvement over existing
benchmarks, which address most scenarios only partially if at all.
For five scenarios, VEVOS is the only benchmark to fully support
them. With respect to its original intent, we conclude that VEVOS
fully supports all scenarios which are immediately relevant for the
evaluation of clone-and-own research.

ACKNOWLEDGMENTS
This work has been supported by the German Research Foundation
within the project VariantSync (TH 2387/1-1 and KE 2267/1-1).

20

Benchmark Generation with VEVOS: A Coverage Analysis of Evolution Scenarios in Variant-Rich Systems VaMoS 2023, January 25–27, 2023, Odense, Denmark

REFERENCES
[1] Iago Abal, Jean Melo, Stefan Stănciulescu, Claus Brabrand, Márcio Ribeiro, and

Andrzej Wąsowski. 2018. Variability Bugs in Highly Configurable Systems: A
Qualitative Analysis. Trans. on Software Engineering and Methodology (TOSEM)
26, 3, Article 10 (2018), 10:1–10:34 pages.

[2] Michał Antkiewicz, Wenbin Ji, Thorsten Berger, Krzysztof Czarnecki, Thomas
Schmorleiz, Ralf Lämmel, Stefan Stănciulescu, Andrzej Wąsowski, and Ina Schae-
fer. 2014. Flexible Product Line Engineering with a Virtual Platform. In Proc. Int’l
Conf. on Software Engineering (ICSE). ACM, 532–535.

[3] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines. Springer.

[4] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wąsowski, and Krzysztof
Czarnecki. 2013. A Study of Variability Models and Languages in the Systems
Software Domain. IEEE Trans. on Software Engineering (TSE) 39, 12 (2013), 1611–
1640.

[5] Paul Maximilian Bittner, Alexander Schultheiß, Thomas Thüm, Timo Kehrer,
Jeffrey M. Young, and Lukas Linsbauer. 2021. Feature Trace Recording. In Proc.
Europ. Software Engineering Conf./Foundations of Software Engineering (ESEC/FSE).
ACM, 1007–1020.

[6] Paul Maximilian Bittner, Christof Tinnes, Alexander Schultheiß, Sören Viegener,
Timo Kehrer, and Thomas Thüm. 2022. Classifying Edits to Variability in Source
Code. In Proc. Europ. Software Engineering Conf./Foundations of Software Engi-
neering (ESEC/FSE). ACM.

[7] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker,
and Krzysztof Czarnecki. 2013. An Exploratory Study of Cloning in Industrial
Software Product Lines. In Proc. Europ. Conf. on Software Maintenance and Reengi-
neering (CSMR). IEEE, 25–34.

[8] Wolfram Fenske, Jens Meinicke, Sandro Schulze, Steffen Schulze, and Gunter
Saake. 2017. Variant-Preserving Refactorings for Migrating Cloned Products to a
Product Line. In Proc. Int’l Conf. on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 316–326.

[9] Wolfram Fenske, Thomas Thüm, and Gunter Saake. 2014. A Taxonomy of Soft-
ware Product Line Reengineering. In Proc. Int’l Workshop on Variability Modelling
of Software-Intensive Systems (VaMoS). ACM, 4:1–4:8.

[10] Wenbin Ji, Thorsten Berger, Michal Antkiewicz, and Krzysztof Czarnecki. 2015.
Maintaining Feature Traceability with Embedded Annotations. In Proc. Int’l
Systems and Software Product Line Conf. (SPLC). ACM, 61–70.

[11] Ed Keenan, Adam Czauderna, Greg Leach, Jane Cleland-Huang, Yonghee Shin,
Evan Moritz, Malcom Gethers, Denys Poshyvanyk, Jonathan Maletic, Jane Huff-
man Hayes, et al. 2012. Tracelab: An Experimental Workbench for Equipping
Researchers to Innovate, Synthesize, and Comparatively Evaluate Traceability
Solutions. In Proc. Int’l Conf. on Software Engineering (ICSE). IEEE, 1375–1378.

[12] Timo Kehrer, Udo Kelter, and Gabriele Taentzer. 2014. Propagation of Software
Model Changes in the Context of Industrial Plant Automation. Automatisierung-
stechnik 62, 11 (2014), 803–814.

[13] Timo Kehrer, Thomas Thüm, Alexander Schultheiß, and Paul Maximilian Bittner.
2021. Bridging the Gap Between Clone-and-Own and Software Product Lines. In
Proc. Int’l Conf. on Software Engineering (ICSE). IEEE, 21–25.

[14] Rainer Koschke, Pierre Frenzel, Andreas P. Breu, and Karsten Angstmann. 2009.
Extending the ReflexionMethod for Consolidating Software Variants into Product
Lines. Software Quality Journal (SQJ) 17, 4 (2009), 331–366.

[15] Charles W. Krueger. 2002. Easing the Transition to Software Mass Customization.
In Proc. Int’l Workshop on Software Product-Family Engineering (PFE). Springer,
282–293.

[16] Jacob Krüger and Thorsten Berger. 2020. An Empirical Analysis of the Costs of
Clone- and Platform-Oriented Software Reuse. In Proc. Europ. Software Engineer-
ing Conf./Foundations of Software Engineering (ESEC/FSE). ACM, 432–444.

[17] Jacob Krüger, Mukelabai Mukelabai, Wanzi Gu, Hui Shen, Regina Hebig, and
Thorsten Berger. 2019. Where is my Feature and What is it About? A Case Study
on Recovering Feature Facets. J. Systems and Software (JSS) 152 (2019), 239–253.

[18] Miguel A. Laguna and Yania Crespo. 2013. A Systematic Mapping Study on
Software Product Line Evolution: From Legacy System Reengineering to Product
Line Refactoring. Science of Computer Programming (SCP) 78, 8 (2013), 1010–1034.

[19] Raúl Lapeña, Manuel Ballarin, and Carlos Cetina. 2016. Towards Clone-and-Own
Support: Locating Relevant Methods in Legacy Products. In Proc. Int’l Systems
and Software Product Line Conf. (SPLC). ACM, 194–203.

[20] Lukas Linsbauer, Thorsten Berger, and Paul Grünbacher. 2017. A Classification
of Variation Control Systems. In Proc. Int’l Conf. on Generative Programming:
Concepts & Experiences (GPCE). ACM, 49–62.

[21] Lukas Linsbauer, Stefan Fischer, Roberto E. Lopez-Herrejon, and Alexander Egyed.
2015. Using Traceability for Incremental Construction and Evolution of Software
Product Portfolios. In Proc. Int’l Symposium on Software and Systems Traceability
(SST). IEEE, 57–60.

[22] Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander Egyed. 2017.
Variability Extraction and Modeling for Product Variants. Software and System
Modeling (SoSyM) 16, 4 (2017), 1179–1199.

[23] Lukas Linsbauer, Felix Schwägerl, Thorsten Berger, and Paul Grünbacher. 2021.
Concepts of Variation Control Systems. J. Systems and Software (JSS) 171 (2021).

[24] Wardah Mahmood, Daniel Strueber, Thorsten Berger, Ralf Laemmel, and Muke-
labai Mukelabai. 2021. Seamless Variability Management With the Virtual Plat-
form. In Proc. Int’l Conf. on Software Engineering (ICSE). IEEE, 1658–1670.

[25] Jabier Martinez, Wesley K. G. Assunção, and Tewfik Ziadi. 2017. ESPLA: A
Catalog of Extractive SPL Adoption Case Studies. In Proc. Int’l Systems and
Software Product Line Conf. (SPLC). ACM, 38–41.

[26] Jabier Martinez, Nicolas Ordoñez, Xhevahire Tërnava, Tewfik Ziadi, Jairo Aponte,
Eduardo Figueiredo, and Marco Tulio Valente. 2018. Feature Location Benchmark
with ArgoUML SPL. In Proc. Int’l Systems and Software Product Line Conf. (SPLC).
ACM, 257–263.

[27] Jabier Martinez, Tewfik Ziadi, Mike Papadakis, Tegawendé F. Bissyandé, Jacques
Klein, and Yves le Traon. 2018. Feature Location Benchmark for Extractive
Software Product Line Adoption Research Using Realistic and Synthetic Eclipse
Variants. J. Information and Software Technology (IST) 104 (2018), 46–59.

[28] Raul Medeiros, Jabier Martinez, Oscar Díaz, and Jean-Rémy Falleri. 2023. Visual-
izations for the evolution of Variant-Rich Systems: A systematic mapping study.
J. Information and Software Technology (IST) 154 (2023), 107084.

[29] Gabriela Karoline Michelon. 2020. Evolving System Families in Space and Time.
In Proc. Int’l Systems and Software Product Line Conf. (SPLC). ACM, 104—-111.

[30] Gabriela Karoline Michelon, David Obermann, Wesley K. G. Assunção, Lukas
Linsbauer, Paul Grünbacher, and Alexander Egyed. 2021. Managing Systems
Evolving in Space and Time: Four Challenges for Maintenance, Evolution and
Composition of Variants. In Proc. Int’l Systems and Software Product Line Conf.
(SPLC). ACM, 75–80.

[31] Tristan Pfofe, Thomas Thüm, Sandro Schulze, Wolfram Fenske, and Ina Schaefer.
2016. Synchronizing Software Variants with VariantSync. In Proc. Int’l Systems
and Software Product Line Conf. (SPLC). ACM, 329–332.

[32] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. 2005. Software Product
Line Engineering: Foundations, Principles and Techniques. Springer.

[33] Poedjadevie Kadjel Ramkisoen, John Businge, Brent Van Bradel, Alexandre Decan,
Serge Demeyer, Coen De Roover, and Foutse Khomh. 2022. PaReco: Patched
Clones and Missed Patches among the Divergent Variants of a Software Family.
In Proc. Europ. Software Engineering Conf./Foundations of Software Engineering
(ESEC/FSE). ACM, ACM.

[34] Julia Rubin, Krzysztof Czarnecki, and Marsha Chechik. 2013. Managing Cloned
Variants: A Framework and Experience. In Proc. Int’l Systems and Software Product
Line Conf. (SPLC). ACM, 101–110.

[35] AnaB. Sánchez, Sergio Segura, JoséA. Parejo, and Antonio Ruiz-Cortés. 2015.
Variability Testing in the Wild: The Drupal Case Study. Software and System
Modeling (SoSyM) (2015), 1–22.

[36] Thomas Schmorleiz and Ralf Lämmel. 2014. Similarity Management via History
Annotation. In Proc. Seminar on Advanced Techniques and Tools for Software Evo-
lution (SATToSE). Dipartimento di Informatica Università degli Studi dell’Aquila,
L’Aquila, Italy, 45–48.

[37] Alexander Schultheiß, Paul Maximilian Bittner, Sascha El-Sharkawy, Thomas
Thüm, and Timo Kehrer. 2022. Simulating the Evolution of Clone-and-Own
Projects with VEVOS. In Proc. Int’l Conf. on Evaluation Assessment in Software
Engineering (EASE). ACM, 231–236.

[38] Alexander Schultheiß, Paul Maximilian Bittner, Timo Kehrer, and Thomas Thüm.
2020. On the Use of Product-Line Variants as Experimental Subjects for Clone-
and-Own Research: A Case Study. In Proc. Int’l Systems and Software Product Line
Conf. (SPLC). ACM, Article 27, 6 pages.

[39] Alexander Schultheiß, Paul Maximilian Bittner, Thomas Thüm, and Timo Kehrer.
2022. Quantifying the Potential to Automate the Synchronization of Variants
in Clone-and-Own. In Proc. Int’l Conf. on Software Maintenance and Evolution
(ICSME). IEEE. To appear.

[40] Michael Schulze and Robert Hellebrand. 2015. Variability Exchange Language-A
Generic Exchange Format for Variability Data. In Software Engineering (Work-
shops). 71–80.

[41] Felix Schwägerl and Bernhard Westfechtel. 2016. SuperMod: Tool Support for
Collaborative Filtered Model-Driven Software Product Line Engineering. In Proc.
Int’l Conf. on Automated Software Engineering (ASE). ACM, 822–827.

[42] Felix Schwägerl and Bernhard Westfechtel. 2019. Integrated Revision and Varia-
tion Control for Evolving Model-Driven Software Product Lines. Software and
System Modeling (SoSyM) 18, 6 (2019), 3373–3420.

[43] Christoph Seidl, Ina Schaefer, and Uwe Aßmann. 2014. Capturing Variability in
Space and Time with Hyper Feature Models. In Proc. Int’l Workshop on Variability
Modelling of Software-Intensive Systems (VaMoS). ACM, Article 6, 6:1–6:8 pages.

[44] Daniel Strüber, Mukelabai Mukelabai, Jacob Krüger, Stefan Fischer, Lukas Lins-
bauer, Jabier Martinez, and Thorsten Berger. 2019. Facing the Truth: Bench-
marking the Techniques for the Evolution of Variant-Rich Systems. In Proc. Int’l
Systems and Software Product Line Conf. (SPLC). ACM, 177–188.

[45] Stefan Stănciulescu, Thorsten Berger, Eric Walkingshaw, and Andrzej Wąsowski.
2016. Concepts, Operations, and Feasibility of a Projection-Based Variation
Control System. In Proc. Int’l Conf. on SoftwareMaintenance and Evolution (ICSME).
IEEE, 323–333.

21

VaMoS 2023, January 25–27, 2023, Odense, Denmark Schultheiß et al.

[46] Stefan Stănciulescu, Sandro Schulze, and Andrzej Wąsowski. 2015. Forked and
Integrated Variants in an Open-Source Firmware Project. In Proc. Int’l Conf. on
Software Maintenance and Evolution (ICSME). IEEE, 151–160.

[47] Chico Sundermann, Kevin Feichtinger, Dominik Engelhardt, Rick Rabiser, and
Thomas Thüm. 2021. Yet Another Textual Variability Language? A Community
Effort Towards a Unified Language. In Proc. Int’l Systems and Software Product
Line Conf. (SPLC). ACM, 136–147.

[48] EricWalkingshaw and Klaus Ostermann. 2014. Projectional Editing of Variational
Software. In Proc. Int’l Conf. on Generative Programming: Concepts & Experiences
(GPCE). ACM, 29–38.

[49] Daniele Wolfart, Wesley Klewerton Guez Assunção, and Jabier Martinez. 2021.
Variability Debt: Characterization, Causes and Consequences. In XX Brazilian
Symposium on Software Quality (SBQS ’21). ACM, Article 17, 10 pages.

[50] Daniele Wolfart, Wesley Assunção, and Jabier Martinez. 2019. Open Source
Software on the Research of Extractive Adoption of Software Product Lines. In
Anais do XVI Congresso Latino-Americano de Software Livre e Tecnologias Abertas.
SBC, 142–145.

[51] Zhenchang Xing, Yinxing Xue, and Stan Jarzabek. 2013. A Large Scale Linux-
Kernel Based Benchmark for Feature Location Research. In Proc. Int’l Conf. on
Software Engineering (ICSE). IEEE, 1311–1314.

[52] Shurui Zhou, Ştefan Stănciulescu, Olaf Leßenich, Yingfei Xiong, Andrzej Wą-
sowski, and Christian Kästner. 2018. Identifying Features in Forks. In Proc. Int’l
Conf. on Software Engineering (ICSE). ACM, 105–116.

[53] Chenguang Zhu, Yi Li, Julia Rubin, and Marsha Chechik. 2017. A Dataset for Dy-
namic Discovery of Semantic Changes in Version Controlled Software Histories.
In Proc. Working Conf. on Mining Software Repositories (MSR). IEEE, 523–526.

22

	Abstract
	1 Introduction
	2 Motivation and Related Work
	2.1 Clone-and-Own Development
	2.2 Software Product Line Engineering
	2.3 Evaluating Research on Evolving Variant-Rich Systems
	2.4 The VEVOS Framework

	3 Evolution Scenario Coverage
	3.1 Coverage Assessment
	3.2 Threats to Validity

	4 Application Experiences
	4.1 Application in Research Studies
	4.2 General Experiences
	4.3 Key Takeaways

	5 Conclusion
	Acknowledgments
	References

