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Abstract
The Cantor-Bernstein theorem (CB) from set theory, stating
that two sets which can be injectively embedded into each
other are in bijection, is inherently classical in its full gener-
ality, i.e. implies the law of excluded middle, a result due to
Pradic and Brown. Recently, Escardó has provided a proof of
CB in univalent type theory, assuming the law of excluded
middle. It is a natural question to ask which restrictions of
CB can be proved without axiomatic assumptions. We give a
partial answer to this question contributing an assumption-
free proof of CB restricted to enumerable discrete types, i.e.
types which can be computationally treated.

In fact, we construct several bijections from injections:
The first is by translating a proof of the Myhill isomor-

phism theorem from computability theory – stating that
1-equivalent predicates are recursively isomorphic – to con-
structive type theory, where the bijection is constructed in
stages and an algorithm with an intricate termination argu-
ment is used to extend the bijection in every step.

The second is also constructed in stages, but with a simpler
extension algorithm sufficient for CB.

The third is constructed directly in such a way that it only
relies on the given enumerations of the types, not on the
given injections.

We aim at keeping the explanations simple, accessible, and
concise in the style of a “proof pearl”. All proofs are machine-
checked in Coq but should transport to other foundations –
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they do not rely on impredicativity, on choice principles, or
on large eliminations.
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1 Introduction
It is well-known that theorems in constructive type theory
can be interpreted as theorems about computable functions
through realizability interpretations. That the converse di-
rection can be fruitful as well is not surprising, but rarely
exploited: any construction from computability theory that
does not rely on a universal function (as provided by e.g. a
“universal” Turing machine) gives rise to a theorem in con-
structive type theory. We use this inverse approach to prove
a fully constructive version of the Cantor-Bernstein theorem
(CB) in constructive type theory.

In set theory, the Cantor-Bernstein theorem states that
whenever there are injections 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑋 one
can construct a bijection. The argument usually presented
in modern textbooks is by a back-and-forth construction
in stages due to Kőnig [12], which makes use of the law of
excluded middle. The theorem was discovered by Cantor [2]
and Bernstein published the first correct proof not relying
on the axiom of choice [1].1

1The theorem is often also called “Cantor-Schröder-Bernstein”, “Schröder-
Bernstein”, or “Cantor-Bernstein-Schröder” theorem. Ernst Schröder pub-
lished a proof of CB in the same year as Bernstein [16], but it turned out to
be wrong as observed by Korselt [11]. Schröder acknowledged this fact to
Korselt, stating “Daß ich Herrn F. Bernstein die Ehre, den G. Cantorschen
Satz bewiesen zu haben, allein überlasse, hatte ich einstweilen einem Fre-
unde desselben, Herrn Dr. Max Dehn (jetzt in Münster) schon vorigen

159

https://orcid.org/0000-0002-8676-9819
https://orcid.org/0000-0003-4851-3385
https://orcid.org/0000-0001-8801-9379
https://doi.org/10.1145/3573105.3575690
https://doi.org/10.1145/3573105.3575690
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3573105.3575690&domain=pdf&date_stamp=2023-01-11


CPP ’23, January 16–17, 2023, Boston, MA, USA Yannick Forster, Felix Jahn, and Gert Smolka

More than 120 years later, Pradic and Brown show that in
fact Cantor-Bernstein implies the law of excluded middle in
IZF [14], i.e. in Zermelo-Fraenkel set theory without the law
of excludedmiddle. Given a constructive type theorywith the
axiom of unique choice such as homotopy type theory, the
proof can be directly translated. Recently, Escardó has given a
proof of the Cantor-Bernstein theorem in constructive type
theory, concretely in homotopy type theory as described
by the HoTT book [19], necessarily relying on the law of
excluded middle [4]. In this paper, we consider the question:

For which types is CB provable without any assumptions?
The question has been explicitly posed as a challenge by

Escardó [5], who asks “how much beyond finite sets with
decidable equality can [CB] apply to in constructive mathe-
matics?” Our partial answer to this question is that if 𝑋 and
𝑌 are enumerable discrete types – or equivalently retracts of
the natural numbers – then the bijection can be computably
constructed and no assumptions are necessary.

From a cardinality perspective available in classical logic,
the theorem is relatively easy to prove. Types which are
retracts of the natural numbers are discrete and either finite
or in bijection to the natural numbers. Then the following
four cases are possible:

• 𝑋 and𝑌 are both finite, then the existence of injections
enforces that they are of same cardinality, and finite
types with same cardinality are in bijection.
• only exactly one of 𝑋 and 𝑌 is finite, then one can
obtain a contradiction using the injections.
• 𝑋 and 𝑌 are both in bijection to the natural numbers
and thus in bijection.

Thus, the challenge in proving this CB for enumerable
discrete types constructively lies in finding a uniform con-
struction covering all cases, without a global case distinction
on finiteness which is not allowed in constructive logic. Such
a uniform construction is not necessary from the perspective
of classical logic, but as usual an aesthetic argument can be
made for uniform proofs without global case distinctions.

Herbst resp. Sommer – natürlich zum Weitergeben – gesagt, desgleichen
über diese Angelegenheit (unspezifiziert, als durch meinerseits zu erledi-
gende Gewissenssache) Herrn Cantor einen Brief in Aussicht gestellt und
Sept. 01 angefangen, jedoch leider noch nicht zu Ende gebracht...” (“That I
leave the honour of having proved G. Cantor’s theorem to Mr. F. Bernstein
alone, I had already told a friend of his, Dr. Max Dehn (now in Münster),
last autumn or summer – to pass on, of course – and likewise about this
matter (unspecified as a matter of conscience on my part) I had also held
out the prospect of a letter to Mr. Cantor and had begun it on Sept. 01,
but unfortunately had not yet finished it.”) Cantor published a proof be-
fore Bernstein, but it relied, unbeknown to Cantor, on the axiom of choice.
Dedekind independently proved the theorem twice, but published it later
than Bernstein. We thus adapt the terminology of Pradic and Brown and call
the theorem “Cantor-Bernstein” theorem: after the person who discovered
it and the person who gave the first proof. See the Wikipedia article for a
historic overview [20].

We give several algorithmically different proofs of the
computational form of the Cantor-Bernstein theorem for
enumerable discrete types:
The first observes that CB for enumerable discrete types

is a consequence of the Myhill isomorphism theorem from
computability theory, which does not rely on a universal
machine and can thus be proved in constructive type theory.
The proof proceeds in stages which are constructed on after
another.
The second analyses the argument used in the Myhill

isomorphism theorem and simplifies it to a construction
based on a computational pigeonhole principle, which is
sufficient for CB but too naïve for the Myhill isomorphism
theorem. This proof still constructs the bijection in stages.

The third changes the construction further to not rely on
stages. Furthermore, this proof yields a bijection which is
computationally independent of the provided injections.
We consider the third proof to be the simplest proof and

put emphasis on providing a standalone proof script for
it. We describe all proofs in informal natural language, but
provide Coq proofs for all results, which can be found at

https://github.com/uds-psl/coq-synthetic-computability/
tree/cantor_myhill.

The Lemmas, Theorems, and Corollaries of this paper can
be clicked to see the corresponding html version of the Coq
files.
We do not rely on advanced features of Coq’s type the-

ory (the Calculus of Inductive Constructions, CIC) such as
impredicativity, and we discuss for all constructions explic-
itly how they can be carried out in versions of Martin-Löf
type theory (MLTT), where no universe of propositions is
explicit, and of homotopy type theory (HoTT), where being
a proposition is a semantic rather than syntactic notion.
As a running example for the whole paper, we will con-

sider the (finite) types 88 and A with injections 𝑓 : 88 → A
and 𝑔 : A→ 88 between them as follows:

88 := 1|2|3|4|5|6|7|8
A := A|B|C|D|E|F|G|H

A B C D E F G H
𝑓 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

4 3 6 1 5 8 2 7
1 2 3 4 5 6 7 8

𝑔 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
C E A B D H F G

Of course it is trivial for the example to give a bijection,
but we explain how the different uniform constructions of
a bijection 𝐹 : 88 → A and 𝐺 : A → 88 act on the example,
yielding three different bijections.
Central for all results are then notions of enumerability

and discreteness for types, which we introduce in section 2,
alongside with a discussion of existence and the so-called
Δ0
1-choice principle in different type theories. In section 3 we
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give a proof of the Myhill isomorphism theorem and deduce
CB for enumerable discrete types in section 4. In section 5
we give a proof of CB based on a computable pigeonhole
principle. In section 6 we give a direct proof of CB, before
concluding in section 7.

2 Enumerable Discrete Types
Wewrite P for the type of propositions we use. Different type
theories take different stances on propositions. In CIC, this is
exactly the impredicative universe of propositions. In MLTT,
there is no single universe P and one has to read P as a (suit-
able) type universe. In HoTT, P has to be read as the universe
of homotopy propositions hProp, i.e. of propositions with
unique proofs. Independent of the concrete incarnation of
HoTT, there is always an operation to turn a type 𝑋 into the
proposition ||𝑋 || stating that 𝑋 is inhabited.

Depending on the system, types in P can be computation-
ally treated as input types to functions or nto. In MLTT,
this is possible without restrictions, since propositions are
just types, e.g one can write non-constant functions of type
⊤ ∨ ⊤ → B. In CIC, so-called large eliminations are only
allowed on inductive types of a certain syntactic form enforc-
ing the absence of computational content, and one cannot
write a non-constant function of type ⊤ ∨ ⊤ → B (but also
not prove the absence of such non-constant functions). In
all incarnations of HoTT, elimination of propositions ||𝑋 || is
allowed if the target type is an hProp, i.e. where the result
of the function cannot depend on the proof. Note that one
can write a non-constant function of type ⊤ ∨ ⊤ → B, but
⊤ ∨ ⊤ is no proposition since it has two proofs.

We will only need that proofs of propositions of the form

∀𝑥 : N.∃𝑦 : N.𝐹𝑥𝑦 = true

for 𝐹 :N→N→B can be turned into functions, we will discuss
such a choice-like principle later in this section.
First, we introduce the relevant terminology regarding

types. We call a type 𝑋 discrete if its equality relation is
decidable, i.e. if

∃𝑓 :𝑋→𝑋→B. ∀𝑥1𝑥2 : 𝑋 . 𝑥1 = 𝑥2 ↔ 𝑓 𝑥1𝑥2 = true.

Here, as usual, the type B is the inductive type with con-
structors true and false.

We call a type 𝑋 enumerable if there is a function enumer-
ating all its elements – possibly with repetitions:

∃𝑓 :N→O𝑋 . ∀𝑥 : 𝑋 . ∃𝑛 : N. 𝑓 𝑛 = Some𝑥 .

Here, Some is the constructor of the option type of type
𝑋 → O𝑋 , and None is the (only) other element of this type.
Sometimes, enumerable types are also called “countable”,
but we use the computational terminology to emphasise
the computational content of the definition. Note that for
enumerability, if 𝑋 is non-empty one can equivalently ask

for a function N→ 𝑋 . All of these definitions are standard
and frequently used in type theory.
A type 𝑋 is a retract of a type 𝑌 if there are functions 𝐼 :

𝑋 → 𝑌 and 𝑅 : 𝑌 → O𝑋 such that ∀𝑥 : 𝑋 . 𝑅(𝐼𝑥) = Some𝑥 .

Lemma 2.1. If𝑋 is a retract of𝑌 via 𝐼 : 𝑋 → 𝑌 and 𝑅 : 𝑌 →
O𝑋 , then 𝐼 is injective, i.e. ∀𝑥1𝑥2. 𝐼𝑥1 = 𝐼𝑥2 → 𝑥1 = 𝑥2.

We use this definition of injectivity throughout the paper.
Note that while every retraction gives rise to an injection,
the converse does not hold constructively.

Lemma 2.2. Let 𝑋 be a retract of 𝑌 .

1. If 𝑌 is discrete, then 𝑋 is discrete.
2. If 𝑌 is enumerable, then 𝑋 is enumerable.

Corollary 2.3. If 𝑋 is a retract of N, then 𝑋 is enumerable
and discrete.

To be able to show the inverse direction we need to briefly
discuss how to obtain functions from statements of the form
∀𝑥 .∃𝑦. In general, such a principle is called the type-theoretic
axiom of choice. For the above use case, it suffices to consider
the restricted case ∀𝑥 .∃𝑦 : N. 𝑅𝑥𝑦 for 𝑅 being a decidable
relation.
In constructive mathematics, this is known as Δ0

1-choice,
in Coq’s standard library it is called constructive indefinite
ground description and is a consequence of large elimination
on the accessibility predicate, in MLTT it is trivially provable
since the meaning of ∀𝑥 .∃𝑦 is already a function, and in
HoTT it is a consequence of unique choice (since one can
equivalently ask for the least 𝑦 such that 𝑅𝑥𝑦), which in turn
is a consequence of the universal property of propositional
truncation.

Lemma 2.4. If 𝐹 : 𝑋 → 𝑌 → B and 𝑌 is enumerable and
discrete, then whenever ∀𝑥 .∃𝑦. 𝐹𝑥𝑦 = true one can define a
function 𝐼 : 𝑋 → 𝑌 with ∀𝑥 . 𝐹𝑥 (𝐼𝑥) = true.

Note that if one defines ∃𝑦. 𝑝𝑦 in a weaker way, e.g. as
∀𝐴.(∀𝑦. 𝑝𝑦 → 𝐴) → (𝐴 → ⊥) → ⊥ (or, equivalently,
¬¬(Σ𝑦. 𝑝𝑦)) in MLTT, then the choice principle is only
provable under the assumption of Markov’s principle.

Lemma 2.5. Any enumerable discrete type𝑋 is a retract ofN.

Proof. Let 𝑑 decide equality on 𝑋 and 𝑒 be an enumerator.
We can take 𝑅 := 𝑒 . We know that ∀𝑥 .∃𝑛. 𝑅𝑛 = Some𝑥 then,
but we need to be able to compute 𝑛.

The choice principle for decidable relations yields such a
function 𝐼 , since 𝑅𝑛 = Some𝑥 is decidable using 𝑑 . □

We will use the terminology “constructive” in this paper
to denote provability in CIC without referring to any other
large eliminations than the ones explained in this section.
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3 Myhill Isomorphism Theorem
We write 𝑝 ⪯1 𝑞 if a predicate 𝑝:𝑋→P is one-one reducible
to 𝑞:𝑌→P and define
𝑝 ⪯1 𝑞 := ∃𝑓 :𝑋→𝑌 . (∀𝑥 . 𝑝𝑥 ↔ 𝑞(𝑓 𝑥)) ∧ 𝑓 is injective.

We call the function 𝑓 a one-one reduction from 𝑝 to 𝑞. We
prove that when two predicates are one-one reducible to
each other, with no relation between the reductions func-
tions, one can construct one-one reductions which are in-
verses of each other, i.e. a type-theoretic version of Myhill’s
isomorphism theorem from computability theory [13]. We
follow the proof by Rogers [15, §7.4 Th. VI], where the iso-
morphism is constructed in stages, formed by correspondence
sequences between predicates 𝑝 and 𝑞, which are finitary
bijections represented as lists 𝐶:L(𝑋 × 𝑌 ) (we use L for the
type of lists) such that for all (𝑥,𝑦) ∈ 𝐶

1. 𝑝𝑥 ↔ 𝑞𝑦

2. ∀𝑦 ′. (𝑥,𝑦 ′) ∈ 𝐶 → 𝑦 = 𝑦 ′

3. ∀𝑥 ′. (𝑥 ′, 𝑦) ∈ 𝐶 → 𝑥 = 𝑥 ′

We write 𝑥 ∈1 𝐶 (𝑥 ∈2 𝐶) if 𝑥 is an element of the first
(second) projection of 𝐶 .

The crux of the theorem is that for any correspondence
sequence 𝐶 with 𝑝 ⪯1 𝑞 and 𝑥0 ∉1 𝐶 one can compute 𝑦0
such that (𝑥0, 𝑦0) :: 𝐶 is a correspondence sequence again,
with no condition on 𝑝 and 𝑞.

The termination argument is only given informally in
Rogers’ textbook but in fact not trivial to formally recon-
struct: It requires reasoning about cardinality of the pro-
jections of the constructed correspondence sequence, with
several case distinctions. We give a direct construction of an
algorithm which does not require an intricate termination
argument, considerably simplifying the overall proof.

Lemma 3.1. Let 𝑓 be a one-one reduction from 𝑝:𝑋→P to
𝑞:𝑌→P. There is a function find:L(𝑋 × 𝑌 )→𝑋→𝑌 such that
if𝐶 is a correspondence sequence for 𝑝 and 𝑞 and 𝑥0 ∉1 𝐶 , then
find 𝐶 𝑥0 ∉2 𝐶 and 𝑝𝑥0 ↔ 𝑞(find 𝐶 𝑥0).

Proof. We first define a function 𝛾 :L(𝑋 × 𝑌 )→𝑋→𝑋 recur-
sive in |𝐶 |:

𝛾𝐶𝑥 := 𝑥 if 𝑓 𝑥 ∉2 𝐶

𝛾𝐶𝑥 := 𝛾 (filter(𝜆𝑡 .𝑡 ≠B (𝑥 ′, 𝑓 𝑥))𝐶) 𝑥 ′ if (𝑥 ′, 𝑓 𝑥) ∈ 𝐶
For a correspondence sequence 𝐶 between 𝑝 and 𝑞 and

𝑥 ∉1 𝐶 we have (1) 𝑝𝑥 ↔ 𝑝 (𝛾𝐶𝑥), (2) 𝛾𝐶𝑥 = 𝑥 or 𝛾𝐶𝑥 ∈1
𝐶 , and (3) 𝑓 (𝛾𝐶𝑥) ∉2 𝐶 . The proof is by induction on the
length of 𝐶 , exploiting the injectivity of 𝑓 . Now find 𝐶 𝑥0 :=
𝑓 (𝛾𝐶𝑥0) is the wanted function. □

The intuition is that𝛾𝐶𝑥0 returns an 𝑥 such that 𝑓 𝑥 ∉2 𝐶 . It
starts by 𝑥0. If 𝑓 𝑥0 ∉2 𝐶 , the search has already succeeded. If
however (𝑥, 𝑓 𝑥0) ∈ 𝐶 , then𝛾 proceeds recursivelywith 𝑥 and
𝐶 with the pair (𝑥, 𝑓 𝑥0) removed. The result will still have the
right properties, because if (𝑥, 𝑓 𝑥0) is in𝐶 , then 𝑝𝑥0 ↔ 𝑝𝑥 by
the properties of 𝑓 and since𝐶 is a correspondence sequence.

The algorithm terminates, because 𝐶 is shorter in every
recursive call – and once 𝐶 does not contain any 𝑥 with
𝑝𝑥 ↔ 𝑝𝑥0 the check 𝑓 𝑥0 ∉2 𝐶 will be true. Implicitly, the
termination argument hinges on the fact that there has to be
some 𝑥 in the set 𝐴 := {𝑥0} ∪ {𝑥 ′ ∈1 𝐶 | 𝑝𝑥 ′ ↔ 𝑝𝑥0} such
that 𝑓 𝑥 is not in the second projection of 𝐶 , because |𝐴| >
|{𝑦 ′ ∈2 𝐶 | (𝑥 ′, 𝑦 ′) ∈ 𝐶∧𝑝𝑥 ′↔ 𝑝𝑥0}|. This fact can however
not be derived constructively. Classically, one would use a
pigeonhole principle. However, pigeonhole principles are
only constructive for finite sets and set 𝐴 can not be proved
to be finite constructively. In the next section, we will use
a computational pigeonhole principle explicitly because we
can work with finite sets there.

For the rest of this sectionwe fix enumerable discrete types
𝑋 and 𝑌 such that (𝐼𝑋 , 𝑅𝑋 ) and (𝐼𝑌 , 𝑅𝑌 ) are retractions from
𝑋 and 𝑌 respectively to N. We construct the isomorphism
via a cumulative correspondence sequence 𝐶𝑛 with 𝐼𝑋𝑥 <

𝑛 → 𝑥 ∈1 𝐶𝑛 and 𝐼𝑌𝑦 < 𝑛 → 𝑦 ∈2 𝐶𝑛 .

𝐶 ′𝑛 :=
{
(𝑥, find𝐶𝑛 𝑥) :: 𝐶𝑛 if 𝑅𝑋𝑛 = Some𝑥 ∧ 𝑥 ∉1 𝐶𝑛

𝐶𝑛 otherwise

𝐶𝑛+1 :=
{
(find←→𝐶 ′𝑛 𝑦,𝑦) :: 𝐶 ′𝑛 if 𝑅𝑌𝑛 = Some𝑦 ∧ 𝑦 ∉2 𝐶

′
𝑛

𝐶 ′𝑛 otherwise

where 𝐶0 := [] and
←→
𝐶 :=map (𝜆(𝑥,𝑦).(𝑦, 𝑥))𝐶 .

Lemma 3.2. 𝐶𝑛 is a correspondence sequence for 𝑝 and 𝑞 with

1. 𝑛 ≤ 𝑚 → 𝐶𝑛 ⊆ 𝐶𝑚

2. 𝐼𝑋𝑥 < 𝑛 → 𝑥 ∈1 𝐶𝑛

3. 𝐼𝑌𝑦 < 𝑛 → 𝑦 ∈2 𝐶𝑛

Theorem 3.3 (Myhill). Let 𝑋 and 𝑌 be enumerable discrete
types, 𝑝:𝑋→P, and 𝑞:𝑌→P. If 𝑝 ⪯1 𝑞 and 𝑞 ⪯1 𝑝 , then there
exist 𝑓 :𝑋→𝑌 and 𝑔:𝑌→𝑋 such that for all 𝑥 :𝑋 and 𝑦:𝑌 :

𝑝𝑥 ↔ 𝑞(𝑓 𝑥), 𝑞𝑦 ↔ 𝑝 (𝑔𝑦), 𝑔(𝑓 𝑥) = 𝑥, 𝑓 (𝑔𝑦) = 𝑦

Proof. 𝑓 𝑥 is defined as the unique𝑦 for which (𝑥,𝑦) ∈ 𝐶𝐼𝑋𝑥+1
(which exists by Lemma 3.2 (2) and is unique because𝐶𝐼𝑋𝑥+1
is a correspondence sequence). Note that since 𝐶𝐼𝑋𝑥+1 is a
(finite) list over discrete type we do not need to use any kind
of choice principle here.

Vice versa, 𝑔𝑦 is symmetrically defined as the unique 𝑥 for
which (𝑥,𝑦) ∈ 𝐶𝐼𝑌 𝑦+1. (1) and (2) are immediate since 𝐶𝑛 is
a correspondence sequence. (3) and (4) are by case analysis
whether 𝐼𝑋𝑥 ≤ 𝐼𝑌𝑦 or vice versa. □

Proofs of the theorem have appeared in different forms
in the Bachelor’s thesis of the second author [9], the PhD
thesis of the first [6], and in an unpublished pre-print [8],
which contains both the Myhill isomorphism theorem and
a discussion of general constructive synthetic reducibility
theory as published in [7].
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4 Cantor-Bernstein from Myhill
The Cantor-Bernstein theorem for enumerable discrete types
can be directly deduced from the Myhill isomorphism theo-
rem.
Theorem 4.1 (Computational Cantor-Bernstein). For enu-
merable discrete types 𝑋,𝑌 with injections 𝑋→𝑌 and 𝑌→𝑋

there are functions 𝑋→𝑌 and 𝑌→𝑋 inverting each other.

Proof. By applying the Myhill isomorphism theorem with
𝑝𝑥 := ⊤ and 𝑞𝑦 := ⊤. □

For the running example, the constructed bijection de-
pends heavily on 𝑓 and 𝑔. Recall the definition of 𝑓 and 𝑔:

A B C D E F G H
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
4 3 6 1 5 8 2 7
1 2 3 4 5 6 7 8
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
C E A B D H F G

Applying CB as resulting from the Myhill isomorphism
theorem yields the following bijection. We depict the bijec-
tion in stages from left to right. If in a stage no elements are
added because they are already present we write x.

AC BE xx Dx xH Fx Gx xx

↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕
41 32 xx 6x x5 8x 7x xx

Building the first and second stage works regularly by just
using 𝑓 and 𝑔. At the third stage, both 𝐶 and 3 are already
part of the finite bijection and thus do not have to be added.
At the fourth stage, adding (𝐷, 𝑓 𝐷) is not possible because
𝑓 𝐷 = 1 and (𝐶, 1) is already in the sequence. Thus, (𝐷, 6)
is added because 𝑓 𝐶 = 6. We depict this search process as
follows for later comparison:

A C B E D

4 1 3 2 6
Vice versa, 4 is again already present and thus does not have
to be added.

At the fifth stage, 𝐸 is already part of the sequence. Adding
(𝑔5, 5) is not possible, because 𝑔5 = 𝐷 and (𝐷, 6) is already
there. Thus, (𝐻, 5) is added, because 𝑔6 = 𝐻 . At the sixth
stage, 𝐹 is regularly added, and 6 is already present. At the
seventh stage, (𝐺, 𝑓 𝐺) cannot be added because 𝑓 𝐺 = 2 and
(𝐸, 2) is already present. Then, (𝐺, 𝑓 𝐸) can also not be added
because 𝑓 𝐸 = 5 and (𝐻, 5) is already present. Thus, (𝐺, 7) is
added because 𝑓 𝐻 = 7. We depict this search as follows for
later comparison:

A C B E D H F G

4 1 3 2 6 5 8 7

5 Cantor-Bernstein Using a
Computational Pigeonhole Principle

The implementation of the find function is more involved
than necessary to just derive the Cantor-Bernstein theorem,
because it additionally maintains a property regarding the
predicates 𝑝 and 𝑞. In fact it suffices to be able to compute
given a duplicate-free list 𝑙1 and a list 𝑙2 with |𝑙1 | > |𝑙2 | an
element of 𝑙1 which is not in 𝑙2. This is a computational
form of a pigeonhole principle which was before not directly
applicable because the list 𝑙1 is not computable if considering
𝑝 and 𝑞.
Intuitively, for the example of 𝑓 and 𝑔, the function 𝐹

will again be built in levels using lists of pairs. The notion of
correspondence sequence becomes irrelevant if no predicates
are involved, and we instead maintain the invariant that
both projections of the list are duplicate-free. At level 𝑛,
we work with a list of pairs [(𝑥1, 𝑦1), . . . , (𝑥𝑘 , 𝑦𝑘 )]. We need
to check whether 𝑥𝑛 (the 𝑛-the element of 𝑥 according to
the enumeration) is already part of the first projection. If
this is the case, we proceed symmetrically with the second
projection. If this is not the case, then we can obtain the
duplicate-free list [𝑓 𝑥𝑛, 𝑓 𝑥1, . . . , 𝑓 𝑥𝑘 ] of 𝑘 +1 many elements
of 𝑌 , i.e. one more element than [𝑦1, . . . , 𝑦𝑛] allowing us
to compute an element 𝑦 of [𝑓 𝑥𝑛, 𝑓 𝑥1, . . . , 𝑓 𝑥𝑛] which we
can add as pair (𝑥𝑛, 𝑦), and proceed symmetrically with the
second projection.
We formally just describe the lemma corresponding to

Lemma 3.1, the subsequent construction is then exactly the
same and cannot be simplified. Crucially underlying is a
pigeonhole principle, which is formulated using duplicate-
free lists. Weworkwith an inductive definition of a duplicate-
freeness predicate #𝑙 as

#[]
𝑥 ∉ 𝑙 #𝑙
#(𝑥 :: 𝑙)

Lemma 5.1. Given a discrete type 𝑋 there is a function php :
L𝑋 → L𝑋 → O𝑋 such that if 𝑙1 is duplicate-free and |𝑙 |1 >
|𝑙 |2, then php 𝑙1 𝑙2 = Some𝑥 and 𝑥 ∈ 𝑙1 but 𝑥 ∉ 𝑙2.

Proof. Let 𝑑 decide equality on 𝑋 . The proof relies on a func-
tion remove : 𝑋 → L𝑋 → L𝑋 with the expected properties.
We can then define

php [] 𝑙2 := None

php (𝑥 :: 𝑙1) 𝑙2 := Some𝑥 (if 𝑥 ∉ 𝑙2)
php (𝑥 :: 𝑙1) 𝑙2 := php 𝑙1 (remove 𝑥 𝑙2) (if 𝑥 ∈ 𝑙2)

The proof is then by induction on the derivation of #𝑙1,
with 𝑙2 generalised.

The case 𝑙1 = [] is contradictory, since | [] | = 0 > |𝑙2 | is
impossible.
Let 𝑥 ∉ 𝑙1 and #𝑙1. Case analysis whether 𝑥 ∈ 𝑙2, possible

using 𝑑 . If 𝑥 ∉ 𝑙2, the claim is immediate. If 𝑥 ∈ 𝑙2, the
claim follows from the induction hypothesis for 𝑙2 with 𝑥

removed. □
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Lemma 5.2. Let 𝑓 be an injection from 𝑋 to 𝑌 There is a
function find:L(𝑋 × 𝑌 )→𝑋→𝑌 such that if𝐶 : L(𝑋 ×𝑌 ) has
duplicate-free projections and 𝑥0 ∉1 𝐶 , then find 𝐶 𝑥0 ∉2 𝐶 .

Proof. Define

find 𝐶 𝑥 := if php (𝑓 𝑥 :: map(𝜆(𝑥 ′, 𝑦). 𝑓 𝑥 ′)𝐶)
(map (𝜆(𝑥,𝑦). 𝑦) 𝐶)

is Some𝑦 then 𝑦 else 𝑓 𝑥 .

By the properties of php we know that the else case is ir-
relevant given the pre-conditions of the lemma. The rest
immediately follows. □

Theorem 5.3 (Computational Cantor-Bernstein). For enu-
merable discrete types 𝑋,𝑌 with injections 𝑋→𝑌 and 𝑌→𝑋

there are functions 𝑋→𝑌 and 𝑌→𝑋 inverting each other.

Recall the definition of 𝑓 and 𝑔 for the running example.

A B C D E F G H
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
4 3 6 1 5 8 2 7

1 2 3 4 5 6 7 8
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
C E A B D H F G

We obtain the following bijection:

AC BE xx Dx xx FH Gx xx

↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕
41 32 xx 5x xx 86 7x xx

In the first and second stage, everything is regular and
the bijection is built following 𝑓 and 𝑔. For the third stage,
𝐶 and 3 are already present. For the fourth, one cannot add
(𝐷, 𝑓 𝐷) because 𝑓 𝐷 = 1 and 1 is already present. Thus, we
add (𝐷, 5) because 𝑓 𝐸 = 4 and 𝐸 is the first letter when
searching (backwards in the order of depiction) which does
not yet have an assignment. For the fifth stage, nothing has
to be added. Adding (𝐹, 8) and (𝐻, 6) is regular. For the sixth
stage, (𝐺, 𝑓 𝐺) cannot be added because 𝑓 𝐺 = 2 and 2 is
already present. Thus, (𝐺, 7) is added because 𝑓 𝐻 = 7 and
𝐻 is the first letter when searching which is unassigned.

Note how, when comparing with the bijection from the
previous section 𝐷 gets a different assignment due to the
differing search, and 𝐺 gets the same but with a different
search procedure.
Different implementations of the function in the pigeon-

hole principle are possible and lead to different bijections.
The bijection as defined in this section is the same as the
one obtained by Kirst [10] in his work on generalising the
contributions of the present paper to obtain a back-and-forth
proof method also applying to Cantor’s isomorphism theo-
rem regarding countable dense unbounded linear orders.

6 Cantor-Bernstein Using List
Enumerators

We now give a proof of the Cantor-Bernstein theorem using
list enumerators, where the constructed bijection only de-
pends on the given enumeration functions and not on the
injections.

For the running example we end up with the most natural
bijection

A B C D E F G H
↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕
1 2 3 4 5 6 7 8

Abstractly, 𝐹 maps the 𝑛-th element of 𝑋 to the 𝑛-th ele-
ment of 𝑌 .
In the computation, given an element 𝑥 , 𝐹 will first com-

pute the duplicate-free list [𝑥0, . . . , 𝑥𝑛] of all elements 𝑥𝑖
occurring until 𝑥 = 𝑥𝑛 in the enumeration of 𝑋 . By applying
𝑓 pointwise, we obtain the list [𝑓 𝑥0, . . . , 𝑓 𝑥𝑛] with𝑛+1 many
elements. Consequently, we can use the enumerator of 𝑌 to
also enumerate a list of that many elements, which will be
[𝑦0, . . . , 𝑦𝑛]. 𝐹 then maps 𝑥 to 𝑦𝑛 .
Formally, we first prove that every enumerator gives rise

to a function 𝐿 : N → L𝑋 which returns duplicate-free,
cumulative lists, where it can be computed in which list any
element 𝑥 occurs. This construction is entirely standard and
frequently used to construct enumerators in Coq.

Lemma 6.1. Let 𝑋 be enumerable and discrete. Then 𝑋 is
list-enumerable with a duplicate-free list enumerator: There
are 𝐿:N→L𝑋 and occ:𝑋→N such that

1. for all 𝑛, 𝐿𝑛 is duplicate-free,
2. given 𝑛 ≤ 𝑚, 𝐿𝑛 is a (not necessarily strict) prefix of 𝐿𝑚,

and
3. for all 𝑥 , 𝑥 ∈ 𝐿(occ 𝑥).

Proof. Let 𝑒 enumerate 𝑋 . Define occ as the function result-
ing from using Lemma 2.4 on ∀𝑥 .∃𝑛. 𝑒𝑥 = Some𝑛, 𝐿0 := []
and

𝐿(S 𝑛) := 𝐿𝑛 ++[𝑥] if 𝑒𝑛 = Some𝑥 and 𝑥 ∉ 𝐿𝑛

𝐿(S 𝑛) := 𝐿𝑛 otherwise □

All further proofs will not need to rely on any choice
principles, not even 2.4. We then prove that the index of any
element 𝑥 can also be computed, i.e. its position in 𝐿(occ 𝑥).

Lemma 6.2. Let 𝑋 be list-enumerable with a duplicate-free
list enumerator 𝐿. Then there are functions index:𝑋→N and
gen:L𝑋→N such that

1. if 𝑥 ∈ 𝐿𝑛 or |𝐿𝑛 | > index 𝑥 , then 𝐿𝑛[index 𝑥] =

Some𝑥 ,
2. if 𝐿𝑛[𝑚] = Some𝑥 , then𝑚 = index 𝑥 , and
3. given a duplicate-free 𝑙 :L𝑋 we have |𝐿(gen 𝑙) | ≥ |𝑙 |.

Proof. Define gen 𝑙 as the maximum of all occ 𝑥 for 𝑥 ∈ 𝑙
and index 𝑥 as the position of 𝑥 in 𝐿(occ 𝑥). □
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We now put together these ingredients to construct the
bijection according to the intuition.
Theorem 6.3. Given two retracts 𝑋 and 𝑌 of N with injec-
tions 𝑋→𝑌 and 𝑌→𝑋 there are functions 𝑋→𝑌 and 𝑌→𝑋

inverting each other.

Proof. Let 𝐿𝑋 , occ𝑋 , 𝐿𝑌 , and occ𝑌 be obtained by applying
Lemma 6.1 and index𝑋 , gen𝑋 , index𝑌 , and gen𝑌 by applying
Lemma 6.2 for both 𝑋 and 𝑌 .

Let 𝑓 be an injection 𝑋 → 𝑌 . Define 𝐹 :𝑋→𝑌 as
𝐹𝑥 := if (𝐿𝑌 (gen𝑌 (map 𝑓 (𝐿𝑋 (occ𝑋𝑥))))) [index𝑋𝑥]

is Some𝑦 then 𝑦 else 𝑓 𝑥

We prove that only the then case matters, i.e. that
𝐿𝑌 (gen𝑌 (map 𝑓 (𝐿𝑋 (occ𝑋𝑥)))) [index𝑋𝑥] ≠ None.

To do so, it suffices to prove that
|𝐿𝑌 (gen𝑌 (map 𝑓 (𝐿𝑋 (occ𝑋𝑥)))) | > index𝑋𝑥 .

We have that 𝐿𝑋 (occ𝑋𝑥) [index𝑋𝑥] = Some𝑥 , meaning
|𝐿𝑋 (occ𝑋𝑥) | > index𝑋𝑥 , and that map 𝑓 (𝐿𝑋 (occ𝑋𝑥))) is
duplicate-free because 𝑓 is injective and𝐿𝑋 (occ𝑋𝑥) is duplicate-
free. Now

|𝐿𝑌 (gen𝑌 (map 𝑓 (𝐿𝑋 (occ𝑋𝑥)))) |
≥|map 𝑓 (𝐿𝑋 (occ𝑋𝑥)) | by Lemma 6.2 since the list is duplicate-free

≥|𝐿𝑋 (occ𝑋𝑥) | because 𝑓 is injective

>index𝑋𝑥 by Lemma 6.1 (3) we have 𝑥 ∈ 𝐿 (occ𝑥) , thus Lemma 6.2 (1) applies

as needed.
Let𝐺 :𝑌→𝑋 be defined symmetrically.We have that𝐺 (𝐹𝑥) =

𝑥 : Let (𝐿𝑌 (gen𝑌 (map 𝑓 (𝐿𝑋 (occ𝑋𝑥))))) [index𝑋𝑥] = Some𝑦.
By Lemma 6.2 (2), index𝑋𝑥 = index𝑌𝑦.
We then have

(𝐿𝑋 (gen𝑋 (map 𝑔 (𝐿𝑌 (occ𝑌𝑦))))) [index𝑌𝑦]
=(𝐿𝑋 (gen𝑋 (map 𝑔 (𝐿𝑌 (occ𝑌𝑦))))) [index𝑋𝑥]
=Some𝑥

because |𝐿𝑋 (gen𝑋 (map 𝑔 (𝐿𝑌 (occ𝑌𝑦)))) | ≥ |𝐿𝑌 (occ𝑌𝑦) | >
index𝑌𝑦 = index𝑋𝑥 . □

7 Conclusion
We have presented a proof of the Myhill isomorphism theo-
rem and three proofs of the Cantor-Bernstein theorem for
enumerable discrete types in constructive type theory.
The proofs are formalised in Coq, but can be translated

to other constructive type theories, in particular to MLTT
(as implemented e.g. in Agda) and HoTT (as implemented
e.g. in Cubical Agda). Morally more classically inclined type-
theoretic proof assistants such as Lean cannot really benefit
from our analysis, since the result is trivial to prove classi-
cally.
The central result is a novel result with a compact proof

shedding interesting light on the computational content of
the Cantor-Bernstein theorem.

The Coq proofs themselves are unremarkable: They do
not require advanced features. The proof of the Myhill iso-
morphism theorem becomes a little more elegant by using
the Equations package [18] (but then still does not rely on
Axiom K), but the use could be easily circumvented as well.
The proof of CB from the Myhill isomorphism theorem and
the proof via the pigeonhole principle both require around
280 lines of code, whereas the proof via list enumerators
requires 220 lines.
We mention here the comment by the reviewers of this

paper that our proof based on list enumerators in section 6 is
reminiscent of Cantor’s original proof of Cantor’s theorem
concerning dense linear orders [3], whereas newer proofs of
Cantor’s theoremwork with back-and-forth methods as used
in the Myhill isomorphism theorem and our proof based on a
computable pigeonhole principle in section 5, see the histor-
ical discussion by Silver [17] and the uniform presentation
by Kirst [10].
It is an interesting open problem how and whether the

conditions of enumerability and discreteness can be relaxed
for type-theoretic versions of CB, or whether incomparable
properties of types exist that allow proving CB. A possible
relaxation of discreteness could be weak discreteness (i.e. the
predicate 𝑥1 ≠ 𝑥2 being computationally decidable), whereas
a possible relaxation for enumerability could be some form
of constructive well-ordering, as used in the definition of
ordinals in the HoTT book [19, §10.3]. It is possible that such
a generalised version of CB for enumerable discrete types
would only be provable for total functional relations rather
than functions. However, since any total functional relation
on enumerable discrete types can, as discussed, be turned
into a function again (Lemma 2.4), such a theorem would in
particular imply our result for enumerable discrete types. Fur-
thermore, it is possible that extensionality principles (such
as functional extensionality, propositional extensionality, or
even univalence) would be needed, which do not play a role
in our proof. We leave it to future work to analyse whether
such a generalised presentation is possible.
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