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ABSTRACT

Many online learning platforms and MOOCs incorporate some

amount of video-based content into their platform, but there are

few randomized controlled experiments that evaluate the e�ective-

ness of the di�erent methods of video integration. Given the large

amount of publicly available educational videos, an investigation

into this content’s impact on students could help lead to more ef-

fective and accessible video integration within learning platforms.

In this work, a new feature was added into an existing online learn-

ing platform that allowed students to request skill-related videos

while completing their online middle-school mathematics assign-

ments. A total of 18,535 students participated in two large-scale

randomized controlled experiments related to providing students

with publicly available educational videos. The �rst experiment

investigated the e�ect of providing students with the opportunity

to request these videos, and the second experiment investigated

the e�ect of using a multi-armed bandit algorithm to recommend

relevant videos. Additionally, this work investigated which features

of the videos were signi�cantly predictive of students’ performance

and which features could be used to personalize students’ learning.

Ultimately, students were mostly disinterested in the skill-related

videos, preferring instead to use the platforms existing problem-

speci�c support, and there was no statistically signi�cant �ndings

in either experiment. Additionally, while no video features were

signi�cantly predictive of students’ performance, two video fea-

tures had signi�cant qualitative interactions with students’ prior

knowledge, which showed that di�erent content creators weremore

e�ective for di�erent groups of students. These �ndings can be used

to inform the design of future video-based features within online

learning platforms and the creation of di�erent educational videos
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1 INTRODUCTION

There is currently a plethora of educational content available for

free online. While this can empower students savvy enough to

navigate to relevant content on their own, searching for relevant

content can frustrate less experienced students, increasing their

cognitive load and making it more di�cult for them to obtain the

same bene�ts [8]. Often, learning platforms will develop their own

instructional content by working with, or crowdsourcing from ex-

perts, e.g., [3, 13], but this can be time consuming and expensive. In

many cases, teachers will search for hours to �nd relevant instruc-

tional content to distribute to their students [11]. We are interested

in reducing the cost for learning platforms to provide relevant in-

structional content to students and taking the burden of identifying

and distributing relevant instructional content o� teachers.

Prior research has shown that distributing educational videos to

students has a positive impact on their learning [12, 17]. In these

studies, the problem-speci�c videos were created by the researchers

and were designed to explain how to solve the speci�c mathemat-

ics problems for which they were provided. Building o� this prior
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research, this work investigated if free and publicly available skill-

related videos have a similar positive e�ect on students’ learning.

Videos aggregated from YouTube via automated searches were

incorporated into the ASSISTments online learning platform [7]

and provided to students upon their request. In addition to a ran-

domized experiment investigating the e�ectiveness of these videos,

multi-armed bandit algorithms (MABs) were used to identify which

videos were most e�ective for each mathematics skill using the

ASSISTments Automatic Personalized Learning Service (APLS) [15].

The e�ectiveness of the videos recommended via MAB were com-

pared to randomly recommended videos to investigate the impact

that MABs could have on the incorporation of these videos into

online learning platforms.

Additionally, features of these videos, extracted using various

machine learning APIs, were evaluated for their correlation with

students’ performance and for their ability to personalize students

learning based on students’ prior knowledge. For a feature to be ca-

pable of personalizing students’ learning, there must be a qualitative

interaction between the feature and prior knowledge. A qualitative

interaction indicates that one group of students bene�ts more from

one value of the feature while another group bene�ts more from a

di�erent value of the feature. For example, if high-knowledge stu-

dents bene�ted more from long videos and low-knowledge students

bene�ted more from short videos, then the video length feature

could be used to personalize students’ learning.

To summarize, this work answers the following research ques-

tions:

(1) What is the e�ect of incorporating publicly available skill-

related videos into an online learning platform on students’

performance?

(2) What is the e�ect of using multi-armed bandit algorithms to

recommend videos on students’ performance?

(3) What features of these videos are most predictive of students’

performance?

(4) What qualitative interactions between video features and

students’ prior knowledge are most predictive of students’

performance?

2 BACKGROUND

2.1 Instructional Videos

Instructional videos have been used successfully in the context of

online learning many times. In a randomized controlled study in

which the same problem-speci�c tutoring was provided to students

in video or text format, it was shown that videos led to higher stu-

dent performance than text [12]. Additionally, a combined analysis

of �ve di�erent randomized controlled experiments that compared

video feedback to text feedback within the ASSISTments online

learning platform found that videos were more e�ective than text

across a variety of measures such as mastery speed and posttest

score [17]. While these studies demonstrate the e�ectiveness of

videos for problem-speci�c support, in this work we propose using

videos to give more general, skill-related instruction.

Massive open online courses (MOOCs) are a good example of

using videos not to provide speci�c feedback for individual prob-

lems, but to convey information on various topics in general. Many

MOOCs feature videos in a wide variety of formats [19], from

recordings of classroom lectures, to completely virtual presenta-

tions, to hybrid approaches, as well as various levels of integration

with online assessments to enable students to practice as they learn.

Not only do videos come in a variety of formats, but students use

videos di�erently, and prefer videos formatted in a variety of ways.

For example, a study of MITx MOOCs found that there was a dis-

tinct bimodal distribution in students’ video usage across di�erent

courses, demonstrating di�erences in preference of how to use the

MOOC videos [23]. Additionally, prior work has found that some

students prefer classroom lecture recordings while others prefer

fully digital presentations, and that these preferences are statisti-

cally signi�cantly correlated with their motivation for enrolling in

the MOOC [24]. While the study in this work is not done within a

MOOC, these MOOC studies show the variety of formats and pref-

erences for video-based content. The skill-related videos provided

to students in this study may follow usage trends similar to the

videos in MOOCs.

2.2 Multi-Armed Bandit Algorithms

Multi-Armed bandit algorithms (MABs) are a simple type of re-

inforcement learning where the algorithm takes one of multiple

possible actions, is given a numeric reward based on criteria de-

�ned by the researcher, and models the relationship between each

action and the expected reward. Over time, a MAB uses its model

to try and maximize the reward it receives by taking actions with

the highest expected reward [20]. MABs assume that the reward

received for an action is independent of the sequence of actions

taken, unlike more complicated reinforcement learning algorithms.

Research has shown in simulation that MABs would be able to

increase students’ learning during randomized experiments per-

formed within online learning platforms, but would also increase

the false-discovery rate of signi�cant experiment results [18]. Al-

though there are methods to adjust how a MAB operates to correct

for some of the increase in false-discovery rate [25, 26], to avoid any

bias, this work includes a randomized controlled experiment to in-

vestigate the e�ectiveness of providing students with skill-related

videos. However, MABs have been shown via a large-scale ran-

domized experiment to sightly improve students’ performance by

learning the most e�ective problem-speci�c support messages for

middle-school mathematics problems [15]. Compared to randomly

receiving one of multiple relevant problem-speci�c supports, stu-

dents that received the support recommended by the MAB got the

next problem in their assignment correct more often [15]. Therefore,

to both maximize the bene�t of skill-related videos and to study the

e�ects of MABs on student performance in a di�erent but similar

context to the previous study, this work also studies the e�ect of

using a MAB to recommend skill-related videos to students.

2.2.1 Thompson Sampling. The MAB used in this work is Thomp-

son sampling. Thompson sampling was used in previous stud-

ies comparing MABs to random selection [15, 18] and has out-

performed other algorithms when recommending content to stu-

dents [15, 18]. Thompson sampling models the expected reward

of each action it can take as a distribution of the rewards it has

received for that action before. Each time Thompson sampling re-

ceives a reward for taking an action, that reward is used to update

the action’s prior distribution. Thompson sampling selects which
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action to take by randomly sampling from each action’s prior re-

ward distribution, and then takes the action corresponding to the

highest random sample [22]. By randomly sampling from the prior

distributions, Thompson sampling balances learning more about

actions that have not been taken frequently with taking actions

that lead to the highest reward on average. At the beginning of

Thompson sampling’s use it will know very little about each action,

and thus each prior distribution will have a high variance. The high

variance will lead to random samples far from the mean reward of

each action, which will make Thompson sampling’s choice of action

very similar to random selection. However, once each action has

been taken many times, the variance of the prior reward distribu-

tions tends to decrease, and Thompson sampling will begin to take

the action with the highest expected reward more frequently. The

Thompson sampling algorithm used in this work is Beta-Bernoulli

Thompson Sampling (BBTS), which models the prior distribution

of a binary reward as a Beta distribution, and has been proven to be

asymptotically optimal in [9]. BBTS has been used successfully in

the past to recommend problem-speci�c support to students [15].

2.3 The ASSISTments APLS

The experiments in this work were performed within ASSISTments,

an online learning platform that focuses on middle-school math-

ematics. Since 2021, ASSISTments has been able to use MABs to

personalize the content provided to students through the Automatic

Personalized Learning Service (APLS) [15]. The APLS allows for

algorithms to make content recommendations for students in real-

time. The APLS has the capacity to incorporate features of students,

problems, and the content itself to its decision of what content to

provide to a student. When multiple recommendation algorithms

are available in the APLS, one is selected randomly, which enables

randomized experiments between algorithms [15]. In this work, a

random selection model and a BBTS model were added to the APLS

for recommending videos. This way, the APLS administers the ex-

periment comparing MABs to random selection, and the random

selection model administers the experiments comparing videos.

Each night, the APLS calculates a reward for each recommenda-

tion made in the past 24-hours and updates each recommendation

algorithm using these rewards. If a student was able to complete

the next problem on their �rst try without any additional tutoring,

the algorithm receives a reward of 1 for its video recommendation.

Otherwise, the algorithm receives a reward of 0. In the studies in

this work, the algorithms received rewards regardless of whether

or not the student observed the skill-related video because both

the random selection model and the BBTS model had the option to

recommend no video. If a reward was only given when students

viewed the videos, a reward could never be calculated for recom-

mending no video. The downside of this is that the population of

students that never observed the skill-related videos, while not

biasing the prior reward distributions, added noise, making it more

di�cult to learn the di�erences in e�ectiveness between videos.

3 SKILL-RELATED VIDEOS

3.1 The Show Video Button

Prior to this work, ASSISTments only had the capacity to o�er

students problem-speci�c support. Given that it has been shown

multiple times that the problem-speci�c support in ASSISTments

bene�ts students [13, 17, 21], it would have been potentially detri-

mental to replace this problem-speci�c support with skill-related

videos. Instead of replacing this tutoring, a new button was added

to the ASSISTments Tutor. The ASSISTments Tutor is shown in

Figure 1. Figure 2 shows the explanation, in yellow, that appears

when a student clicks the Show Explanation button, which is the

pre-existing button used to request problem-speci�c support. This

tutoring only explains how to solve the speci�c problem on screen.

The new ShowVideo button is to the left of the ShowExplanation

button. When a student clicks on the Show Video button, a new

tab containing a skill-related video opens in the student’s web

browser. Viewing a skill-related video does not directly explain how

to solve the speci�c problem in the Tutor, and therefore, there is

no penalty for requesting a skill-related video, unlike the problem-

speci�c support, which removes a fraction of a student’s score

when requested. To familiarize students with the new Show Video

button, an information icon, shown in Figure 1 directly to the left

of the Show Video button, was provided. When students hover over

the information icon, the message “Clicking this button does not

reduce your score. It shows a video to help you solve the problem”

is displayed. Figure 3 shows an example of a video opened in a new

tab when a student clicks the Show Video button.

Figure 1: A mathematics problem in the ASSISTments Tutor.

The new Show Video button appears to the left of the pre-

existing Show Explanation button.

3.2 Video Incorporation

To incorporate skill-related videos into the ASSISTments APLS, the

following steps had to be taken.

(1) Skill Labeling: Tag every problem in ASSISTments with the

most relevant Common Core Skill Code [1].

(2) Video Filtering: Identify publicly available YouTube videos

relevant to each skill.

(3) Feature Extraction: Create features of the videos and incorpo-

rate them into the APLS in order to investigate their impact

on student performance.

3.2.1 Skill Labeling. The Common Core State Standards for Math-

ematics [1] discretize the United States mathematics curriculum

into a tree of branching codes, where each leaf refers to a speci�c
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Figure 2: A mathematics problem in the ASSISTments Tutor

with an explanation highlighted in yellow.

Figure 3: An example of a skill-related video.

concept that students must learn during their mathematics edu-

cation. For example, the Skill Code 7.G.A.1 refers to a 7th grade

geometry problem (7.G). The letter A refers to a section of the

7th grade geometry curricula, speci�cally the section described

as “Draw, construct, and describe geometrical �gures and describe

the relationships between them.” The number 1 is the �nal part

of the skill code which refers to the skill in section A described

as “Solve problems involving scale drawings of geometric �gures,

including computing actual lengths and areas from a scale drawing

and reproducing a scale drawing at a di�erent scale.”.

For each 6th grade through 8th grade mathematics problem in

the Engage New York1, Illustrative Mathematics2, and Utah Middle

School Math Project3 curricula, two teachers labeled each mathe-

matics problem with the Common Core Skill Code most relevant

to solving the problem. If the two teachers agreed, then that was

the �nal skill code incorporated into ASSISTments. If the teachers

disagreed, a third teacher was used to decide which of the two skill

codes was correct. Essentially, two out of three teachers had to

agree on the skill code for each mathematics problem before it was

labeled. In total, 16,167 mathematics problems were tagged with

their most relevant skill.

3.2.2 Video Filtering. After all the mathematics problems were

tagged with their most relevant skill code, the skill code descrip-

tions were used as the search term in YouTube in order to �nd

relevant videos for each skill. The �rst ten results of each search

were collected and shown to middle-school math teachers. The

teachers were instructed to select the �rst �ve relevant videos for

each skill. If less than �ve videos were relevant, then the teachers

were instructed to go to YouTube and �nd the remaining videos

themselves. Even though part of this work was to investigate how

well BBTS would be able di�erentiate between more and less e�ec-

tive videos, the videos were still evaluated by teachers because at

no point in this work would it have been acceptable for students to

have been shown noneducational content. This process was used to

�nd �ve relevant videos for each skill. The number �ve was chosen

somewhat arbitrarily, with the goal of having enough videos for

there to be variations between them, but few enough videos that

BBTS would have time to learn the e�ectiveness of each video. In

total, 1,315 videos were collected for 263 skills.

3.2.3 Feature Extraction. Once �ve videos for each skill were col-

lected, a variety of machine learning APIs and YouTube metadata

was used to create features for each video. Two APIs, Speechace4

and DeepA�ects5, were used to extract features related to the voice

of the speaker in the video if there was one. The Azure Face API6

was used to examine qualities of the face in the video if the speaker

included their face. Lastly, YouTube metadata7 was used to extract

features related to the length and appeal of the videos. The number

of dislikes for a video was made private by YouTube on November

10th, 20218, but these features were extracted prior to that change.

Of the dozens of features available through these sources, 12 were

included as features in the APLS and used for further analysis of

the experimental results. If all the features had been included, the

false discovery rate of features that signi�cantly impact student

performance would have been much higher. The following 12 fea-

tures were chosen because of their relevance to the educational

quality of the videos, as determined qualitatively by a combination

of middle-school mathematics teachers and researchers. Essentially,

1http://www.nysed.gov/curriculum-instruction/engageny
2https://illustrativemathematics.org/
3http://utahmiddleschoolmath.org/
4https://docs.speechace.com/
5https://docs.deepa�ects.com/docs/introduction.html
6https://azure.microsoft.com/en-us/products/cognitive-services/face/
7https://www.youtube.com/
8https://blog.youtube/news-and-events/update-to-youtube/
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these features are based on engagement statistics and things the ed-

ucators that were consulted had heard students express preferences

for in the past.

• Length: The length, in seconds, of the video, determined

using YouTube metadata.

• View Count: The number of views of the video, determined

using YouTube metadata.

• Percent Likes: The ratio of likes to views, determined using

YouTube metadata.

• Percent Dislikes: The ratio of dislikes to views, determined

using YouTube metadata.

• Percent Comments: The ratio of comments to views, de-

termined using YouTube metadata.

• Pronunciation Score: A score from 0-100 that assesses how

well the words in the video are pronounced, determined

using Speechace API.

• Unknown Pronunciation Score: A binary indicator for

whether or not Speechace was unable to calculate a pronun-

ciation score.

• Male Tone: A binary indicator for whether or not the tone of

the speaker sounded as though they were male, determined

using the DeepA�ects API.

• Reading Tone: A binary indicator for whether or not the

tone of the speaker sounded as though they were reading,

determined using the DeepA�ects API.

• Passionate Tone: A binary indicator for whether or not the

tone of the speaker sounded passionate, determined using

the DeepA�ects API.

• Unknown Tone: A binary indicator for whether or not

DeepA�ects was unable to analyse part of the tone.

• Face Included: A binary indicator of whether or not there

was a face included in the video, determined using Azure

Face API.

4 METHODOLOGY

4.1 Empirical Studies

Two randomized controlled experiments were performed using the

ASSISTments APLS between March 3rd, 2022 and July 18th, 2022.

The �rst experiment investigated the impact of skill-related videos

on student performance, and the second experiment investigated

the impact of using a MAB, speci�cally BBTS, to recommend skill-

related videos compared to randomly recommending skill-related

videos. Both studies were run simultaneously at the problem level,

on di�erent subsets of the student population. When a student

started a problem, they were �rst randomized with equal probabil-

ity between receiving a randomly recommended video or a BBTS

recommended video. Students randomized to a BBTS recommended

video were the treatment population for the second experiment, and

BBTS was used to recommend one of the �ve relevant videos for the

skill the problem was tagged with or no video (six options per rec-

ommendation). Students randomized to a randomly recommended

video were the control population for the second experiment, and

were randomly given one of the �ve relevant videos for the skill the

problem was tagged with or no video with equal probability (1/6

chance of receiving each video, 1/6 chance of receiving no video).

Students in the control population of the second experiment that

were randomized to no video were considered the control popula-

tion for the �rst experiment, and students randomized to any of

the �ve videos were considered the treatment population.

Essentially, all students participated in the second experiment,

and the half of students that were given randomly recommended

videos participated in the �rst experiment as well. Both experiments

were intent-to-treat analyses because the Show Video button was

visible or not based on which condition a student was in. Because

the presence of the button could have an e�ect on students’ behav-

ior, a student was included in the analysis if they were randomized

into a condition, regardless of whether or not they viewed the

skill-related video. Both experiments used next-problem correct-

ness as the dependent measure. Correctness is a binary indication

of whether the student got the problem correct on their �rst try

without any additional support (1) or not (0). Next-problem cor-

rectness was chosen because it is an immediate measure that has

been shown in prior work to be an e�ective surrogate for learning,

and it correlates with other measures of learning such as posttest

score and mastery speed[13, 15–17]. Additionally, while one could

use students’ engagement with the videos as a dependent measure,

e.g., number of videos requested or time spent watching videos,

students’ preferences do not always correlate with their learning

[6, 17]. Therefore, next-problem correctness was chosen, as it pro-

vides an immediate and e�ective measure of learning.

4.1.1 Video Vs. No Video Analysis. To analyse the results of the

�rst experiment, a mixed-e�ects logistic regression model [4] was

�t to predict students next-problem correctness given the following

inputs.

(1) A constant.

(2) The average correctness of the student across the prior weeks

problems.

(3) The average correctness of the problem a skill-level video

was provided (or not provided) for across the prior weeks

instances of students completing the problem.

(4) The average correctness of the next problem used to calculate

the dependent measure across the prior weeks instances of

students completing the problem.

(5) A binary indication of whether or not the student was in the

treatment (1) or control (0) condition.

(6) A random e�ect for each skill’s impact on the treatment

e�ect.

Inputs 2, 3, and 4 are all covariates meant to remove variations

in the results from students with di�erent prior knowledge and

problems of di�erent di�culty. Input 5 measures the average e�ect

of o�ering students the opportunity to request a skill-related video,

and each of the skill-level random e�ects in Input 6 measures the

e�ect of o�ering students the opportunity to request a skill-related

video for each skill separately. The random e�ects were included

because each skill has a di�erent set of �ve videos available for it,

and it could be that some skills had very helpful videos while other

skills did not, which would not be captured by Input 5.

The coe�cient and statistical signi�cance of Input 5 can be used

to measure the impact of providing students with the opportunity

to request skill-related videos on their performance, and the coef-

�cients and statistical signi�cance for the random e�ects can be

used to determine the skill-level impact of this new feature.

8



L@S ’23, July 20–22, 2023, Copenhagen, Denmark Ethan Prihar et al.

4.1.2 BBTS Vs. Random Selection Analysis. To analyse the results

of the second experiment, a mixed-e�ects logistic regression model

[4] was �t to predict students next-problem correctness given the

same inputs as the mixed-e�ects model for the �rst experiment but

with the treatment variable now being whether or not BBTS (1) or

random selection (0) was used to determine which video was made

available to the student, and the following additional inputs.

(1) The number of recommendations made so far by the selected

model for the given skill.

(2) The interaction between Input 1 and whether or not the

student was in the treatment (1) or control (0) condition.

(3) A random e�ect for each skill’s impact on Input 1.

(4) A random e�ect for each skill’s impact on Input 2.

Unlike the �rst experiment, where we do not expect the e�ect

of having a video available to change over time, we do expect the

e�ect of the videos provided through BBTS to change over time

because at the beginning of BBTS’s use, it makes basically random

recommendations, but over time, BBTS learns to recommend the

most e�ective videos.

The coe�cient and statistical signi�cance of Input 2 captures

this change over time and measures the impact of using BBTS to

select videos compared to randomly selecting videos. The mixed

e�ects in Input 4 capture how the impact of using BBTS to select

videos di�ers across skills.

4.2 Video Feature Analysis

In addition to measuring the impact that videos and the methods

used to select them had on student performance, this work used

the data from the �rst experiment to investigate which features of

videos made them more or less e�ective. A logistic regression [10]

was �t using only the data from samples where students viewed the

randomly recommended videos to predict students’ next problem

correctness given the following inputs.

(1) A constant.

(2) Random e�ects for the average e�ectiveness of videos for

each skill.

(3) The average correctness of the student across the prior weeks

problems.

(4) The average correctness of the problem a skill-level video

was provided (or not provided) for across the prior weeks

instances of students completing the problem.

(5) The average correctness of the next problem used to calculate

the dependent measure across the prior weeks instances of

students completing the problem.

(6) All of the video features except for Unknown Pronunciation

Score and Unknown Tone.

In the regression, Inputs 1 and 2 allow for the average likelihood

of getting the next problem correct after viewing a video to vary

based on skill. This is important because di�erent skills could be

easier or harder to explain via video, and themodel should be able to

take this into account. Inputs 3, 4, and 5 are covariates to account for

the variance in students’ propensity to get the next problem correct.

The video features “Unknown Pronunciation Score” and “Unknown

Tone” were excluded from the logistic regression because every

feature investigated for its impact on student learning increased

the severity of the hypothesis correction used in this analysis, these

two features would not have provided interpretable �ndings.

The coe�cients and con�dence intervals of the video features

were used to determine if they had an impact on student perfor-

mance. The Benjamini-Hochberg procedure [2] was used to correct

the false discovery rate of signi�cant features.

4.3 Opportunities for Personalization

In addition to exploring the impact that di�erent video features had

on students’ performance, this work used the data from students

that requested randomly selected videos to look for qualitative in-

teractions between features of the videos and the students’ prior

knowledge. A qualitative interaction exists if one group of students

bene�ts more from one type of content, while another group of

students bene�ts more from a di�erent type of content. For exam-

ple, a qualitative interaction between students’ prior knowledge

and video length would exist if high-knowledge students got the

next problem correct more often after viewing long videos and

low-knowledge students got the next problem correct more often

after viewing short videos. These qualitative interactions are each

an opportunity to personalize students’ learning. To identify any

qualitative interactions in the data, the same method used in [15]

to identify statistically signi�cant qualitative interactions between

students and the content available to them was used. Using this

method, the regression~ = V0+V1G1+V2G2+V3 (G1⊕G2) is �t, where

G1 is a video feature, converted to a binary indicator of whether

or not the value is above or below average for that feature, G2 is a

binary indicator of whether or not the student’s prior correctness

is above or below average, and ~ is the student’s next problem cor-

rectness. Using this model, a qualitative interaction exists if V2
3
is

greater than V2
1
, which is derived with more detail in [15]. ?-values

for the statistical signi�cance of these qualitative interactions were

calculated using a bootstrapping approach in which the regression

above was �t 10,000 times on di�erent samples of equal size to the

original data sampled with replacement from the original data. The

distribution of V2
3
− V2

1
was used to perform a one-sample t-test

to determine the ?-value of the null hypothesis: V2
3
− V2

1
≤ 0. The

?-values for the signi�cance of di�erent video features’ qualitative

interactions were corrected for multiple hypothesis testing using

the Benjamini-Hochberg procedure [2].

5 RESULTS

FromMarch 3rd, 2022 to July 18th, 2022, 479,032 video recommenda-

tions were made to 18,267 students as they completed one of 27,589

problems. More problems were included in the experiments than

were tagged for this work because some problems in ASSISTments

were already tagged with their most relevant skill. On average,

about 1,835 recommendations were made per skill, and each video

was recommended an average of about 369 times. Unfortunately,

out of all these recommendations, only 3,196 videos were actually

requested by students. The vast majority of the time, students did

not request videos. Compared to the about 15% of the time that

students request problem-speci�c support, students only requested

skill-related videos about 0.7% of the time.

Of the 2,383 students that requested at least one video, only

22% percent of those students requested a second, and less than
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1% of those students requested at least 5 videos. Figure 4 shows

this trend in skill-related video requests compared to problem-

speci�c support requests. Students were not only less interested in

skill-related videos from the start, but after requesting one video,

students were much less likely to request another compared to

the trend for problem-speci�c supports. Additionally, about 51%

percent of the time that a video was requested, the problem-level

support for the same problem was requested afterwards. Due to

the intent-to-treat design of the randomized experiments, students’

lack of interest in videos added a tremendous amount of noise to

the results.

Figure 4: The number of students that requested from one

to ten instances of tutoring for both skill-related videos and

problem-speci�c support.

5.1 Video Vs. No Video

In the �rst experiment, 280,646 samples of a student being random-

ized when they started a problem between having the option to

request a skill-related video or not were collected. In the control

condition, there were 46,707 instances of one of 11,840 students

completing one of 13,491 problems without the option to request

a video. In the treatment condition, there were 233,939 instances

of one of 16,974 students completing one of 23,119 problems with

the option to request a video. There are more samples in the treat-

ment than the control because students were randomized with

equal probability to each of the �ve relevant videos or no video.

Therefore, there are about �ve times more samples in the treatment

condition than the control.

Using the model described in Section 4.1.1, the coe�cient and

95% con�dence interval for the average treatment of being shown a

video was about 0.0002± 0.0250, which is far from being statistically

signi�cant. Figure 5 shows the coe�cients and con�dence intervals

for the random e�ects of being o�ered a skill-related video for

each skill separately, sorted from lowest to highest coe�cient. Even

when examining the e�ect of o�ering students skill-related videos

on a per-skill basis, there were no signi�cant e�ects. The model

�t to determine these coe�cients was a logistic regression, so the

coe�cients in Figure 5 should not be interpreted as e�ect sizes,

they should solely be interpreted as indications that there were no

statistically signi�cant e�ects, which makes determining e�ect size

moot.

Figure 5: The coe�cients and 95% con�dence intervals for

the random e�ects of o�ering students skill-related videos

compared to not o�ering videos, sorted from lowest to high-

est coe�cient.

5.2 BBTS Vs. Random Selection

In the second experiment, 559,917 samples of a student being ran-

domized when they started a problem were collected. Students

were randomized between BBTS or random selection determining

which video (or lack thereof) they could request. In the control

condition, there were 280,646 instances of one of 17,377 students

completing one of 24,276 problems with the option to request a

randomly recommended video. In the treatment condition, there

were 279,271 instances of one of 17,309 students completing one of

24,315 problems with the option to request a BBTS recommended

video. There are about an equal number of samples in each condi-

tion because students were randomized with equal probability to

receive BBTS recommendations or random recommendations.

Using themodel described in Section 4.1.2, the coe�cient and 95%

con�dence interval for the average impact over time of using BBTS

to recommend videos was about -0.10 ± 0.14, which is again, far

from being statistically signi�cant. Figure 6 shows the coe�cients

and con�dence intervals for the random e�ects of the impact over

time of using BBTS to recommend videos for each skill separately,

sorted from lowest to highest coe�cient. Even when examining

the e�ect of using BBTS to recommend videos on a per-skill basis,

there were no signi�cant e�ects. The model �t to determine these

coe�cients was a logistic regression, so the coe�cients in Figure

6 should not be interpreted as e�ect sizes, they should solely be

interpreted as indications that there were no statistically signi�cant

e�ects, which makes determining e�ect size moot.
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Figure 6: The coe�cients and 95% con�dence intervals for

the random e�ects of the impact over time of using BBTS to

recommend videos compared to randomly recommending

videos, sorted from lowest to highest coe�cient.

5.3 Video Features

In total, 1,677 randomly recommended videos were requested by

1,372 di�erent users across 1,303 problems. Using the model de-

scribed in Section 4.2, Figure 7 shows the coe�cients and 95%

con�dence intervals for the video features. The con�dence inter-

vals in Figure 7 are calculated prior to any hypothesis correction.

After hypothesis correction using the Benjamini-Hochberg pro-

cedure [2], none of the video features were signi�cant predictors

of students’ next-problem correctness. The model �t to determine

these coe�cients was a logistic regression, so the coe�cients in

Figure 7 should not be interpreted as e�ect sizes, they should solely

be interpreted as indications of which features were signi�cant

prior to correcting for multiple hypotheses.

5.4 Opportunities for Personalization

Using the methodology described in Section 4.3, of the ten potential

qualitative interactions between students’ prior knowledge and

video features, two qualitative interactions were present and statis-

tically signi�cant. Both qualitative interactions are shown in Figure

8. In both plots, students with above-average prior correctness out-

perform students with below-average prior correctness on average,

regardless of video features. However, students with below-average

prior correctness bene�ted more from videos with above-average

pronunciation scores and male toned speakers while students with

above-average prior correctness bene�ted more from videos with

below-average pronunciation scores and non-male toned speakers.

While these �ndings are statistically signi�cant (both have ?

< 0.001 after correction), they are only correlational. If all other

features of the videos were held constant, and the only di�erence

was the speakers tone or pronunciation, then it would be possible

to look for causality, but this is not the case for these skill-related

YouTube videos. There are likely many covariates outside of the

Figure 7: The coe�cients and 95% con�dence intervals for

the impact of each video feature on students’ propensity to

get the next problem correct.

feature set created in this work that are correlated with pronuncia-

tion score and tone that e�ect these results. However, �nding any

opportunities to personalize students’ learning at scale is rare, and

it is interesting that even though so few students seemed to engage

with the skill-related videos, there were still signi�cant di�erences

between the e�ectiveness of certain videos for speci�c groups of

students.

6 DISCUSSION

From this work it seems that students are not interested in en-

gaging with skill-related videos. It is unlikely that students were

uninterested in the videos simply because they were videos be-

cause prior research in ASSISTments o�ered students a choice

between video-based or text-based problem-speci�c support and

found that about 29% of students chose the videos [5]. The pres-

ence of problem-speci�c support, which is more direct, relevant,

and shorter, likely made students see the extra videos as a waste

of time. Even though viewing the problem-speci�c support low-

ered students’ scores while the skill-related videos did not, most

students use ASSISTments for in-class work or homework assign-

ments, which are generally low-stakes assignments meant to help

prepare them for tests that are more impactful to their grades. Stu-

dents might not care about their homework score and prioritize

getting the most direct and relevant advice over general advice that

may or may not be as helpful. An important distinction between

the videos in this work and the videos in MOOCs is that MOOC

videos are meant to be the primary instructional material, whereas

in this work the videos were supplemental instructional material.

This likely had an impact on students motivation to engage with
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Figure 8: The two signi�cant qualitative interactions between

students’ prior correctness and video features.

the videos because their teachers were probably providing them

with primary instruction in a way they were more familiar and

engaged with.

Regarding the analysis, using an intent-to-treat design made it

very di�cult to observe any e�ect of skill-related videos or of using

BBTS to recommend them. Students only requested a video about

0.7% of the time. Unless seeing that a video is available but not

requesting it e�ects students’ propensity to get the next problem

correct, 99.3% of the data in the treatment condition was equivalent

to the data in the control condition. The amount of noise this adds

to the analyses made the con�dence intervals too large to see any

e�ects, even on a per-skill basis.

By only including data from instances where students requested

a randomly recommended video, this work was able to investigate

the impact that di�erent video features had on student performance.

This part of the analysis was not an intent-to-treat design, and in-

stead looked only at the impact that the videos had on the treated,

i.e., the students that requested them. Interestingly, even though no

video feature was a signi�cant predictor of students’ next-problem

correctness, two video features, Male Tone and Pronunciation Score,

had a signi�cant qualitative interaction with students’ prior cor-

rectness. These �ndings are almost certainly not causal because

other features of the videos were not controlled for. Students with

below-average prior correctness bene�ted more from videos with

above-average pronunciation scores and male toned speakers while

students with above-average prior correctness bene�ted more from

videos with below-average pronunciation scores and non-male

toned speakers. There were a handful of videos in this study in

which a woman with a southern accent e�ectively explained a va-

riety of mathematics skills. It likely that this woman, and similar

content creators in the data, happen to explain concepts at a level

that was more appropriate for students with higher knowledge,

and because this woman has a lower pronunciation score and a

non-male tone, the data re�ects that these features have qualitative

interactions with students’ prior knowledge. In reality it is likely

not the features themselves that led to these qualitative interac-

tions, but the content creators that happened to correlate with those

features.

7 LIMITATIONS AND FUTUREWORK

The results of these studies do not imply that skill-related videos are

ine�ective, but rather that there was no e�ect in this particular use

case. This work only looked at the impact of skill-related videos on

middle-school mathematics students within ASSISTments. It could

be that without the problem-speci�c support that ASSISTments

provides, skill-related videos would have a larger e�ect. It could

also be that di�erent age or socioeconomic groups are impacted

di�erently than the population in this study. More studies should

be conducted to investigate the impact of skill-related videos in

di�erent contexts, and to ensure that if there is an impact in a

particular context, that this impact is fairly distributed amongst

di�erent groups of students.

While the intent-to-treat analysis was necessary to unbiasedly

compare videos to no videos, it was not as necessary to investigate

the impact of using BBTS to recommend videos compared to ran-

dom selection. If BBTS was not allowed to recommend no video,

then BBTS could have been updated only when students actually

requested videos, and these samples could have been compared

to only the times that students requested randomly recommended

videos. This would have likely resulted in a larger e�ect by remov-

ing about 99.3% of the data used to updated the BBTS model in

which students never requested videos. This would have allowed

the BBTS model to learn the trends in the data more easily, and

would have likely led to a larger di�erence over time between BBTS

recommendations and random recommendations. Moving forward,

more experiments comparing BBTS to random selection in ways

that are more fair to BBTS should be conducted.

Additionally, better covariates for predicting students’ next-

problem correctness could be created to help remove some of the

noise in the intent-to-treat analysis. The covariates used in all the

models in this work for students’ prior knowledge and problem dif-

�culty had Pearson correlations [14] with students’ next-problem

correctness of only around 0.2. Serious work could be done to thor-

oughly investigate di�erent combinations of student and problem

past performance measures in order to create more predictive co-

variates.
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Lastly, the videos in this work were collected from YouTube

via algorithmic searches and teacher ratings. If, in the future, one

wished to perform a causal analysis of the signi�cance of di�erent

video features and their qualitative interactions with students, it

would be better to create the videos from scratch. If everything

except one video feature of interest was held constant, the analyses

in Sections 4.2 and 4.3 could be regarded as causal for that feature.

8 CONCLUSION

Overall, it did not appear that o�ering students the option to request

skill-related videos had a positive impact on their performance. This

mostly stemmed from students’ lack of interest in the skill-related

videos. Students only requested a skill-related video about 0.7% of

the time, compared to the about 15% of the time that they requested

problem-speci�c tutoring, which implies that students prefer con-

cise advice directly related to the task at hand, regardless of the

impact it has on their score. Although this work did not �nd any

signi�cant impact of providing skill-related videos to students, it

was able to analyse which features of videos correlated most with

students’ performance when they did request a video. This analysis

found that while there were no video features that signi�cantly

predicted students’ performance, there were two video features that

had qualitative interactions with students’ prior knowledge. These

qualitative interactions implied that particular content creators cre-

ated videos that were more helpful for higher-knowledge students,

while other content creators made videos that were more e�ective

for lower-knowledge students. Moving forward, the educational

research community can take away two main �ndings from this

work. The �rst is that students are unlikely to be interested in con-

tent that they do not see as directly relevant to them. Therefore,

when creating or curating tutoring for students, taking the e�ort to

ensure each piece of content is direct and relevant is likely to pay

o�. Secondly, it seems possible to create videos that are better for

higher or lower knowledge students. This should motivate random-

ized controlled studies to determine which aspects of video based

learning speci�cally in�uence videos’ e�ectiveness for di�erent

groups of students. Uncovering the causal mechanisms behind these

qualitative interactions paves the way for more e�ective forms of

personalized learning.
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