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Machine learning (ML) techniques increase the effectiveness of software engineering (SE) lifecycle activities. We systematically

collected, quality-assessed, summarized, and categorized 83 reviews in ML for SE published between 2009–2022, covering 6 117 primary

studies. The SE areas most tackled with ML are software quality and testing, while human-centered areas appear more challenging

for ML. We propose a number of ML for SE research challenges and actions including: conducting further empirical validation and

industrial studies on ML; reconsidering deficient SE methods; documenting and automating data collection and pipeline processes;

reexamining how industrial practitioners distribute their proprietary data; and implementing incremental ML approaches.
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1 INTRODUCTION

Machine learning (ML) is a thriving discipline with various practical applications and active research topics, many of

which nowadays entangle the discipline of software engineering (SE) [113]. Through ML we can address SE problems

that cannot be completely algorithmically modeled, or for which existing solutions do not provide satisfactory results

yet (e.g., defect/fault detection [16, 165, 180]). In addition, ML finds application in SE tasks where data cannot be easily

analyzed with other algorithms (e.g., software requirements, code comments, code reviews, issues [9, 91, 174]). Another

important aspect of ML is that it can significantly reduce manual effort in common SE tasks (e.g., automatic program

repair [157], code suggestion [61], defect prediction [19], malware detection [147], feature location [40]) with great

accuracy results [146, 164]. In fields such as health informatics ML and SE are considered complementary disciplines,

since the growing scale and complexity of healthcare datasets have posed a challenge for clinical practice and medical

research, requiring new engineering approaches from both fields [38].

In the early nineties, Huff and Selfridge [68] recognized the need for creating software systems that partially take

some responsibility for their own evolution, offering the ability to implement, measure, and assess changes easily.

These changes should also contribute to the overall improvement of the corresponding systems [142]. Around the same

time, Brooks [29] prompted software practitioners to investigate evolutionary advancements rather than waiting for
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2 Z. Kotti et al.

revolutionary ones, since magic solutions are not around the corner. As a result, a wave of evolutionary approaches

was developed to address certain inherent essential software challenges including complexity (“software entities are

more complex for their size than perhaps any other human construct”), changeability (“software is constantly subject to

pressures for change”), conformity (“software must conform to the human institutions and systems it comes to interface

with”), and invisibility (“the reality of software is not inherently embedded in space”) [28].

Among the proposed solutions, MLmethods were introduced as a viable alternative to existing SE approaches, yielding

encouraging results. Shortly after 2000, Zhang and Tsai [179] classified existing applications of ML methods to SE tasks

into seven activity types: prediction and estimation; property and model discovery; transformation; generation and

synthesis; reuse library construction and maintenance; requirement acquisition or recovery; development knowledge

management. Around sixty publications were identified as relevant and assigned to these categories, underpinning

the increasing trend of employing ML in SE. However, as the authors emphasize, “ML is not a panacea for all the SE

problems. To better use ML methods as tools to solve real-world SE problems, we need to have a clear understanding of

both the problems, and the tools and methodologies utilized.” Specifically, it is vital to be aware of the available ML

methods, their characteristics and theoretical foundations, and the circumstances under which they are most effectively

applied.

Twenty years later, ML has considerably affected the entire SE lifecycle, allowing developers to design, develop,

and deploy software in a better, faster, and cheaper manner [31]. In the requirements phase theorem provers are

used to identify systems with mutually compatible requirements that can coexist together, while in the execution

phase multi-objective genetic algorithms can simplify a system’s configuration. ML tools can contribute to a system’s

monitoring and optimization by limiting the required cloud resources, while in testing—the most covered phase by ML

according to a bibliometric analysis by Heradio et al. [66]—ML can automate the prioritization and execution of test

suites. Furthermore, ML tools can support the automatic identification and repair of software bugs. By logging these

activities, quality models can be trained to predict useful system features including software development and issue

resolution time, bug locations, or software development anti-patterns.

ML for SE, which concerns the application of ML techniques to SE processes and tools, should not be confused

with the similarly sounding “SE for ML” field. Although the second field’s title contains almost the same terms, its

topic is completely different, namely the application of the SE discipline in the development and operation of ML

applications [109]. Consequently, SE for ML will not concern us further in this review.

To facilitate and assess the impact of ML in SE, along with the aforementioned study by Zhang and Tsai [179],

various other secondary reviews have been performed. Due to the extended associated primary research that has

been published—more than 2 000 related documents were retrieved from Elsevier Scopus (see Section 3.2.1), secondary

reviews usually focus on a particular SE area, such as software testing (e.g., [44, 48, 178]) or design (e.g., [96, 176]). Still,

one might wonder what is the overall impact and current state of the practice of ML in SE, taking also into account that

some of the ML methods currently employed in SE are rarely encountered in conventional ML [113]. To the best of our

knowledge, there is no available tertiary review systematically summarizing and evaluating all the published secondary

studies in the intersection of the two fields.

This study aims to fill this gap by methodically collecting, assessing, analyzing, and categorizing existing secondary

research in Machine Learning for Software Engineering, which is commonly abbreviated as ML4SE. Through the

research questions outlined in Section 3.1 we identify what SE tasks have been tackled with ML techniques, which

SE knowledge areas could be better covered by ML techniques as well as the prominent ML techniques applied in SE.

We also provide a classification scheme for categorizing ML techniques in SE along four axes. Our findings suggest
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that ML is mainly employed for automating and optimizing testing; for predicting software faults, changes, quality,

maintainability, and defects; and for estimating cost and effort. Research opportunities lie in the areas of software

construction, configuration management, models and methods. In addition, we identify a need for more empirical and

industrial studies evaluating the application of ML techniques in SE. The majority of secondary reviews summarize

supervised (i.e., the training data are labeled), offline (i.e., the system weights are constant), model-based (i.e., patterns

are detected in the training data) learning techniques applied for classification, clustering, regression, pattern discovery,

information retrieval, and generation tasks.

Our research is structured as follows. In Section 2 we present related work comprising all identified tertiary reviews

in SE and ML4SE. Section 3 includes a detailed description of the research objectives, questions, and methods we adopted

to perform this tertiary review. In Section 4 we describe the study findings with respect to the data extraction process

and the research questions, with their discussion and implications unfolded in Section 5. The study limitations are

acknowledged in Section 6, and our final remarks and recommendations for researchers and practitioners are outlined

in Section 7. Following published recommendations [74], the code and data
1
associated with this endeavor are openly

available online, and can be used to perform further empirical studies.

2 RELATEDWORK

Tertiary studies (also called tertiary reviews) are systematic literature reviews (SLRs) that aggregate the data and infor-

mation from a number of existing systematic (secondary) studies (e.g., SLRs, systematic mapping studies, taxonomies)

over a specific topic [83]. There has been a noteworthy increase in the number of tertiary studies for the SE field since

2007, when recommended guidelines for performing SLRs in SE were published by Kitchenham and Charters [83]—in

Section 2.1 we present some key efforts. These help us identify the applicable methods, research questions, and possible

findings. At the time of writing, there is only one published tertiary study in ML4SE (focusing on a specific SE area)—this

is summarized in Section 2.2.

2.1 Tertiary Studies in SE

Through a tertiary study Kitchenham et al. [85] describe the status of SLRs in SE in terms of context and quality,

covering the years 2004–2008, and extending a previous work [84]. The authors report both quantitative and qualitative

information about the identified studies, such as the corresponding authors’ names and institutions, and the addressed

SE topics. The latter are investigated in terms of the knowledge areas (KAs) introduced by the Guide to the Software

Engineering Body of Knowledge (SWEBOK) [26], and their relation with the courses of the Curriculum Guidelines

for Undergraduate Degree Programs in SE [117]. They conclude that there has been an increase in the proportion of

evidence-based SE SLRs. Most studies tackle general SE topics, and are either industrial case studies or industrial surveys.

With regard to authors, Magne Jørgensen was the main contributor between 2004–2007, and since then 51 researchers

have co-authored up to two reviews each. In terms of origin, research in Europe has increased, complementing the

previous single presence of US institutions. The authors argue that, although the number of published SLRs is increasing,

the majority do not follow an established method. Nevertheless, the quality of the examined SLRs abiding by the

recommended guidelines has improved.

A number of tertiary reviews examine the evolution of systematic studies either in the complete SE field or in a

specific subfield. Salma et al. [73] highlight that the Journal of Information and Technology, the International Conference

1
https://doi.org/10.5281/zenodo.7082429
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4 Z. Kotti et al.

on Evaluation and Assessment in Software Engineering, and the Empirical Software Engineering Journal are the venues

with the most significant contributions in SE. Regarding methodology, the most troublesome SLR stage appears to be

the Search Strategy, followed by the Data Extraction, and the Inclusion/Exclusion Criteria. Da Silva et al. [43] report

an increase in the number of SE systematic reviews (particularly of systematic mapping studies) published between

2004–2009 as well as in the number of covered SE topics. Still, the quality of reviews seems to remain inferior. Hanssen

et al. [63] summarized systematic studies in the area of global software engineering (GSE) investigating agile practices.

Twelve SLRs were identified in GSE between 1990–2009, with some of them describing agile practices as an evolving

trend. Another study by Marimuthu and Chandrasekaran [106] presents 60 publications on the topic of software product

lines between 2008–2016, summarizing their type, quality, authors, publication venue, research topic, and limitations.

In the area of requirements engineering (RE), Bano et al. [21] retrieved 53 systematic reviews published between

2006–2014, and classified them according to the RE subareas. Non-functional requirements were assessed as the most

frequent subarea. The authors also evaluated the quality of the reviews using the York University, Centre for Reviews and

Dissemination Database of Abstracts of Reviews of Effects (DARE-4) criteria,
2
which we also used in our work—these

are presented in Table 2. Acknowledged inefficiencies of the reviews concern unreported or few primary studies, and

inadequately addressed RE subareas.

Distributed software development (DSD—also global software development) was another SE area summarized in the

identified tertiary studies. Alinne et al. [47] introduced a systematic tertiary study on communication in DSD, aiming to

identify and synthesize factors that influence its effectiveness, and discover its impact on project design. The authors

suggest that more research should be conducted on the topic, particularly on processes for effectively assessing the

maturity of communication in distributed teams. In another work, Marques et al. [107] collected 14 systematic studies

between 2008–2011 discussing the challenges of DSD, and mapped them with the identified solutions and approaches

that still need further investigation. Using the SWEBOK KAs, most studies were categorized in SE management and

process, software design, and requirements. With respect to authors and institutions, it appears that there is considerable

cooperation among researchers worldwide. Finally, Verner et al. [162] enumerated DSD systematic reviews between

2005–2011, and identified their topics, active researchers, publication venues, and study quality.

In the area of software testing, Garousi et al. [57] systematically summarized all state-of-the-art SLRs published

between 1994–2015. The authors identified the investigated areas of software testing, the addressed RQs, and the

citations of the secondary studies, along with characteristics of the associated primary studies (e.g., quality and types).

The tertiary findings reveal a slow improvement in the quality of the secondary studies over the years. Regular surveys

compose the most frequent type of review, and also receive significantly more citations than SLRs and systematic

mapping studies. The most popular testing method seems to be the model-based approach both in mobile and web

services, while regression and unit testing were assessed as the most popular testing phases. There appears to be room

for further secondary studies in various testing areas including test management, beta-testing, exploratory testing, test

stopping criteria, and test-environment development.

2.2 Tertiary Study in ML4SE

In the area of software effort estimation, Sreekumar et al. [130] going through 14 SLRs highlight that, although most

studies employ regression-based and ML techniques, it appears that expert judgment is still preferred by the industry

due to its intuitiveness. The use of ML techniques for effort estimation has been growing since 2017, combined with

2
https://web.archive.org/web/20070918200401/https://www.york.ac.uk/inst/crd/faq4.htm
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Fig. 1. Review Method

analogy-based estimation models. Concerning accuracy metrics, there is an increasing use of Mean Magnitude of

Relative Error (MMRE), Median Magnitude of Relative Error (MdMRE), and Prediction Pred (25%), with 78% of primary

studies employing MMRE. According to the authors, there is a need for simple comprehensive global models, due to the

distributed nature of software development, while further research should be conducted to further improve estimation

results derived with ML approaches.

3 REVIEWMETHODS

To conduct this tertiary review, we followed the guidelines outlined by Kitchenham and Charters [83]. A tertiary review

employs the same methods with a typical SLR, differing in that primary studies of the latter are considered secondary

studies in the former. Hence, the review was organized according to the three recommended main phases of an SLR:

planning, conducting, and reporting. For the planning phase, a formal protocol (included in the provided dataset)
3
was

developed and reviewed by all authors, documenting the review procedures associated with the following processes:

search and selection, quality assessment, data extraction, synthesis, and analysis. In all manual activities that required

human judgment, the data extraction and data checking approach was adopted, as suggested by Brereton et al. [27],

where the second author of this paper was the extractor, and the first was the checker. The complete review method is

presented through a UML information flow diagram in Fig. 1, after recommended guidelines for systematic studies to

visualize the adopted review process [163].

3.1 Research Objectives andQuestions

This study aims to: provide a quality-evaluated catalog of the identified systematic reviews to the research community;

summarize and assess all published systematic reviews concerning ML approaches applied in SE activities; describe

the current state of research in ML4SE; and highlight potential research opportunities in the intersection of the two

fields. To achieve these objectives, ensuring that the study is comprehensive in its nature, while providing an in-depth

analysis of the use of ML in SE activities, the following research questions were defined.

3
File review-protocol.md
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6 Z. Kotti et al.

RQ1 What SE tasks have been tackled with ML techniques?

RQ2 What SE knowledge areas could be better covered by ML techniques?

RQ3 What ML techniques have been used in SE?

By answering these questions we aim to identify how ML has contributed to SE activities, uncover SE areas

underrepresented by ML, and identify what ML techniques have been used in the SE activities described in the collected

systematic studies. Following the practice of other tertiary studies [21, 85] we present the quantitative information

associated with the examined material in Section 4.1, rather than dealing with it through a separate research question.

The methods employed to answer each research question as well as collect and present the related quantitative

information are detailed in Section 3.6.

3.2 Search Strategy

The search strategy was completed in four stages: automated search in digital sources, manual search in digital sources,

backward, and forward snowballing. In the first two stages (depicted at the beginning of Fig. 1), we searched for studies

published between January 2015 and June 2020, whereas in the last two (visualized at the end of Fig. 1), earlier and

subsequent studies were also examined.

3.2.1 Automated Search. We selected 2015 as the starting year of the automated search process for the following

reason. We searched in Elsevier Scopus
4
for documents whose title, abstract, or keywords contained the terms machine

learning and software engineering up to 2020, resulting in 2 316 results. We then extracted the yearly distribution of

these documents in CSV format from Scopus’s Analyze search results page, and visualized them as seen in Fig. 2. We

observe a constant increase in the number of publications belonging to the intersection of the two fields after 2015.

Therefore, we consider this year an inflection point for the joint evolution of the fields, which would conceivably

also mark the appearance of corresponding review surveys. Studies published outside the selected time window were

identified through repeated snowballing (see Section 3.2.3).

The automated search was implemented in two steps. First, a search string was composed. Second, this search string

was used to systematically query three online digital libraries: IEEE Xplore,
5
ACM Digital Library,

6
and Scopus. We

aimed to identify secondary studies in ML4SE, namely studies reviewing ML techniques that have been applied in

SE activities. Table 1 presents all keywords used in the search string composition, sorted in three conceptual groups:

keywords related to SE, ML, and secondary studies. For the SE field, keywords were derived from the 15 SWEBOK V3

1990 1995 2000 2005 2010 2015 2020
0

100

200

300

400

500

Do
cu

m
en

ts

Fig. 2. ML and SE documents by year. Adapted from Scopus search results analysis.

4
https://www.scopus.com

5
https://ieeexplore.ieee.org/Xplore

6
https://dl.acm.org/
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ML4SE: A Tertiary Study 7

Table 1. Search Keywords

Keywords for SE: Software Configuration Management; Software Construction; Software Design; Software Engineering Economics; Software Engineering

Management; Software Engineering Methods; Software Engineering Models; Software Engineering Process; Software Engineering Professional Practice;

Software Maintenance; Software Quality; Software Requirements; Software Testing

Keywords for ML: Artificial Neural Networks; Bayesian Classifier; Classification; Clustering; Computational Intelligence; Computer Learning; Data Mining;

Decision Tree Classification; Deep Learning; Deep Neural Network; Ensemble Learning; Generative Adversarial Networks; Genetic Programming; Grammars;

Intelligent Computing; Learning Algorithms; Learning Based; Machine Learning-based Applications; Machine Learning; Meta-Learning; Natural Language

Processing; Regression; Reinforcement Learning; Semi-supervised Learning; Supervised Learning; Support Vector Machines; Transfer Learning

Keywords for Secondary Studies: analysis of research; body of published research; centralized tutorial; common practices; comparative study; comprehensive

overview; conceptual analysis; editorial; editorial overview; editor’s preview; evidence-based software engineering; functional overview; general overview;

in-depth analysis; literature analysis; literature review; literature survey; lookup table; manifesto; meta-analysis; meta-survey; methodologies; overview

of existing research; past studies; review of studies; strategic directions; structured review; study; subject matter expert; survey and classification; survey;

systematic approach; systematic mapping study; systematic review; taxonomy

KAs [26]. The areas of Computing Foundations, Mathematical Foundations, and Engineering Foundations were excluded,

because they were considered outside the study’s scope [160]. Despite the V3 guide’s relatively old publication year

(2014), all of its KAs remain relevant, as can be observed from the overview of the ongoing SWEBOK V4 [72]. V4

consists of the same KAs, and redistributes some material to three new KAs: Software Architecture, Software Operations,

and Software Security [72].

To ensure that the identified studies would be secondary, we composed a group consisting of 35 keywords adapted

from two sources: a set of 15 keywords introduced in the tertiary study on SLRs in SE by Kitchenham et al. [85]; and

a set of 20 keywords manually extracted from the titles of the surveys published in the ACM Computing Surveys

journal.
7
Specifically, we queried the ACM Digital Library applying the filter ACM Computing Surveys and the ACM

CCS 2012 [138] concept Surveys And Overviews (10002944.10011122.10002945). A set of 304 papers
8
were retrieved and

exported in BibTeX format. Next, titles were isolated and canonicalized by automatically removing all stop words and

punctuation. The second author examined the canonicalized titles by hand to identify any additional terminology used

for describing secondary studies that was not already part of the 15 aforementioned keywords. As a result, 20 additional

keywords were included in the group of keywords for secondary studies.

Equivalently, the third group consists of 27 keywords manually extracted from the titles of the ML-related surveys of

the ACM Computing Surveys journal. Again, we queried the ACM Digital Library applying the filter ACM Computing

Surveys and the ACM CCS 2012 concept Machine Learning (10010147.10010257). In total, 148 papers
9
were fetched and

their titles were canonicalized. Similarly, the second author inspected the canonicalized titles by hand to identify the

ML terminology used in secondary studies, resulting in the 27 keywords listed in Table 1.

All possible 3-tuples occurring from these three groups were used to compose search strings and query the fields

of document title, abstract, and author keywords in the digital libraries.
10

Since each library has its own syntax, the

procedure was adjusted accordingly. In the end, a set of 1 897 studies were collected, from which duplicates were

removed based on the studies’ digital object identifiers keeping the latest occurrences, resulting in 1 566 unique studies.
11

3.2.2 Manual Search. To increase the coverage of the automated search process, we additionally performed a manual

search in each digital library using one random search string of all possible 3-tuples. In this way, one more relevant

paper was found (1 567 studies in total).

7
https://dl.acm.org/journal/csur

8
File acm_comput_surveys_overviews.bib

9
File acm_comput_ml_surveys.bib

10
File dl_search_queries.txt

11
File dl_search_results.csv
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8 Z. Kotti et al.

3.2.3 Backward and Forward Snowballing. After completing the quality assessment of the secondary reviews described

below in Section 3.5, the backward snowballing procedure [167] was applied on their referenced studies. Following

the data extraction and data checking process, a set of 3 195 studies referenced by the quality-accepted reviews were

evaluated using the inclusion and exclusion criteria (IC/EC) outlined in Section 3.3, after reading their title, keywords,

and abstract.
12

In this way, 16 additional secondary studies were included and quality-assessed, with the earliest study

having been published in 2003.
13

Out of these 16 studies, seven passed the quality assessment and made it into the

interim set of reviews (Fig. 1). One more backward snowballing round was performed on these seven studies, which did

not result in any further relevant reviews.

A single iteration of forward snowballing [168] was performed on the quality-accepted studies that occurred from

the initial search and the backward snowballing process.
14

Although Wohlin et al. [168] recommend Google Scholar as a

search engine (compared to IEEE Xplore and ACMDigital Library), we opted for Scopus which has a satisfactory citation

coverage [108], provides automated search functionality, and supports citation information extraction in CSV format. In

contrast, extracting citations from Google Scholar by hand would entail excessive manual effort, hinder reproducibility,

and might involve missed records from the human raters [127]. Consequently, we automatically retrieved from Scopus

on June 29th, 2022 a total of 2 461 studies referencing the quality-accepted reviews, removed duplicates, and evaluated

them following the same process we used for backward snowballing.
15

An additional set of 84 studies were included,

from which 43 were quality-accepted. Two of these accepted studies extended accepted studies from the initial search,

and we kept the extensions as they are more complete.
16

3.3 Selection Criteria

The following set of IC/EC were applied to all studies collected with the search strategy (Section 3.2) to ensure that

only relevant secondary studies would be included in the tertiary review.

Inclusion Criteria.

• Only secondary studies (i.e., SLRs, systematic mapping studies, meta-analyses) conducted with documented

systematic methods (defined research questions, search process, data extraction and presentation) are included.

• Taxonomies with the following planning characteristics [160] are included. I) A particular SWEBOK KA is

examined. II) The objectives and scope of research are clearly defined. III) The subject matter of classification

(units of classification, classes, categories) is described. IV) A specific classification structure type (hierarchy,

tree, paradigm, facet-based) is selected. V) A classification procedure type (qualitative, quantitative, or both) is

defined. VI) The data sources and collection methods are documented.

• Publications reporting results on the use of ML techniques in SE activities are included.

Exclusion Criteria.

• Non-secondary studies are excluded. These include: empirical studies; experimental evaluation studies; com-

parative studies with experimental results; reports and summaries of workshops (e.g., [14, 35, 55, 95, 155]);

non-implemented future research plans (e.g., [175]).

• Publications mentioning the use of ML without describing the employed techniques are excluded.

12
File backward_snowballing_references.csv

13
File backward_snowballing.csv

14
One iteration is sufficient according to the SLR guidelines by Wohlin et al. [168].

15
Files forward_snowballing_reviewer_{1,2}.csv

16
The review by Gonçales et al. [60] extends [59], and the review by Idri et al. [70] extends [71].
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• Inaccessible papers and reports (i.e., only the abstract is available) are excluded.

• Publications that are not written in English are excluded (e.g., [116, 119]).

• Informal literature surveys (i.e., with undefined research questions, undocumented search, data extraction or

analysis processes) are excluded.

3.4 Selection Process

After collecting the candidate secondary studies through the search strategy described in Section 3.2, we manually

applied the IC/EC (Section 3.3) to exclude irrelevant instances. We also included three more studies [9, 91, 174] that,

though not identified through the search strategy, were suggested during the paper’s review and satisfied the other

selection criteria.

Aligning with the adopted guidelines [83], the selection process was based on the papers’ title, author keywords,

and abstract, and was a two-step process (depicted in the middle of Fig. 1). First, the data extractor and data checker

reviewed a set of 15 randomly selected studies, and determined their inclusion or exclusion.
17

Their level of agreement

(inter-rater reliability) on this set was measured using Cohen’s Kappa statistic [124], and any discrepancies that occurred

were resolved by consensus [83, 85, 109]. This step was repeated until a score of at least 0.8 was reached—in our case,

only one iteration was needed, in which 14 studies were excluded and one was included by both authors. In this way, we

ascertained that both researchers agreed on the IC/EC, allowing them to individually review the abundant remaining

studies of the automated and manual search (𝑛 = 1 552—Sections 3.2.1, 3.2.2) with high inter-rater reliability.

Consequently, in the second step, the remaining papers were split in two, and each of the first two authors individually

reviewed a half (𝑛 = 776), again based on the IC/EC.
18

In case the authors could not determine a paper’s inclusion only

by its title, keywords, or abstract, the full text was consulted. The inclusion of a limited number of studies, whose scope

remained miscellaneous even after the full-text reading, was determined after discussion between the first two authors.

The same method was adopted for the backward and forward snowballing processes (Section 3.2.3). Eventually, from

all searches, a set of 140 distinct secondary studies were selected and quality-assessed, as detailed in the following

Section 3.5.

3.5 Quality Assessment

We manually assessed the quality of the 140 selected secondary reviews to ensure concreteness of our study results. For

this, we followed a recommended quality assessment process for tertiary studies [82, 84] using the DARE-4 criteria

introduced in Section 2, and presented in Table 2. These are recommended criteria for assessing the quality of tertiary

studies by Kitchenham et al. [85], and are also the most commonly used ones in SE tertiary studies [41]. Although there

is a more recent version of the DARE criteria (i.e., DARE-5),19 we opted for DARE-4, which is mostly similar to DARE-5

apart from Criterion 3 (Were the included studies synthesized?), which is not clearly prescribed and we did not consider

relevant to the goals of our study.

The DARE-4 criteria are based on four questions. Kitchenham et al. [85] refined them by attributing points to each

criterion. In this way each criterion is scored either as Y (yes—1 point), P (partially—0.5 point), or N (no—0 points). The

total score assigned to a study is the aggregate of the scores of all four questions. Thus, the highest possible score for a

study is four, while the lowest is zero. Included studies should receive a score of at least two.

17
File cohen_kappa_agreement.csv

18
Files study_selection_reviewer_{1,2}.csv

19
https://www.crd.york.ac.uk/CRDWeb/AboutPage.asp (About DARE)
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Table 2. DARE-4 Criteria for Quality Assessment

QA Criterion Assessment Score Description

1. IC/EC

Yes 1 Explicit definition of IC/EC

Partial 0.5 Implicit definition of IC/EC

No 0 No IC/EC defined

2. Search space

Yes 1 4+ digital libraries searched and additional search strategies applied

Partial 0.5 3–4 digital libraries searched, but no extra search strategies applied

No 0 1–2 digital libraries searched or very restricted search

3. Quality assessment of primary studies

Yes 1 Quality criteria explicitly described and applied

Partial 0.5 Implicit quality assessment

No 0 No quality assessment

4. Information regarding primary studies

Yes 1 Complete information presented about primary studies

Partial 0.5 Summary information presented about primary studies

No 0 Results of primary studies not specified

Again, we followed the data extraction and data checking approach, reaching an inter-rater agreement of 82%.
20

The majority of disagreements occurred in the last question (QA4), which concerns the provided information about

the reviewed primary studies—we attribute this to the higher entailed subjectivity of the particular question. Through

this process, 57 out of 140 (41%) studies were excluded, with a total score less than two. The total scores of accepted

studies are presented in Tables 3, 4. We observed that excluded secondary studies with inferior quality do not explicitly

document their IC/EC (QA1) or search sources (QA2), or fail to assess the quality of the included primary studies (QA3).

3.6 Data Extraction

The information extracted from each quality-accepted secondary study was the following.

• Title and source (journal, workshop proceedings, conference proceedings, book chapter)

• Publication year—to outline the annual evolution and research interest in ML4SE.

• Publication venue—to highlight prominent publishers in the particular area.

• Author names, institutions, and countries—to discover leading research teams.

• Study type (e.g., SLR, systematic mapping study, taxonomy)

• Research method—to investigate guidelines highly adopted by secondary studies.

• Quality assessment score

• Number of primary studies—to approximate how many primary studies are implicitly covered by our tertiary study.

• Application domain in terms of SWEBOK KAs and subareas as well as SE tasks covered by each secondary study—to

answer RQ1 and RQ2.

• Implications for further research and comments concerning the use of ML in SE—to answer RQ2.

• Employed ML techniques—to answer RQ3.

To extract the aforementioned information that was needed to answer the RQs introduced in Section 3.1, we employed

the following methods.

RQ1: What SE tasks have been tackled with ML techniques? To answer this, we extracted from each secondary study

its application domain in terms of related SWEBOK KA, subarea, and SE task(s).
21

When a study was associated with

multiple KAs/subareas, the most prominent one was kept (i.e., the most covered KA/subarea by the included primary

studies, or the most analyzed one by the review authors). The process was implemented following the data extraction

20
File dare_assessment.csv

21
File knowledge_areas.csv
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and data checking approach, and any conflicts that occurred were resolved by the last author. For the extraction of the

SE tasks, we followed the open coding practice [39] by manually applying codes (i.e., SE tasks—e.g., test automation,

software maintainability prediction, software defect prediction, bug prioritization) to the studies. The study list was split in

two, and each of the first two authors individually applied codes (SE tasks) to a half (in a shared online spreadsheet). To

maintain consistency between the two authors, the codes were mainly extracted from the study’s title, author keywords,

abstract, or introduction. Next, the authors discussed and grouped together conceptually-related codes by generalizing

or specializing them, employing the Qualitative Content Analysis approach [97]. In the end, each secondary study was

associated with at least one and up to three SE tasks. Consequently, a SE task may be associated with multiple
KAs.

RQ2: What SE knowledge areas could be better covered by ML techniques? For this, we used the results of RQ1 to identify

SWEBOK KAs that are insufficiently covered by ML techniques. Moreover, we extracted by hand any implications for

further research as well as comments regarding the use of ML in SE that were mentioned in the associated reviews.
22

To

do this, we searched the sections of abstract, introduction, results, conclusion, and further research or future directions

(where available) of all secondary studies to identify ML-related research opportunities in each KA. Lastly, we extracted

from the same sections any identified issues or obstacles associated with the use of ML techniques in SE.

RQ3:WhatML techniques have been used in SE? To address this, we classified each secondary study using a classification

scheme, again following the data extraction and data checking approach.
23

The classification scheme was constructed

from two sources and consists of four axes: the role of AI in SE [65], the supervision type [77], the incrementality

type [77], and the generalizability type [77]. The role of AI in SE includes the following three categories.

• Computational search and optimisation techniques (the field known as Search Based Software Engineering—SBSE):

The goal of this area is to reconstruct SE problems as optimization problems, which can then be tackled with

computational search-related AI techniques.

• Fuzzy and probabilistic methods for reasoning in the presence of uncertainty: AI techniques are used to address

real-world problems, which are inherently fuzzy and probabilistic (e.g., the use of Bayesian probabilistic reasoning to

model software reliability or analyze users).

• Classification, learning and prediction: This area involves the application of ML techniques such as artificial neural

networks, case-based reasoning, and rule induction to model and predict SE tasks (e.g., software project prediction,

ontology learning, defect prediction).

Supervision expands to supervised, unsupervised, semi-supervised, and reinforcement learning. In supervised learning,

the training dataset used by the ML-based system includes the desired solutions (i.e., labels), whereas in unsupervised

learning, the training dataset is unlabeled. Semi-supervised learning involves many unlabeled data combined with a few

labeled instances, while reinforcement learning is concerned with learning to control a system, in order to maximize a

numerical performance measure that expresses a long-term objective [152]. Contrary to supervised, in reinforcement

learning, only partial feedback is provided to the system about its predictions.

The third axis, incrementality, consists of online/incremental and batch/offline learning. In online learning, the ML

algorithms are trained incrementally by feeding them data instances sequentially on the fly (as they arrive), either

individually or in small groups (i.e., mini-batches). These algorithms constantly update the system weights; thus the

error calculation uses different weights for each input sample. On the other hand, in offline learning, the ML algorithms

22
File further_research.csv

23
File ml_techniques.csv
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are first trained with all available training data, and are then released into production without the ability to learn

incrementally—they only apply what they have learned. These algorithms keep the system weights constant while

computing the error associated with each input sample.

The axis of generalizability expands to instance-based and model-based learning. In instance-based learning, the

system stores the data and generalizes to new instances by employing a similarity measure, whereas in model-based

learning, patterns are detected in the training data, and are used to build a predictive model. In all axes, studies were

classified to the most prominent category (when more than one categories could be mapped). In addition, we extracted by

hand the ML techniques employed in the primary studies, when reported in the corresponding secondary, to determine

the most popular ones for SE tasks.

4 RESULTS

In this section we present our research findings in regard to the data extraction process described in Section 3.6 and the

research questions outlined in Section 3.1.

4.1 Data Extraction

The papers in our final set of 83 quality-accepted secondary studies were published between 2009–2022, and cover

6 117 non-unique primary studies (conference papers, journal papers, theses, and technical reports) published between

1990–2021. The majority of secondary reviews (𝑛 = 63; 76%) were published in journals as opposed to conference

proceedings (𝑛 = 20; 24%). An overview of all reviews sorted by publication year is presented in Tables 3, 4.

Top authors In total, 274 researchers contributed to the 83 secondary studies. Between 2009–2022, the most active

researcher in the field was Ruchika Malhotra, having co-authored six studies, followed by Alain Abran and Ali Idri.

Top institutions The studies originate from 140 institutions. Delhi Technological University (Delhi, India) is on

the top of the list with seven studies, followed by École de Technologie Supérieure (Montreal, Canada), Mohammed V

University (Rabat, Morocco), and University of Adelaide (Adelaide, Australia).

Distribution of studies Figure 3 depicts the number of publications by year and publisher. Most secondary studies

were published between 2019–2021, while no studies were found from 2011 and 2013. Overall, we observe a notable

increase in the number of studies after 2015, which aligns with the Scopus results visualized in Fig. 2. Regarding

publishers’ distribution, IEEE is first with 25 publications, followed by Elsevier with 17, Springer with 13, ACM with

twelve, and Wiley with five studies.

Quality of studies As deduced from Fig. 4, there seems to be a fixed average quality of secondary studies after 2014.

The total average score remains above average (2) each year, implying an overall adequate (yet not perfect) quality of

secondary studies. Although few studies were published in 2009 and 2012, these had the highest scores in all questions,

suggesting that the DARE-4 criteria (Table 2) have been systematically adopted from early on.

Research types of studies The majority of secondary studies (𝑛 = 53; 64%) are primarily SLRs, while 19% (𝑛 =

16) are systematic mapping studies, 16% (𝑛 = 13) are surveys, and a single study is a taxonomy. Seven studies include

a second research type: SLR (together with systematic mapping study) [51, 120], and meta-analysis (with SLR as

primary) [17, 52, 67, 112, 147].

Research methods of studies The most commonly adopted guidelines for SLRs and surveys are those by Kitchen-

ham et al. [81, 83, 86], while most systematic mapping studies follow the guidelines by Petersen et al. [126, 127], and

Kitchenham et al. [87]. In addition, some studies employ the structure proposed by Hall et al. [62] for conducting

reviews and presenting results. The snowballing search method by Wohlin et al. [167, 169, 170] is also used in some
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Table 3. Overview of Secondary Studies (1/2)

Study Venue Year Publisher QA Score Primary Covered Years
[136] ESEM ’09 2009 IEEE 4.0 15 1994–2008

[133] Int. J. Soft. Eng. Comput. 2010 International Science Press 2.5 23 2002–2010

[62] IEEE Trans. Softw. Eng. 2012 IEEE 4.0 36 2002–2010

[166] Inf. Softw. Technol. 2012 Elsevier 4.0 84 1992–2010

[25] Empir. Softw. Eng. 2014 Springer 3.0 79 1999–2011

[20] J. Syst. Softw. 2015 Elsevier 3.0 13 2005–2014

[45] Requir. Eng. 2015 Springer 4.0 29 1999–2013

[69] SNPD ’15 2015 IEEE 3.5 35 2000–2013

[99] Appl. Soft Comput. 2015 Elsevier 4.0 64 1995–2013

[100] ICRITO ’15 2015 IEEE 2.0 21 1998–2014

[36] Empir. Softw. Eng. 2016 Springer 2.0 167 1999–2014

[102] Int. J. Softw. Eng. Knowl. Eng. 2016 World Scientific Publishing 4.0 96 1991–2015

[70] J. Syst. Softw. 2016 Elsevier 3.0 24 2000–2016

[171] ICSME ’16 2016 IEEE 3.5 29 2000–2015

[89] SEAA ’16 2016 IEEE 3.5 19 1997–2015

[101] Int. J. Comput. Appl. Technol. 2016 Inderscience Publishers 2.0 21 1998–2011

[150] SNPD ’16 2016 IEEE 2.0 38 2007–2015

[178] J. Syst. Softw. 2016 Elsevier 3.0 79 2005–2015

[3] IEEE Access 2017 IEEE 3.5 103 2005–2016

[46] APSEC ’17 2017 IEEE 2.5 40 1998–2016

[78] ACM Comput. Surv. 2017 ACM 2.5 47 2007–2015

[104] Swarm Evol. Comput. 2017 Elsevier 4.0 78 1992–2015

[96] SPLC ’17 2017 ACM 3.5 25 2005–2017

[156] Softw. Qual. J. 2017 Springer 3.5 10 2012–2014

[158] Artif. Intell. Rev. 2017 Springer 2.5 32 2003–2015

[176] ICET ’17 2017 IEEE 2.0 22 1998–2016

[10] CTCEEC ’17 2018 IEEE 2.5 17 2006–2014

[120] J. Syst. Softw. 2018 Elsevier 4.0 52 2000–2016

[9] ACM Comput. Surv. 2018 ACM 2.0 91 2007–2018

[53] SPICE ’18 2018 Springer 2.5 25 1998–2017

[118] CITT ’18 2018 Springer 2.0 20 2013–2016

[135] IEEE Access 2018 IEEE 4.0 113 1993–2016

[144] J. Syst. Softw. 2018 Elsevier 3.0 445 1996–2016

[112] Comput. Electr. Eng. 2019 Elsevier 4.0 31 2002–2017

[6] SEAA ’19 2019 IEEE 3.5 30 2007–2018

[30] Int. J. Softw. Eng. Knowl. Eng. 2019 World Scientific Publishing 3.0 26 1999–2016

[17] Inf. Softw. Technol. 2019 Elsevier 3.5 15 2000–2017

[11] ICECTA ’19 2019 IEEE 3.0 15 2007–2017

[48] IEEE Trans. Reliab. 2019 IEEE 3.0 48 1995–2018

[67] IEEE Trans. Softw. Eng. 2019 IEEE 4.0 30 2008–2015

[148] Symmetry 2019 MDPI 3.0 98 1995–2018

[51] e-Inform. Softw. Eng. J. 2019 Wrocław University of Science and Technology 3.5 82 2000–2018

[103] e-Inform. Softw. Eng. J. 2019 Wrocław University of Science and Technology 3.0 38 2000–2019

[5] J. Softw.: Evol. Process 2019 Wiley 4.0 75 1991–2017

[80] IEEE Access 2019 IEEE 3.0 58 2016–2019

[114] ICCSRE ’19 2019 IEEE 2.5 46 1995–2017

[153] ICETC ’19 2019 ACM 2.0 31 2003–2019

[13] ICPC ’20 2020 ACM 2.0 33 2012–2019

[32] SEAA ’20 2020 IEEE 2.5 38 2009–2019

[33] SEAA ’20 2020 IEEE 2.5 196 2012–2017

[7] ICOSST ’20 2020 IEEE 3.5 34 2007–2019

[147] IEEE Access 2020 IEEE 3.0 32 2009–2019

[143] IET Softw. 2020 IET 3.5 28 2014–2020

[2] Secur. Commun. Netw. 2020 Wiley 2.5 12 2011–2019

[91] ACM Comput. Surv. 2020 ACM 2.0 267 1992–2019
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Table 4. Overview of Secondary Studies (2/2)

Study Venue Year Publisher QA Score Primary Covered Years
[44] SAC ’20 2020 ACM 2.0 320 2017–2019

[105] Soft Comput. 2020 Springer 3.5 36 1993–2019

[125] Inf. Softw. Technol. 2020 Elsevier 3.0 93 2004–2015

[94] ACM Comput. Surv. 2020 ACM 2.0 109 1999–2019

[4] Arab. J. Sci. Eng. 2020 Springer 4.0 17 2005–2018

[52] J. Comput. Sci. Technol. 2020 Springer 3.5 77 2000–2018

[123] J. Syst. Softw. 2021 Elsevier 2.5 69 2005–2019

[174] ACM Comput. Surv. 2021 ACM 2.0 250 2006–2020

[19] J. Comput. Sci. 2021 Science Publications 3.0 40 2016–2020

[111] Intell. Autom. Soft Comput. 2021 Tech Science Press 2.5 22 2016–2019

[134] Int. J. Adv. Comput. Sci. Appl. 2021 The Science and Information Organization 2.5 48 2017–2020

[139] ACM Comput. Surv. 2021 ACM 2.5 92 2010–2019

[1] J. Softw.: Evol. Process 2021 Wiley 3.5 145 1993–2018

[8] J. Softw.: Evol. Process 2021 Wiley 4.0 31 2011–2019

[145] Empir. Softw. Eng. 2021 Springer 2.0 111 2009–2020

[177] REW ’21 2021 IEEE 3.5 65 2010–2020

[141] SN Comput. Sci. 2021 Springer 3.0 30 1995–2020

[79] IEEE Access 2021 IEEE 3.0 110 2004–2021

[122] Expert Syst. Appl. 2021 Elsevier 4.0 154 1990–2019

[18] Sci. Comput. Program. 2021 Elsevier 4.0 75 1993–2019

[60] Inf. Softw. Technol. 2021 Elsevier 2.5 63 2010–2020

[98] Softw.: Pract. Exp. 2022 Wiley 4.0 35 1997–2020

[164] ACM Trans. Softw. Eng. Methodol. 2022 ACM 3.0 128 2009–2019

[173] ACM Trans. Softw. Eng. Methodol. 2022 ACM 3.0 421 2009–2020

[23] Comput. Electr. Eng. 2022 Elsevier 4.0 68 2010–2021

[146] IEEE Access 2022 IEEE 2.0 62 2016–2021

[121] Eng. Appl. Artif. Intell. 2022 Elsevier 2.0 146 2009–2020

[93] Stud. Syst. Decis. Control 2022 Springer 2.5 45 2005–2020

studies complementary to the aforementioned guidelines, based on published recommendations regarding the inclusion

of manual target searches in systematic reviews [76]. To compose the research questions, some reviews adopt recom-

mendations by Easterbrook et al. [50], and Sabir et al. [140]. To assess the quality of primary studies, various criteria

have been used, such as the ones by Zhou et al. [181] and Dybå et al. [49], and the Systematic Review Checklist by the

Critical Appraisal Skills Programme (CASP) [131]. Moreover, a variety of methods are used for data synthesis, analysis,

and visualization, including content analysis [90], grounded theory [34], and box plots [42].
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Table 5. SWEBOK KAs, Subareas, and Primary (Prim.) Studies Covered by Secondary (Sec.) Studies

SWEBOK KA Subarea Sec. % References Prim.

Software (SW) Quality

Practical Considerations 22 27

[1, 4, 11, 17, 19, 33, 51, 52, 67, 93, 100–103, 105,

111, 120, 121, 136, 139, 148, 156]

1 309

SW Quality Fundamentals 2 2 [30, 144] 471

SW Quality Management Processes 1 1 [147] 32

SW Testing

Test Techniques 15 18

[3, 7, 23, 44, 62, 78, 79, 99, 112, 118, 122, 134,

135, 143, 178]

1 255

Test Process 2 2 [48, 80] 106

SE Process

SW Life Cycles 4 5 [32, 146, 164, 173] 649

SW Measurement 4 5 [13, 36, 53, 104] 303

SW Process Assessment & Improvement 3 4 [46, 145, 150] 189

SE Process Tools 3 4 [9, 91, 174] 608

SE Management SW Project Planning 12 14 [5, 6, 18, 70, 89, 98, 114, 125, 133, 141, 166, 171] 563

SW Requirements

Requirements Analysis 2 2 [10, 177] 82

Requirements Elicitation 2 2 [2, 20] 25

Requirements Process 2 2 [8, 45] 60

SW Maintenance

Techniques for Maintenance 1 1 [94] 109

Key Issues in SW Maintenance 1 1 [158] 32

SW Maintenance Tools 1 1 [153] 31

SW Design

SW Structure & Architecture 1 1 [176] 22

SW Design Tools 1 1 [96] 25

SW Configuration Management SW Configuration Management Tools 1 1 [123] 69

SE Models & Methods Analysis of Models 1 1 [25] 79

SE Professional Practice Group Dynamics & Psychology 1 1 [60] 63

Engineering Foundations Statistical Analysis 1 1 [69] 35

4.2 RQ1: What SE tasks have been tackled with ML techniques?

The classification of the 83 studies according to the SWEBOK KAs and subareas, as described in Section 3.6, revealed a

coverage of the eleven KAs presented in Table 5. For each KA and subarea, the number, percentage, and references of

the associated secondary studies are included as well as the number of primary studies reviewed by the secondary.

The most addressed KA is Software Quality, being the focus of 25 (30%) secondary studies. Subsequent KAs include

Software Testing (𝑛 = 17; 20%), SE Process (𝑛 = 14; 18%), SE Management (𝑛 = 12; 14%), and Software Requirements (𝑛 = 6;

6%). A single study was found related to Engineering Foundations, covering the subarea of Statistical Analysis, despite

this KA being less related to SE. In Fig. 5 we also visualize the yearly distribution of KAs. KAs are sorted in the figure

bottom-up according to their appearance frequency in Table 5. It appears that Software Quality, Software Testing, and SE

Process are also the most trending ones in recent years. In the following sections we present for each KA, the SE tasks

that have been tackled with ML techniques. Codes resulting from the manual coding process for the extraction of SE

tasks from the associated studies are set in bold.

4.2.1 Software Quality. In this area ML techniques are frequently used for software change and quality prediction,
replacing traditional statistical methods. ML-based software change prediction aims to identify change-prone compo-

nents during the early phases of software development, leading to higher quality and maintainable software at lower

cost [100, 101]. To evaluate ML techniques’ effectiveness, Malhotra and Khanna [103] summarize different software

change prediction models, experimental setups, data analysis algorithms, statistical validation tests, and associated

threats. Feature selection is considered one of the most essential and complex activities in data pre-processing [11]. In

software quality prediction we identify various applications of Bayesian networks, while the majority of the reviewed

work employs expert knowledge [156].
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Another common task in software quality is softwaremaintainability prediction. By measuring quality attributes,

developers can improve software design, optimize resource allocation, and develop cost-effective, high-quality, main-

tainable software systems [102, 105]. Managers can evaluate and compare productivity across projects, perform effective

resource planning, and control maintenance costs [102]. An accuracy analysis of software maintainability prediction

models reveals that the most accurate ones are fuzzy and neuro fuzzy systems, and artificial neural networks [51].

Moreover, the use of open-source datasets in the training process of maintainability prediction models has increased in

recent years [102].

ML-based software defect prediction is widely covered in software quality. Uncovering defects at the early

phases of software development improves the system’s cost-effectiveness and maintainability [120]. Some reviews

recommend the use of supervised and deep learning techniques [19, 111]. Pachouly et al. [121] propose an architecture

for synthesizing training datasets for multi-label classification of software defects. A popular topic is cross project defect

prediction: training ML models with data gathered from various projects to predict defects in completely new (unseen)

projects [67]. An ideal prediction model should highlight the severity of defects, uncover security-related defects and

system vulnerabilities, and also identify defects on systems that it was not trained on [148].

Other popular quality tasks include malware, smell, and data exfiltration detection. In JavaScript ML models

offer higher malware detection rates than non-ML ones [147]. In smell detection we distinguish the use of deep learning,

J48, JRip, Decision Tree, and Random Forest algorithms [4, 17, 30, 93]. These involve training models on datasets of

source code metrics and smells to classify new unseen software components [144]. Some efforts target smell detection

at the design and code levels [1]. In the area of data exfiltration (also known as data theft and data leakage [159])

there are several ML-based countermeasures, which are classified according to four axes: type of approach (data– or

behavior-driven); employed features (behavioral, content-based, statistical, syntactical, spatial, or temporal); evaluation

dataset (simulated, synthesized, or real); and reported performance measures [139].

4.2.2 Software Testing. Here ML techniques are mainly used for test automation, specifically for test case generation,

evaluation, and optimization. Genetic algorithms are frequently proposed [80, 118]. In the test oracle problem, which

is concerned with a software’s output behavior based on a set of inputs, automation is achieved by training ML

models to predict the outcome [48]. In exhaustive testing, where developers typically use auto-generated test data, ML

algorithms are used to produce ample efficient test case routines [48]. In mobile application testing the Swift Hand

automated technique [37] can be used to produce sequences of test inputs that enable visiting unexplored states of

the application without restarting it [178]. In test evaluation testers assess with ML models the extent to which test

Manuscript submitted to ACM



ML4SE: A Tertiary Study 17

suites cover the observable program behavior, and predict the feasibility of test cases [48]. In test optimization historical

information is analyzed with ML techniques to calculate multi-objective metrics [78]. These metrics are used to improve

testing performance by reducing resource and time consumption, especially in regression testing where retesting is

costly [79, 134]. ML-based test case prioritization is useful when the source code is not accessible, and for enhancing

fault detection in applications [44]. Lastly, Black-box test specification can be refined with ML techniques [135].

Furthermore, ML is frequently used in software fault prediction. In large datasets deep learning models outperform

data mining and ML ones [23]. In interaction testing ML techniques are used to create diverse test suites, covering

as many constraints as possible [3]. ML-based classification algorithms effectively determine a module or class’s

fault-proneness, usually more efficiently than statistical models [99, 122]. The results of ML methods are also more

generalizable than statistical ones [122]. Still, ML techniques can perform worse than statistical models, because

they require parameter fine-tuning, and may depend on unbalanced or uncleaned data [62]. To perform parameter

optimization and feature selection, bio-inspired algorithms are recommended, namely genetic algorithms and particle

swarm optimization [7].

Another testing area of ML interest is software vulnerability detection. Deep learning methods (convolutional

and recurrent neural networks) are frequently employed for vulnerability analysis on source code [143]. The majority of

training datasets consist of data from a single programming language, mainly C/C++ and JavaScript [143]. In penetration

testing ML applications mainly involve attack planning through attack graph generation or attack tree modeling [112].

Two predominant methods for attack planning are the Markov Decision Process and genetic algorithms [112].

4.2.3 SE Process. Various tasks related to SE processes are approached with ML. Some software fault prediction
models are developed based on topic modeling. Topic modeling is applied on source code to approximate software

concerns as topics, analyze failed executions and the defect-proneness of systems, or determine dependencies between

source code elements and developers [150]. Apart from fault prediction, other applications of topic modeling are: archi-

tecting, bug handling, coding, documentation, maintenance, refactoring, requirements, and testing [145]. In software
quality prediction ML techniques are employed to estimate four predominant quality attributes: effort, defect– and

change-proneness, and maintainability [104]. Furthermore, ML models are preferred for traceability link recovery,
concept location, bug triaging, clone identification, source code summarization, and refactoring [13, 36].

A number of reviews concern software process mining and automation. In agile software development, process

mining is used to discover processes followed by agile teams based on task tracking applications [53]. Themost prominent

tool for this purpose is ProM [161]. In software effort estimation, process mining is used to improve the accuracy of

models [46]. In general, ML is intensively used in the requirements phase for automation and improvement [146], and

in the maintenance phase for prediction [173]. It is also widely used for the automation of decision-making tasks and

for predictive analysis [146, 173]. Hybrid models combining ML with AI techniques improve the models’ performance,

notably when training datasets consist of multi-dimensional and diverse instances [146]. Furthermore, deep learning

techniques are increasingly employed in SE processes due to their automated feature engineering capabilities, superior

efficiency, and ability to replace human expertise [164, 173].

Other emerging areas of SE process are source code analysis, program generation, and recommender systems.
Source code is contrasted to natural language since their common statistical properties can be used to build better SE

tools [9]. Code-generating, code representational, and pattern-mining ML and deep learning models find applications

in: recommender systems; coding convention inference; defect detection; code translation, copying, and cloning;
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code-to-text and text-to-code; documentation, traceability, and information retrieval; and program synthesis and

analysis [9, 91, 174].

4.2.4 SE Management. In this area we distinguish ML-based software development cost and effort estimation.
Decision trees preponderate in software development cost estimation [114], and use case points stand out in software

development effort prediction [18]. Ensemble effort estimation models, which are usually constructed from single (i.e.,

base) models joined with linear and non-linear combiner functions, perform better than single techniques [70, 98]. In

general, the estimation accuracy of ML models is superior than that of regression models, although the application of

the former in the industry is still limited [89, 125, 166]. Again, bio-inspired feature selection algorithms improve even

further the accuracy of ML models [6]. Bayesian networks can also introduce expert knowledge in the models through

strictly-defined probability functions, especially when no empirical data from older projects are available [133].

A small number of reviews concern software enhancement (maintenance) effort estimation [141]. Regression

problems of enhancement effort prediction are addressed with single prediction models, which outperform statistical

ones [141]. In open source software, effort estimation and maintenance activity time prediction (e.g., bug fixing) models

are trained on source code and people-related metrics [171].

4.2.5 Software Requirements. Here ML is used to support a range of tasks including: volatility prediction [10];

reuse of requirements and feature and variability extraction in the context of software product lines [20]; re-
quirements elicitation, analysis, specification, prioritization, and negotiation [2, 8, 45]; and requirements
ambiguity resolution [177].

4.2.6 Software Maintenance. Bug prioritization and software rename refactoring are frequently approached with

ML techniques in this area. Especially natural language processing models are used to mine, summarize, and prioritize

bug reports [153, 158]. In software rename refactoring ML techniques outperform traditional approaches that are based

on empirical rules [94].

4.2.7 Software Design. Researchers here apply ML to software architecture recovery, reverse engineering vari-
ability, and feature and variability extraction. In software architecture recovery, ML-based classification techniques

are recommended for the estimation of the positional probability of edges of a weighted graph using information

gathered from real-world object-oriented reference software systems [176]. Reverse engineering variability and feature

and variability extraction mainly concern the process of migrating individual software systems to software product

lines [96].

4.2.8 Software Configuration Management. In this area we distinguish efforts in software performance prediction
and software configuration interpretability and optimization. The large number of configuration options of

modern software systems makes it impossible to explore the entire configuration space, to satisfy functional and

non-functional needs [123]. As a workaround, researchers frame the software configuration problem as a ML one by

training models on samples of configuration measurements [123]. The software configuration problem is also related to

compiler autotuning and database management system tuning [123].

4.2.9 SE Models and Methods. ML techniques are proposed for systematically retrieving large-scale information from

software artifacts to support trace recovery [25]. Specifically, trace link structures are extracted from software artifacts,

and are used as input to ML voting systems to assess the importance of each artifact [25].
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4.2.10 SE Professional Practice. Here ML techniques are used to estimate the cognitive load of software developers

when performing SE tasks. To improve estimation results, these techniques are usually combined with feature sets

related to developers’ cognitive load [60].

4.2.11 Engineering Foundations. In this area ML is used in the task of missing value imputation in SE datasets, to

improve the accuracy of software development effort estimation results [69].

4.3 RQ2: What SE knowledge areas could be better covered by ML techniques?

From Table 5 we deduce that some SWEBOK KAs are either covered by few ML-related secondary studies, or are

not covered at all. Specifically, Software Construction and SE Economics are not addressed by any secondary study.

Moreover, Software Configuration Management, SE Models and Methods, and SE Professional Practice are only addressed

by a single secondary study each, therefore, they appear less covered compared to the other KAs. Some KAs are also

more comprehensively covered than others as their associated studies span more subareas. This is the case for Software

Quality, SE Process, Software Requirements, and Software Maintenance, which span various subareas, as opposed to SE

Management, which contains an equivalent number of reviews mapped to a single subarea. The sparse coverage of

certain KAs is also recognized by the authors of many secondary studies through their calls for further research on the

application of ML techniques to the associated SE tasks. In the subsequent sections we provide an extensive description

of how each KA and SE task could be better covered, as evidenced from the authors’ remarks through the process

described in Section 3.6, as well as any issues and obstacles related to the use of ML techniques in SE. We also provide

some general recommendations that apply to all KAs in Section 4.3.1.

4.3.1 General Recommendations. Various recommendations apply to all KAs. These include: conducting more com-

parative analyses between ML methods and traditional statistical techniques (𝑛 = 13 studies);
24

performing more

empirical analyses to increase the quality of ML techniques, and establish their cost-effectiveness (𝑛 = 12); publishing

and using more open-source, diverse, large-scale, and high-quality datasets (𝑛 = 16); experimenting with new, hybrid,

ensemble, and incremental techniques (e.g., transfer, few-shot, weakly, semi-supervised, and active learning, blockchain

technology, search-based and multi-objective methods, automated feature engineering techniques, regression-based

methods—𝑛 = 21); ensuring industrial relevance and scalability of ML models by applying them in real settings and

commercial datasets, by conducting in-depth case studies with practitioners, and by developing concrete methods for

building reliable models (𝑛 = 18); optimizing hyper-parameters of ML models (e.g., with the grid search algorithm—𝑛 =

3); and handling class imbalance in training datasets and model over-fitting (𝑛 = 3).

4.3.2 SoftwareQuality. Anumber of research suggestions are observed in the associated SE tasks of this area. In software

change and quality prediction researchers should explore cross-organization and cross-company validation, effective

transfer learning, and temporal validation [103]. In software maintainability prediction we observe literature ambiguities

concerning maintainability definitions and characteristics that affect ML models’ performance [52]. Researchers propose:

measuring design metrics dynamically instead of statically (e.g., with Dynamic Lack of Cohesion, Dynamic Response

For a Class) [102]; investigating maintainability for other types of applications (e.g., web, mobile, model-driven, and

cloud computing) [51, 102]; analyzing the effect of diverse software development and process management factors on

maintainability (e.g., risk analysis, project planning, requirement analysis) [51, 102]; and focusing on maintainability

before delivery of the software product to detect issues and quality failures early [51]. In software defect prediction

24
The complete list of associated studies for each general recommendation is available in file further_research_general.txt.
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there are needed more empirical analyses on the validity of cross project defect prediction datasets [67, 121, 148].

Furthermore, in smell detection further research is needed on: smell types [93]; smell prioritization [1]; the mutual

effect between smells to identify highly correlated ones [1, 17]; the false-positiveness of the proposed ML techniques,

which could be high due to deficient smell definitions [1, 4, 94, 144]; and the effect of data transformations on the smell

detection process [1].

4.3.3 Software Testing. Here we summarize the following promising research directions. InML-basedmobile application

testing most existing studies only target the Android platform, therefore there is a need for including other prevalent

platforms as well (e.g., Apple iOS, Windows Phone) [178]. In mutation testing there is considerable room for expediting

existing ML-based solutions for detecting possible equivalent mutants as well as automating more facets of the process,

which are currently handled by humans [48]. In test suite optimization there are only few ML-based approaches [80].

In test case prioritization, including software requirement attributes in the training datasets could possibly improve

models’ effectiveness [134]. In software fault prediction researchers could investigate less popular ML and evolutionary

algorithms, such as Logit Boost, Ada Boost, Rule Based Learning, Bagging, Alternating Decision Tree, Radial Basis

Function, Ant Colony Optimization, and Genetic Programming [3, 122]. More empirical analyses are desired on the

performance of bio-inspired parameter optimization and feature selection algorithms with the traditional algorithms

(e.g., grid search, random search, greedy search, best-first search) [7]. Moreover, in software vulnerability prediction

assessment criteria should includemore qualitativemeasures (e.g., consequence, impact) for determining the effectiveness

of ML techniques [112]. Suggestions for ML models include: designing approaches to identify exploitable vulnerabilities

in real-time [112]; studying the impact of multiple programming language datasets [143]; and performing finer-grained

vulnerability detection by identifying the precise location of the vulnerabilities in the source code files or functions [143].

4.3.4 SE Process. Regarding SE processes, in the tasks of software fault and quality prediction, and traceability link

recovery we recognize the following recommendations. In fault and quality prediction researchers should further explore

and assess the employed search-based techniques through multiple evaluation factors including cost-effectiveness,

comprehensibility, generalizability, and execution time [104]. To ease the application of search-based approaches in

prediction models, practitioners could develop and establish relevant tool suites [104]. To reduce bias in the evaluation

process, different validation techniques such as inter-release, cross-project, and temporal validation could be com-

bined [104]. Subsequent research should thoroughly document its associated threats to validity [104]. In traceability

link recovery more emphasis should be placed on: recovering links between trace artifacts that are commonly used in

modern software development (e.g., user stories, accepted test cases and source code); building traceability systems

beyond text-based recovery (e.g., recovering traceability links between design images and requirements); advanced

static program analysis, such as value flow analysis [149] and pointer aliasing analysis [92], to support more precise

change impact analysis; and evaluating industrial datasets and survey practitioners to gain valuable feedback for further

improvements [13].

In software process mining and automation the following remarks are observed. There is a need for: more approaches

for extracting requirement-related information from community forums; replicable, standardized, baseline approaches for

comparisons; experiments with transformers (e.g., BERT) in clone detection and program repair; exploring less popular

pre-processing techniques (e.g., directed graphs, lookup tables, execution trace vectors); increasing the interpretability of

deep learning solutions; developing guidelines and a supporting infrastructure for comparing metrics and evaluating ML

approaches; standardizing the data pre-processing pipelines to reduce bias; and more user studies to gain insights into

when and where automated techniques are useful to humans and more accurate than manual methods [146, 164, 173].
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Numerous suggestions are made in the tasks of source code analysis, program generation, and recommender systems.

Some promising areas for deep learning applications are: debugging, traceability, code completion and synthesis,

education, and assistive tools (e.g., IDEs) [9]. Researchers propose: building web platforms associated with the ML

models; developing modular neural network architectures to combat issues with compositionality, sparsity, and

generalization; developing deep learning models that fit multiple programming languages; more concise and discrete

representations of language and code to perform complex reasoning and predictions; constructing an evaluation metric

that can incorporate both semantic meaning and grammatical and execution correctness; simplifying deep source code

models by learning from human experience; employing generative models to address the representation learning issues

in program generation; developing more practical and engineering-friendly frameworks for rapid new concept learning

and code generation; and experimenting with code-in-code-out systems for generation and evaluation [9, 91, 146].

Various ideas inferred from the secondary reviews of SE process concern further experimentation with topic modeling.

Fruitful application areas include: feature location; software regression testing; developer recommendation; software

refactoring; software fault prediction; traceability link recovery; and software analytics [36, 98, 145, 150]. Suggested

applications of topic modeling are: searching collections of software systems; measuring the evolutionary trends of

repositories; establishing traceability links between emails and source code; and analyzing software systems by applying

topic models on email archives and execution logs [36]. To improve the results of prior studies, replications could

be conducted after fine-tuning the parameters of topic models, and improving the data pre-processing by analyzing

the value of query expansion and context consideration [36]. Future topic models could incorporate the structure of

software development data [36].

4.3.5 SE Management. Here we distinguish the following recommendations related to software effort and cost estima-

tion. More empirical research is needed on: the application of rarely-used ML techniques, in order to help researchers

formulate better processes, and assist practitioners in decision making [89, 125, 166]; the performance evaluation of

ensemble estimation techniques that are based on regression trees and case-based reasoning [70, 125]; and the accuracy

assessment of bio-inspired feature selection algorithms [6]. In addition, more experiments should be conducted with:

heterogeneous ensemble effort estimation models (i.e., models that combine at least two different base models); ML

models that employ genetic programming and genetic algorithms; cascade correlation neural networks; developer-

related metrics (e.g., individual contribution and performance) to predict bug fixing time; and size-related metrics to

estimate open source software maintenance effort [5, 70, 171].

4.3.6 Software Requirements. The following research gaps are observed in this area. Further empirical research is

needed on how to assess and select the most suitable ML techniques in requirements volatility prediction and ambiguity

resolution [10, 177], and how to automate with ML the extraction of software requirements from natural language

documents [8, 20]. Researchers should experiment with ML in more requirements activities, such as requirements

specifications and management [8]. Some research ideas include sharing standard pre-labeled datasets, standardizing

nonfunctional requirements, applying sentiment analysis on functional and nonfunctional requirements, and performing

change impact analysis in ML-based software requirements [2, 177].

4.3.7 Software Maintenance. Here we distinguish recommendations in bug prioritization and software rename refac-

toring. In bug prioritization researchers suggest further exploring ML and bug tossing (i.e., reassignment) graphs [75]

for automating developer assignment in bug reports [158] as well as exploiting ML to automate the process of bug

report summarization [153]. In software rename refactoring there is a need for more models that automatically execute
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and detect renamings of software entities [94]. Suggestions include investigating the usefulness of advanced identifier

splitting approaches, the preservation of name bindings based on language features, and the performance of different

renaming representation techniques [94]. Although the primary purpose of renaming is to improve program compre-

hension, researchers should also consider its reverse application: using ML-based renaming techniques for identifier

obfuscation [94].

4.3.8 Software Design. There is fertile ground in software architecture recovery. Future studies should go beyond

recovering components and connectors of software architectures, to identifying the employed design patterns and

architectural styles, as well as the associated system concerns in existing software systems [176]. More analyses are

suggested on recovered architectures with respect to their conceivable similarity with the legacy systems’ architec-

ture [176]. A prospective direction could be identifying faults in recovered architectures, that could possibly lead to

system failures either during or after the maintenance of the legacy systems [176].

4.3.9 Software Configuration Management. In software performance prediction, configuration interpretability, and

optimization, although the ML models’ results are quite accurate, there is still room for reducing learning errors, and

generalizing predictions to multiple computing environments [123].

4.3.10 SE Models and Methods. To improve trace recovery, Borg et al. [25] suggest combining probabilistic retrieval

methods with ML techniques, and conducting more research on the scalability of ML models in large projects.

4.3.11 SE Professional Practice. In cognitive load estimation the following remarks are noted. SE research currently lacks

effective tools and methods for measuring and evaluating practitioners’ cognitive load [60]. For this, more replication

studies are needed that document in detail any experiences and lessons learned from the application of ML-based

methods for cognitive load estimation [60]. Two promising research directions concern evaluating the effectiveness of

psychophysiological metrics in cognitive load estimation, and predicting the unproductive periods of developers, e.g.,

identifying when their cognitive load levels are error– and bug-prone. [60].

4.3.12 Engineering Foundations. In the task of missing value imputation researchers could experiment with ML tech-

niques that have not been employed yet in the SE field, including novel ideas and methods from related disciplines [69].

4.4 RQ3: What ML techniques have been used in SE?

The classification of the 83 studies according to the four axes described in Section 3.6 is presented in Table 6. With

regard to the role of AI in SE, the majority of studies (𝑛 = 54; 65%) were classified in the Classification, learning and

prediction category, followed by Fuzzy and probabilistic methods for reasoning in the presence of uncertainty (𝑛 = 17; 20%)

and Computational search and optimisation techniques (𝑛 = 12; 14%). In the supervision axis, most studies (𝑛 = 65; 78%)

adopt supervised learning, followed by unsupervised (𝑛 = 11; 13%), semi-supervised (𝑛 = 5; 6%), and reinforcement

learning (𝑛 = 2; 2%). According to the incrementality axis, almost all studies perform batch/offline learning, and only

one study appears to adopt online/incremental learning. Finally, in the generalizability axis, the majority of studies (𝑛 =

72; 87%) perform model-based learning, while the remaining (𝑛 = 11; 13%) employ instance-based learning.

In Fig. 6 we visualize the percentage distribution of the studies across their assigned SWEBOK KAs (Table 5) and ML

techniques (Table 6). The four axes are separated by vertical lines, and for each KA, the techniques of each axis sum up to

one. For instance, 10% of studies assigned to SE Management employ computational search and optimisation techniques,

30% employ fuzzy and probabilistic methods, and 60% employ classification, learning, and prediction techniques. As
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Table 6. ML Techniques Employed by Secondary Studies

Axis Technique Total % Studies

R
o
l
e
o
f
A
I

i
n
S
E

Computational search and optimisation techniques 12 14 [1, 3, 6, 7, 30, 53, 78, 80, 104, 112, 118, 134]

Fuzzy and probabilistic methods for reasoning in the

presence of uncertainty

17 20 [2, 9, 10, 13, 20, 25, 36, 70, 89, 91, 96, 123, 133, 145, 150, 156, 166]

Classification, learning and prediction 54 65

[4, 5, 8, 11, 17–19, 23, 32, 33, 44–46, 48, 51, 52, 60, 62, 67, 69, 79, 93, 94, 98–

103, 105, 111, 114, 120–122, 125, 135, 136, 139, 141, 143, 144, 146–148,

153, 158, 164, 171, 173, 174, 176–178]

S
u
p
e
r
v
i
s
i
o
n

Supervised learning 65 78

[1, 3–11, 17, 19, 23, 30, 32, 33, 44–46, 48, 51–53, 60, 62, 67, 69, 78, 79, 89,

91, 93, 94, 98, 100–105, 111, 114, 118, 120–123, 125, 133, 134, 136, 139,

143, 144, 146–148, 158, 164, 166, 171, 173, 174, 177, 178]

Unsupervised learning 11 13 [2, 13, 20, 25, 36, 96, 135, 145, 150, 153, 176]

Semi-supervised learning 5 6 [18, 70, 99, 141, 156]

Reinforcement learning 2 2 [80, 112]

I
n
c
r
e
m
e
n
-

t
a
l
i
t
y Batch/offline learning 82 99

[1–11, 13, 17–20, 23, 25, 30, 32, 33, 36, 44–46, 48, 51–53, 60, 62, 67, 69, 70,

78–80, 89, 91, 93, 94, 96, 98–105, 111, 112, 114, 118, 120–123, 125, 133–

136, 139, 141, 143–148, 150, 153, 156, 158, 164, 166, 171, 173, 174, 176,

177]

Online/incremental learning 1 1 [178]

G
e
n
e
r
a
l
i
-

z
a
b
i
l
i
t
y

Model-based learning 72 87

[1, 3–11, 17–19, 23, 30, 32, 33, 44–46, 48, 51–53, 60, 62, 67, 70, 78–80, 89,

91, 93, 94, 99–105, 111, 112, 114, 118, 120–123, 125, 133–136, 139, 141,

143, 144, 146–148, 153, 156, 158, 164, 166, 171, 173, 174, 176, 177]

Instance-based learning 11 13 [2, 13, 20, 25, 36, 69, 96, 98, 145, 150, 178]

expected from Table 6, in all KAs researchers mainly employ classification, learning, and prediction techniques, and

apply supervised, batch/offline, model-based learning. Interestingly, in the areas of SE Process, Software Design, and

Software Requirements, a considerable number of studies involve fuzzy and probabilistic methods of unsupervised,

instance-based learning. In SE Testing we also observe a lot of reviews on computational search and optimisation

techniques (the field known as Search Based Software Engineering—SBSE).

Classifying the manually extracted ML techniques (Section 3.6) according to the SE tasks outlined in Sec-
tion 4.2 results in no insight—the same algorithms appear to be used in all SE tasks. What differentiates their

use is the ML application task. In ML4SE, we recognize the following ML tasks: classification, clustering, regression;
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Fig. 6. Percentage distribution of publications across ML techniques and SWEBOK KAs. (The ML axes are separated by vertical lines.)
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Table 7. ML Techniques Grouped by Application Task

Classification, Clustering, Regression: Artificial Neural Network (Back Propagation, Multi-Layer Perceptron, Cascade Feed Forward, General Regression,

Radial Basis Function, Convolutional—CNN, Probabilistic, Graph, Recurrent—RNN, Long Short-term Memory—LSTM, Gated Recurrent Unit—GRU, Fuzzy,

Siamese, Deep Belief, Restricted Boltzmann Machine, Generative Adversarial, Autoencoder, Encoder-Decoder); Bayesian Network (Meta-learner, Converging

Star, Causal, Dynamic, Transfer, Weighted, Augmented, Boosting); Binary Classifier; Case-based Reasoning; Clustering variations (Hierarchical Agglomerative,

Hierarchical Conceptual with COB-WEB, Incremental Diffusive, Self Organizing Map, LIMBO-based Fuzzy Hierarchical); Decision Tree (C4.5, C5.0, M5, Partial,

J48, Alternating, Naive Bayes, Classification and Regression, Reduced Error Pruning Tree, Tree Discretiser, Chi-square Automatic Interaction Detection,

Plausible Justification Tree); Ensemble Learner (Bagging, Logit Boost, AdaBoost, XGBoost, Analogy-based); Expectation-Maximization algorithm; Feature-

gathering Dependency-based Software Clustering (SArF); Fisher’s Linear Discriminant; Fuzzification/Defuzzification; Gaussian Mixture Model; Grid Search;

Instance-based Learner (k-Nearest Neighbors, K-star, IBk); K-Means, Fuzzy K-Means, Fuzzy C-Means, X-Means, K-Medoids, SPK-Means, Affinity Propagation;

Learning Finite Automata (e.g., hW-Inference); Most Common Attribute; Naive Bayes Classifier (Binarized, Bernoulli, Multinomial, Tree Augmented, Gaussian);

Q-Learning; Random Forest (Adaptive Deep Forest, Rotation Forest, Isolation Forest, Global Abnormal Forest); Regression Analysis (Univariate Linear,

Multivariate, Multivariate Adaptive Regression Splines); Regression variations (Linear, Meta-learner Linear, Ensemble Linear, Multiple Linear with Backward

Elimination/Stepwise Selection, Logistic, Additive, Ordinary Least Square, Symbolic, Polynomial, Multiplicative Adaptive Spline, Projection Pursuit); Support

Vector Machine (SVM), Relevance Vector Machine, One-class SVM; Systematic Method for Software Architecture Recovery (SysMar)

Pattern Discovery: Association Rule Learning (e.g., Apriori, FP-Growth, ECLAT); Non-Nested Generalisation (NNGE); Repeated Incremental Pruning to

Produce Error Reduction (Ripper); Zero Rule, One Rule, Fuzzy Rule

Dimensionality Reduction: Correlation Feature-based Selection; Isomap; Principal Component Analysis; Self-organizing Map, Generative Topographic

Map; Singular Value Decomposition

Information Retrieval: Artificial Immune System, Artificial Immune Recognition System; Best Match 25; Binary Independence Model; Contrastive Analysis;

Language Model; Latent Dirichlet Allocation (LDA—Delta, Dynamic, Labeled, jsLDA, Maximum-likelihood Representation, with Gibbs Sampling, Temporal);

Latent Semantic Analysis; Latent Semantic Indexing (LSI), Probabilistic LSI; Probabilistic Inference Network; Topic Model (Correlated, Relational, Biterm,

Multi-feature, Citation Influence, Collaborative); Vector Space Model (VSM), Generative VSM

Stochastic Search: Ant Colony Optimization, Ant Colony-based Data Miner (Ant-Miner); Bat Algorithm; Cuckoo Search; Firefly Algorithm; Gene Expression

Programming; Genetic Algorithm; Genetic Programming; Group Search Optimization; Hill Climbing; Particle Swarm Optimization; Sequential Minimal

Optimization; Simulated Annealing; Tabu Search

Generation: Domain-specific Language Guided Model; Memory-augmented Neural Network (Memory Network, End-to-End Memory Network, Recurrent

Entity Network); n-gram Language Model; Non-recurrent Neural Network (CNN, Dynamic CNN, Convolutional Sequence to Sequence Learning, BERT,

Transformer, WaveNet); Pre-trained Word Embeddings (Word2Vec, FastText, Global Vectors for Word Representation—GloVe, Contextualized Word Vectors—

CoVe, Character to Word—C2W); Probabilistic Grammar (Abstract Syntax Tree, Suffix Tree, Context-Free Grammar, Probabilistic Context-Free Grammar, Tree

Substitution Grammar, Tree Adjoining Grammar); Recurrent Neural Network (Vanilla RNN, LSTM, GRU, Fast-Slow RNN, Recurrent Highway Network)

Hybrid: Artificial Neural Network-Evolutionary Programming; Evolutionary Decision Tree (LEGAL Tree); Genetic Algorithm-Artificial Neural Network;

Genetic Algorithm-Support Vector Machine with a linear/radial basis kernel function; Genetic Programming-Decision Tree; Hyper-heuristic Evolutionary

Algorithm-Decision Tree (HEAD Tree); Particle Swarm Optimization-Artificial Neural Network; Simulated Annealing-Probabilistic Neural Network

Miscellaneous: CODEP (COmbined DEfect Predictor) algorithm for cross project defect prediction [17]; ML model for system-level test case prioritization

using black-box metadata and natural language test case descriptions [44]; SwiftHand tool for automated Android GUI testing [176]

pattern discovery; dimensionality reduction; information retrieval; stochastic search; generation. We classified the

identified ML techniques according to these ML tasks, and also included two additional categories: hybrid and miscella-

neous. Hybrid techniques concern combinations of the aforementioned ML tasks (e.g., stochastic search and clustering),

while miscellaneous include techniques that do not fall into a particular category. In Table 7 we list the techniques used

in each ML task.

5 DISCUSSION AND IMPLICATIONS

In the past twenty years, diverse studies identified, summarized, and assessed the contribution of ML in SE. Despite

the considerable number of ML-based approaches that have been proposed in the associated academic literature for
a large number of SE tasks, their practical adoption and application by the industrial community appears limited.

From the analysis of RQ2 (Section 4.3) we conclude that some reasons for this could be the lack of: empirical work

evaluating the quality and cost-effectiveness of these approaches, comparative analyses contrasting their performance

and execution time to that of conventional statistical techniques, and industrial trials assessing their relevance, efficiency,

and scalability in the context of large projects. A starting point to address the latter and improve the quality of future

ML4SE studies could be thorough industrial case studies aiming to unveil any obstacles in the adoption of ML approaches,

as suggested by Wen et al. [166].
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Implication 1. Further empirical validation studies, comparative analyses, and industrial trials assessing and

contrasting the quality of the proposed ML techniques for SE tasks to that of conventional statistical approaches are

required to amplify the salience of the former, and boost their practical adoption and application. These are mostly

needed in the areas of software quality, testing, and engineering management.

Apart from the lack of empirical and comparative analyses assessing the quality of existing ML models, another

obstacle in their adoption and advancement could be the lack of up-to-date methods for developing reliable and selecting

suitable models. This deficiency was mainly observed in the tasks of smell detection, software fault and maintainability

prediction, and requirements volatility prediction. Particularly in smell detection, the inconsistency observed by Sharma

and Spinellis [144] between smell definitions and detection methods seems to be a result of the absence of smell literature

establishing standards for smell definitions, their implementations, and commonly used metrics. Similar remarks are

noted in software maintainability prediction concerning maintainability definitions and characteristics [52]. ML models

are typically founded on clearly defined principles and rules extracted from the training data (otherwise learning would

simply correspond to memorization) [113]. Therefore, it seems that the growth of ML models is indirectly impacted by

inadequately established SE concepts and general literature shortcomings.

Implication 2. The academic research community could consider taking a step back to address its fundamental

SE literature shortcomings and inconsistencies including outdated and deficient methods, which appear to impact the

development and selection of robust and reliable ML models for SE tasks. Such deficiencies are mainly observed in the

tasks of smell detection, software fault and maintainability prediction, and requirements volatility prediction.

Looking at Table 5 it appears that SE tasks falling into more technical SWEBOK KAs such as software quality and

testing are more frequently addressed with ML approaches, compared to KAs targeting the human factor, such as SE

professional practice or software requirements. This could be a result of the inadequate performance of existing ML

models of the latter KAs, as observed in the results of RQ2 (Section 4.3), discouraging developers from performing

further studies in these KAs, and prompting them to more fertile grounds (i.e., technical KAs)—a tendency known as

the streetlight effect [22, 24]. It could be the case that human-centered SE tasks entailing a high rate of subjectivity are

more difficult to be approximated with ML, either due to inherent limitations imposed by subjectivity on the evaluation

of the respective ML models, or the lack of ground truth datasets. Interestingly, a similar distribution of the KAs is also

observed in the reverse field of SE for AI, according to a recent survey by Martínez-Fernández et al. [109].

Regarding data availability, in a recent study about Mining Software Repositories data papers [88] the identified

datasets about developers’ attributes were considerably fewer than those about software attributes, such as version

control system data, or software faults, failures, and smells. Gathering and labeling data about developers’ mental,

behavioral, or sentimental characteristics has long been a challenge for the research community, remaining an open

issue [88]. Similarly, automatically extracting software requirements from natural language documents with ML, as

suggested by Bakar et al. [20], has been difficult, because the usually unstructured nature of the documents impedes their

systematic processing. On the contrary, gathering data from a program’s execution, testing, and debugging phases can

be automatically achieved with various tools. The preponderance of datasets with software faults, failures, and smells

in our aforementioned study [88] confirms this. Review authors suggest the incorporation of developers’ real-time

emotion-sensing biometric data (e.g., heart rate, eye blinking, and electroencephalogram) in human-centered datasets

to potentially improve a ML-based system’s performance (e.g., for emotion detection) [59]. However, disclosing and

employing such private information might raise privacy concerns [137].
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Implication 3. SE tasks associated with human-centered SWEBOK KAs such as SE professional practice or software

requirements appear less tackled with ML techniques compared to more technical ones including software quality and

testing. Addressing the weak spots requires investment into the difficult tasks of collecting and labeling training data

about developers’ attributes, and evaluating the typically subjective accuracy of the ML-based systems.

Complementary to the aforementioned difficulties of collecting and labeling data for human-centered SE tasks, further

concerns related to the datasets’ quality were remarked in the secondary studies. Data quality is often dubious due to

the inadequate documentation of the data collection, cleaning, and pre-processing methods (i.e., the data pipeline) [62].

These shortcomings are not only encountered in ML4SE; they further expand to SE for AI [109], suggesting major

field-agnostic data issues that need to be resolved. Along with better documentation, the automation of the data pipeline

activities through ML frameworks such as Auto-WEKA [154] or Auto-sklearn [54] could further improve data quality,

and consequently, the performance of the trained ML models [132].

Implication 4. To increase the quality trustworthiness of training datasets, researchers should document their

data collection and pipeline processes, and investigate the cost-benefit of automating them through ML frameworks.

Additional dataset issues arise from their industrial relevance and scalability. Some practitioners seem reluctant to

utilize ML models from academia that are only trained on open data, considering them less realistic and representative

of industrial contexts [67], and less scalable to large projects [25]. In addition, they may also fear that ML models trained

solely on publicly available data will not produce novel results, or be unwilling to work with ML models developed

by a different organization—also called the not invented here syndrome [129]. These last two cases were also observed

by us [88] with regard to the use of data papers, recommending to methodology researchers, conference program

committees, and journal editorial boards the embracement of a procedure similar to that of pre-registered studies [64]

(i.e., publishing a data paper and then employing it for empirical SE research). To strengthen the industrial application

of ML models to SE tasks, the same paradigm could also be employed in the ML and SE intersection by promoting the

advance publication of datasets used in the development of ML-based systems. Furthermore, industrial partners should

consider sharing more of their proprietary data to help academia build more robust and realistic ML models, which will

likely benefit the industry as well.

Implication 5. To improve the industrial relevance, scalability, and performance of ML models, practitioners might

want to consider sharing more of their proprietary data with academia. Moreover, methodology researchers, conference

program committees, and journal editorial boards could investigate the value of adopting a research paradigm where

training datasets are published before the ML models that use them.

In respect to the incrementality of employed ML techniques in SE (Section 4.4), there seems to be a vast preference

for batch/offline learning, despite the benefits of online learning. Online learning is more computationally effective for

dealing with new data, and also works well for systems that receive data as a continuous flow and need to adapt to

change rapidly or autonomously [77]. Motivated by this, there has been an emergence of promising incremental data

retrieval methods and tools recently (e.g., the works by Mastorakis et al. [110], Fu et al. [56], Aydin et al. [15]). At the

same time, other science and engineering disciplines, such as healthcare [128] and transportation engineering [115],

have already started experimenting with online/incremental ML techniques. For instance, in the earthquake engineering

domain, there is an active research area concerned with developing ML-based structural control schemes for earthquake

mitigation [172]. In this context, Suresh et al. [151] accomplished real-time online adaptation of an artificial neural

network-based controller through the use of an extended minimal resource allocation network. The authors argue that
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online ML-based structural controllers appear more effective in mitigating the adverse effects of earthquake hazards on

buildings than traditional approaches.

The SE community could be inspired by cross-domain online ML applications like the aforementioned, and adapt

them to the SE field, e.g., for real-time monitoring of applications. Promising data sources include build and execution

logs, crash reports, security incidents, integrated development environment and user interactions, telemetry, and the

internal usage of code abstractions (e.g., software functions, API endpoints). An instance of online ML application in a

middleware could involve the real-time verification of the availability of the associated endpoint servers as well as the

real-time analysis of potentially defective software components to determine potential self-healing actions.

Implication 6. Online and incremental ML-based applications in SE provide a fertile ground for further research,

due to their computational effectiveness, rapid changeability and adaptability, and thanks to recent advances in

incremental data retrieval methods and tools.

The general idea of experimenting with ML approaches applied in different domains and contexts is also supported

by the authors of some secondary studies (Section 4.3). Recommendations pertain to combining probabilistic or search-

based techniques with ML approaches [3, 25, 67, 70, 104], and transferring novel methods from relevant fields [69, 166].

The lower percentage of studies classified in the categories of Computational search and optimization techniques (14%)

and Fuzzy and probabilistic methods for reasoning in the presence of uncertainty (20%) as well as the limited number of

employed hybrid ML techniques, compared to the ones under the category of Classification, Clustering, Regression (see

Section 4.4), aligns with the above recommendations, suggesting room for improvement. Furthermore, the encouraging

achieved results in effort estimation and defect prediction with hybrid models, as concluded by Malhotra et al. [104], is

a positive indicator for performing more experiments with them.

Implication 7. HybridML techniques encompassing probabilistic or search-based approaches, and cross-disciplinary

novel ML methods have yielded positive results in certain SE tasks, hence they might be worth of further investigation.

6 THREATS TO VALIDITY

We use the classification scheme proposed by Ampatzoglou et al. [12] to classify the limitations of this study. This is

inspired by the planning phase of reviews (i.e., search process, study selection, data extraction, and data analysis) [83],

and is extended with an additional category that concerns threats from the entire lifecycle of the review [12].

Study Selection Validity The adopted study search and selection strategies are associated with the risk of missing

relevant studies. Some research may have been missed as a result of the selected year range in the automated search

(i.e., 2015–2020), the preferred digital libraries, and the constructed search strings (Section 3.2), or the applied selection

criteria (Section 3.3). The year 2015 was considered the inflection point for the joint evolution of the two fields, as

elaborated in Section 3.2.1, allowing us to center our analysis on the interdisciplinary growth. To reduce the threat of

missing relevant reviews, we searched the digital libraries that are most likely to include the majority of studies in

ML4SE. However, we cannot eliminate the chance that we may have missed some germane studies while conducting

the automated search in these databases. To cope with the interdisciplinarity of the subject area, the keywords for our

search strings (Table 1) were derived from established sources.

The quality assessment process (Section 3.5) is also associated with a few threats. A number of pertinent studies

were deliberately excluded to ensure high quality of our study results, as recommended in the adopted guidelines [83].

Furthermore, the DARE-4 framework employed in the quality evaluation of the reviews does not cover all quality

facets [41]. This is a common threat of all existing quality assessment frameworks, and it is a recommended practice for
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tertiary reviews to select the framework that best satisfies the research goals [41]. For this reason we selected DARE-4,

which was deemed the most appropriate framework for our evaluation, and is also the most commonly used one in SE

tertiary studies [41].

Data Validity One potential limitation stems from the data extraction process (Section 3.6). Some secondary studies

did not provide all the information needed, and we had to infer it. For instance, some studies did not include a summary

list of the associated primary research (e.g., [94]). To extract the number of primary studies and their publication

years in these cases (Tables 3, 4), we looked up the bibliography section, omitting irrelevant research referenced, e.g.,

in introduction or related work. In addition, some secondary reviews did not cite the employed research method

(e.g., [144, 153]), despite their detailed descriptions. For these, we considered the method description and the complete

review structure to infer the adopted guidelines. For example, SLRs following Kitchenham and Charter’s guidelines [83]

typically report their research questions, search process, study selection method, quality assessment, and data extraction

process.

Another data validity threat arises from one of the composing axes of the ML classification scheme (Table 6).

Specifically, the role of AI in SE applies to a broader field than ML (i.e., AI). Consequently, it could be considered less

appropriate for the categorization of studies targeting the application of ML in SE. We decided to use this axis because

we considered that it would complement the results with additional useful information. (To the best of our knowledge,

there is no available study characterizing and categorizing the role of ML in SE.) To this end, all studies were successfully

assigned to a category, while the data extractor and data checker maintained high inter-rater reliability, suggesting that

the categories of this axis are suitable for the categorization of ML4SE research. Follow-up studies could validate the

extent of congruence between the role of AI in SE and that of ML in SE.

Research Validity The study’s research validity is partially concerned with the extent to which the results of

our tertiary review can be generalized to the subject population. Therefore, one potential issue stems from assessing

whether the secondary studies are representative of all the relevant studies in the subject area. To minimize this threat,

we performed a comprehensive multi-phase search procedure (automated, manual, backward, and forward snowballing

search) in more than one digital libraries (Section 3.2), during which we tried to be as inclusive as possible with respect

to the selection criteria (Section 3.3), following established guidelines [83].

Other major threats to the research validity stem from the steps during which we followed manual processes involving

subjective judgment. These include the manual and backward snowballing search processes (Section 3.2), the study

selection (Section 3.4) and quality assessment (Section 3.5), the data extraction process, the classification of the studies

using the SWEBOK KAs and the multi-axis ML scheme, the extraction of the tackled SE tasks by ML using the open

coding practice, the identification of implications for further research in ML4SE, and the detection of the employed

ML techniques in SE (Section 3.6). The reliability of these processes was improved by engaging multiple raters, and

by basing them on standard research methods. However, we recognize that validity threats stemming from manual

processes entailing subjective judgment cannot be nullified [127].

7 CONCLUSION AND RECOMMENDATIONS

In our tertiary review we systematically retrieved 140 secondary studies in ML4SE, and analyzed 83 of them that

satisfied a set of recommended quality criteria. These 83 reviews span the years 2009–2022, were authored by 274

researchers affiliated with 140 institutions, and entail 6 117 primary works published between 1990–2021. To analyze

the reviews we followed established guidelines and designed a protocol that was internally agreed by all authors. The

analysis was performed by hand and consisted of: the classification of the reviews using the SWEBOK KAs and subareas;
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the extraction of SE tasks tackled with ML from the reviews; the extraction of SE topics for further research using ML

from the reviews; the categorization of the reviews using a four-axis ML classification scheme that was synthesized

from two sources; and the extraction of the ML techniques employed in the reviews. Through these manual processes

the following key findings were obtained.

• The majority of secondary reviews in ML4SE target the SWEBOK KAs of software quality and testing, and SE

process. Human-centered KAs such as SE professional practice and software requirements appear less tackled with

ML techniques, due to the subjectivity entailed in the evaluation of the models, and the difficulty of collecting and

labeling training data about developers’ characteristics.

• With regard to the role of AI in SE, most studies pertain to Classification, learning and prediction tasks, and apply

supervised learning. In terms of generalizability, model-based learning is vastly preferred. Despite the demonstrated

benefits of online/incremental learning and the emergence of relevant tools, batch/offline learning is overwhelmingly

used.

• Some major obstacles to the advancement of ML techniques result from the training datasets and SE literature

discrepancies. Validity issues often arise from undocumented data collection and non-automated data pipeline

processes, while the absence of proprietary data burdens the industrial relevance, scalability, and performance of ML

models. Outdated and deficient methods obstruct researchers from developing robust and selecting appropriate ML

models for SE tasks.

Recommendations for Researchers From Section 4.3.1 we summarize the following suggestions. Researchers

should further assess the proposed ML techniques, compare them to conventional statistical approaches, and evaluate

their scalability, performance, and cost-effectiveness in industrial settings as well as through further empirical analyses.

To this end, more in-depth case studies with practitioners should be conducted. A starting point to improve the quality

of ML models is by optimizing their hyper-parameters, addressing class imbalance in training datasets, and developing

concrete methods for building reliable systems. Hybrid, ensemble, and incremental ML techniques, and cross-domain

methods comprise promising areas for additional experimentation.

Recommendations for Practitioners Practitioners can benefit from existing ML4SE research through the various

published ML-based open source tools for SE tasks. To select the most applicable ones, they can consult the associated

meta-analyses summarized in this study [17, 52, 67, 112, 147]. ML-based tools can either be applied directly to their

corporate projects, or be used as baselines to compare the performance of their own tools. In both cases care should be

taken regarding the false-positiveness, fine-tuning, and training of the adopted systems. Furthermore, practitioners can

take advantage of the diverse ML4SE research implications to improve their existing ML systems, or produce new ones

to satisfy further needs.

To help researchers build more accurate ML models, the industry needs to release more open-source, large-scale

datasets, and collaborate with academia in industrial trials and case studies. Collaborations can happen through funded

research projects, internships, regular workshops and seminars, conference participation, technology transfer test labs

(for piloting research ideas), and the involvement of industry partners in research education [58]. Through practitioners’

feedback and support researchers will be able to apply their models in large projects, understand the industry’s needs,

and improve their methods. Closing this loop should provide practitioners with better ML-based SE tools.

This is the first systematic tertiary study providing a comprehensive overview of the current state of the practice in

ML4SE. With these final considerations we hope to increase awareness on certain issues identified in the intersection of

the two fields, and steer researchers’ attention towards under-explored areas and topics requiring further investigation.
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