
1

SASA: A Scalable and Automatic Stencil Acceleration
Framework for Optimized Hybrid Spatial and Temporal
Parallelism on HBM-based FPGAs

XINGYU TIAN, School of Engineering Science, Simon Fraser University, Canada
ZHIFAN YE∗, School of the Gifted Young, University of Science and Technology of China, China
ALEC LU, School of Engineering Science, Simon Fraser University, Canada
LICHENG GUO and YUZE CHI, Computer Science Department, University of California, Los Angeles,
United States
ZHENMAN FANG, School of Engineering Science, Simon Fraser University, Canada

Stencil computation is one of the fundamental computing patterns in many application domains such as
scientific computing and image processing. While there are promising studies that accelerate stencils on
FPGAs, there lacks an automated acceleration framework to systematically explore both spatial and temporal
parallelisms for iterative stencils that could be either computation-bound or memory-bound. In this paper,
we present SASA, a scalable and automatic stencil acceleration framework on modern HBM-based FPGAs.
SASA takes the high-level stencil DSL and FPGA platform as inputs, automatically exploits the best spatial and
temporal parallelism configuration based on our accurate analytical model, and generates the optimized FPGA
design with the best parallelism configuration in TAPA high-level synthesis C++ as well as its corresponding
host code. Compared to state-of-the-art automatic stencil acceleration framework SODA that only exploits
temporal parallelism, SASA achieves an average speedup of 3.74× and up to 15.73× speedup on the HBM-based
Xilinx Alveo U280 FPGA board for a wide range of stencil kernels.

CCS Concepts: • Hardware→ Hardware accelerators; Hardware-software codesign; • Computer sys-
tems organization → Reconfigurable computing; High-level language architectures.

Additional Key Words and Phrases: Stencil Acceleration, Hybrid Parallelism, HBM-based FPGA, High-Level
Synthesis, Automation Framework

ACM Reference Format:
Xingyu Tian, Zhifan Ye, Alec Lu, Licheng Guo, Yuze Chi, and Zhenman Fang. 2022. SASA: A Scalable and
Automatic Stencil Acceleration Framework for Optimized Hybrid Spatial and Temporal Parallelism on HBM-
based FPGAs. ACM Trans. Reconfig. Technol. Syst. 1, 1, Article 1 (January 2022), 32 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

∗The work was done when Zhifan was a research intern at Simon Fraser University.

Authors’ addresses: Xingyu Tian, xingyu_tian@sfu.ca, School of Engineering Science, Simon Fraser University, 8888
University Dr, Burnaby, BC, Canada, V5A1S6; Zhifan Ye, yezhifan@mail.ustc.edu.cn, School of the Gifted Young, University
of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui, China, 230026; Alec Lu, alec_lu@sfu.ca, School of
Engineering Science, Simon Fraser University, 8888 University Dr, Burnaby, BC, Canada, V5A1S6; Licheng Guo, lcguo@ucla.
edu; Yuze Chi, chiyuze@cs.ucla.edu, Computer Science Department, University of California, Los Angeles, 404 Westwood
Plaza, Los Angeles, California, United States, 90095; Zhenman Fang, zhenman@sfu.ca, School of Engineering Science, Simon
Fraser University, 8888 University Dr, Burnaby, BC, Canada, V5A1S6.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
1936-7406/2022/1-ART1 $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

ar
X

iv
:2

20
8.

10
77

0v
1

 [
cs

.A
R

]
 2

3
A

ug
 2

02
2

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1:2 Xingyu Tian, Zhifan Ye, Alec Lu, Licheng Guo, Yuze Chi, and Zhenman Fang

1 INTRODUCTION
Stencil computation is one of the most widely used computing patterns in many important applica-
tion domains, such as scientific computing, image processing, and cellular automata [1, 12, 18, 27].
Due to its importance, stencil kernels have been well studied and accelerated on multicore CPUs,
GPUs, and FPGAs [3, 4, 10, 16, 19, 21, 24–26, 30, 31]. Among these approaches, FPGA accelera-
tion [2–4, 10, 17, 20, 22–24, 26, 30, 31] is getting increasing attention due to its high performance,
low power consumption, and high flexibility for customization. For example, in the automatic
stencil acceleration framework SODA [4], it designed an optimized dataflow architecture with
optimal data reuse and achieved up to 3.28× speedup on an FPGA over a 24-thread CPU.

However, one important factor that is often overlooked in prior studies is that, the stencil com-
putation can be either computation-bound or memory-bound, depending on the stencil operations
in the kernel and the number of iterations in the stencil kernel. To demonstrate this, we have
measured the computation intensity, defined as the number of algorithmic operations divided by
the number of bytes for off-chip memory accesses (OPs/byte), for a wide range of stencil kernels
(detailed experimental setup in Section 5.1). The measurement is based on the assumption of the
optimal data reuse, i.e., every byte of data only needs to be accessed from off-chip memory once.
As shown in Figure 1a, the computation intensity varies between different stencil kernels, ranging
from 1.25 to 4.5. Moreover, as shown in Figure 1b, the computation intensity increases linearly
with the number of iterations. A high computation intensity indicates that the stencil kernel is
computation-bound, while a low one indicates the stencil kernel is memory-bound.

0

1

2

3

4

5

JA
CO
BI2
D

JA
CO
BI3
D

BL
UR

SE
IDE
L2D

DIL
AT
E

HO
TS
PO
T

HE
AT
3D

SO
BE
L2
D

O
Ps
/b
yt
e

(a) Computation intensity of different stencil kernels
with the number of iterations = 1

1

4

16

64

256

1 2 4 8 16 32 64

O
Ps

/b
yt

e

Iteration Number

(b) Computation intensity of the JACOBI2D stencil
kernel with different numbers of iterations

Fig. 1. Computation intensity (number of algorithmic operations per byte of off-chip memory access, i.e.,
OPs/byte) comparison for different stencil kernels and different numbers of iterations.

Such observations suggest that different types of parallelism optimizations are needed for a
stencil kernel to achieve the best performance on an FPGA. In general, there is a broad range of
iteration numbers for stencil applications. For non-iterative stencil kernels, the iteration number is
considered as one. Some iterative stencil kernels have a small iteration number (e.g., up to four
in [8]), while others could have a large iteration number [4]. Depending on the stencil kernel
and its number of iterations, one may need to either 1) parallelize the computation along the
iteration dimension (called temporal parallelism), or 2) parallelize the memory access along the
data dimension (called spatial parallelism), or 3) combine both parallelisms together (called hybrid
parallelism). Moreover, it is nontrivial to program FPGAs to realize the best parallelism for the
stencil kernels, especially for domain experts who program in high-level languages. Ideally, domain
experts would only need to program in a simple stencil domain-specific language (DSL), and a
tool would automatically compile the DSL to a highly efficient stencil accelerator on an FPGA and
choose the best parallelism (and the optimal data reuse). Unfortunately, as summarized in Table 1
and Section 2.2, none of the prior studies satisfy all these requirements.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

SASA: A Scalable and Automatic Stencil Acceleration Framework for Optimized Hybrid Spatial and Temporal Parallelism
on HBM-based FPGAs 1:3

In this paper, we design and implement SASA, a DSL-based, scalable, and automatic stencil
acceleration framework on modern HBM-based FPGAs. To support different types of parallelisms
for stencil kernels, SASA takes a scalable multi-PE (processing element) approach. For the single
PE design, we take a similar design to SODA [4], which explores fine-grained data parallelism that
matches the data streaming speed from a single memory bank and achieves the optimal data reuse
within a single stencil iteration. Moreover, we further optimize the single PE design by utilizing
the coalesced reuse buffers (i.e., widened and shortened FIFOs) to reduce its resource utilization
and reduce the high fan-out for better timing. For computation-bound stencil kernels, we scale
the number of PEs to explore temporal parallelism between stencil iterations and use the same
coalesced reuse buffer technique to dataflow between multiple PEs and exploit data reuse between
stencil iterations. For memory-bound stencil kernels, we scale the number of PEs to explore the
coarse-grained spatial parallelism to better utilize the available off-chip bandwidth of multiple
HBM banks on modern FPGAs. Moreover, we support the combination of temporal and spatial
parallelisms to get benefits from both sides.
To bridge the programming gap, we support a simple stencil DSL so that end-users can easily

develop their stencil algorithm and get hardware acceleration on FPGAs. Given the stencil DSL and
FPGA platform as inputs, SASA can automatically generate a scalable stencil accelerator design in
TAPA [5] high-level synthesis (HLS) C++ and its corresponding host code. The generated stencil
design automatically chooses the best temporal and spatial parallelism based on our accurate ana-
lytical model. Moreover, the open source TAPA framework [5, 14, 15] invokes Vitis HLS to compile
our generated TAPA HLS code in parallel, applies coase-grained floorplanning and pipelining to
improve the timing closure. Experimental results for a wide range of stencil kernels and iterations
confirm the effectiveness of SASA. Compared to state-of-the-art automatic stencil acceleration
framework SODA [4] that only explores temporal parallelism, SASA explores the optimized hybrid
spatial and temporal parallelism and achieves an average speedup of 3.74× and up to 15.73× speedup
on the HBM-based Xilinx Alveo U280 FPGA board.

In summary, this paper makes the following contributions:
• Scalable stencil accelerator design optimizations, including coalesced reuse buffers to further
improve the resource usage of the already well-optimized dataflow stencil design [4] that exploits
the temporal parallelism, and two design alternatives—redundant computation without commu-
nication vs. border streaming for fast border communication—to exploit the spatial parallelism.

• An accurate analytical model, which has less than 5% performance prediction error, to choose
the best parallelism configuration for a given iterative stencil kernel, based on whether it is
computation-bound or memory-bound.

• An end-to-end automation framework that takes the high-level stencil DSL and FPGA platform
as inputs, and automatically generates the optimized FPGA design with the best parallelism
configuration on that FPGA.
The rest of the paper is organized as follows. Section 2 introduces the stencil computation

pattern and presents the previous studies and their limitations in accelerating stencil kernels on
FPGAs. Section 3 presents the scalable stencil accelerator architecture design of SASA, and its
various types parallelism optimizations. Section 4 describes our end-to-end automation framework,
including the high-level stencil DSL, the analytical performance models for our accelerator design,
the code generator and automation tool flow. Section 5 evaluates the performance of SASA on
a comprehensive set of stencil benchmarks with different numbers of iterations, compares the
performance of different parallelism optimizations, and demonstrates that SASA achieves an average
speedup of 3.74× and up to 15.73× speedup over state-of-the-art automatic stencil acceleration
framework SODA [4]. Finally, Section 6 concludes this paper and discusses the future work.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:4 Xingyu Tian, Zhifan Ye, Alec Lu, Licheng Guo, Yuze Chi, and Zhenman Fang

2 BACKGROUND AND RELATEDWORK
In this section, we first introduce the stencil computation pattern. Then, we discuss related literature
on FPGA acceleration for stencil computations and their limitations. Finally, we describe the goal
of our paper.

2.1 Stencil Computation
Stencil computation usually operates on a multidimensional array and updates each data cell using
its neighbor cells in a fixed pattern. Listing 1 and Figure 2 show an example of the JACOBI2D
stencil kernel, which is a 5-point, 2-dimensional stencil that computes and updates each data cell
(i.e., 𝑜𝑢𝑡𝑝𝑢𝑡 [𝑖] [𝑗]) with the values from itself (i.e., 𝑖𝑛𝑝𝑢𝑡 [𝑖] [𝑗]) and its four neighbor cells (i.e.,
𝑖𝑛𝑝𝑢𝑡 [𝑖] [𝑗 −1], 𝑖𝑛𝑝𝑢𝑡 [𝑖 −1] [𝑗], 𝑖𝑛𝑝𝑢𝑡 [𝑖] [𝑗 +1], and 𝑖𝑛𝑝𝑢𝑡 [𝑖 +1] [𝑗]). Its stencil kernel radius size is
1, which is defined as the distance between the center cell and its furthest neighbor cell. In practice,
such a stencil kernel will be executed multiple iterations; in the next iteration, the output array from
the previous iteration becomes the input, while the input array from the previous iteration becomes
the output. As discussed earlier in the introduction, depending on the stencil operations and the
number of iterations, the stencil kernel could be either computation-bound or memory-bound, and
would require a different parallelism optimization to achieve the best performance.
void jacobi2d (float input[R][C], float output[R][C]) {
for (int i = 1; i < R − 1; ++i)
for (int j = 1; j < C − 1; ++j)
output[i][j] = (input[i][j−1] + input[i−1][j] + input[i][j] + input[i][j+1] + input[i+1][j]) / 5;

}

Listing 1. A 5-point stencil JACOBI2D kernel

r = 1 (i, j - 1)

(i, j)(i - 1, j) (i + 1, j)

(i, j + 1)

C

R

Fig. 2. Stencil access pattern of JACOBI2D: R and C are the number of input rows and columns, r is the stencil
radius size.

2.2 FPGA Acceleration for Stencil Computation
Previous research efforts in FPGA-based stencil computing generally target the following aspects:
1) improving the on-chip data reuse and reducing the FPGA on-chip memory usage for the stencil
computation, 2) exploring temporal and/or spatial parallelisms in the stencil accelerator designs,
including leveraging the HBM bandwidth on modern FPGAs to further extend the spatial paral-
lelism, and 3) facilitating automatic stencil design generation. Some of these studies also need
pre-processing on the host CPU to enable their optimizations. Next we discuss the prior studies
considering these aspects. Some of the recent studies are also summarized in Table 1 for comparison
and illustrating the novelty of our work.
In effort to improve on-chip data reuse and reduce the FPGA on-chip memory usage for the

stencil computation, Chi et al. presented SODA [4] and proposed the optimal streaming solution

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

SASA: A Scalable and Automatic Stencil Acceleration Framework for Optimized Hybrid Spatial and Temporal Parallelism
on HBM-based FPGAs 1:5

Table 1. Comparison of stencil acceleration frameworks

Multi-PE
parallelism

Pre-processing
free

Automatic
optimization

On-chip
data reuse

[2, 20] temporal ✓ ✓ streaming
[4] temporal ✓ ✓ streaming
[22] temporal ✓ ✗ streaming
[24] temporal ✓ ✗ streaming
[30] temporal ✗ ✗ streaming
[26] hybrid ✓ ✗ buffering
[23] hybrid ✓ ✗ buffering
[10] hybrid ✗ ✗ buffering
[17] hybrid ✗ ✗ streaming
Ours hybrid ✓ ✓ streaming

to minimize the reuse buffer size and leveraged microarchitectural design optimizations to also
minimize the external memory access. Therefore, we also build our baseline design based on SODA.
Other methods such as a sliding-window design is used in [7], which requires maintaining only a
small on-chip buffer to reduce the BRAM usage, but introduces additional off-chip communication
overhead. Further, another graph-theory based implementation proposed in [11] can derive the
minimum memory partition factor for the on-chip memory banks, but such a design only supports
a limited set of stencil kernels.
Various studies have explored accelerating the iterative stencil computation through different

types of parallelisms. Namely, acceleration through temporal parallelism has been well studied
and explored inmost previous iterative stencil kernel accelerator designs on FPGA [2, 4, 10, 13, 17, 20,
22–24, 26, 30, 31]. For example, in [2, 20], Natale and Cattaneo et al. designed a dataflow architecture
that executes multiple stencil computing iterations as multiple temporal stages. However, it lacks
exploiting the fine-grained spatial parallelism during the processing of a single iteration stage. In
SODA [4], Chi et al. also presented a streaming-based accelerator design that exploits the temporal
parallelism in the iterative stencil acceleration and proposedmicroarchitectural design optimizations
to minimize the reuse buffer size and external memory access. For these designs [2, 4, 20], there
is no data pre-processing requirement; and they also provide an automatic design optimization
framework to explore design space and optimize designs based on accurate analytical performance
models. Further, Hasitha et al. [24] and Reggiani et al. [22] explored scaling the temporal parallelism
of their accelerator design across multiple FPGAs without requiring any redundant computations.
However, their design is only efficient for the computation-bound stencil kernel, where it can
benefit from the great amount of data reuse. A common limitation these temporally accelerated
designs share is that they do not exploit any coarse-grained spatial parallelism, which would lead
to under-optimized performance when the stencil kernel has a low number of iterations and is
memory-bound.
To leverage both temporal and spatial parallelisms, previous studies have exploited hybrid

parallelism in their designs [10, 17, 23, 26, 31]. Unlike the streaming-based designs, some of
these designs require data buffering and typically have a significant on-chip memory utilization
requirement. For example, the designs in [23, 26] need to load multiple tiles of data on chip for
its PEs to execute in parallel; another approach presented in [10] requires a single but rather
larger on-chip buffer. To further exploit the spatial parallelism by leveraging the HBM bandwidth
on modern FPGAs, previous work also explored utilizing multiple memory banks of an HBM in

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:6 Xingyu Tian, Zhifan Ye, Alec Lu, Licheng Guo, Yuze Chi, and Zhenman Fang

their multi-PE design [17] and single-PE design [10]. However, their implementations require data
pre-processing on the host CPU side to allow the parallel memory access and to exploit the efficient
burst access from the FPGA off-chip memory. Another common limitation of these work is the lack
of a design automation framework to facilitate the automatic design generation and mitigate the
long design exploration process.

2.3 Goal of This Paper
The goal of this paper is to develop an automatic stencil acceleration framework to incorporate the
all the features as summarized in Table 1. First, a streaming-based design similar to SODA [4] is used
in SASA for achieving the optimal data reuse; we also additionally include coalesced reuse buffers
to further reduce resource utilization in our design. Second, SASA leverages a hybrid multi-PE
design architecture, exploiting both spatial and temporal parallelisms (presented in Section 3).
Furthermore, SASA utilizes the HBM memory on modern FPGAs to achieve higher throughput, yet
unlike previous HBM-based stencil designs, our tool does not require any data pre-processing on
the host CPU side. And lastly, in terms of design automation, SASA enables end-users to define
their stencil operations through a DSL and will automatically compile and optimize the accelerator
designs with the best parallelism configuration based an analytical model (detailed in Section 4).

3 SCALABLE STENCIL ACCELERATOR DESIGNWITH HYBRID TEMPORAL AND
SPATIAL PARALLELISM

In this section, we explore different types of parallelism optimizations in SASA, as summarized in
Figure 4, 5 and 6. It is nontrivial to choose the best parallelism for a stencil kernel, since the most
appropriate parallelism varies, depending on the stencil kernel and its number of iterations. First,
in Section 3.1, we present our single PE design, which is based on the streaming-based architecture
proposed in SODA [4]; and we describe our coalesced reuse buffer design optimization for further
reducing the resource utilization of the design. Next, in Section 3.2, we briefly describe our temporal
parallelism design for computation-bound stencils with high number of iterations, which is similar
to SODA but uses our coalesced reuse buffer optimization. After that, in Section 3.3, we introduce
our spatial parallelism design for memory-bound stencil kernels and discuss two design alternatives
to implement it. Finally, in Section 3.4, we explore hybrid parallelism, which exploits benefits of
both spatial and temporal parallelisms in our multi-PE designs.

3.1 Single PE Optimization
As mentioned in Section II, our single PE design is based on SODA’s design [4], since it achieves
the optimal reuse buffer size and off-chip memory access requirement. Figure 3 (a) shows an
architecture overview of SODA’s single PE design. For the input data that stream from the off-chip
memory, SODA exploits the memory coalescing optimization to stream 512-bit wide data every
cycle and stores it in an on-chip line buffer using BRAM. Then, it distributes this buffered data into
reuse buffer channels composed of FIFOs and FFs, where each has a data width that matches the
size of each stencil data cell (e.g., 32-bit for the float data type). The data from these reuse buffer
channels are then forwarded to the parallel processing units (PUs) for exploiting the fine-grained
(spatial) parallelism and generate the output results. Each PU computes and updates for one data
cell in the stencil, as shown in the JACOBI2D example in Listing 1. The degree of fine-grained
parallelism (i.e., the number of PUs) is set to saturate the off-chip bandwidth of a single memory
bank and ensure the design executes in a dataflow fashion. For example, for a single HBM bank
that uses 512-bit wide AXI interface and a data cell type of float, the number of PUs can be derived
as 512 𝑏𝑖𝑡𝑠 / (8𝑏𝑖𝑡𝑠/𝑏𝑦𝑡𝑒) / 𝑠𝑖𝑧𝑒𝑜 𝑓 (𝑓 𝑙𝑜𝑎𝑡) 𝑏𝑦𝑡𝑒𝑠 = 16. For the detailed microarchitecture design of
the baseline PE, we refer the audience to the SODA paper [4].

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

SASA: A Scalable and Automatic Stencil Acceleration Framework for Optimized Hybrid Spatial and Temporal Parallelism
on HBM-based FPGAs 1:7

Coalesced
Reuse Buffer

Processing
Units (PUs)

Reuse
Buffer

Processing
Units (PUs)

FIFO

FIFO

FIFO
FIFO

FF
 FIFO

FIFO
 FF

Output

PU PU

PU

PU

PU

PUPU

Off-chip
Memory

(a) Processing Element (PE) of SODA

(b) Processing Element (PE) of SASA
Output

Off-chip
Memory

... PU

...

... ...

FF Coalesced

FIFO

...

Another
PE

or

Another
PE

or

Coalesced

FIFO

On-chip

Line

Buffer

Fig. 3. Single processing element (PE) architecture based on SODA [4], with optimization of coalesced reuse
buffers to reduce on-chip BRAM usage.

However, based on our experiments, SODA’s distributed reuse buffer channel implementation
can be further optimized to reduce the on-chip BRAM usage. For such, in SASA, we propose an
alternative implementation that removes the on-chip line buffer for storing the input data, and
coalesces all the narrow distributed reuse buffers into a single wide coalesced reuse buffer as shown
in Figure 3 (b), to further reduce the BRAM usage. With memory coalescing, the input data it reads
in from off-chip memory is typically 512-bit wide. Without coalesced FIFOs, it needs an on-chip
line buffer to store such 512-bit wide data that is read in a AXI burst mode. And then it distributes
such wide data from the on-chip line buffer onto multiple narrow (32-bit wide for floating data
type) FIFOs, as shown in Figure 3 (a). With coalesced FIFO, we stream in 512-bit data and write
them into the 512-bit wide FIFO (i.e., coalesced FIFO) directly. Thus, we can get rid of the extra
on-chip line buffer. Each cycle we also read one 512-bit data from each coalesced FIFO, divide it into
mulitple 32-bit registers, and feed them to the parallel PUs. Another benefit of our optimization is
that it helps reducing the number of fan-outs from SODA’s line buffer design, and thus allows the
design to achieve a higher operating frequency when further scaling out to multiple PEs.

3.2 Temporal Parallelism Optimization
In order to exploit the temporal parallelism, we instantiate multiple of our single PEs in a cascaded
pipeline fashion as shown in Figure 4, which is similar to SODA’s temporal parallelism design. The

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:8 Xingyu Tian, Zhifan Ye, Alec Lu, Licheng Guo, Yuze Chi, and Zhenman Fang

...
 PE st

 Temporal Parallelism

R

d
C

PE 2PE 1

Data Dependency Valid Data

r

Repeat ⌈ iter / st ⌉ times

Delay

d rows

Delay

d rows

d = 2r

Fig. 4. Temporal parallelism among the stencil iterations. 𝑑 stands for delay between two temporal stages; 𝑟
stands for stencil radius size; 𝑅 and𝐶 stand for the row and column size; 𝑠𝑡 stands for the number of temporal
stages; 𝑖𝑡𝑒𝑟 stands for the number of iterations. These are summarized in Table 3 as well.

difference is that we use the coalesced reuse buffers to connect multiple PEs. The input data is
only read once from the off-chip memory and the output result is also written once back to the
off-chip memory after processing N iterations of the stencil computation. Each PE handles one
iteration of the stencil processing. For computation-bound stencil kernel designs with high number
of iterations, it is more efficient to leverage the temporal parallelism since it allows for a higher
level of data reuse across processing multiple consecutive stencil iterations in a pipelined fashion
on the FPGA and does not require a huge amount of off-chip memory bandwidth. However, when
the number of iterations becomes low, it will be hard to leverage the benefits of this temporal
parallelism.

3.3 Spatial Parallelism Optimization
For stencil kernels with low computation intensity and low number of iterations, parallelizing the
memory access along the spatial (data) dimension is more efficient, compared to leveraging the
temporal parallelism. To fully exploit the spatial parallelism during a single iteration of the stencil
computation, first we need to evenly partition the input data and store them onto different HBM
banks to allow for more parallel memory access. Note that here we are just simply partitioning the
input data vertically by the rows, so there is no data pre-processing overhead. After that, we can
then instantiate multiple spatially parallel PEs to distribute the workload for coarse-grained parallel
computation and memory access. Due to the dependency of the halo data, which is the boarder
data between partitions, synchronization could be required at the end of each stencil iteration to
maintain correctness of the output results.
To address the halo synchronization issue when leveraging the spatial parallelism, Figure 5 (a)

and 5 (b) present the two approaches in our stencil accelerator design:
1. Redundant Computation: In order to reduce the memory transfer overhead during the data

synchronization, one way is to avoid data synchronization. As shown in Figure 5 (a), input data
is partitioned into multiple tiles and each PE processes one tile. Each PE needs to read additional
halo data from neighbouring tiles at the start, then performs the computation of all iterations
without synchronization. The halo size is decided by the number of iterations and the stencil
algorithm itself.

2. Border Streaming: Another way is to exchange the halo data between neighbor PEs via the
border streaming technique. As shown in Figure 5 (b), each PE only computes its own input tile
without redundant computations for extra halo data. Instead, it exchanges the required halo

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

SASA: A Scalable and Automatic Stencil Acceleration Framework for Optimized Hybrid Spatial and Temporal Parallelism
on HBM-based FPGAs 1:9

PE 1

PE ksr

...

Sp
at

ia
l

Sp
at

ia
l

PE 2

r * iter'

PE 1

PE kss

...

PE 2
r

C

⌈R / ksr⌉ ⌈R / kss⌉

C

Halo Data Valid Data

Spatial Parallelism

(a) Spatial_R:

Redundant Computation

(b) Spatial_S:

Border Streaming

Repeat iter times Repeat iter times

Fig. 5. Spatial parallelism with redundant computation and border streaming. 𝑅 and 𝐶 stands for the row
and column size; 𝑟 stands for stencil radius size; 𝑘𝑠𝑟 stands for the number of PEs in spatial parallelism with
redundant computation; 𝑘𝑠𝑠 stands for for the number of PEs spatial parallelism with border streaming. These
are summarized in Table 3 as well.

data with the neighbouring PEs at the end of every iteration. To support efficient halo data
exchange, it exchanges such data via on-chip streaming. Compared to redundant computation,
this approach uses slightly more on-chip resource (e.g., LUTs and FFs) to implement border
streaming interfaces, but can reduce the computation overhead.

3.4 Hybrid Parallelism Optimization
There are limitations for both temporal parallelism and spatial parallelism. As previously discussed
in Section 1, the performance bottleneck varies with the algorithmic intensity and number of itera-
tions of a stencil kernel. This is because when the stencil iteration number is high and computation
intensity is high (i.e., computation-bound), the major performance improvement comes from the
parallel processing across multiple consecutive stencil iterations in a pipelined fashion with high
on-chip data reuse on the FPGA (i.e., temporal parallelism). Conversely, for the memory-bound
stencil kernels with a low iteration number, the performance gain comes from the parallel mem-
ory access within each stencil iteration, and the spatial parallelism can efficiently parallelize the
computation across the data dimension.
In our hybrid parallelism approach, both temporal and spatial parallelisms are exploited to

better support efficient acceleration of the arbitrary stencil operations. In terms of the design
architecture, we integrate the temporal parallelism and explore the two variants of the spatial
parallelism optimizations: 1)𝐻𝑦𝑏𝑟𝑖𝑑_𝑅 (temporal with the 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅 parallelisms) and 2)𝐻𝑦𝑏𝑟𝑖𝑑_𝑆
(temporal with the 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 parallelisms), as shown in Figure 6 (a) and (b), respectively.
1. Hybrid_R: To integrate temporal parallelism with 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅 spatial parallelism, we instantiate

multiple (𝑘ℎ𝑟) spatial PE groups to concurrently process different partitions of the input data
without any synchronization requirement as described in Section 3.3. Within each spatial PE
group, we apply temporal parallelism to concurrently process multiple stencil iterations using

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:10 Xingyu Tian, Zhifan Ye, Alec Lu, Licheng Guo, Yuze Chi, and Zhenman Fang

C

PE khr-shr

PE 1-1

PE khr-1

...
PE 1-2

PE khr-2

...

PE 1-shr

...

...

Sp
at

ia
l

Temporal
(a) Hybrid_R : Redundant Computation in Spatial

...

r * iter'

...

PE 1-1

PE khs-1

PE 2-1

Sp
at

ia
l

Temporal

...

PE 1-2

PE khs-2

PE 2-2

...

PE 1-shs

PE khs-shs

PE 2-shs...

...

...

(b) Hybrid_S : Border Streaming in Spatial

r

⌈R / khr ⌉

⌈R / khs ⌉

C

Repeat ⌈ iter / khs ⌉ times

Repeat ⌈ iter / khr ⌉ times

PE 2-1 PE 2-2 PE 2-shr...

Halo Data Valid Data
Hybrid Parallelism

r * shs

r * iter'

khr Spatial PE groups

khs Spatial PE groups

Fig. 6. Hybrid parallelism with redundant computation and border streaming. 𝑅 and 𝐶 stands for the row
and column size; 𝑟 stands for stencil radius size; 𝑘ℎ𝑟 and 𝑠ℎ𝑟 stand for the degree of spatial parallelism and
temporal parallelism respectively in hybrid parallelism with redundant computation; 𝑘ℎ𝑠 and 𝑠ℎ𝑠 stand for
the degree of spatial parallelism and temporal parallelism respectively in hybrid parallelism with border
streaming. These are summarized in Table 3 as well.

multiple (𝑠ℎ𝑟) PEs in a dataflow fashion, as shown in Figure 6 (a). To avoid halo synchronization,
PEs in the earlier stages need to compute increasingly more halo data than those PEs in the later
stages. In total, there are 𝑘ℎ𝑟 × 𝑠ℎ𝑟 PEs running concurrently, processing 𝑠ℎ𝑟 stencil iterations at a
time. The whole design has to be executed multiple rounds to finish the entire stencil iterations.

2. Hybrid_S: To integrate temporal parallelism with 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 spatial parallelism, we adopt a
similar approach as the 𝐻𝑦𝑏𝑟𝑖𝑑_𝑅 design. We denote the number of spatial PE groups as 𝑘_ℎ𝑠
for spatial parallelism, and the number of temporal stages within each spatial PE group as 𝑠_ℎ𝑠 .
The main difference lays in the additional synchronization step to update the halo region data
after processing each iteration/temporal stage. If we simply replicate the 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 design by 𝑠ℎ𝑠
number of temporal stages, the corresponding number of border streaming connections will also
increase, and thus may cause overhead in the placement and routing, as well as design frequency
degradation. As an optimization, in our design, only the spatial PEs in the first temporal stages
have the border streaming connections between themselves and perform the halo data exchange.
Instead of only exchanging one ℎ𝑎𝑙𝑜 rows of data, they exchange all required ℎ𝑎𝑙𝑜 ×𝑠_ℎ𝑠 rows of
data required by PEs for all following 𝑠_ℎ𝑠 temporal stages. For the remaining temporal stages,

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

SASA: A Scalable and Automatic Stencil Acceleration Framework for Optimized Hybrid Spatial and Temporal Parallelism
on HBM-based FPGAs 1:11

no more synchronization is required. The whole design has to be executed multiple rounds to
finish the entire stencil iterations, and only at the beginning of each round, there is halo data
exchange required.

4 AUTOMATION FRAMEWORK FOR SASA
In this section, we discuss the automation perspectives of SASA and its fundamental components.
First, we describe a domain-specific language (DSL), which is similar to the one used in SODA [4], for
domain experts to easily define their stencil computation settings. Then, we introduce the analytical
model for estimating the design performance under different types of parallelisms according to the
design parameters. Finally, we present the entire work flow of our code generator that incorporates
our analytical model to automatically determine the best parallelism configuration, compiles the
DSL to the corresponding optimized stencil design in TAPA high-level synthesis (HLS) C++ [5],
and generates the corresponding TAPA host code in C++ [5].

4.1 Stencil DSL

kernel: JACOBI2D
iteration: 4
input float: in_1(9720, 1024)
output float: out_1(0,0) = (in_1(0,1) + in_1(1,0) + in_1(0,0) + in_1(0,−1) + in_1(−1,0)) / 5

Listing 2. A 5-point stencil JACOBI2D kernel description in SASA DSL

kernel: HOTSPOT
iteration: 64
input float: in_1(9720, 1024)
input float: in_2(9720, 1024)
output float: out_1(0,0) = 1.296 ∗ ((in_2(−1,0) + in_2(1,0) − in_2(0,0) + in_2(0,0)) ∗ 0.949219 + in_1(−1,0) +

(in_2(0,−1) + in_2(0,1) − in_2(0,0) + in_2(0,0)) ∗ 0.010535 + (80 − in_2(0,0)) ∗ 0.00000514403)

Listing 3. A 9-point stencil HOTSPOT kernel description in SASA DSL with two inputs

kernel: BLUR−JACOBI2D
iteration: 4
input float: in(9720, 1024)
local float: temp(0,0) = (in(−1,0) + in(−1,1) + in(−1,2) + in(0,0) + in(0,1) + in(0,2) + in(1,0) + in(1,1) +

in(1,2)) / 9
output float: out(0,0) = (temp(0,1) + temp(1,0) + temp(0,0) + temp(0,−1) + temp(−1,0)) / 5

Listing 4. A description of two combined stencil kernels in SASA DSL

To allow domain experts to easily define any arbitrary stencil computing workload at a high
abstraction level, SASA provides a stencil domain-specific language (DSL) similar to SODA [4].
Here We present a few stencil kernel samples using SASA DSL: Listing 2 shows the description of
a 5-point, 2-dimensional JACOBI2D stencil kernel; Listing 3 shows the description of a 9-point, 2
dimensional HOTSPOT stencil kernel handling two input data; and Listing 4 shows the description
of two combined stencil loops.
1. The text following the kernel keyword specifies the name of the stencil kernel, which is also

used as the name of the top-level function in HLS for the FPGA kernel.
2. The number after the iteration keyword specifies the number of iterations that the stencil

kernel will be executed.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:12 Xingyu Tian, Zhifan Ye, Alec Lu, Licheng Guo, Yuze Chi, and Zhenman Fang

3. For input keyword, first, the data type of each stencil cell is specified, followed by the name
and dimension of the input data array.

4. Similarly, for the output keyword, the data type is first specified. Then, users should specify
the name of the output data and the formula to compute and update one output data cell.

5. Multiple inputs and outputs and multiple stencil loops are supported.
6. The local keyword is used to define the intermediate data between multiple stencil loops.

4.2 Analytical Performance Model
In this section, to guide the design automation, we build an analytical performance model for our
accelerator framework with the temporal, spatial, and hybrid parallelism optimizations presented
in Section 3. Such a comprehensive model is not present in previous studies. Table 2 shows the
description of the parameters used in our analytical model to determine the latency 𝐿 of designs
with different parallelisms. Parameters such as the number of input rows and columns (𝑅 and 𝐶),
number of stencil iterations (𝑖𝑡𝑒𝑟), and stencil radius size (𝑟) can be extracted from the input stencil
DSL. Note that our analytical model only models a two-dimensional stencil. As will be presented in
Section 4.3, our code generator will transform a multidimensional array specified in the stencil
DSL into a two-dimensional array. Parameters such as the delay between two temporal stages
(𝑑) and size of halo region for one iteration (ℎ𝑎𝑙𝑜) can be directly derived from the input 𝑟 , i.e.,
𝑑 = ℎ𝑎𝑙𝑜 = 2 × 𝑟 . For other parameters such as the number of PUs inside each PE (𝑈), the degree
of spatial parallelism (𝑘 with different subscripts), and the degree of temporal parallelism (𝑠 with
different subscripts), our automation tool flow (Section 4.3) will automatically choose the best
configurations.

Table 2. Description of analytical model parameters

Parameter Definition
Output 𝐿 Overall execution latency

Input

𝑅 Number of input rows
𝐶 Number of input columns
𝑖𝑡𝑒𝑟 Number of stencil iterations
𝑟 Stencil radius size

Derived 𝑑 Delay between two temporal stages (𝑑 = 2 × 𝑟)
ℎ𝑎𝑙𝑜 Size of halo region for one iteration (ℎ𝑎𝑙𝑜 = 2 × 𝑟)

SASA
automatic
exploration

𝑈 Unroll factor along column dimension, i.e., number of PUs per PE
𝑘 Degree of spatial parallelism
𝑠 Degree of temporal parallelism

Subscript

subscript 𝑡 Temporal parallelism
subscript 𝑠𝑟 Spatial parallelism with redundant computation
subscript 𝑠𝑠 Spatial parallelism with border streaming
subscript ℎ𝑟 Hybrid parallelism with redundant computation
subscript ℎ𝑠 Hybrid parallelism with border streaming

For each PE, the latency to execute one stencil iteration is determined by the dimension (i.e.,
number of rows (𝑅) and columns (𝐶)) of the input data and the number of PUs inside each PE (i.e.,
𝑈) of the design, which is ⌈𝑅×𝐶

𝑈
⌉. Next we describe our analytical models to compute the latency

for each parallelism configuration for the multi-PE design.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

SASA: A Scalable and Automatic Stencil Acceleration Framework for Optimized Hybrid Spatial and Temporal Parallelism
on HBM-based FPGAs 1:13

Resource Bound andMemory Bound. The maximum number of PEs that can be implemented
is limited by both on-chip hardware resource and available off-chip memory banks (i.e., bandwidth).
For the limitation of on-chip resource, we have:

#𝑃𝐸𝑟𝑒𝑠 =
𝛼 × 𝑡𝑜𝑡𝑎𝑙_𝐹𝑃𝐺𝐴_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑝𝑒𝑟_𝑃𝐸 (1)

where 𝛼 is the FPGA resource utilization constraint ratio and is initially set as 75%, since typical
design that uses more than 75% of the FPGA resource becomes very difficult to pass the placement
and routing.

For the constraint of off-chip memory banks, the number of spatial PEs is bounded as:

#𝑃𝐸𝑏𝑤 =
#𝑡𝑜𝑡𝑎𝑙_𝑜 𝑓 𝑓 _𝑐ℎ𝑖𝑝_𝑚𝑒𝑚_𝑏𝑎𝑛𝑘𝑠

#𝑜 𝑓 𝑓 _𝑐ℎ𝑖𝑝_𝑚𝑒𝑚_𝑏𝑎𝑛𝑘𝑠_𝑝𝑒𝑟_𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑃𝐸 (2)

where #𝑜 𝑓 𝑓 _𝑐ℎ𝑖𝑝_𝑚𝑒𝑚_𝑏𝑎𝑛𝑘𝑠_𝑝𝑒𝑟_𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑃𝐸 is defined by the inputs and outputs number of
stencil algorithm. Then, we can determine the maximum PE number based on FPGA platform
specification and hardware resource constraints:

𝑀𝑎𝑥 #𝑃𝐸 =𝑚𝑖𝑛 (#𝑃𝐸𝑟𝑒𝑠 , #𝑃𝐸𝑏𝑤 × 𝑠) (3)

where 𝑠 is the number of temporal stages (i.e., the degree of temporal parallelism) in each spatial
PE group and these temporal stages do not require extra bandwidth.

Temporal Parallelism. As shown in Figure 4, we exploit the temporal parallelism in our design
by cascading 𝑠𝑡 number of PEs to execute in a dataflow fashion. This also means 𝑠𝑡 iterations of
the stencil computation is processed concurrently as input data get streamed through our design.
To process an iterative stencil computation with 𝑖𝑡𝑒𝑟 iterations, our design should be executed
⌈𝑖𝑡𝑒𝑟/𝑠𝑡 ⌉ times. to compute any single output in PE 𝑖 (except the first PE), data across two stencil
radius size (2r) are required from the previous PE 𝑖 − 1. Thus, there is a delay 𝑑 = 2𝑟 rows between
any two neighbor stages. The last PE 𝑠𝑡 has to wait 𝑑 × (𝑠𝑡 − 1) ×𝐶 cycles to start the execution.
Therefore, we determine overall latency of the temporal parallelism design as:

𝐿𝑡 =

⌈
(𝑅 + 𝑑 × (𝑠𝑡 − 1)) ×𝐶

𝑈

⌉
×
⌈
𝑖𝑡𝑒𝑟

𝑠𝑡

⌉
, 𝑠𝑡 ≤ #𝑃𝐸𝑟𝑒𝑠 (4)

In this case and 𝑠𝑡 is limited by #𝑃𝐸𝑟𝑒𝑠 , i.e., the available computing resource.
Spatial Parallelism. In the context of spatial parallelism as shown in Figure 5 (a) and (b), we have

two different design implementations: redundant computation (𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅) and border streaming
(𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆). In both of these implementations, the computation of a single stencil iteration is
distributed across multiple parallel spatial PEs. Every single PE processes ⌈𝑅/𝑘𝑠𝑟 ⌉ or ⌈𝑅/𝑘𝑠𝑠⌉ rows
of the input data, plus some halo region rows. The design has to be executed 𝑖𝑡𝑒𝑟 times. Note in the
spatial parallelism, we put one PE inside each FPGA spatial PE grouop and the number of FPGA
spatial PE groups equals to the number of PEs.

For 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅, the latency can determined as

𝐿𝑠𝑟 =

⌈
(⌈ 𝑅

𝑘𝑠𝑟
⌉ + ℎ𝑎𝑙𝑜 × 𝑖𝑡𝑒𝑟 ′) ×𝐶

𝑈

⌉
× 𝑖𝑡𝑒𝑟, 𝑘𝑠𝑟 ≤ 𝑀𝑎𝑥 #𝑃𝐸 (5)

where ℎ𝑎𝑙𝑜 × 𝑖𝑡𝑒𝑟 ′ represents the halo data size gradually decreases over the processing iteration
(i.e., 𝑖𝑡𝑒𝑟 ′) as explained in Section 3.3. On average, 𝑖𝑡𝑒𝑟 ′ = 𝑖𝑡𝑒𝑟/2.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:14 Xingyu Tian, Zhifan Ye, Alec Lu, Licheng Guo, Yuze Chi, and Zhenman Fang

As for 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 , we calculate its latency in Equation 6, since all the PEs synchronize with their
neighboring PEs for a fixed number of ℎ𝑎𝑙𝑜 rows after each stencil iteration.

𝐿𝑠𝑠 =

⌈
(⌈ 𝑅

𝑘𝑠𝑠
⌉ + ℎ𝑎𝑙𝑜) ×𝐶

𝑈

⌉
× 𝑖𝑡𝑒𝑟, 𝑘𝑠𝑠 ≤ 𝑀𝑎𝑥 #𝑃𝐸 (6)

For both spatial parallelisms, they are limited by both the computing resource and memory
bandwidth, i.e.,𝑀𝑎𝑥 #𝑃𝐸.

Hybrid Parallelism. As shown in Figure 6 (a) and (b), when combining spatial and temporal
parallelisms, there are 𝑘ℎ𝑟 (or 𝑘ℎ𝑠) FPGA spatial PE groups running concurrently, each FPGA spatial
PE group processing ⌈𝑅/𝑘ℎ𝑟 ⌉ (or ⌈𝑅/𝑘ℎ𝑠⌉) rows of input data. Within each FPGA spatial PE group,
there are 𝑠ℎ𝑟 (or 𝑠ℎ𝑠) temporal stages running concurrently in a dataflow fashion, processing 𝑠ℎ𝑟
(or 𝑠ℎ𝑠) stencil iterations at a time. Therefore, our design with hybrid parallelism has to execute
⌈𝑖𝑡𝑒𝑟/𝑠ℎ𝑟 ⌉ (or ⌈𝑖𝑡𝑒𝑟/𝑠ℎ𝑠⌉) times. In total, there are 𝑘ℎ𝑟 × 𝑠ℎ𝑟 (or 𝑘ℎ𝑠 × 𝑠ℎ𝑠) PEs running concurrently
in the design.
For 𝐻𝑦𝑏𝑟𝑖𝑑_𝑅, which is the combination of temporal parallelism and spatial parallelism with

redundant computation, for one round of execution, all PEs within each FPGA spatial PE group 𝑖
complete exactly at the same time. The reason is that the prior PE 𝑖, 𝑗 − 1 needs to redundantly
compute ℎ𝑎𝑙𝑜 more rows of data than the next PE 𝑖, 𝑗 , while the next PE 𝑖, 𝑗 needs to wait 𝑑 rows
of data from the prior PE 𝑖, 𝑗 − 1, where ℎ𝑎𝑙𝑜 = 𝑑 = 2𝑟 . Therefore, we derive Equation 7 for the
latency of 𝐻𝑦𝑏𝑟𝑖𝑑_𝑅:

𝐿ℎ𝑟 = ⌈
(⌈ 𝑅

𝑘ℎ𝑟
⌉ + ℎ𝑎𝑙𝑜 × 𝑖𝑡𝑒𝑟 ′) ×𝐶

𝑈
⌉ × ⌈𝑖𝑡𝑒𝑟

𝑠ℎ𝑟
⌉, 𝑘ℎ𝑟 ≤ 𝑃𝐸𝑏𝑤, 𝑘ℎ𝑟 × 𝑠ℎ𝑟 ≤ 𝑀𝑎𝑥 #𝑃𝐸 (7)

where the first term represents the latency to execute one round of our hybrid parallelism design,
and ℎ𝑎𝑙𝑜 × 𝑖𝑡𝑒𝑟 ′ represents the halo data size gradually decreases over the processing rounds. On
average, 𝑖𝑡𝑒𝑟 ′ = 𝑖𝑡𝑒𝑟/2. In this case, the degree of spatial parallelism is limited by the memory
bandwidth, and the total degree of parallelism is limited by both the computing resource and
memory bandwidth.
For 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 , which is the combination of temporal parallelism and spatial parallelism with

border computation, similarly, for one round of execution, all PEs within each FPGA spatial PE
group 𝑖 complete exactly at the same time. However, in this design, these PEs only need an extra
latency for ℎ𝑎𝑙𝑜 more rows within each round. Between different rounds, PEs in the first temporal
stage exchange ℎ𝑎𝑙𝑜 data with each other using border streaming. Therefore, we derive its latency
as below:

𝐿ℎ𝑠 = ⌈
(⌈ 𝑅

𝑘ℎ𝑠
⌉ + ℎ𝑎𝑙𝑜 × 𝑠ℎ𝑠) ×𝐶

𝑈
⌉ × ⌈𝑖𝑡𝑒𝑟

𝑠ℎ𝑠
⌉, 𝑘ℎ𝑠 ≤ 𝑃𝐸𝑏𝑤, 𝑘ℎ𝑠 × 𝑠ℎ𝑠 ≤ 𝑀𝑎𝑥 #𝑃𝐸 (8)

In this case, the degree of spatial parallelism is limited by the memory bandwidth, and the total
degree of parallelism is limited by both the computing resource and memory bandwidth.

Automatic Parallelism Optimization. In order to automatically determine the optimal paral-
lelism, the automation tool would need to find the parallelism with the minimum latency as:

𝐿𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = min(𝐿𝑡 , 𝐿𝑠𝑟 , 𝐿𝑠𝑠 , 𝐿ℎ𝑠 , 𝐿ℎ𝑠) (9)
Examining our analytical performance model at a high level and assuming maximum PE number

is the same across different parallelisms and 𝑅, 𝐶 , 𝑈 and 𝑟 are fixed during running time, we
summarize the following observations:
1. In spatial parallelism, 𝐿𝑠𝑟 grows with 𝑖𝑡𝑒𝑟 slightly more than linearly, while 𝐿𝑠𝑠 grows with

𝑖𝑡𝑒𝑟 exactly linearly. It shows that both solutions provide proximate performance when the

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

SASA: A Scalable and Automatic Stencil Acceleration Framework for Optimized Hybrid Spatial and Temporal Parallelism
on HBM-based FPGAs 1:15

iteration number is relatively small. But as the iteration number increases, border streaming
will outperform redundant computation. For the two hybrid parallelism alternatives, 𝐿ℎ𝑟 and
𝐿ℎ𝑠 have the same relation as the one between 𝐿𝑠𝑟 and 𝐿𝑠𝑠 .

2. Comparing spatial parallelism with temporal parallelism, when 𝑖𝑡𝑒𝑟 is large enough and 𝑖𝑡𝑒𝑟 is
divisible by 𝑠𝑡 , temporal parallelism could achieve a similar performance to spatial parallelism, as
the value of 𝑠𝑡 would be set to the same as 𝑘𝑠𝑟 and 𝑘𝑠𝑠 . In addition, temporal parallelism requires
much less amount of off-chip bandwidth. Howerver, when 𝑖𝑡𝑒𝑟 is small enough, the largest value
of 𝑠𝑡 is the same as 𝑖𝑡𝑒𝑟 , while 𝑘𝑠𝑟 and 𝑘𝑠𝑠 can be much larger than 𝑖𝑡𝑒𝑟 by exploiting off-chip
memory bandwidth (especially on HBM-based FPGAs). This will bring significant performance
degradation for temporal parallelism. In this case, hybrid parallelism can further improve the
performance with less bandwidth requirement. Finally, when 𝑖𝑡𝑒𝑟 is not divisible by 𝑠𝑡 (or 𝑠ℎ𝑟 , or
𝑠ℎ𝑠), 𝐿𝑡 (or 𝐿ℎ𝑟 , or 𝐿ℎ𝑠) will also suffer some overhead to process the whole input data with some
PEs idle in the last round.

4.3 Code Generator and Automation Tool Flow
Figure 7 shows an overview of the automation flow for SASA. It takes a stencil DSL and FPGA
platform information as input, and automatically generates optimized FPGA accelerator design with
the best parallelism optimization as the output. To address the timing closure issue (and conduct a
fairer comparison between different parallelism implementations), we have integrated the open
source TAPA/AutoBridge framework [5,14] into our SASA framework to build our generated
multi-PE design. TAPA/AutoBridge is a high-performance fast-compiling HLS framework that is
fully compatible with the Xilinx Vitis/Vivado workflow. It takes in task-parallel program in Vitis
HLS syntax with additional TAPA APIs. It has three major advantages. First, it supports easier
programming of task-parallel dataflow programs in C++, without the need of the more complex
OpenCL approach (using multiple OpenCL kernels) to support task parallelism. Our SASA code
generator automatically converts the stencil DSL to the TAPAHLS and host code. Second, it replaces
the resource-inefficient AXI interface with a lightweight streaming interface to access off-chip
memory. The standard AXI interface always buffers data in BRAM and consumes a significant
amount of resources on the bottom die of the HBM-based U280 FPGA (with multiple AXI interfaces),
which often causes place-and-route congestion and timing violation timing congestion on the
bottom die. With the lightweight streaming interfaces, it saves resources for actual computations
and reduces place-and-route congestion and timing violation timing congestion on the bottom
die. Third, it automatically applies coarse-grained floorplanning and pipelining optimizations
to improve the timing closure for dataflow programs, and can often greatly improve the design
build success rate and the final design frequency. With this integration, we are able to generate
high-frequency stencil accelerators.

The detailed steps inside the SASA automation flow are described as below.
1. Our code generator first parses the user programmed stencil DSL for a given stencil application

and generates the optimized single PE design in Vitis HLS C++ code. To do this, our code
generator uses a Python based meta-language specification, 𝑡𝑒𝑥𝑡𝑋 [9], which uses meta-model
to define a DSL. With our pre-defined meta-model grammar as illustrated in Section 4.1, our
compiler parses the DSL, generates the abstract syntax tree (AST), and extracts the user-defined
stencil configurations. The stencil configurations include the number of input rows (𝑅), the
number of input columns (𝐶), the number of stencil iterations (𝑖𝑡𝑒𝑟), and the stencil radius size
(𝑟). Note that for a multidimensional array specified in the DSL, our code generator flattens
all the dimensions except the first dimension into one dimension. Take 3D stencil input size
256×16×16 as an example, we buffer two rows of 16×16 data in the row buffer like a 2D stencil

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:16 Xingyu Tian, Zhifan Ye, Alec Lu, Licheng Guo, Yuze Chi, and Zhenman Fang

Stencil DSL

w/ R, C, iter and r

FPGA Platform
Details

resource, #SLRs
and #HBM_banks

User-Defined Input

Single PE Design

Vitis HLS

Yes

No Build Success?

Best Multi-PE
Design Choice

Optimal Design

Analytical Performance Model
for Different ParallelismMax #PEs

Code Generator

Code Generator

Best Multi-PE Design

Choose next best parallelism or

relax #PEs by one per SLR

Our Tool

TAPA [5] &
AutoBridge [14]

Host Code with

TAPA API

Parallel
Copmilation

Floorplanning

& Pipelining

AutoBridge

Bitstream
Generation

Vitis/Vivado

SASA
Stencil

Program

Vitis HLS
Instance

Vitis HLS
Instance

Vitis HLS
Instance

High-Frequency

 Stencil

Accelerator

Fig. 7. Overall automation tool flow in SASA

kernel. The difference between 2D and 3D stencil accelerator designs is that they read data from
different locations of the row buffer when updating each cell. Then, it coverts the AST into a
model consisting of Python objects. The code generator further interprets the model to analyze
the data dependency in each statement between the input(s) and output(s). After that, the code
generator generates the Vitis HLS C++ code for a single PE design presented in Section 3.1,
based on the user-defined configurations (i.e., 𝑅, 𝐶 , 𝑖𝑡𝑒𝑟 , 𝑟) extracted from the DSL. The unroll
factor (i.e., the number of PUs inside each PE in Figure 3),𝑈 (e.g., 16), is chosen based on the
AXI interface width (e.g., 512-bit) of a single memory bank and the size of each stencil data cell
(e.g., 32-bit) to saturate the off-chip bandwidth.

2. To determine the maximum number of PEs that can be instantiated on the FPGA platform, we
first estimate the resource utilization of the single-PE design generated from the code generator
block, by running Vitis HLS [29] synthesis. Then, combined with the FPGA platform specification
and hardware utilization constraints, we determine the maximum PE number as described in
Equation 1, 2 and 3.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

SASA: A Scalable and Automatic Stencil Acceleration Framework for Optimized Hybrid Spatial and Temporal Parallelism
on HBM-based FPGAs 1:17

3. Once the #𝑃𝐸𝑟𝑒𝑠 , #𝑃𝐸𝑏𝑤 , and𝑀𝑎𝑥 #𝑃𝐸𝑠 are determined, we explore different temporal and
spatial parallelism configurations of the multi-PE design based on the analytical performance
model presented in Section 4.2, and choose the optimal design choice such that it achieves the
least execution latency, based on Equations 4 to 9. For temporal parallelism, we set 𝑠𝑡 = #𝑃𝐸𝑟𝑒𝑠
in Equation 4. For the spatial parallelism alternatives, we set 𝑘𝑠𝑟 = 𝑘𝑠𝑠 = 𝑀𝑎𝑥 #𝑃𝐸𝑠 in in
Equations 5 and 6. For the two hybrid parallelism implementations, we explore all combinations
of (𝑘ℎ𝑟 , 𝑠ℎ𝑟) and (𝑘ℎ𝑠 , 𝑠ℎ𝑠) that meets 𝑘ℎ𝑟 × 𝑠ℎ𝑟 = 𝑘ℎ𝑠 × 𝑠ℎ𝑠 = 𝑀𝑎𝑥 #𝑃𝐸𝑠 , 𝑘ℎ𝑟 ≤ 𝑃𝐸𝑏𝑤 , and
𝑘ℎ𝑠 ≤ 𝑃𝐸𝑏𝑤 . in Equations 7 and 8. To simplify the floorplanning, we limit the number of FPGA
spatial PE groups 𝑘ℎ𝑟 and 𝑘ℎ𝑠 to be a multiple of#𝑆𝐿𝑅𝑠 , so that we have a very small number of
(𝑘ℎ𝑟 , 𝑠ℎ𝑟) and (𝑘ℎ𝑠 , 𝑠ℎ𝑠) pairs to explore. Our analytic model will select the best multi-PE design
choice with the best parallelism. When multiple parallelisms achieve a similar performance,
we choose the most resource-efficient one. For example, 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 and 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 are the two
best choices among many configurations, then our model will choose 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 as it uses fewer
HBM banks.

4. Once the best multi-PE design choice is selected, our code generator will automatically generate
the corresponding multi-PE accelerator design in TAPA HLS C++ [5], based on the multi-PE
architecture presented in Section 3 and single-PE design generated in step 1. Moreover, we will
also automatically generate the corresponding host code with TAPA API to manage this FPGA
kernel, which includes common FPGA device setup, host buffer allocation, data communication
between the host and the FPGA, and signal to start the FPGA kernel execution.

5. Finally, we build the optimal design from our code generator using Xilinx Vitis 2020.2 tool
to generate the final FPGA bitstream and host executable. If the design is successfully built
and meets the frequency requirement, it will be output as the optimal design. Otherwise, our
automation tool will first attempt to build the next best parallelism design with the same number
of PEs. If none of those designs can pass the requirement, our tool will lower the number of PEs
by the number of SLRs (i.e.,𝑀𝑎𝑥 #𝑃𝐸𝑠 = 𝑀𝑎𝑥 #𝑃𝐸𝑠 −#𝑆𝐿𝑅𝑠) and repeat steps 3 to 5 until the
design can be successfully built.
Code generator is one fundamental block of our automation framework, which is utilized at

two different stages of the automation flow. First, after the stencil DSL is parsed and interpreted,
the code generator needs to automate the generation of a single-PE design. At this point, only the
datapath logic is defined based on the stencil operation, and the fine-grained data parallelism is
set to match the off-chip memory bandwidth to enable the dataflow computing requirement. The
second function of the code generator is to automate the multi-PE binding code generation when
the number of PEs and the optimal design parallelism settings have been chosen by our analytical
performance model. This time the code generator will return a software driver code to run on the
host CPU and an optimized stencil accelerator design to deploy on the chosen FPGA platform.

In summary, with our automation framework SASA, for a given FPGA platform, users can easily
define the stencil computing parameters (i.e., input and output data dimension, iteration number,
and stencil operation) through a high-level DSL. To automate the design space exploration, we
derive analytical models for all five types of parallelisms shown in Figure 4, 5 and 6. As a result, our
automation framework supports arbitrary stencil workload and can generate performance portable
accelerator designs with the optimized parallelism across different HBM-based FPGAs.

5 EXPERIMENTAL RESULTS
In this section, we conduct a comprehensive evaluation of our proposed framework SASA and
compare it to state-of-the-art automatic stencil acceleration framework SODA [4], which only
exploits temporal parallelism. First, we introduce the experiment setup of our evaluation. Second,

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:18 Xingyu Tian, Zhifan Ye, Alec Lu, Licheng Guo, Yuze Chi, and Zhenman Fang

we present the improvement of our single PE optimization over SODA. Finally, we compare different
parallelism optimizations, and discuss the results of the best parallelism configuration.

5.1 Experimental Setup
We evaluate a wide range of stencil benchmarks including:
1. JACOBI2D/3D from from SODA testbench. They are a 2D 5-point stencil kernel and a 3D 7-point

stencil kernel, respectively. They are used in linear algebra algorithms to find the solution for
linear equations.

2. BLUR from SODA testbench [4]. It is a 2D 9-point stencil kernel. It is commonly used for edge
smoothing and noise removing in image processing domains.

3. SEIDEL2D from SODA testbench. It is a 2D 9-point stencil kernel and used in linear algebra to
solve a system or linear equations.

4. DILATE from the Rodinia-HLS benchmark suite [6]. It is a 2D 13-point stencil kernel and used
to detect and track leukocyte of blood vessel in biomedical research.

5. HOTSPOT from the Rodinia-HLS benchmark suite. It is a 2D 5-point stencil kernel with two
inputs and one output. It is used to estimate processor temperature based on power grid and
temperature of the corresponding area.

6. HEAT3D from SODA testbench. It is a 3D 7-point stencil kernel and used for heat diffusion
simulation.

7. SOBEL2D from SODA testbench. It is a 2D 9-point stencil kernel and used for image processing,
particularly for edge detection.
We use four different input sizes, 256 × 256, 720 × 1024, 9720 × 1024 and 4096 × 4096, when

evaluating all the 2-dimensional stencil benchmarks; and use 256 × 16 × 16, 720 × 32 × 32, 9720 ×
32 × 32 and 4096 × 64 × 64, input sizes for the 3-dimensional stencil benchmarks. Furthermore,
we sweep the iteration number from 1 to 64 at a power of 2 increment. Note that when the
iteration number is 1, spatial parallelism and hybrid parallelism will be the same and have the same
throughput. All these stencil kernels are written in the stencil DSL as illustrated in Section 4.1.

We evaluate SASA on Xilinx Alevo U280 datacenter FPGA board with 32 HBM2 banks [28]. First,
SASA compiles the stencil DSL into the optimized FPGA design in Xilinx Vitis HLS C++ with TAPA
APIs [5] and the corresponding host code. Then it uses AutoBridge [14] to do the floorplanning
and pipelining optimizations for our design and Vitis 2020.2 [29] to build the generated design to
run on the U280 FPGA. We set 225 MHz as the target frequency of our designs since all of them
use 512-bit wide streaming connections and can already fully utilize the effective bandwidth from
each HBM memory bank. This is because on the U280 FPGAs, the two HBM stacks operate at
450 MHz, and are connected to 32 hardened AXI ports in width of 256-bit. Therefore, to achieve
the HBM memory bandwidth using a 512-bit AXI port, the kernel frequency needs to be above
450MHz × 256-bit / 512-bit = 225MHz. And the theoretical peak bandwidth of a single 512-bit
AXI port accessing a single HBM bank is 512 bits/cycle × 225MHz / 8 bits-per-byte = 14.4GB/s.

5.2 Results for Single PE Optimization
To demonstrate the quality of our design, we first evaluate our optimized single PE design, which
accelerates one stencil iteration using the optimized streaming access from one HBM bank. From
the performance perspective, it saturates the bandwidth of a single HBM bank by placing 16 parallel
PUs (processing units) inside each PE to execute in a fully streaming fashion. Therefore, it achieves
the optimal performance given one HBM bank, which is the same as SODA [4] that uses the optimal
data reuse size and memory access requirement.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

SASA: A Scalable and Automatic Stencil Acceleration Framework for Optimized Hybrid Spatial and Temporal Parallelism
on HBM-based FPGAs 1:19

0

1

2

3

4

5

JA
CO
BI2
D

JA
CO
BI3
D

BL
UR

SE
IDE
L2
D

DIL
AT
E

HO
TS
PO
T

HE
AT
3D

SO
BE
L2
DR

es
ou

rc
e

U
til

iz
at

io
n

(%
)

SASA SODA SODA-opt

(a) BRAM utilization

0

1

2

3

4

5

6

JA
CO
BI2
D

JA
CO
BI3
D

BL
UR

SE
IDE
L2
D

DIL
AT
E

HO
TS
PO
T

HE
AT
3D

SO
BE
L2
DR

es
ou

rc
e

U
til

iz
at

io
n

(%
)

SASA SODA SODA-opt

(b) FF utilization

0
1
2
3
4
5
6
7

JA
CO
BI2
D

JA
CO
BI3
D

BL
UR

SE
IDE
L2
D

DIL
AT
E

HO
TS
PO
T

HE
AT
3D

SO
BE
L2
DR

es
ou

rc
e

U
til

iz
at

io
n

(%
)

SASA SODA SODA-opt

(c) DSP utilization

0

2

4

6

8

10

12

JA
CO
BI2
D

JA
CO
BI3
D

BL
UR

SE
IDE
L2
D

DIL
AT
E

HO
TS
PO
T

HE
AT
3D

SO
BE
L2
DR

es
ou

rc
e

U
til

iz
at

io
n

(%
)

SASA SODA SODA-opt

(d) LUT utilization

Fig. 8. Resource utilization of a single PE saturating one HBM bank bandwidth on Alveo U280 for the input
size of 9720×1024 and 9720×32×32

Next, we focus on the comparison of its resource consumption. Figure 8 shows an overall
resource utilization comparison with original SODA and optimized SODA (i.e., SODA-opt) that
is integrated with TAPA/AutoBridge [5, 14] for a fair comparison, including BRAM, FF, DSP and
LUT consumption. Compared to the original SODA, the major benefit of our design comes from
removing the on-chip line buffer by introducing the coalesced reuse buffer design. It brings a 4.3%-
69.8% reduction in the BRAM utilization compared to the previous SODA design. Consequently, the
BRAM reduction further reduces the FFs and LUTs consumption of the design by 12.9%-34.8% and
1.8%-51.7%, respectively. Since both of SODA and our design use the same fine-grained parallelism
and place 16 PUs inside each PE (i.e., loop unroll factor 𝑈 = 16), we both achieve the same DSP
utilization. Note that DILATE only has boolean logic operations and thus does not utilize any DSP
resource.
For the majority of benchmarks, both our implementation and the optimized SODA achieve a

similar amount of resources.

5.3 Results for Different Multi-PE Parallelisms
In this subsection, we first validate the accuracy our analytical performancemodel. Thenwe evaluate
the performance trend of temporal parallelism, two spatial parallelisms, and two hybrid parallelisms,
respectively, when the number of iterations changes. Finally, we compare the performance between
temporal, spatial, and hybrid parallelisms and summarize the best parallelism configurations. All
results for different parallelisms are summarized in Figure 10 to 17, which are measured using the
common throughput metric GCell/s (i.e., how many billion of stencil data cells it can process per
second).

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:20 Xingyu Tian, Zhifan Ye, Alec Lu, Licheng Guo, Yuze Chi, and Zhenman Fang

0

1

2

3

4

5

JA
CO
BI2
D

JA
CO
BI3
D

BL
UR

SE
IDE
L2
D

DI
LA
TE

HO
TS
PO
T

HE
AT
3D

SO
BE
L2
D

Av
er

ag
e

Er
ro

r R
at

e
(%

) Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

Fig. 9. Accuracy of our analytical performance model

5.3.1 Performance Model Accuracy. To evaluate the accuracy of our analytical performance model,
we run awide range of configurations, including different iteration numbers and different parallelism
optimizations for each stencil kernel, and compare the model predicted execution time with the
actual measured time of on-board execution. Figure 9 shows the average (histogram), maximum (top
bar), and minimum (bottom bar) error rates of our performance model for each stencil benchmark
with different parallelism optimizations. For each histogram, the error rate is averaged across
different numbers of stencil iterations from 1 to 64. For all configurations, our performance model
has an error rate within 5% in estimating the performance of our accelerator designs.

0

10

20

30

40

50

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
(G

Ce
lls

/s
)

Iteration Number

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(a) Throughput of BLUR 256 × 256

0

10

20

30

40

50

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
(G

Ce
lls

/s
)

Iteration Number

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(b) Throughput of BLUR 720 × 1024

0

10

20

30

40

50

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
(G

Ce
lls

/s
)

Iteration Number

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(c) Throughput of BLUR 9720 × 1024

0

10

20

30

40

50

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
(G

Ce
lls

/s
)

Iteration Number

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(d) Throughput of BLUR 4096 × 4096

Fig. 10. Throughput (GCell/s) comparison of different parallelism optimizations for BLUR with the number
of iterations changing from 1 to 64

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

SASA: A Scalable and Automatic Stencil Acceleration Framework for Optimized Hybrid Spatial and Temporal Parallelism
on HBM-based FPGAs 1:21

0

10

20

30

40

50

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
(G

Ce
lls

/s
)

Iteration Number

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(a) Throughput of SEIDEL2D 256 × 256

0

10

20

30

40

50

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
(G

Ce
lls

/s
)

Iteration Number

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(b) Throughput of SEIDEL2D 720 × 1024

0

10

20

30

40

50

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
(G

Ce
lls

/s
)

Iteration Number

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(c) Throughput of SEIDEL2D 9720 × 1024

0

10

20

30

40

50

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
(G

Ce
lls

/s
)

Iteration Number

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(d) Throughput of SEIDEL2D 4096 × 4096

Fig. 11. Throughput (GCell/s) comparison of different parallelism optimizations for SEIDEL2D with the
number of iterations changing from 1 to 64

5.3.2 Performance Results of Temporal Parallelism Designs. As shown in Figure 10 to Figure 17, the
performance of the temporal parallelism designs generally increases with the iteration number, as
more stencil iterations are concurrently processed on the FPGA in a dataflow fashion. This linear
performance improvement trend stops when we could not instantiate more temporal stages (i.e.,
stencil iterations) on the FPGA. For most benchmarks, their maximum number of PEs in temporal
parallelism designs are between 9 to 15 when their iteration number is large enough, as shown in
Figure 18 to 20. Therefore, their throughput increases linearly as the iteration number grows from 1
to 8. The two exceptions are JACOBI2D and DILATE. Their linear throughput increase is achieved
when iteration ranges from 1 to 16 since their maximum PE numbers are 21 and 18, respectively.

When the iteration number is larger than the maximum number of PEs, this performance does
not improve linearly with the iteration number; the performance is mainly decided by the ratio of
iteration number and rounds of FPGA kernel execution. For example, in BLUR, when the iteration
number is 32 and 16, respectively, the maximum number of PEs is 12 in both cases; therefore, the
numbers of FPGA kernel runs are 3 and 2, respectively. While the work to be done is increased by
twice from iteration number 16 to 32, the execution time is only increased by 3/2 = 1.5×. In this
way, the throughput of iteration number 32 is larger than that of iteration number 16.

5.3.3 Performance Results of Spatial Parallelism Designs. To better understand the performance
difference between the two spatial parallelism design variants presented in Section 3.3, 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅
and 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 , we further analyze the performance trend of these two designs at different iteration
numbers, input sizes and stencil kernels. As shown in Figure 10 to Figure 17, for the 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅
design, its performance generally decreases as the iteration number increases. This is mainly due
to the increase of the halo data processing as the iteration number increases. The performance
decrease is worse on smaller input sizes as halo data increase has more significant impact on smaller
input sizes. For example, the throughput of 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅 drops faster at 256 × 256 and 720 × 1024

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:22 Xingyu Tian, Zhifan Ye, Alec Lu, Licheng Guo, Yuze Chi, and Zhenman Fang

0

10

20

30

40

50

60

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
(G

Ce
lls

/s
)

Iteration Number

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(a) Throughput of DILATE 256 × 256

0

10

20

30

40

50

60

70

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
(G

Ce
lls

/s
)

Iteration Number

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(b) Throughput of DILATE 720 × 1024

0

10

20

30

40

50

60

70

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
(G

Ce
lls

/s
)

Iteration Number

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(c) Throughput of DILATE 9720 × 1024

0

10

20

30

40

50

60

70

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
(G

Ce
lls

/s
)

Iteration Number

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(d) Throughput of DILATE 4096 × 4096

Fig. 12. Throughput (GCell/s) comparison of different parallelism optimizations for DILATE with the number
of iterations changing from 1 to 64

0

10

20

30

40

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
(G

Ce
lls

/s
)

Iteration Number

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(a) Throughput of HOTSPOT 256 × 256

0

10

20

30

40

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
(G

Ce
lls

/s
)

Iteration Number

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(b) Throughput of HOTSPOT 720 × 1024

0

10

20

30

40

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
(G

Ce
lls

/s
)

Iteration Number

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(c) Throughput of HOTSPOT 9720 × 1024

0

10

20

30

40

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
(G

Ce
lls

/s
)

Iteration Number

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(d) Throughput of HOTSPOT 4096 × 4096

Fig. 13. Throughput (GCell/s) comparison of different parallelism optimizations for HOTSPOT with the
number of iterations changing from 1 to 64

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

SASA: A Scalable and Automatic Stencil Acceleration Framework for Optimized Hybrid Spatial and Temporal Parallelism
on HBM-based FPGAs 1:23

0

10

20

30

40

50

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
(G

Ce
lls

/s
)

Iteration Number

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(a) Throughput of HEAT3D 256 × 16 × 16

0

10

20

30

40

50

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
(G

Ce
lls

/s
)

Iteration Number

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(b) Throughput of HEAT3D 720 × 32 × 32

0

10

20

30

40

50

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
(G

Ce
lls

/s
)

Iteration Number

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(c) Throughput of HEAT3D 9720 × 32 × 32

0

10

20

30

40

50

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
(G

Ce
lls

/s
)

Iteration Number

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(d) Throughput of HEAT3D 4096 × 64 × 64

Fig. 14. Throughput (GCell/s) comparison of different parallelism optimizations for HEAT3D with the number
of iterations changing from 1 to 64

0

10

20

30

40

50

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
(G

Ce
lls

/s
)

Iteration Number

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(a) Throughput of SOBEL2D 256 × 256

0

10

20

30

40

50

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
(G

Ce
lls

/s
)

Iteration Number

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(b) Throughput of SOBEL2D 720 × 1024

0

10

20

30

40

50

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
(G

Ce
lls

/s
)

Iteration Number

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(c) Throughput of SOBEL2D 9720 × 1024

0

10

20

30

40

50

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
(G

Ce
lls

/s
)

Iteration Number

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(d) Throughput of SOBEL2D 4096 × 4096

Fig. 15. Throughput (GCell/s) comparison of different parallelism optimizations for SOBEL2D with the
number of iterations changing from 1 to 64

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:24 Xingyu Tian, Zhifan Ye, Alec Lu, Licheng Guo, Yuze Chi, and Zhenman Fang

input sizes in JACOBI2D compared with 9720 × 1024 and 4096 × 4096 input sizes. On the other
hand, the performance of the 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 design does not vary with the iteration number. This is
because the amount of halo data exchange remains the same as the iteration number increases.
These trends align with our performance model in Equations 5 and 6, respectively.

Comparing between these two design variants, when the iteration number is low (i.e., less than
4) and with the same number of PEs, as shown in Figure 10 to 15, 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅 and 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 achieve
about the same throughput. And as the iteration number increases, the 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 design can
maintain its performance and outperforms the 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅 design especially for smaller input sizes.
A few exceptions are, JACOBI2D (when input size is 720× 1024, 9720× 1024 and 4096× 4096) and
JACOBI3D (when input size is 720×32×32, 9720×32×32 and 4096×64×64), the 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅 design
achieves a better throughput than the 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 design as 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅 can place more PEs. This is
because, border streaming based approach consumes slightly more wires due to the streaming
connections than redundant computation based approach to implement border streaming, which
affects timing closure, especially when the increase of corss-SLR (i.e., cross-die) connections is
approaching FPGA board limit.

5.3.4 Performance Results of Hybrid Parallelism Designs. In hybrid parallelism designs, both tem-
poral and spatial parallelisms are exploited. The performance from 𝐻𝑦𝑏𝑟𝑖𝑑_𝑅 and 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 paral-
lelism designs reflects a combination of trend from both the temporal parallelism design as described
in Section 5.3.2 and the spatial designs discussed in Section 5.3.3.
1. When the iteration number is 1, the hybrid parallelism is the same as spatial parallelism, since

each spatial PE group has only one temporal stage. When iteration number is larger than 1,
there are multiple combinations of spatial parallelism degree and temporal parallelism degree.
For example, in JACOBI3D at 256 × 256, maximum number of PEs can be implemented is 15, as
shown in Figure 18 to 20. We choose the degree of spatial parallelism based on the number of
SLRs, which is 3 on Alevo U280 board. When iteration number is 2 and 4, 6 spatial PE groups
with 2 temporal stages will outperform 3 spatial PE groups with 5 temporal stages even with less
PEs. This is because the former can utilize more off-chip memory bandwidth without idle PEs.

2. Hybrid parallelism has a similar trend as spatial parallelism with the increase of the iteration
number, when the ratio of iteration number and rounds of FPGA kernel execution maintains
the same, especially when the iteration number is small. The effect of this ratio is illustrated
in Section 5.3.2. For example, in BLUR, SEIDEL2D and HEAT3D, the throughput of 𝐻𝑦𝑏𝑟𝑖𝑑_𝑅
decreases as the iteration number increases in the range from 4 to 64, since the ratio of iteration
number and rounds of FPGA kernel execution does not change. And the throughput of𝐻𝑦𝑏𝑟𝑖𝑑_𝑆
in the same iteration range stays the same as the pattern of 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 since they have the same
number of PEs.

3. However, when iteration number becomes large enough and this ratio of iteration number and
rounds of FPGA kernel execution changes, the throughput of hybrid parallelism will have a
noticeable change, as temporal parallelism plays a heavier role. Such pattern is more outstanding
at small input size, like 256 × 256. For example, in JACOBI2D, the throughput of 𝐻𝑦𝑏𝑟𝑖𝑑_𝑅
decreases slightly when iteration number ranges from 4 to 8, reflecting the characteristics
of spatial parallelism. However, there is a big performance boost when the iteration number
changes from 8 to 16, since the ratio changes and temporal parallelism play a heavier role. This
ratio change happens again when the iteration number changes from 16 to 64 in JACOBI2D.
Such turning points vary with the PE number; for example, in HOTSPOT, the turning points of
𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 are from 4 to 8 and from 16 to 32 since its PE number is 9.
For most benchmarks,𝐻𝑦𝑏𝑟𝑖𝑑_𝑅 and𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 have the same number of PEs.𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 achieves

a similar performance to 𝐻𝑦𝑏𝑟𝑖𝑑_𝑅 at a small iteration number. At a large iteration number,

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

SASA: A Scalable and Automatic Stencil Acceleration Framework for Optimized Hybrid Spatial and Temporal Parallelism
on HBM-based FPGAs 1:25

0

10

20

30

40

50

60

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
(G

Ce
lls

/s
)

Iteration Number

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(a) Throughput of JACOBI2D 256 × 256

0

10

20

30

40

50

60

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
(G

Ce
lls

/s
)

Iteration Number

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(b) Throughput of JACOBI2D 720 × 1024

0

10

20

30

40

50

60

70

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
(G

Ce
lls

/s
)

Iteration Number

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(c) Throughput of JACOBI2D 9720 × 1024

0

10

20

30

40

50

60

70

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
(G

Ce
lls

/s
)

Iteration Number

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(d) Throughput of JACOBI2D 4096 × 4096

Fig. 16. Throughput (GCell/s) comparison of different parallelism optimizations for JACOBI2D with the
number of iterations changing from 1 to 64

0

10

20

30

40

50

60

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
(G

Ce
lls

/s
)

Iteration Number

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(a) Throughput of JACOBI3D 256 × 16 × 16

0

10

20

30

40

50

60

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
(G

Ce
lls

/s
)

Iteration Number

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(b) Throughput of JACOBI3D 720 × 32 × 32

0

10

20

30

40

50

60

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
(G

Ce
lls

/s
)

Iteration Number

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(c) Throughput of JACOBI3D 9720 × 32 × 32

0

10

20

30

40

50

60

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
(G

Ce
lls

/s
)

Iteration Number

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(d) Throughput of JACOBI3D 4096 × 64 × 64

Fig. 17. Throughput (GCell/s) comparison of different parallelism optimizations for JACOBI3D with the
number of iterations changing from 1 to 64

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:26 Xingyu Tian, Zhifan Ye, Alec Lu, Licheng Guo, Yuze Chi, and Zhenman Fang

0
3
6
9

12
15
18
21
24

JA
CO
BI2
D

JA
CO
BI3
D

BL
UR

SE
IDE
L2
D

DIL
AT
E

HO
TS
PO
T

HE
AT
3D

SO
BE
L2
D

Nu
m

be
ro

f P
Es

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(a) Number of PEs with the number of iteration = 64

0

3

6

9

12

15

18

21

JA
CO
BI2
D

JA
CO
BI3
D

BL
UR

SE
IDE
L2
D

DIL
AT
E

HO
TS
PO
T

HE
AT
3D

SO
BE
L2
D

Nu
m

be
ro

f P
Es

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(b) Number of PEs with the number of iteration = 2

Fig. 18. Total number of PEs for different parallelisms on Alveo U280 with column size = 256

0
3
6
9

12
15
18
21
24

JA
CO
BI2
D

JA
CO
BI3
D

BL
UR

SE
IDE
L2
D

DIL
AT
E

HO
TS
PO
T

HE
AT
3D

SO
BE
L2
D

Nu
m

be
ro

f P
Es

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(a) Number of PEs with the number of iteration = 64

0

3

6

9

12

15

18

21

JA
CO
BI2
D

JA
CO
BI3
D

BL
UR

SE
IDE
L2
D

DIL
AT
E

HO
TS
PO
T

HE
AT
3D

SO
BE
L2
D

Nu
m

be
ro

f P
Es

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(b) Number of PEs with the number of iteration = 2

Fig. 19. Total number of PEs for different parallelisms on Alveo U280 with column size = 1024

0
3
6
9

12
15
18
21
24

JA
CO
BI2
D

JA
CO
BI3
D

BL
UR

SE
IDE
L2
D

DIL
AT
E

HO
TS
PO
T

HE
AT
3D

SO
BE
L2
D

Nu
m

be
ro

f P
Es

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(a) Number of PEs with the number of iteration = 64

0

3

6

9

12

15

18

21

JA
CO
BI2
D

JA
CO
BI3
D

BL
UR

SE
IDE
L2
D

DIL
AT
E

HO
TS
PO
T

HE
AT
3D

SO
BE
L2
D

Nu
m

be
ro

f P
Es

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(b) Number of PEs with the number of iteration = 2

Fig. 20. Total number of PEs for different parallelisms on Alveo U280 with column size = 4096

𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 outperforms 𝐻𝑦𝑏𝑟𝑖𝑑_𝑅, because the 𝐻𝑦𝑏𝑟𝑖𝑑_𝑅 design requires redundant computation
for more halo data than 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 . Lastly, there is only one case where the border streaming based
approach achieves fewer PEs than the redundant computation based approach. Specifically, for
JACOBI2D at 9270 × 1024 and 4096 × 4096, 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 has fewer PEs than 𝐻𝑦𝑏𝑟𝑖𝑑_𝑅. As a result,
when the iteration number is 32, the performance of 𝐻𝑦𝑏𝑟𝑖𝑑_𝑅 is better than 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 . However,
such advantage is offset by the redundant halo computation overhead for other iteration numbers.

5.3.5 Performance Impact by Different Input Sizes. For the four different stencil input sizes, 256x256,
720x1024, 9720x1024, and 4096x4096 (for 2D stencils), we have made the following observations.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

SASA: A Scalable and Automatic Stencil Acceleration Framework for Optimized Hybrid Spatial and Temporal Parallelism
on HBM-based FPGAs 1:27

First, for the majority of our stencil benchmarks under these input sizes (more specifically,
different column sizes), the row buffer resource consumption did not become a bottleneck, as each
PE roughly needs to buffer only two rows of data on-chip.

Second, the row sizes do have a performance impact, especially for the redundant computation
based spatial parallelism (𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅) and hybrid parallelism (𝐻𝑦𝑏𝑟𝑖𝑑_𝑅). With a smaller row size
(e.g., 256), when the iteration count becomes larger, the performance of 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅 decreases
significantly as the redundant computation adds a very significant overhead. Therefore, the border
streaming based spatial parallelism (𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆) is a better choice. While with a larger row size
(e.g., 9720), such overhead is much smaller and the difference between 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅 and 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 is
marginal. A similar performance impact is observed for 𝐻𝑦𝑏𝑟𝑖𝑑_𝑅.
Third, in general, the overall throughput for the small 256x256 input size is relatively lower

than those with larger input sizes. The reasons are twofold. First, the execution time of extra halo
regions for a smaller input size occupies a high execution time percentage, i.e., the overhead is
bigger. Second, with the smaller input size, the memory burst size for each HBM bank is relatively
small, thus leading to lower off-chip memory bandwidth utilization.

5.3.6 Performance Comparison between Temporal, Spatial, and Hybrid Parallelisms. Overall, tem-
poral parallelism achieves the lowest performance amongst all parallelism variants. When the
iteration count is low, e.g., 1 or 2, temporal parallelism cannot efficiently exploit the HBM memory
bandwidth. Even when the iteration count is as large as 64, temporal parallelism also may not give
the best performance since the iteration count may not be evenly divisible by the temporal stages
instantiated on hardware. Take JACOBI2D as an example, there are 21 temporal stages on the
hardware as shown in Figure 20a. When its iteration count is 64, it needs to execute the hardware
ceil (64/21) = 4 rounds. In the last round, there is only one last iteration (64 - 21×3 = 1) that needs
to be executed; 20 temporal stages on hardware are under-utilized.
For the remaining parallelism variants, spatial and hybrid, boarder streaming based approach

generally achieves better performance than the redundant computation based method as detailed
above in Section 5.3.3 and Section 5.3.4. However, depending on stencil kernel, iteration number,
and input sizes, the best parallelism may vary.

First, there are cases where 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 and 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 achieve a similar performance and are the
best among all parallelisms, specifically for BLUR, SEIDEL2D, and HEAT3D kernels. The reason is
that both parallelisms have 12 PEs and can fully utilize them under different iteration numbers
and input sizes. Specifically for 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 , when the iteration number is 2, the degree of spatial
parallelism is 6 and the degree of temporal parallelism is 2; when the iteration number larger than
2, the degree of spatial parallelism is 3 and the degree of temporal parallelism is 4. Therefore, all 12
PEs can be fully utilized with different iteration numbers.

Second, there are cases where 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 outperforms 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 and 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 is the best among
all parallelisms, specifically for DILATE, SOBEL2D, JACOBI2D with large iteration number, and
JACOBI3D with large iteration number. There are two reasons behind this: 1) for DILATE and
JACOBI2D, due to the HBM bank (i.e., bandwidth) restriction, 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 has fewer PEs than
𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 ; 2) for SOBEL2D and JACOBI3D, 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 has fewer PEs than 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 as it is harder
to pass the timing closure.
Third, there is also one case where 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 achieves a better performance than 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆

and is the best, specifically for HOTSPOT at a small iteration number. In fact, both 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 and
𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 have 9 PEs in this case. However, in 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 , the degree of spatial parallelism is 3 and
the degree of temporal parallelism is 3, which cannot be evenly divided by the iteration number. As
a result, some PEs are underutilized in 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 , leading to a lower performance than 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 .

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:28 Xingyu Tian, Zhifan Ye, Alec Lu, Licheng Guo, Yuze Chi, and Zhenman Fang

Table 3. Configuration of the best parallelism on Alveo U280, for the input size of 9720x1024

Iteration = 64 Iteration = 2

Parallelism Frequency k s #HBM
banks Parallelism Frequency k s #HBM

banks
JACOBI2D Hybrid_S 250 MHz 3 7 6 Spatial_R 233 MHz 15 1 30
JACOBI3D Hybrid_S 250 MHz 3 5 6 Spatial_R 226 MHz 15 1 30

BLUR Hybrid_S 249 MHz 3 4 6 Spatial_R 229 MHz 12 1 24
SEIDEL2D Hybird_S 225 MHz 3 4 6 Spatial_R 225 MHz 12 1 24
DILATE Hybrid_S 250 MHz 3 6 6 Hybrid_S 250 MHz 6 2 12

HOTSPOT Hybrid_S 250 MHz 3 3 9 Spatial_S 250 MHz 9 1 27
HEAT3D Hybrid_S 225 MHz 3 4 6 Spatial_R 230 MHz 12 1 24
SOBEL2D Hybrid_S 250 MHz 3 4 6 Hybrid_S 250 HHz 3 4 6

Lastly, there are two exceptional cases where 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅 performs better than 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 and is
the best, specifically for JACOBI2D and JACOBI3D when the iteration number is small and the
number of input rows is large. This is because the𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 significantly under-utilizes the number
of PEs when the iteration count is small, especially when iteration count is 2 or 4. For example,
𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅 of JACOBI3D can utilize all 15 PEs when the iteration number is 2, while 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 can
only utilizes 12 PEs with the best configuration of 6 spatial PE groups and 2 temporal PEs in each
group.

5.3.7 The Best Parallelism Configurations and Their Resource Utilization. As discussed above, the
best parallelism optimization varies with the stencil benchmark and the number of iterations.
Table 3 summarizes the best parallelism configuration for each benchmark for the input size of
9720×1024, when the number of iterations is 64 and 2, respectively. When the number of iterations
is 64, 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 achieves the best performance for all benchmarks as it is not affected by the
redundant halo computation overhead. Note that one advantage of hybrid parallelism over spatial
parallelism is that it requires much less off-chip bandwidth (shown as the number of HBM banks
in Table 3). When the number of iterations is 2, spatial parallelism achieves the best performance
for most benchmarks for most of the benchmarks; both 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅 or 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 achieve a similar
performance. There are some exceptions, DILATE and SOBLE2D, where𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 achieves the best
performance. This is because their 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅 and 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 parallelism implements less number
of PEs due to the limitation of the available HBM banks and timing closure issues, respectively.
For the best parallelism configurations, the degree of spatial parallelism (𝑘) and the number of

temporal stages (𝑠) are also included in Table 3. These number also vary between benchmarks,
which again highlights the importance of an automation framework to compile the high-level DSL
to the optimized FPGA design. All of our designs achieve a clock frequency of at least 225 MHz to
fully utilize bandwidth of each HBM bank.
Finally, we also show the utilization of on-chip resources and off-chip HBM banks for the best

parallelism configurations in Figure 21 and Table 3, respectively. The bottleneck resource changes as
the computation intensity increases. As shown in Figure 21, for benchmarks with lower computation
intensity, such as JACOBI2D, JACOBI3D, BLUR, SEIDEL2D, and DILATE, LUT has the highest
resource utilization rate compared with other resources. For benchmarks with higher computation
intensity, such as HOTSPOT, HEAT3D, and SOBEL2D, DSP is the bottleneck to scale up to more
PEs.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

SASA: A Scalable and Automatic Stencil Acceleration Framework for Optimized Hybrid Spatial and Temporal Parallelism
on HBM-based FPGAs 1:29

0
10
20
30
40
50
60
70
80

JA
CO
BI2
D

JA
CO
BI3
D

BL
UR

SE
ID
EL2
D

DIL
AT
E

HO
TS
PO
T

HE
AT
3D

SO
BE
L2
D

Re
so

ur
ce

 U
til

iz
at

io
n(

%
)

BRAM LUT FF DSP

(a) Resource utilization of the best parallelism with
the number of iteration = 64

0
10
20
30
40
50
60
70
80

JA
CO
BI2
D

JA
CO
BI3
D

BL
UR

SE
ID
EL2
D

DIL
AT
E

HO
TS
PO
T

HE
AT
3D

SO
BE
L2
D

Re
so

ur
ce

 U
til

iz
at

io
n(

%
)

BRAM LUT FF DSP

(b) Resource utilization of the best parallelism with
the number of iteration = 2

Fig. 21. Resource utilization of the best parallelism configuration on Alveo U280, for the input size of 9720x1024

5.4 Comparison to Prior Work
As discussed in Section 3.1, SODA [4] is less efficient than our SASA temporal parallelism imple-
mentation due to the additional on-chip line buffer usage. To conduct a fair comparison between
SODA and SASA , we integrate SODA with TAPA/AutoBridge [5, 14] to address the major resource
inefficiency, and rerun all the experiments on the same HBM-based U280 FPGA. The on-chip line
buffer to buffer the input data from off-chip memory, shown in Figure 8, is also removed in this
integration, since TAPA replaces the resource-inefficient AXI interface with a lightweight streaming
interface. As a result, both SODA and SASA temporal parallelism implementation achieve the same
performance. However, SODA only supports temporal parallelism, and does not support other
types of parallelisms that we have explored in this paper; therefore, its performance is sub-optimal
when the iteration count is small or the iteration count cannot be evenly divided by the temporal
stages in the hardware design. Compared to SODA, SASA achieves better throughput with an
average of at least 3.74× speedup across all configurations. The highest speedup over temporal
parallelism is reached in JACOBI3D when iteration number is 1, where redundant computation
based spatial parallelism can reach 15.73× speedup.
The stencil accelerator design proposed in [30] only supports temporal parallelism and its

throughput is measured when the iteration count is super large. For temporal parallelism, the
throughput is determined by the bandwidth of a single memory bank. Since their FPGA uses DDR4,
which has a higher bandwidth (19.2GB/s theoretical bandwidth) than that of a single HBM bank
(14.4GB/s theoretical bandwidth) in our results, their reported GCell/s is higher than ours. However,
for the given HBM bank, our implementation already achieves the best performance that the HBM
bank can achieve. More importantly, we have explored different parallelisms and can automatically
generate the design with the best parallelism.

6 CONCLUSION
In this paper we propose a scalable and automatic stencil acceleration framework on modern
HBM-based FPGAs called SASA. In terms of the accelerator design architecture, SASA employs a
multi-PE approach to exploit temporal and spatial parallelisms for better scalability. Each single PE
design is optimized for on-chip data reuse, off-chip memory access, and the on-chip buffer usage.
For design automation, SASA provides a high-level DSL for domain experts to configure and define
the stencil operation. Then a code generator automatically explores the design space based on our
analytical performance model and generates an optimized stencil accelerator design with the best

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:30 Xingyu Tian, Zhifan Ye, Alec Lu, Licheng Guo, Yuze Chi, and Zhenman Fang

parallelism optimization. Experimental results across a wide range of stencil benchmarks show
that our SASA can achieve
speedup on the HBM-based Xilinx Alveo U280 FPGA, compared to state-of-the-art automatic

stencil acceleration framework SODA [4] that only exploits temporal parallelism. Finally, we plan
to open source our tool in the near future.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

SASA: A Scalable and Automatic Stencil Acceleration Framework for Optimized Hybrid Spatial and Temporal Parallelism
on HBM-based FPGAs 1:31

REFERENCES
[1] Falah Alobaid, Nabil Baraki, and Bernd Epple. 2014. Investigation into improving the efficiency and accuracy of

CFD/DEM simulations. Particuology 16 (2014), 41–53.
[2] Riccardo Cattaneo, Giuseppe Natale, Carlo Sicignano, Donatella Sciuto, and Marco Domenico Santambrogio. 2015. On

How to Accelerate Iterative Stencil Loops: A Scalable Streaming-Based Approach. ACM Trans. Archit. Code Optim. 12,
4, Article 53 (dec 2015), 26 pages.

[3] Yuze Chi and Jason Cong. 2020. Exploiting Computation Reuse for Stencil Accelerators. In Proceedings of the 57th
ACM/EDAC/IEEE Design Automation Conference. Article 184, 6 pages.

[4] Yuze Chi, Jason Cong, Peng Wei, and Peipei Zhou. 2018. SODA: Stencil with Optimized Dataflow Architecture. In 2018
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 1–8.

[5] Yuze Chi, Licheng Guo, Jason Lau, Young-kyu Choi, JieWang, and Jason Cong. 2021. Extending High-Level Synthesis for
Task-Parallel Programs. In 2021 IEEE 29th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM). 204–213. https://doi.org/10.1109/FCCM51124.2021.00032

[6] Jason Cong, Zhenman Fang, Michael Lo, Hanrui Wang, Jingxian Xu, and Shaochong Zhang. 2018. Understanding
Performance Differences of FPGAs and GPUs. In 2018 IEEE 26th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM). 93–96. https://doi.org/10.1109/FCCM.2018.00023

[7] Patrick Cooke, Jeremy Fowers, Lee Hunt, and Greg Stitt. 2013. A High-Performance, Low-Energy FPGA Accelerator
for Correntropy-Based Feature Tracking (Abstract Only). In Proceedings of the ACM/SIGDA International Symposium
on Field Programmable Gate Arrays (Monterey, California, USA) (FPGA ’13). Association for Computing Machinery,
New York, NY, USA, 278.

[8] Kaushik Datta, Shoaib Kamil, Samuel Williams, Leonid Oliker, John Shalf, and Katherine Yelick. 2009. Optimization
and Performance Modeling of Stencil Computations on Modern Microprocessors. SIAM Rev. 51, 1 (2009), 129–159.
http://www.jstor.org/stable/20454196

[9] I. Dejanović, R. Vaderna, G. Milosavljević, and Ž. Vuković. 2017. TextX: A Python tool for Domain-Specific Languages
implementation. Knowledge-Based Systems 115 (2017), 1–4. https://doi.org/10.1016/j.knosys.2016.10.023

[10] Changdao Du and Yoshiki Yamaguchi. 2020. High-Level Synthesis Design for Stencil Computations on FPGA with
High Bandwidth Memory. Electronics 9, 8 (2020).

[11] Juan Escobedo and Mingjie Lin. 2018. Graph-Theoretically Optimal Memory Banking for Stencil-Based Computing
Kernels. In Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (Monterey,
CALIFORNIA, USA) (FPGA ’18). Association for Computing Machinery, New York, NY, USA, 199–208.

[12] Esmaeil Faramarzi, Dinesh Rajan, and Marc P. Christensen. 2013. Unified Blind Method for Multi-Image Super-
Resolution and Single/Multi-Image Blur Deconvolution. IEEE Transactions on Image Processing 22, 6 (2013), 2101–2114.

[13] Iman Firmansyah, Yusuf NurWijayanto, and Yoshiki Yamaguchi. 2018. 2D Stencil Computation on Cyclone V SoC FPGA
using OpenCL. In 2018 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications
(ICRAMET). 121–124.

[14] Licheng Guo, Yuze Chi, Jie Wang, Jason Lau, Weikang Qiao, Ecenur Ustun, Zhiru Zhang, and Jason Cong. 2021.
AutoBridge: Coupling Coarse-Grained Floorplanning and Pipelining for High-Frequency HLS Design on Multi-
Die FPGAs. In The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. Association for
Computing Machinery, 81–92.

[15] Licheng Guo, Pongstorn Maidee, Yun Zhou, Chris Lavin, Jie Wang, Yuze Chi, Weikang Qiao, Alireza Kaviani, Zhiru
Zhang, and Jason Cong. 2022. RapidStream: Parallel Physical Implementation of FPGA HLS Designs. In Proceedings of
the 2022 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 1–12.

[16] Justin Holewinski, Louis-Noël Pouchet, and P. Sadayappan. 2012. High-Performance Code Generation for Stencil
Computations on GPU Architectures. In Proceedings of the 26th ACM International Conference on Supercomputing.
311–320.

[17] Kamalavasan Kamalakkannan, Gihan R. Mudalige, István Z. Reguly, and Suhaib A. Fahmy. 2021. High-Level FPGA
Accelerator Design for Structured-Mesh-Based Explicit Numerical Solvers. In 2021 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). 1087–1096.

[18] Nikolaos Kyparissas and Apostolos Dollas. 2020. Large-Scale Cellular Automata on FPGAs: A New Generic Architecture
and a Framework. ACM Trans. Reconfigurable Technol. Syst. 14, 1, Article 5 (dec 2020), 32 pages.

[19] Kazuaki Matsumura, Hamid Reza Zohouri, Mohamed Wahib, Toshio Endo, and Satoshi Matsuoka. 2020. AN5D:
Automated Stencil Framework for High-Degree Temporal Blocking on GPUs. 199–211.

[20] Giuseppe Natale, Giulio Stramondo, Pietro Bressana, Riccardo Cattaneo, Donatella Sciuto, and Marco D. Santambrogio.
2016. A polyhedral model-based framework for dataflow implementation on FPGA devices of Iterative Stencil Loops.
In 2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 1–8.

[21] Anthony Nguyen, Nadathur Satish, Jatin Chhugani, Changkyu Kim, and Pradeep Dubey. 2010. 3.5-D Blocking
Optimization for Stencil Computations on Modern CPUs and GPUs. In SC ’10: Proceedings of the 2010 ACM/IEEE

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1109/FCCM51124.2021.00032
https://doi.org/10.1109/FCCM.2018.00023
http://www.jstor.org/stable/20454196
https://doi.org/10.1016/j.knosys.2016.10.023

1:32 Xingyu Tian, Zhifan Ye, Alec Lu, Licheng Guo, Yuze Chi, and Zhenman Fang

International Conference for High Performance Computing, Networking, Storage and Analysis. 1–13.
[22] Enrico Reggiani, Emanuele Del Sozzo, Davide Conficconi, Giuseppe Natale, Carlo Moroni, and Marco D. Santambrogio.

2021. Enhancing the Scalability of Multi-FPGA Stencil Computations via Highly Optimized HDL Components. ACM
Trans. Reconfigurable Technol. Syst. 14, 3, Article 15 (aug 2021), 33 pages.

[23] Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan Gomez-Luna, Sander Stuijk, Onur Mutlu,
and Henk Corporaal. 2020. NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction
Modeling. In 2020 30th International Conference on Field-Programmable Logic and Applications (FPL). 9–17.

[24] Hasitha Muthumala Waidyasooriya and Masanori Hariyama. 2019. Multi-FPGA Accelerator Architecture for Stencil
Computation Exploiting Spacial and Temporal Scalability. IEEE Access 7 (2019), 53188–53201.

[25] Hengjie Wang and Aparna Chandramowlishwaran. 2020. Pencil: A Pipelined Algorithm for Distributed Stencils. In
SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. 1–16.

[26] Shuo Wang and Yun Liang. 2017. A comprehensive framework for synthesizing stencil algorithms on FPGAs using
OpenCL model. In 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6.

[27] Stephen Wolfram. 2018. Computation Theory of Cellular Automata. 159–202.
[28] Xilinx. 2020. Alveo U280 Data Center Accelerator Cards Data Sheet. https://www.xilinx.com/support/documentation/

data_sheets/ds963-u280.pdf Last accessed July 28, 2020.
[29] Xilinx. 2020. Vitis Unified Software Platform. https://www.xilinx.com/products/design-tools/vitis/vitis-platform.

html#development Last accessed Nov 26, 2021.
[30] Hamid Reza Zohouri, Artur Podobas, and Satoshi Matsuoka. 2018. Combined Spatial and Temporal Blocking for

High-Performance Stencil Computation on FPGAs Using OpenCL. In Proceedings of the 2018 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. 153–162.

[31] Hamid Reza Zohouri, Artur Podobas, and Satoshi Matsuoka. 2018. High-Performance High-Order Stencil Computation
on FPGAs Using OpenCL. In 2018 IEEE International Parallel and Distributed Processing SymposiumWorkshops (IPDPSW).
123–130.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://www.xilinx.com/support/documentation/data_sheets/ds963-u280.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds963-u280.pdf
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html#development
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html#development

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Stencil Computation
	2.2 FPGA Acceleration for Stencil Computation
	2.3 Goal of This Paper

	3 Scalable Stencil Accelerator Design with Hybrid Temporal and Spatial Parallelism
	3.1 Single PE Optimization
	3.2 Temporal Parallelism Optimization
	3.3 Spatial Parallelism Optimization
	3.4 Hybrid Parallelism Optimization

	4 Automation Framework for SASA
	4.1 Stencil DSL
	4.2 Analytical Performance Model
	4.3 Code Generator and Automation Tool Flow

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Results for Single PE Optimization
	5.3 Results for Different Multi-PE Parallelisms
	5.4 Comparison to Prior Work

	6 Conclusion
	References

