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Conic splines are formed by arcs of conics, each defined by its endpoints and the tangents at them 
plus an intermediate point. Instead of the common general equation that depends on five parameters, 
an equation with a single parameter is used, thus simplifying significantly the curve fitting problem. 
The resulting guided conics resemble Bezier polynomials and for parabolas are identical to them. 
Such splines can be used conveniently both for interactive design and for automatic curve fitting. 
They allow circular, elliptical, and hyperbolic arcs to be included in the spline family, while the 
common forms using a B-spline basis allow the inclusion of parabolic arcs only. Conic splines are 
described either in a rational parametric or in algebraic form f(x, y) = 0. A simple estimate for the 
distance of a point from such a curve is given and is used to test the quality of approximations. The 
data to be fitted are first approximated by a polygon, and then simple heuristics are used to decide 
which sequences of vertices should be approximated by conics. The conics found by the applications 
of the heuristics are usually close approximations of the data and need no further adjustments. When 
adjustments are needed, the interval is split and a conic is fitted on each part. It is shown theoretically 
that exact knot placement at the optimal locations is less important for higher order splines than for 
polygons. Examples of application of the method to the fitting of font and other contours are given. 
Comparisons with other methods suggest that conic splines require no more knots than cubic splines 
for similar quality of approximation. 

Categories and Subject Descriptors: G.1.2 [Numerical  Analysis]:  Approximation; 1.3.6 [Computer  
Graphics]:  Methodology and Techniques; 1.5.4 [Pa t te rn  Recognit ion]:  Applications 

General Terms: Algorithms 

Additional Key Words and Phrases: Approximation by splines, Bezier polynomials, variable knot 
splines, font description, interactive graphics, optical character recognition 

1. INTRODUCTION 

T h e  r e p r e s e n t a t i o n  o f  c u r v e s  b y  s p l i n e s  h a s  f o u n d  a p p l i c a t i o n s  in  g r a p h i c s ,  

c o m p u t e r - a i d e d  d e s i g n  a n d  m a n u f a c t u r i n g ,  a n d  n u m e r o u s  o t h e r  f i e ld s  ([1, 5, 7, 

19], e tc . ) .  O r i g i n a l l y ,  s p l i n e s  w e r e  g i v e n  in  t h e  y = f ( x )  f o r m ,  b u t  t h i s  h a s  c e r t a i n  

d i s a d v a n t a g e s  w h e n  o n e  d e a l s  w i t h  a r b i t r a r y  c u r v e s  o n  t h e  p l a n e  t h a t  m a y  h a v e  

" i n f i n i t e "  s l o p e  [6]. T h e r e f o r e  t h e  p a r a m e t r i c  f o r m  o f  r e p r e s e n t a t i o n  is c o m m o n l y  
u sed .  T h e  s p l i n e  in  t h e  p l a n e  is d e f i n e d  t h r o u g h  t w o  s c a l a r  sp l ines ,  x ( t )  a n d  y ( t ) ,  

t h a t  h a v e  t h e  s a m e  v a l u e s  o f  t a t  t h e  k n o t s .  F o r  e x a m p l e ,  a s p l i n e  o f  d e g r e e  n w i t h  
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m knots may  be given by the following equation: 
n 

P ( t ) =  ~ a j i ( t - t j )  i for tj<_t<_ti+l O < _ j < _ m - 1 .  (1.1) 
i=0 

P( t )  is a vector  with elements  x( t )  and y(t) ,  aji is the coefficient vector,  t is the 
parameter ,  and the tj are the  values of the pa ramete r  at the knots. If  we use B- 
splines for a basis, then  the parametr ic  equat ion takes the form 

m 

P( t )  = Y, P~N~,,(t), (1.2) 
i=0  

where Ni, , ( t )  is the i th  B-spline of degree n [19, pp. 252-267]. This  form, originally 
proposed by Riesenfeld [26], has been part icularly popular  in graphics applica- 
tions and has an appealing intuitive interpretat ion.  T h e  coefficient vectors  Pi m a y  
be in terpre ted as vertices of a guid ing  (or control) polygon and m ay  be used in 
interactive graphics to control  the shape of a curve. Thus  they  exhibit  the major  
advantage of Bezier  polynomials  and are also easier to manipulate.  

In spite of its popularity,  the above representa t ion has certain disadvantages. 
In particular, some commonly used curves, such as conics, are excluded by  the  
formalism of eqs. (1.1) or (1.2). Conics are widely used in CAD applications [3, 7, 
8], and it seems tha t  in many  cases piecewise conic curves give results a t  least as 
good as those given by cubic splines. The  popular i ty  of cubic splines is due par t ly  
to historical reasons and par t ly  to the following property:  frequently,  we want  
local approximations where the curve between two knots  is specified by the 
location of the points and their  tangents.  Thus  we need four degrees of freedom, 
and if we use the formalism y = f ( x ) ,  or tha t  of eq. (1.1), we must  go to cubics 
(n = 3). Conics, however, have five degrees of f reedom and therefore  are adequate  
for such local fitting. (Parabolas expressed in this way have four degrees of 
freedom.) There  are three  more reasons for preferring conics: (a) conics are used 
to generate certain kinds of data  (sometimes through "French  curves") ,  so tha t  
our  curve fitting matches  the generating process; (b) conics have been studied for 
over two thousand years, 1 and there  is wealth of mathemat ica l  results  about  
them; and (c) it is much  easier to find the intersection of a line (especially one 
parallel to one of the axes) with a conic than  with a cubic. T h e  solution of this 
problem is required in many  graphics applications, and its difficulty for cubics 
has led to the development  of the recursive subdivision algori thms [4]. Cubics 
have a clear advantage over conics only in the following cases: (a) when cont inui ty  
of curvature  (or second derivative) is important ,  and (b) when interpolat ion 
without  tangent  specification is required. T h e n  one has a sys tem of equat ions 
like (1.2) tha t  must  be solved in order  to find Pi. This  sys tem is well behaved 
numerically for cubics (n = 3) [31] but  not  for quadrat ics  (n = 2). 

While conics cannot  be described through polynomials of the form of eq. (1.2), 
they can be expressed through the following rational parametr ic  form, often used 
in CAD applications [3], [7, pp. 138-144], [8, pp. 21-25]: 

xot 2 + x l t  + x2 
= , ( 1 . 3 a )  

x( t )  wot 2 + wl t + w2 

' Although there were long interruptions because research funding was suspended. 
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yo t 2 + y~ t + Y2 

y( t )  wot 2 + w~t + w2 
(1.3b) 

They may also be described by the algebraic form 

f ( x , y )  = 0. (1.4) 

The main result of the paper is a method for finding a mixture of conic arcs and 
straight-line segments approximating a given set of data points. This is described 
in Sections 6-8. This method is independent of the form used to describe conics 
and could be used with either of the two forms above. However, all parametric 
forms suffer from the following limitation: when splines are used to approximate 
a set of data points, one must establish a correspondence between the data points 
and the parameter t in order to compute the error. This problem does, however, 
disappear when the algebraic form is used. We present in Section 5 expressions 
for estimating the distance of a point from a conic given in algebraic form. It 
would seem that  it would be difficult to find points of a conic given by eq. (1.4), 
but this is not the case. We present a solution in Section 4. 

We have not attempted to design an optimal approximation algorithm for two 
reasons. One is that it can be shown theoretically that approximations by splines 
with tangent continuity at the knots have the property that  error norm at 
suboptimal solutions is close to the error norm at the optimal ones (see Appendix 
B). A more important reason is that it is very difficult (if not impossible) to devise 
mathematical criteria for approximation that  agree with the human perception of 
high-quality approximation. For example, the preservation of various syrmnetries 
or "lining-up" relations is very important for aesthetic reasons but very difficult 
to incorporate in an optimization algorithm. Therefore it is not advisable to make 
a great effort to find the optimal approximation under, say, an integral square 
error norm when this is not exactly what we want. For applications where high- 
quality approximations are essential, it is necessary to include postediting of the 
results by a human observer. For applications where low-quality approximations 
suffice a suboptimal mathematical approximation could be acceptable. 

2. DEFINITION OF CONIC SPLINES 

We define conic splines by an extension of the definition of guided splines. 

Definition 2.1. The following sets of points and parameters define a conic 
spline: (a) the vertices of a guiding polygon Vi, 0 _< i _ k; (b) coefficients pi that  
are between zero and one and specify the location of the knot on the line segment 
ViVi+l, 1 _ i < k; and (c) coefficients qi, between zero and one, denoting the 
location of a point of the curve along the line joining Vi+l with the middle of the 
line joining the knots before and after it, 1 _ i _< k - 1. 

The knots K~ are then defined as 

K i  -~ (1 - p i ) V i  .-b p i V i + l ,  (2.1) 

and together with the sides of the guiding polygon, they specify the endpoints 
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Fig. 1. Specif icat ion of  a conic arc according 
to Def in i t ion  2.1. 

. Vi+l 

and their  tangents for each conic. The  conic is specified complete ly  by  a 
fifth point: 

I~ + Ki+I 
Zi = qiVi+l + (1 - qi) (2.2) 

2 

We have five conditions, therefore,  the conic is well defined, unless some of the 
guiding points are collinear (in which case the conic is reduced to l inear segments).  
Figure 1 shows an example of a well defined conic. I t  is well known tha t  if qi 
equals 0.5, then  the conic is a parabola  [8, pp. 30-33]. In tha t  case it is also easy 
to prove tha t  if all the coefficients pi equal 0.5, then  the conic spline is the same 
as a second-degree spline given by eq. (1.2) with uniform knot  distribution. [19, 
chap. 11]. 

Next  we examine various singular cases. Ifpi+l is zero, then  the i th  arc of the 
spline is the straight-line segment K/¥i+1. In order  to have a straight-line segment  
with continui ty of the tangents  at bo th  endpoints,  we must  select three  guiding 
points along the same line. If Vi, Vi+l, and Vi+2 are collinear, t hen  Ki and Ki+l are 
also on the same line, as is Zi, regardless of the value of q~. Ifp~ equals one and 
pi+l equals zero, then  both  Ki and Ki+I equal Vi+l. Also, Zi equals Vi+l, regardless 
of the value of qi. The  i th  arc then  reduces to a single point  and the spline 
exhibits a corner. This  is a case of tangent  discontinuity produced by knot  
coalescence [5, 25]. The re  is no way to introduce a discontinuity in the curve by 
fur ther  knot  coalescence unless we allow values of p~ o ther  t han  zero and one. If  
V~ coincides with V~+2, but  V,+~ is different, then  the spline exhibits a cusp. If  qi 

is zero or one, then  the conic arc reduces to a polygonal arc regardless of the 
v a l u e  of pi o r  pi+l. 

The  following example illustrates one of the advantages of the new formalism. 

E x a m p l e  2.1. We wish to draw a curve of a desired shape in an interact ive 
graphics system. To  this end we specify first the guiding polygon (Figure 2). If  we 
were to use the form of eq. (1.2), the points where the curve intersects the sides 
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j J  

Fig. 2. Specification of a guiding polygon, points  t h rough  which  the  curve m u s t  pass,  and  the  resul t ing 
curve. 

of the polygon would not  be  under  our direct  control  because  they  are specified 
by the values of the  p a r a m e t e r  t at  the  knots. (Also if we were to use cubics, we 
would not  have  direct  control  over  the location of the curve or its tangents.)  On 
the o ther  hand,  we m a y  specify these points  interact ively and then  use Defini t ion 
2.1 to draw the spline. We have  the option of specifying the fifth point  if we wish 
to control  how close the curve passes to a vertex. In an interact ive sys t em there  
is no need to specify pa r ame te r s  pi and qi explicitly. T h e y  can be replaced by  a 
specification of the knots  and any  fifth point. 

3. EQUATIONS THAT DESCRIBE CONICS 

The  cus tomary  general  equat ion for a conic is 

f (x, y)  = ax  2 + 2 h x y  + by 2 + 2ex  + 2gy  + c = O. (3.1) 

Al though there  are six coefficients in eq. {3.1), one of t h e m  can be chosen 
arbitrarily,  so tha t  a conic has  only five degrees of  f reedom. We assume wi thout  
loss of general i ty tha t  the s ign  o f  the f i rs t  nonze ro  coef f ic ient  in eq. (3.1) is 
posi t ive.  I t  is well known tha t  the conic is an ell ipse if the  quant i ty  ab - h 2 is 
positive, a hyperbo la  if ab - h 2 is negative,  and a p a r a b o l a  if ab - h 2 is zero. T h e  
conic is a circle if a = b and h = 0. T h e  conic degenerates  into a pair  of s t ra ight  
lines if f (x ,  y) can be expressed as the  produc t  of  two first-degree polynomials.  In  
spite of its general i ty  this fo rm is not  convenient  for m a n y  applicat ions or for 
proving proper t ies  abou t  conics. We next  describe some a l ternat ive  represen ta -  
tions. 

3.1 Matrix Equation for Conics 

We use the  t e rm  coord ina te  vector to refer  to the column vector  x with compo-  
nents  x and y. I f  we define Q to be the mat r ix  
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and g the column vector with components 2e and 2g, then  eq. (3.1) becomes 

f(x)  = x 'Qx  + g 'x  + c = 0. (3.3) 

The primed symbol of a vector or a matrix is used to denote the transpose. Note 
tha t  a b  - h 2 is the determinant  of Q. 

The c e n t e r  of a conic is defined as the point with coordinate vector 

1 Q - 1  
Xc = - ~ g, (3.4) 

or in scalar form 

- e b  + g h  - a g  + e h  

xc - a b  - h 2 ' Yc - a b  - h 2 " (3.5) 

Note tha t  the center is not  defined for parabolas. For ellipses and hyperbolas we 
may  move the origin of the coordinates to the center and obtain a simpler form 
of eq. (3.3) 

f ( x )  = x ' Q x  + cl = 0, 

where the constant  Cl is given by 

1 p 1 
c1= c - ~ g Q -  g. 

(3.6) 

(3.7) 

The a x e s  of a conic are parallel to the two eigenvectors of Q, and if ),max denotes 
the larger eigenvalue of Q and ~min the smaller, we find from eq. (3.6) tha t  the 
norms of the two axes are, respectively, 

~ /  c~ a n d  [1 amin[[ = ~/-~- el 
II amax [I = ~min ~max" (3.8) 

Note tha t  for a circle Q is proportional to the identi ty matrix; thus any vector 
through the center is an axis. A straightforward calculation shows tha t  the 
eigenvalues are given by 

. . . . .  in = l [ a  + b + x/(a - b) 2 4- 4h2]. 

If h is zero, then  the two eigenvalues equal a and b respectively. 

3.2 Guided Form for Conics 

A form tha t  is useful for conic splines is the g u i d e d  f o r m  whereby the conic is 
expressed through the equations of certain lines. We recall tha t  the general form 
for the equation of a straight line is 

a , x  + a y y  + ao = O. (3.9a) 

If a is the two-dimensional column vector of the coefficients, then the above 
equation can be written in the more concise form 

a ' x  + ao -- 0, (3.9b) 

where a '  denotes the transpose of the vector a. I t  can be shown tha t  replacing the 
coordinates of any point into eq. (3.9) yields the distance of the point from the 
line times a constant. If  a straight line is specified by the coordinates of its two 
ACM Transactions on Graphics, Vol. 2, No. 1, January 1983. 
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Fig. 3. Illustration of the  definition of a set  of conics 
by two points and the  tangents  at  them. A single conic 
is specified by selecting a fifth point  E tha t  can be in 
any of the sectors 1, 2, 3, and 4. 

endpoints xl, yl and x2, y2, then  the above equat ion becomes 

x ( y l  - y2) + y ( x 2  - x~) + y 2 x l  - y~x2 = O. (3.10) 

Fur thermore ,  in tha t  case the distance of a point  (u, v) f rom tha t  line equals 
I d / D ]  where 

d = u ( y ~  - y2) + v(x2  - x~) + y 2 x l  - y l x 2 ,  (3.11) 

and 

D = ~/(yl - y2) 2 + (x2 - xl) 2. (3.12) 

The  sign of d indicates the side of the line on which the point  lies. 
Using these expressions, we can write the equat ion for a guided conic. Suppose 

that  we are given two points A and B and the tangents  of the conic at  points TA 
and T B .  Since conics have five degrees of freedom, these four conditions describe 
a one-parameter  family of conics. Let  a ' x  + a0 = 0 be the equat ion of line T A ,  

b 'x  + bo = 0 the equation of T B ,  and u ' x  4- u0 = 0 the equat ion of chord A B .  Let  
K be the parameter  of the family of conics defined in this way. T h e n  thei r  
equation is 

(a'x+ ao). (b'x + bo) = K. (u'x + u0) 2. (3.13) 

See [28, pp. 234-235] and [29, p. 72] for a proof. If we denote  by C the intersection 
of the two tangents (Figure 3), we have the following geometrical  in terpre ta t ion 
of eq. (3.13). 
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PROPOSITION 3.1. I f  A, B, and C are three points, then for each number k 
there exists a conic passing through A and B and tangent to A C and CB with 
the property that for each one of its points P, the distance of P from A B  times k 
is the geometric mean of the distances of P from lines A C and CB. 

We have used k rather than K in the statement of Proposition 3.1 because the 
constant includes scale factors from the equations of the lines. 

For a given set of tangents and endpoints, the selection of a fifth point E, 
through which the curve must pass, determines K. It is possible to establish a 
relation between the form of the conic and the part of the plane where the point 
is chosen. First we observe that  since two points and their tangents uniquely 
define a parabola, then we should be able to specify a value of K so that  eq. (3.13) 
represents a parabola without having to select another point. A rather lengthy 
but straightforward calculation yields the following value of K 

1 (axby-  bxay) 2 
K = - ~ UxUy(axby + b~ay) - U~ayby - u~a~bx" (3.14) 

We can define the three lines of eq. (3.13) in terms of eq. (3.10) by using the 
following ordered pairs of points: A and C, B and C, and A and B. Then  the big 
fraction of eq. (3.14) reduces to one and the value of K corresponding to the 
parabola is -1 /4 .  With this specification for the lines we derive the following 
results. 

PROPOSITION 3.2. I ra  conic is defined by a triangle A B C  and a fourth point  
E, and the equations of the lines in eq. (3.13) are like those in (3.10), then the 
following statements are true. K is negative whenever point  E is selected in the 
plane sector containing chord AB.  This sector is marked by a 1 in Figure 3. In 
this case all three points E, A, and B belong to the same conic arc. The parabola 
divides that sector into two parts. The conic will be an ellipse only when E is in 
sector 1 below the parabola. In that case K will be less then -1 /4 .  In  all other 
cases the conic will either be a hyperbola or will degenerate into pairs of lines. 
I f  E is in sector 3, then K is negative, but E belongs to a different branch of the 
hyperbola than A and B. K is positive if  E is located in either sector 2 or 4. Then 
A and B lie on different hyperbolic branches. K can be zero only if  we select E 
on one of the tangents and the conic degenerates into a pair  of  lines. Also i rE  
is selected on AB,  then K is infinite and the conic degenerates to chord AB.  

It is simple to prove that if the conic is a parabola, then eq. (3.13) is the same 
as the Bezier equation [19, pp. 221-223]. There is another convenient form for 
parabolas that is related to the guided form. Let c 'x  + Co -- 0 be the equation of 
a line through A and parallel to the line joining C with the midpoint M of chord 
A B  (see Figure 4). Let x2 be the coordinate vector of B. Then the equation of the 
parabola is 

(c'x + Co) 2 + (a'x + ao). (a'x2 + 1) -- 0 (3.15) 

[28, p. 195]. We can show that  the parabola passes through the midpoint F of 
segment CM and that  at F it has a tangent parallel to chord AB.  If D and E are 
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C 

E 

A 

Fig. 4. Illustration of the properties 
of a parabola defined by two points, 
A, and B, and the tangents of the 
curve at them. C is the intersection 
of the two tangents, M the midpoint 
of chord A B ,  and F the midpoint of 
segment C M .  

the points where this tangent  intersects A C  and B C ,  respectively, then  the 
parabola is subdivided into two arcs, A F  and F B ,  and each arc is specified again 
by its endpoints  and tangents.  This  is the same as the recursive Bezier subdivision 
[19, pp. 227-230]. 

3.2 Guided Rational Parametric Form for Conics 

I t  can be shown [7, pp. 138-144] tha t  the rational parametr t ic  form of eq. (1.3) 
can be used to describe a guided conic by the following equation: 

w0(1 - t ) ~  + 2wit(1 - t ) x c  + w 2 t 2 X B  

x(t)  = w0(1 - t) z + 2wit(1 - t)  + w z t  2 ' (3.16) 

where xA, xB, and xc  are the coordinate vectors of points A, B, and C of Figure 
3, and w0, Wl, and w2 are the parameters  whose selection specifies each part icular  
conic belonging to the family. As a ma t t e r  of fact  it is the value of 

WoW2 
w~ (3.17) 

tha t  is impor t an t - - t he  conic does not  change if we vary  t h e  wi's while keeping 
the above ratio fixed. It  can be shown [8, pp. 25-27] tha t  this ratio equals qi as 
defined in eq. (2.2). I t  is s traightforward to verify tha t  x(0) = xA, x(1) = XB, ±(0) 
= 2 W l / W o ( X c  -- XA), and x(1) = 2 w l / w z ( x ~  - Xc). If  we denote  by tE the value of 
t at  point  E with coordinate vector  XE, then  eq. (3.16) yields 

(1 --  t E ) 2 W o ( X A  - -  XE) + 2WltE(1  - -  t E ) ( X c  - -  XE) + t 2 W 2 ( X A  - -  XE) ---- 0. (3.18) 

In o ther  words the w/s  and t f  can be found from the projections of vector  E C  

on vectors A C  and A B .  (Note tha t  two of the four unknowns can be chosen 
arbitrarily.) While these computat ions may  involve slightly more  work than  
finding K from eq. (3.13), we should point  out  tha t  additional work is required to 
find the coefficients of the conic from K, while only the solution of eq. (3.18) is 
required for the rational parametr ic  form. 
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4. PLOTTING A CONIC 

If we use the parametr ic  form (1.1), then  it is simple to find a sequence of points 
on the curve for plotting or for any other  purpose. This  is also the case with the  
parametr ic  form of eq. (1.3), except  tha t  we require two additional divisions for 
each point  to be plotted. Things are somewhat  more complicated for nonpara-  
metric forms. The  following result  provides a mechanism for finding such points 
under  the algebraic representat ion,  provided tha t  we already know one point  on 
the curve. 

4.1 Incremental Plotting 

PROPOSITION 4.1. I f  an ellipse or hyperbola is g iven  by eq. (3.6), then  there 
exis t  matr ices  B such that  i f  x is a po in t  on the conic, then B x  is also a po in t  on 
the same conic. A l l  such matr ices  are o f  the form 

B = [ P + h 1 "  bl" ] 
- a t  p - h~ ' (4.1) 

with p a n d  r sat is fy ing the equat ion 

p2 + (ab - h2)¢ 2 = 1. (4.2) 

PROOF. Straightforward by showing by direct  subst i tut ion tha t  any matr t ix  B 
given by eqs. (4.1) and (4.2) satisfies also the following equat ion 

B'QB = Q. (4.3) 

This implies tha t  Bx  will also be on the conic because of eq. {3.6). I t  is also 
possible to show tha t  this construct ion is equivalent  to the well known geometric 
construction of an ellipse by means of the concentric circle method  [27, pp. 133- 
134]. [] 

A matr ix  B may  be used to plot ellipses and hyperbolas  in a numerical ly stable 
way. For  this purpose • is taken to be small and p near  one. For  ellipses one could 
define an angle ~ such tha t  

s in6 
p = cos 0 r - , (4.4a) 

4a-b- h 2 

while for hyperbolas  we can select a variable  X such t h a t  

s inh X 
p = cosh X T - (4.4b) 

4~- ab 

Normalizat ion of the  coefficients of eq (3.1) so t h a t  

ab - h 2 = 1 (4.5) 

simplifies subsequent  calculations. The  only difficulty occurs when the original 
value of ab - h 2 is near  zero. From a practical  viewpoint  it is best  in such cases 
to t rea t  the conic as a parabola. For  the applications discussed in this paper  this 
is quite acceptable since we are approximating ra ther  than  interpolat ing curves. 

ACM Transact ions  on Graphics,  Vol. 2, No. 1, J a n u a r y  1983. 



Curve Fitting With Conic Splines 1 1 

At first look the use of a matrix multiplication per point seems an unduly 
complicated method for plotting conics. However, it is competitive with the 
rational parametric method. The operation Bx requires 4 scalar multiplications 
and 2 additions plus 2 more additions if the center is not the origin of coordinates. 
Equation (1.3) requires two divisions plus 6 additions, if the divided differences 
method is used for calculating the quadratic polynomials. 2 In contrast, some 
books on computer graphics contain algorithms for conic plotting that require as 
many as 20 operations per point (10 multiplications and 10 additions). If h = 0, 
(i.e., if the conic axes are parallel to the coordinate axes), and if the known point 
of the conic is at the tip of an axis, then Bx is reduced to the simple expression 

X cos 0 Y sin 

for an ellipse with axes X and Y. 
A matrix B may not be used to plot parabolas (eq. {3.6) does not hold for them), 

but parabolas can be plotted easily as polynomial splines. For the sake of 
generality we give in Appendix A a result that can be used for the incremental 
plotting of parabolas. 

4.2 Recursive Plotting 

All the plotting techniques described above assume that the coefficients of the 
equation describing the conic have been found. It is possible to plot a conic 
without having that  information, at the expense of more computation per point. 
Such constructions are based on the following important theorem for conics. 

PASCAL'S THEOREM. I f  a hexagon is inscribed in a conic, then the three 
pairs of opposite sides have collinear intersections. 

See [28, pp. 245-246] or [29, pp. 83-85] for a proof of this theorem. Thus, 
given five points, we may select a line on which the three intersections must lie, 
and then construct the sixth point. See [28, pp. 247-248] for details. If we let two 
pairs of points on the hexagon coincide, then two of the sides become tangents 
and we have the situation shown in Figure 5. There, A and B are double points 
and the six lines of the hexagon are paired: A C  with EB, AD with BC, and DE 
chord AB. This is the configuration of practical interest for guided conics. 

If only D is given, then we can construct E by drawing an arbitrary line 
through P2, finding points P1 and/)3 as intersections on that line with AC and 
AB, respectively, and then finding the intersection of lines AP2 and DP3. Forrest 
[9] gives another algorithm based on the same principle. Since these techniques 
require finding the intersection of three pairs of lines for each point on the conic, 
they are clearly inferior to incremental plotting or parametric plotting. They 
become competitive only when one needs very few points and wants to avoid the 
overhead of finding the coefficients of the conic or of solving eq. (3.18). 

2 The two methods will be equally expensive if we assume a machine where a multiplication is twice 
and division three times as expensive as addition, or if we assume that  the three operations have 
equal costs. These assumptions are reasonable for modern computers where the register-to-register 
arithmetic operation time is comparable to the time of the memory to register fetch. (E.g., pp. B-1 to 
B-28 of PDP11/04/34/45/55 Processor Handbook, Digital Equipment  Corporation, Maynard, Mass., 
1976.) 
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Fig. 5. I l lustrat ion of Pasca l ' s  
Theorem.  The  endpoints  of the  
conic arc are A and  B, and  C is 
the  intersect ion of the  tangents .  
P, Pz P3 is the  Pascal  line, while D 
and  E are two interior  vertices. 
(Note t ha t  A and  B are double 
points  and  t ha t  the  six l ines of the  
hexagon are paired as AC with 
EB, AD with BC, and  DE with 
chord AB.) 
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P2 

B P3 

If we wish to find the tangent at a given point, then we repeat the above 
construction by having D and E coincide: line DP3 will be the tangent. (In that  
case we would not have chosen an arbitrary line through P2, but would have 
found P,  as the intersection of AC and BD.) These constructions provide the 
elements for a recursive algorithm. Given triangle ABC and a point on the conic 
D, we find the tangent at D and let A1 be the point where it intersects AC, and B1 
the point where it intersects CB. In addition, we find two more points, D1 and/)2. 
Now we have two arcs, one defined by triangle AA1D and point D~, and another 
defined by triangle DBIB and point D2. Since the same set of operations may be 
applied to each of these two arcs, we have a recursive method. It is easy to show 
that at each step the angle between the tangents increases; therefore the differ- 
ence between the parabola defined by the triangle and all other possible conics 
keeps decreasing. Thus at some point we can stop the subdivision and instead 
complete the plotting by parabolic arcs. Furthermore we do not need to find the 
points D~ and D2 for the last recursion. If the number of recursions is small 
compared to the number of points to be plotted, then the recursive method 
becomes competitive since a parabolic arc can be drawn incrementally with only 
four operations per point, and part of the cost of the recursion can be written off 
against the overhead of finding the conic coefficients and initialization. 

5. DISTANCE OF A POINT FROM A CONIC 

While for a straight line with an equation of the form f(x, y) = 0, the quantity 
f(x, y) is proportional to the distance of a point from the line, the same is not true 
for conics. We present here some properties of conics that  are useful for estimating 
such a distance. Some of these results are "new" in the sense that  we could not 
find a reference describing them, but given the vast literature on the subject of 
conics it is doubtful that they have not appeared in print before. Anyway, all the 
proofs are straightforward applications of analytic geometry and linear algebra. 
Let xo be a point on the conic, x a point not on the conic, and r a vector joining 
the two such that  

x -- x0 + r. (5.1) 
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Subst i tut ing eq. (5.1) into eq. (3.3), we obtain  

f (x)  = (x0 + r) 'Q(x0 + r) + g'(Xo + r) + c. (5.2) 

Carrying out  the multiplications,  and considering that ,  by  hypothesis ,  f(x0) = 0, 
we find 

f (x)  = 2x~Qr  + r ' Q r  + g ' r .  (5.3) 

I f  we select x0 a t  the foot of the  normal  f rom x to the  conic, then  the  length of r 
will be the distance of this point  f rom the curve. Clearly, f (x)  is a r a the r  
complicated function of tha t  distance and one can construct  examples  where,  
depending on the location of x, we have  different values of f (x)  for the same 
length of r. Equat ion  {5.3) shows tha t  the  use of f (x)  as a measure  of  the  distance 
of a point  f rom a conic is not  justified. Nevertheless ,  it can be used as a s tar t ing 
point  for deriving simple distance est imates.  

5.1 Distance of a Point from a Parabola 

I t  is necessary to handle  parabolas  differently f rom ellipses and hyperbolas .  T h e  
la t ter  two types  of conics have  a center  while parabolas  do not. Howeve r  parabolas  
have  the p roper ty  tha t  the  matr ix  Q has  a zero eigenvalue. I f  we select r to be an 
eigenvector of Q corresponding to tha t  eigenvalue, then  Q r  is zero and we have  

f (x )  = g ' r .  (5.4) 

Because the direction of r is fixed, its scalar p roduc t  with g is propor t ional  to the  
norm of r. I t  can be shown easily tha t  the eigenvector  in quest ion is parallel  to 
line C M  in Figure 4. I f  xl  and x2 are the endpoints  (A and B in Figure 4), and  xb 
the point  where the tangents  intersect  (C in Figure 4), t hen  the equat ion of the  
parabola  can be wri t ten as 

f (x)  = [dy~2(x -  xl)  - dx~2(y _y~)]2 

+ [(yb - y l ) ( x  - xl)  - (xb - x l ) ( y  - y~)] (5.5) 

• [(xb - x,)(y2 - yl)  - (yb - yl)(x2 - x , ) ]  

where 

xl + Xe yl + y2 
dx12 = xb and dyle = yb 

2 2 

This  is a special case of  eq. (3.15), which produces  the  following result. 

PaOPOSlTION 5.1. For  a parabo la  g iven  in the form o f  eq. {3.15), the quant i ty  
f (x )  is propor t ional  to the dis tance o f  the po in t  f rom the parabo la  computed  
along a segment  para l l e l  to the line j o i n i ng  the intersect ion o f  the tangents  wi th  
the midpo in t  o f  the chord ( C M  in Figure 4). I f  the special  form o f  eq. (5.5) is 
used, then the dis tance is g iven  by the fo l lowing equation: 

D(x)  = 2f(x) ~/dx~2 + dy22. (5.6) 
[(y2 - yl}(xb - xl)  - (x2 - x l ) (yb  - yl)]  2 

Clearly, D(x)  is a good es t imate  of the  distance along the normal  to the curve 
only when  the foot of the  normal  is near  point  F in Figure 4. 
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5.2 Distance of a Point from an Ellipse or a Hyperbola 

F o r  e l l ipses  a n d  h y p e r b o l a s  we can  f ind  a usefu l  r e l a t i o n  for  t h e  d i s t a n c e  o f  a 
p o i n t  f r om t h e  cu rve  c o m p u t e d  a long  t h e  l ine  j o i n i n g  t h e  p o i n t  a n d  t h e  c e n t e r  of  
t he  conic.  L e t  xc be  t h e  c o o r d i n a t e s  o f  t h e  cen te r .  E q u a t i o n  {5.1) can  t h e n  be  
w r i t t e n  as  

x - xc = Xo - xc + r .  (5.7) 

I f  t h e  v e c t o r s  x - xc a n d  Xo - Xc a re  co l l inear ,  t h e n  t h e r e  ex is t s  a n o n n e g a t i v e  
s ca l a r  Ix such  t h a t  

r = Ix(Xo - x~). (5.8) 

Ix exceeds  one  if  x is " o u t s i d e "  t h e  conic,  a n d  i t  is less  t h a n  one  i f  x is " i n s i d e "  t h e  
conic.  S u b s t i t u t i n g  eq. (5.8) in to  eq. (5.3), a n d  us ing  eq. (3.4) for  Xc, we f ind  

f (x )  = (2Ix + Ix2)(x~Qxo + g 'xo  + 1  g , Q - l g ) .  (5.9) 

W e  sha l l  use  t h e  s y m b o l  q(x0)  to  d e n o t e  t h e  e x p r e s s i o n  x ~ Q x o  + g 'xo .  S ince  Xo 
was  a s s u m e d  to be  on  t h e  conic,  us ing  eq. (3.3) we h a v e  q (Xo) = - c .  S u b s t i t u t i n g  
th i s  v a l u e  a n d  us ing  eq. (3.7), we f ind  

f (x )  = - c l ( 2 I x  + Ix2). (5.10) 

E l i m i n a t i o n  of  Ix b e t w e e n  Eqs.  (5.8) a n d  {5.10) y i e ld s  

" r " = " x ° - X c " l ~ / 1 - 1 f { X } - c i  1 I ' (5.11) 

or, in a s i m p l e r  f o r m  

~ /  l q ( x ) - I  I , - -  (5.12) [[ r II = II Xo - x~ [[ cl 

w h e r e  q ( x )  = f (x )  - c. Clear ly ,  t h e  n o r m  of  t h e  v e c t o r  Xo - Xc is b o u n d e d  f r o m  
a b o v e  a n d  b e l o w  b y  t h e  size of  t h e  two  axes.  3 Also ,  t h e  d i s t a n c e  o f  x f r o m  t h e  
cu rve  is no  g r e a t e r  t h a n  r ,  a n d  i t  e q u a l s  r a long  t h e  axes .  T h e r e f o r e  we  can  f ind  
u p p e r  a n d  lower  b o u n d s  for  it. U s i n g  eq. (3.8), we f ind  

_ 1 q ( x ) - I  ]lami.ll<D(x)< - q ( x ) - I  Ilamaxll? (5 .13)  
- - V ,  

While eq. (5.13) suggests that the distance D(x)  is a monotonic function of f (x) ,  
th i s  is s t r i c t l y  t r u e  on ly  for  t h e  bounds .  T h u s  f (x )  is  on ly  a g ross  i n d i c a t o r  of  t h e  

3 One can show that the angle between the normal to a conic at a point x and the line joining x with 
the center is at most ~r/2 - 2 tan-'  a J '~ .  Therefore r and xo - x~ do form a small angle if the axes 
have comparable lengths. 
4 The reader can confirm that when an ellipse is given in the canonical form: 

x 2 / A  2 + y 2 / B 2  - 1 = 0, 

then eq. {5.13} becomes 

I ~ /x2 /A2  + Y 2 / B 2  - l i B  <-- D ( x )  <_ I ~ /x2 /A2  + Y 2 / B 2  - 1 [A. 
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distance, and its use to specify a conic (e.g., by minimizing sums of squares of f (x)  
for various points), is not  recommended.  On the other  hand, eq. (5.13) could be 
used to check whether  a given approximation by a conic is acceptable. If  the 
coefficients of the conic have been normalized so tha t  ab - h 2 = 1, then  it is 
easily shown tha t  the geometric mean  of the two axes equals ( I Cl I ) 1/2. 

PROPOSITION 5.2. If the equation of the conic has been normalized so that 
ab - h 2 = 1, and the two axes do not differ much in length, then the distance of 
a point  x from the conic is given approximately by 

D(x )  = I , / f(x) - Ca - -  #l el ] I = I ~/q(x) + c - cl - ~/] c~ I I (5.14) 

Eq. (5.14) can be proved by substi tut ing the geometric mean of the axes into eq. 
(5.13). I t  is also easily confirmed that  i t  holds exactly when the conic is a circle. 
A fur ther  simplification of eq. (5.14) can be made by replacing Cl with c. To  
demonstra te  this we can use eq. (3.7) and denote  ¼ g ,Q - lg  by v. T h e n  the last 
expression of eq. (5.14) becomes 

Do(x) = ~/q(x) + v - ~/c + v. (5.15) 

For  points near  the conic, q(x) is close to - c .  T h e n  

~/q(x)  + v - ~/c + v = ~ 1  + v [ q j - ~  _ ~c] .  (5.16) 
¥ c 

The  estimate 

Dl(x)  = ~ -  ~c (5.17) 

is simpler to compute  than  D0(x), and eq. (5.16) shows tha t  the ratio between Do 
and D1 is approximately constant.  Special cases of these expressions have been 
used in [2]. 

5.3 On the Selection of a Fifth Point for Guided Conics 

The  following is proved by straightforward substitutions. 

PROPOSITION 5.3. Let Ki be the coefficient K in eq. (3.13) determined by 
requiring that the conic pass through the point  xi. Then define 

]~(x) = ( a ' x  + a o ) .  (b 'x  + b0) - Ki. ( u ' x  + u0) 2. (5 .18)  

Let xj be another point  that may be used to specify a conic. Then if xi and xj are 
equidistant from chord AB,  

fi(x~) = - fj(x,). (5.19) 

In other  words, when we have to choose between two points (equidistant f rom 
the chord) for specifying a guided conic, it makes no difference which one of the 
two points we pick because both  result  in the same value of If(x) I for the o ther  
point and therefore  yield the same value for eq. (5.14). 

6. APPROXIMATION BY CONIC SPLINES 

Specifying a curve through a guiding (control) polygon is a me thod  popular  
among experienced users- -na ive  users, however, may  prefer  to draw the curve 
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itself in a rough way and expect the automatic production of a "good looking" 
curve. In other applications, data must be processed without the help of a human 
operator. When curve fitting is to be done noninteractively, it is necessary to 
select the location of the knots and the other parameters by an algorithmic 
procedure. References [14], [23], and [24] are three recent papers on this topic 
with an emphasis on graphics applications. (Reference [24] contains many refer- 
ences to the earlier literature.) All use the parametric representation of eq. (1.1). 
The selection of aij and tj is made while minimizing certain error criteria that  
measure how far the spline is from the given data points X~, (k = 1 , . . . ,  N). 

Earlier writers who have studied approximations by conics have used five 
parameters to define a conic and then solved a least squares minimization problem 
with constraints for finding the conic that  fits a set of data points. {See, for 
example, [2] or [13]. Reference [2] contains many citations to earlier papers with 
similar methods.) Because there is no simple expression for the distance of a point 
from the conic, some have used the value of f (x ,  y). In this paper we rely on the 
guided form of conics introduced in Section 3, which is a convenient form to use 
for conic splines because the continuity constraints are satisfied automatically. 
However, this simplification still leaves us with a nasty problem because both the 
location of the knots and the direction of the curve tangents at them are not 
known. We overcome this problem by first finding a polygonal approximation of 
the data, and then selecting the knots and their tangents on the basis of the 
properties of the polygon found. The major advantage of this strategy is that  the 
expensive knot search procedure is performed for the polygons and that  therefore 
the fitting of conics is a one-, or at most, two-pass operation. 

Roughly speaking, we use the triangular inequality among functions. We find 
a polygon that is near our data points and then a set of conic arcs that  
approximates the polygon. The error norm between the last approximation and 
the data points is less than the sum of the error norms of the previous two 
approximations. Clearly, the result is not going to be as good as the result of a 
direct approximation. However, it is important to stop and think what "good" 
means when we fit curves. If we decide that  good means minimizing a well-defined 
mathematical cost function, then the approach of this paper leaves much to be 
desired. However there is little agreement as to what the proper cost function is. 
Therefore it is counterproductive to invest significant effort in mathematical 
optimization if we doubt that the mathematically optimal solution is what we 
actually want. In design applications where shape is very important, the results 
will be postedited anyway, while in pattern recognition applications we are 
interested only in the general shape of a curve, and details of the representation 
are usually ignored. (E.g., one may be interested only in knowing whether an arc 
is convex or concave.) 

We chose to start with polygonal approximation because it is much easier than 
approximation by higher order curves. This is true for many reasons: first, one 
may use interpolants rather than approximants with a significant savings in 
computation costs. It is well known that  the maximum error with respect to the 
interpolant is at most twice that of the optimal approximation [5, pp. 40-41]. 
That  condition is achieved when there are no changes in the sign of the error; 
usually the maximum error from the interpolant is below that  upper limit. Second, 
eq. (3.10) provides a very simple formula for computing the distance of a point 
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from a line. If the data to be fitted indeed have polygonal parts, then performing 
the cheaper approximation first makes sense: we will do the higher order 
approximations only when we need them. One of the intended applications of 
this work is the fitting of curves on contours of alphanumeric characters of 
various fonts (see Section 9). Many characters, for instance Helvetica A, have 
no curvilinear parts. There are also some deeper reasons for using polygons for 
solving the knot location problem. These are described in Appendix B. 

The use of a polygonal approximation to determine sequences of vertices which 
can be replaced by a conic has been suggested before, particularly in [13] and 
[21]. Pavlidis and Ali, however, stopped short of actually finding the conics, while 
Liao attempted to fit conics in all parts of the polygon without any prescreening. 
Lozover and Preiss [14] also used a rough polygonal approximation as a first pass 
and then determined a cubic spline whose knots are the vertices of the polygon. 
In Section 7 we present criteria that use the size of the angles of the vertices and 
the ratio of the lengths of subsequent sides to classify a vertex as hard, soft, or 
break. Hard vertices are left as polygonal vertices, while groups of adjacent soft 
vertices are considered for approximation by conics. In addition, we label sides as 
breaks if they separate two conics. Section 8 includes methods for selecting the 
knots and tangents at them. The following is an outline of the algorithm. 

6.1 Outline of Algorithm 

(1) Find an approximating polygon. 
(2) Classify vertices as hard, soft, or break according to the criteria of Section 7. 
(3) Identify breaks from among sides joining soft vertices according to the criteria 

of Section 7. 
(4) Fit conics on all sequences of soft vertices using the method presented in 

Section 8. If a conic does not fit well, subdivide the interval and try again. 

Since the rest of the paper does not depend on the way the polygon is found, 
we dispense with a discussion of polygonal approximations. We assume only that  
we are given N data points Xk, k = 1 , . . . ,  N, a maximum error tolerance em, and 
that we want to determine a polygonal approximation of the data points such 
that for each data point there is a line within em from it. There are numerous 
algorithms for doing this. (See [18] for a survey of earlier work.) The specific 
algorithm used in this paper is described in [19, pp. 281-292] and is analyzed in 
[20]. Its results have the following properties. 

(a) All data points are within distance em of a side of the polygon. 
(b) All vertices of the polygon are also data points. 
(c) It is not possible to replace two sides by one without having the maximum 

error exceed em. 

We emphasize that  the algorithm does not depend at all on the way the conic is 
represented and is equally adaptable to the algebraic or rational parametric 
forms. 

7. CLASSIFICATION OF POLYGONAL VERTICES 

The central idea of this section is that  if a polygon with more than five vertices 
is inscribed in a conic, then there are certain relations that  must be satisfied by 
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the size of  its angles and sides. I f  we are given an a rb i t ra ry  polygon and we want  
to find whe ther  par ts  of  it can be inscribed in conic arcs, t hen  it is reasonable  to 
search for sequences of  vert ices tha t  satisfy the relat ions tha t  vert ices of an 
inscribed polygon do. In wha t  follows, the  t e r m  h a r d  is used to describe a polygon 
ver tex tha t  is unlikely to be pa r t  of a conic arc, while b r e a k s  are points  where  two 
different conic arcs m a y  meet .  

We shall  use proper t ies  of  conics to classify polygonal  ver t ices  as hard,  soft, or 
breaks.  A soft  ver tex is one tha t  is not  hard.  I t  m a y  or m a y  not  be a break.  While 
all our  criteria are s ta ted  as heuristics, they  are mo t iva t ed  by  Pascal ' s  theorem,  
s ta ted and discussed in Sect ion 4. I f  we are given two endpoints  and  tangents  a t  
them,  the t heo rem implies certain bounds  on the  ver tex size and the  difference in 
the size of ad jacent  vertices. Referr ing to Figure 5, we observe tha t  for any  
triangle A B C  and two points  D and E inside it we have  

PROPOSITION 7.1. A n g l e s  A D E  a n d  D E B  h a v e  a s u m  t h a t  is  g r e a t e r  t h a n  

~r + A C B .  

A simple geometr ic  calculation using the coll inearity of P1, P2, P3, shows tha t  

A D E  = ~r - P 2 A B  - D P 3 A  and D E B  = ~r - P I B A  + D P 3 A .  

Subtrac t ing  the  first equat ion f rom the second we find 

PROPOSITION 7.2. T h e  d i f f e rence  b e t w e e n  two  a d j a c e n t  a n g l e s  o f  a p o l y g o n  
i n s c r i b e d  in  a con ic  sa t i s f i e s  the  f o l l o w i n g  e q u a t i o n :  

D E B  - A D E  = P 2 A B  - P 2 B A  + 2 D P 3 A .  

The  difference becomes  m a x i m u m  in the l imiting case when  P3 tends  to B and 
bo th  P1 and P2 tend to C. T h e n  D P 3 A  approx imate ly  equals P 2 B A ,  and the  
difference is found to be less than  ~r - A C B .  However ,  if side D E  forms  a small  
angle with chord A B ,  then  the  r ight -hand side of the  equat ion of Proposi t ion 7.2 
is near  zero. 

These  observat ions  lead us to some simple criteria: first, t ha t  of  the  size of  the  
angle at  a vertex.  In principle, no m a t t e r  how sharp  an angle is, we can always fit 
a conic tha t  passes th rough  tha t  ver tex  and the two adjacent  vert ices and also 
s tays within distance em of the sides. (We have  exact ly five conditions.) However ,  
such a conic is not  likely to be extensible to include o ther  vertices. I f  we use the  
guided form of conics of  eq. (3.13), then  we can show tha t  the  distance of the  
ver tex f rom the unique parabo la  is propor t ional  to the sine of the angle be tween  
the tangents .  T h e  sine function is small  not  only when  the angle is small, bu t  also 
when it is near  180 ° . There fore  soft vert ices should have  angles t ha t  are nea r  
180 °, not  a surprising conclusion. Thus  we have  

HEURISTIC 7.1. A v e r t e x  is c l a s s i f i ed  as  h a r d  i f  i t  is  less  t h a n  180 ° - a l ,  or  
g r e a t e r  t h a n  180 ° + a , ,  f o r  a g i v e n  a n g l e  al .  

Appendix B describes some exper iments  demons t ra t ing  that ,  a t  least  for some 
applications, the  distr ibution of the size of the  polygonal  angles is b imodal  and  
tha t  there  is, therefore,  a certain la t i tude in the  selection of the size of the  
threshold for classifying a ver tex as hard  or soft. I f  a ver tex  is classified as hard,  
then  it is preserved in the final approx imat ion  and separa tes  conics f rom each 
other. However ,  conics m a y  be separa ted  a t  points  where  there  is no der ivat ive  
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discontinuity, and therefore  the knot  will be near  a ver tex tha t  is not  hard.  We 
classify such vert ices as breaks  and find t h e m  by  means  of the following criteria. 
The  first cri terion for breaks  is based on the rat io of side lengths. T h e  following 
result  is easily proven  using eq. {3.6). 

PROPOSITION 7.3. Let 0 be the center of a conic and A and B two points on 
it. Let M be the middle of chord AB, and P the point where line OM intersects 
the conic. Find a point C such that if  N is the middle of chord BC, and R the 
point where ON intersects the conic, then 

MO/PO = NO/RO. (7.1) 

Then Chords AB and BC are parallel to rays {lines from the center) of a 
concentric conic similar to the one given. 

Note  t ha t  the point  C m a y  not  always exist. Bu t  given A, B, C, P, and  R, one can 
always find a conic passing through them.  

COROLLARY. The ratio of the lengths of chords AB  and AC is bounded by 
the ratio of the lengths of the axes of the given conic. 

This  is a par t icular ly  useful result  for our purpose.  Let  P be a given polygon. 
We want  to tes t  the hypothes is  tha t  two of its sides fo rm chords of a conic under  
the conditions of the theorem.  Fur thermore ,  we assume tha t  the axes of the  conic 
have  a ratio within given limits. {This is reasonable  for m a n y  applications,  such 
as curve fitting for font description.} I f  the side rat io is outside these  limits, t hen  
the sides cannot  be chords. Since we expect  the  t heo rem to hold approx imate ly  
when its hypotheses  do not  hold exactly, we can develop the following heurist ic  
for distinguishing be tween hard  and soft vertices. 

HEURISTIC 7.2. I f  the ratio of two adjacent sides exceeds a given value R1, 
then the vertex is classified as a break. 

We can find a cri terion for labeling sides as breaks  by  observing t ha t  since 
conics have  no inflection points, we should always separa te  groups of angles t ha t  
are greater  t han  180 ° f rom those tha t  are less t han  180 °. A side adjacent  to such 
a pair  of angles should be classified as a break.  In  addition, we should define as 
breaks  sides where  the two adjacent  angles are significantly different. This  is dual  
to Heurist ic  7.2. 

HEURISTIC 7.3. A side is classified as a break if the angles adjacent to it are 
on different sides of 180 ° or they differ by more than a given threshold A1. 

Many  of these heurist ics have  been mot iva ted  by  Proposi t ion 7.2, which s ta tes  
tha t  the  difference be tween the angles is small  if angle ACB of Figure 3 is large. 
In  order to ensure tha t  this is the case, we introduce a four th  heuristic.  

HEURISTIC 7.4. A vertex is classified as a break if its addition to the conic 
would cause the angle between the two endpoint tangents to be less than a given 
angle A2. {Otherwise the conic arc would exceed 180 ° - A2.) 

This  heurist ic was found to be very useful in practice.  Dur ing tests  we observed 
tha t  conics tha t  covered wider arcs a lmost  a lways also violated the  error  criteria. 
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B2 
B3 

A 

Fig. 6. A r r a n g e m e n t  of  polygonal  vert ices t ha t  are  considered for 
approximat ion  by a conic. A and  C are hard  vert ices  and  Bi is soft  
according to the  criteria of  Sect ion 7. T h e  broken  lines are the  
t angen t s  a t  the  endpoints .  

8. FITTING A CONIC 

The  labeling of the vertices and sides of a polygon according to the criteria of 
Section 7 is a very  simple operation. (The most  expensive computa t ion  is the 
calculation of the angles of the vertices.) Suppose tha t  A is a hard  vertex, and B1, 
• . . ,  B,  a sequence of soft vertices, as shown in Figure 6. T h e n  line AB1 is taken  
as the tangent  of the conic at  the knot  near  A. We must  select a point  on line 
segment AB1 at  which to s tar t  the conic arc. Th e  following heuristic has been 
found to give good results• 

HEURISTIC 8.1. I f  the ratio of side AB1 to side B1B2 is less than R1, then 
select the starting point of the conic at A. Otherwise select the starting point of 
the conic arc along segment AB~ at a distance from B~ equal to half the size of 
segment B1B2. 

The  motivat ion for using half  the length is tha t  this would be the opt imal  
selection of points if we were fitting a parabola. (Recall Figure 4.) If  a ver tex is a 
break, then  we consider the vertices on ei ther  side. If  Ao is the previous vertex, 
we select line AoA as the tangent  and use the midpoint  of the line as the start ing 
point, unless BIB2 is less t han  half  ofAoA~. T h e n  we apply Heurist ic  8.1. If  a side 
has been classified as a break, then  it is taken as a tangent  and its midpoint  is 
used as starting point. Similar criteria are used for the end of a sequence of soft 
vertices. 

ACM Transactions on Graphics, Vol. 2, No. 1, January 1983. 



Curve Fitting With Conic Splines 21 

1. F o r  each ver tex do: 
2. I f  the  ver tex ha s  an  angle not  near  180 ° , o r  if t he  ratio of  the  ad jacent  sides is too big, 

o r  if it differs f rom the  nex t  or previous ver tex  too much ,  t h e n  mark  it. 
3. F o r  each vertex do: 

4. I f  the  flagot~ is one do: 
5. Use  as P1 and  P2, P3 and  P4 respectively. 

6. E l s e  i f  t he  ver tex is no t  marked  do: 
7. Skip all u n m a r k e d  vert ices unti l  e i ther  a marked  ver tex  is reached  or the  angle be tween  

the  first and  the  cur ren t  polygon side is too big. In  the  la t ter  case set  the  f lag ,  ew to one. 
8. Se t  P4 to be the  cur ren t  ver tex and  P3 the  previous.  

9. I f  P2 and  P3 coincide, t hen  select  the  parabola  f rom P1 to P4 wi th  t angen t s  the  l ines P1 P2 and  
P2P4. 

10. E l s e  do: 
12. Select  as a fifth point  the  vertex as close as possible to the  middle be tween  P2 and  P3, or 

if the re  is no such  ver tex select  the  midpoin t  of  the  side P2 Pa. 
13. I f  the  flagol~ is set, select  Po as the  midpoin t  of  the  s e g m e n t  P~ P2. 
14. E l s e  i f  t he  side P~ P2 is less t h a n  a specified mul t ip le  of  the  nex t  side use  P1 for Po. 

E l s e  select  Po on P~ P2 at  a dis tance from P2 equal  ha l f  the  length  of the  nex t  side. 
15. Select  P ,  in a similar way as P0, bu t  replacing P~ by Pa and  P2 by P~. 
16. Compu te  the  equat ion  of the  conic according to eq. (5.18) or eq. (3.19). 

17. I f  f lag,  ew equals  one, t h e n  set  flagold to one. E l s e  set  flagold to zero. 
18. Set  f lag,  ew to zero. 

Fig. 7. Conic Fit. Notat ion:  flag,ew is se t  to one when  we s top  a sequence  of vert ices because  of 
Heurist ic  8.1. flago~d is se t  to one to indicate t ha t  the  previous sequence  of vert ices was s topped  
because of Heuris t ic  8.1. P1 and  P2 define the  first t angen t  and  P3 and  P4 t he  second. 

In addition to endpoints  we must  select a fifth point  to specify the conic 
completely. It  is tempting to a t t empt  the selection of these points by means  of an 
optimization procedure.  If the soft vertices have the configuration of Figure 6, 
then  their  distances from the chord would not  vary  much, and according to 
Proposit ion 6.3 it should not  mat te r  which one we select for a fifth point. For  this 
reason we select the vertex closest to the middle as the fifth point. Figure 7 lists 
the conic fitting procedure  in detail. 

After a conic is fitted, we compute  the distance of the vertices from it using eq. 
(5.14). If the axes have significantly different lengths, then  we may  use eq. (5.13}. 
We have found tha t  in most  instances the conics fi t ted initially give good results, 
so usually there  is no need to modify the approximation.  If  high-quali ty fits are 
desired, then  the following procedure  improves the fit. Th e  set of vertices defining 
the conic is split into two parts  separated by the vertex where the error  is z e r o .  

If the conic ends in a hard  ver tex or a break, new conics are fi t ted on both  parts.  
If  the conic has been te rminated  because of the turn  criterion (Heuristic 8.1), 
then  the first par t  only is f i t ted and the second par t  is cont inued until  a stop 
condition is encountered.  

Intuitively, one might  have expected tha t  the interval  should be split a t  the 
point  of maximum error. This  is the point  used for polygonal approximations [20]. 
However,  things are different in the case of conics. According to basic propert ies  
of polynomial approximations,  one expects two locations of maximum error  [10]. 
If we do not  wish to go from one to three  intervals, we have the problem of 
selecting one of the two maxima. Often such maxima occur not  far f rom knots  
and we obtain a very  unbalanced split (see the examples of Sect ion 9). Another  
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reason has to do with the asymptot ic  distribution of spline knots [5, pp. 180-190] 
and [15]. I t  has been shown in the y = f ( x )  case, tha t  when knots  are selected to 
minimize the integral square error  (ISE), their  distribution follows the k + l t h  
derivative of the f ( x ) ,  if the splines are of the k t h  order. For  a linear spline the 
knot  distribution follows the second derivative. Points  inside an interval  where 
the error  is maximum usually have high curvature  and therefore  high values for 
the second derivative. For  quadrat ic  splines the knot  distribution follows the  
third derivative. Maxima of the third derivative correspond to zeros of the fourth.  
For  many  functions zeros of derivatives differing by  two occur near  each o ther  
[10]. (They coincide in the case of the sine or cosine functions.) Thus  for 
quadratics the knots  should be near  inflection points, and these are more  likely 
to occur where the error  is zero. 

If a curve contains no hard  vertices or breaks, then  the algori thm can e i ther  
s tar t  at  an arbi t rary  point  and apply Heurist ic 8.1 to fit conic arcs, or (at the 
user's option) it may  fit an ellipse to the whole set of points. Th e re  is little 
difference between open and closed curves for the algorithm. For  open curves the  
first and last point  are simply labeled as hard. 

9. INTENDED APPLICATIONS, EXAMPLES AND COMPARISONS 

This  paper  has been mot iva ted  by four types of applications. One is curve fitting 
on data  tha t  are entered manual ly  into an interactive graphics system. A second 
is approximation of digitized drawings for data  compact ion and, possibly, for 
eventual  pa t te rn  recognition. The  o ther  two applications involve a lphanumeric  
characters  and other  symbols found in documents.  Th e  first of these is font  
scaling. Given a set of fonts for some output  device, we want  to produce ano ther  
set for another  ou tput  device whose resolution is substantial ly different f rom the  
first. For  example, we may  want to scale fonts from a pho to typese t t e r  with a 
resolution of 1000 lines per inch to a bit map display tha t  has only 100-line-per- 
inch resolution. I t  is well known tha t  direct scaling of binary images produces 
unsatisfactory results. If  the output  device has gray scale output ,  then  we m ay  
use gray levels to produce satisfactory results [11, 30]. If it does not, then  we 
must  solve the scaling problem carefully. K n u th  [12] has used mathemat ica l  
descriptions of fonts tha t  can be t ransformed with precision to produce actual  
fonts. He has called such descriptions METAFONT. These  descriptions can be 
used effectively for scaling as follows: the description is scaled while one ensures 
tha t  symmet ry  and other  impor tan t  propert ies  of the shape of the character  are 
preserved. T h e n  the binary matr ix  is generated from the scaled description. While 
the use of abstract  descriptions has clear advantages,  their  derivation is r a the r  
laborious and requires tha t  the designer be familiar with curve fitting. W h a t  we 
propose to do is to s tar t  with a given font  from a high-resolution device (or an 
artist 's  drawing of it) and then  to "decompile"  it and produce a METAFONT type 
description for it. The  selection of conic arcs for the description is not  unreason- 
able since they  have been used by font designers (see [12], Figures 4-6). Th e  only 
problem with font  "decompiling" is that ,  according to Sect ion 6, the error  of 
approximation is not  very sensitive to the knot  location for knots  where the 
tangent  is continuous. Therefore  decompiling is unlikely to provide descriptions 
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that can be used immediately as a METAFONT, and some further human inter- 
vention will be needed. 

The fourth application is recognition of alphanumeric characters using struc- 
tural techniques [18]. In order to recognize a symbol we obtain either a tracing of 
its contour or a tracing of its "skeleton" that results from thinning. The curves 
that approximate the skeleton or contour are then used for deciding the identity 
of the character. Such methods have been used in the past with some success 
[21], and we hope that better algorithms for encoding will improve the perform- 
ance of the recognizers [22]. 

In principle, the same curve fitting algorithm could be used for both font 
decompiling and character recognition. There are some differences though. Font 
descriptions require far higher quality representations than the descriptions for 
character recognition, while the computing resources for font decompiling are 
usually much greater. 5 It is possible to take advantage of this trade-off between 
quality and speed by using coarser tolerance in curve fitting for recognition, 
approximate formulas for the computation of conics, and even approximations of 
simpler functions such as square root. Both the quality and speed requirements 
for smoothing of interactively entered data are between the extremes of font 
scaling and character recognition. 

The algorithm has been implemented in C under the UNIX 6 operating system 
and run on both a PDPl l /70  and a VAXll/780 machine. Figures 8-10 show 
examples of its application on character contours obtained from the original font 
descriptions. All the examples show both the conics fitted in the first attempt 
without corrections in (a), and after corrections in (b) and (c). The examples 
show clearly that splitting the interval at points where the error is zero is 
preferable to splitting at points where the error estimate is maximum. The 
approximations are represented by solid lines, overlaid on the originals, repre- 
sented by dotted lines. In addition, Figure 8d shows the guiding polygon. The 
data of these examples are similar to those used in [23], and a comparison of 
Figures 9 and 10 with Figures l l a  and 10c of that  work shows that  conic splines 
require about the same number of knots as parametric cubic splines. The new 
method seems to be faster, though. The whole process (polygon and conic fitting) 
required about one CPU second per character on the PDPll /70,  and half that  
time on the VAXll/780. The method of [23] requies about 60 seconds on a 
DORADO (M. Plass, personal communication). However, this comparison should 
be interpreted with caution, given that the tests were made on different machines, 
with programs written by different people and in different languages. 

Figure 11 shows the approximation of an epicycloid, produced by the same 
equations as the epicycloid used in [24]. It requires 15 knots after splitting some 
interval to bring the maximum error within 1.5 grid units. Reeves and Sermer 
[24] have reported between 14 and 31 knots for cubic splines, depending on the 
accuracy. For 496 data points the total processing time was 1.5 CPU seconds on 

5 A character recognition machine may be required to process 100 characters per second under the 
constraint that  the total cost of the machine be under $50,000. On the other hand it is quite reasonable 
to expect that  a mainframe machine would devote 30 seconds per character so that  a complete font 
of 120 characters could be "decompiled" in one CPU hour. 
6 U N I X  is a t rademark of Bell Laboratories. 
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(a) (b) (c) 

Fig. 8. Example  of fi t t ing the  contour  
of  the  let ter  "g"  f rom the  T i m e s  Italic 
font. T h e  approximat ions  are shown  
in solid lines and  the  original da ta  
wi th  dots. (a) Firs t  fit w i thou t  any  
knot  ad jus tmen t .  (b) Fit  af ter  some  
conic arcs were subdivided at  the  lo- 
cat ion of zero error. (c) Fit  after  some  
conic arcs were subdivided a t  the  lo- 
cat ion of m a x i m u m  error. (d) Overlay 
of the  guiding polygon on the  approx- 
imation.  

the VAXll/780. The times reported by [24] are between 2 and 3 seconds. Figure 
12 shows the application on a free-drawn contour on an interactive graphics 
device. There were 401 data points, and they required about the same time as the 
epicycloid. 

Clearly, there is room for improvement, and the approximations obtained do 
not always have the minimum number of knots. One possibility is to label fewer 
vertices as hard by making the requirement more stringent. We could then 
at tempt to fit a conic in the "arm" of the penguin in Figure 12. However the 
increase in the number of attempts would result in an increase in computational 
costs. We could also have considered variations in the location of the knots and 
possibly of the merge intervals. Such techniques are well known (and computa- 
tionally costly), and we did not want to obscure the quality of the results obtained 
by a simple algorithm using the conic splines. 

The speed of the method is quite fast for font "decompiling," and also fast 
enough for interactive graphics applications. However one second per character 
is too slow by a factor of 100 for optical character recognition (OCR) applications. 
It is expected that the time can be reduced because of a smaller number of 
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(a) (b) (c) 

Fig. 9. Example of fitting the  contour of the le t ter  "G" from the  Times Roman  font. (a), (b), and (c) 
as in Figure 8. 
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/ 

j_ 
(a) (b) (c) 

Fig. 10. Example of fitting the  contour of the  let ter  "f"  from the  Times Roman  font. (a), (b), and (c) 
as in Figure 8. 

samples used per contour. The font descriptions were for the maximum point size 
(36) and 1000 samples per inch. Ten point characters sampled at 240 samples per 
inch (a commonly used resolution) will have about one-tenth the number of 
contour points. This introduces a speedup factor of about 10. Also, for OCR 
applications we need not compute the actual conics, as long as we know some of 
their features. The ability of the algorithm to find good conics with the first 
at tempt is critical in this respect. Finally, some special-purpose hardware may be 
used for fitting lines. 

APPENDIX A. INCREMENTAL PLOTTING OF PARABOLAS 

The simplest way to plot parabolas is by using divided differences on the 
parametric form. Then only four additions per point are required. We present an 
incremental technique only for the sake of generality. 

PROPOSITION A1. For  each parabo la  there exis t  matr ices  B a n d  vectors m ,  
such that  i f  x is a po in t  on the parabola ,  Bx + m is also a po in t  on the s a m e  
parabola.  

PROOF: It is well known that  the parametric representation of a parabola has 
the form 

x(t)  = Pt  2 + Rt + S (A1) 
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Fig. 11. Example  of fi t t ing an epicycloid wi th  conic 
arcs. 

for appropr ia te ly  chosen vectors  P, R, and S. Le t  n be a vector  or thogonal  to P. 
Taking  the  scalar  p roduc t  of bo th  sides of  eq. (A1) with n and solving with  respec t  
to t, we find 

n ' x  - n ' S  
t - (A2) 

n ' R  

Note  tha t  n ' R  will be nonzero unless R is zero or collinear to P. In  bo th  cases the  
parabo la  degenerates  into a s t ra ight  line. I f  we compute  now the value of x for 
ano ther  value of the p a r a m e t e r  equal  to t + s, and  subst i tu te  t f rom eq. (A2), we 
find 

r n ' x  - n ' S  1 
x( t  + s)= x( t )  + sR  + s2P + 2 s [  n-;-l~ JP" (A3) 

Let  us now define a mat r ix  B as 

P n '  
B = I + 2s  n ' R '  (A4)  

and a vector  

n ' S  
m = sR  + s2P - 2s ~ P. (A5) 

I s tands  for the  ident i ty  matrix.  Eq. (A5) can then  be wri t ten  as 

x ( t  + s)  = B x ( t )  + m .  (A6)  

Both  B and m depend only on s and not  on t, and  therefore  when  applied on any  
point  of the  parabo la  they  yield ano ther  point,  specifically one which is s uni ts  of 
the p a r a m e t e r  later. []  

Th is  resul t  would not  have  been very  useful had  there  been  no way of finding 
a mat r ix  B and a vector  m wi thout  resor t ing to the  pa ramet r i c  representa t ion .  
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Fig. 12. Example  of fi t t ing a ske tch  en tered  th rough  
a digitizing table t  in an  interact ive graphics  sys tem.  

However, it can easily be shown that given an initial point Ki, a final point Ki+l, 
and a guiding point Vi+l, then vectors P, R, and S are given by 

P = K/+I + K i -  2Vi+l, (A7a) 

R = 2 ( V i + 1  - K i ) ,  (A7b) 

S = Ki. (A7c) 

We can then use eqs. (A4) and (A5) to find B and m. 

APPENDIX B. A COMPARISON OF OPTIMAL AND SUBOPTIMAL SOLUTIONS 

We list here some results that, while not directly related to the approximations 
used in this paper, provide some insight into why more elaborate techniques may 
not yield better quality approximations. If we use the integral square error (ISE) 
as a measure for the quality of fit, then we can express the knot location problem 
in terms of conventional optimization theory. Furthermore it is possible to 
compute explicitly the partial derivatives of the ISE with respect to the knot 
location in the parametric and y = f (x)  cases. This was done by the author in a 
sequence of papers [16, 17]. When the y = f (x)  form is used, the explicit 
computation of the first partial derivatives of the ISE and the application of 
Lagrange multipliers produce the following result. 

THEOREM BI: A necessary condition for the optimal location of the knots for 
a continuous piecewise linear approximation is that the unconstrained optimal 
approximation on each subinterval results in a continuous approximation over 
the whole interval [17]. 

This theorem does not imply that continuity constraints may be ignored during 
the optimization, but does suggests other ways to simplify the computation [17]. 
There are no similar simplifications for higher order approximations. 
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Another observation is based on the computation of the matrix of the second 
derivatives. It is well known that if that matrix is positive definite, then a point 
where all the first partial derivatives are zero is a minimum. An important 
question in many optimization problems is the sensitivity of the cost function to 
deviations from the optimal location. When the optimum is found as a point 
where the first partials are zero, then the sensitivity is less than when the 
optimum is found on the boundary of a region of constraints (for example, in 
linear programming problems) because the larger the partial derivatives are the 
more the cost function varies. When we compare two optima, both found through 
zeros of the first derivatives, then the second derivatives provide information 
about the sensitivity. The larger they are, the greater the variation of the first 
derivatives. For the y = f (x)  case the following result holds. 

THEOREM B2. [16]. The matrix M of the second derivatives is tridiagonal. I f  
we neglect terms that are proportional to the square of pointwise errors divided 
by the length of subintervals, then M reduces to a diagonal form with elements 
given by 

2 ' Mii ~ edxi)et(x) - 2er(x)er(x), (B1) 

where ez stands for the error computed with the approximation to the left of the 
breakpoint xi and er for the approximation computed to the right. The primed 
terms denote derivatives with respect to x. 

If the approximation is continuous, then the errors from both the left and the 
right are equal. Thus for a polygonal approximation the terms are proportional 
to the product of the pointwise error times the difference in the slopes. This leads 
to the not surprising conclusion that the ISE is more sensitive to the location of 
the knots where the slope changes by a greater amount. If we insist on slope 
continuity, then the right-hand side of eq. (B1) becomes zero. Then M contains 
only terms proportional to the square of pointwise errors divided by interval 
lengths. For any reasonable approximation the ratio of the pointwise error over 
the length of a subinterval is expected to be small compared to the difference in 
slopes at a vertex of a polygon. Thus the value of ISE will be less sensitive to the 
location of the knots. The practical conclusion of all this is that  the error of 
approximation is less sensitive to the knot location for higher order approxi- 
mations than it is for polygons. Therefore suboptimal solutions are expected to 
be not much worse than optimal ones and we are justified in ignoring the exact 
knot location problem for the conics, as long as we can obtain estimates of their 
approximate location. 

APPENDIX C. ON THE DISTRIBUTION OF THE SIZE OF POLYGON VERTICES 

For font "decompiling" the selection of al is facilitated by an experimental 
observation about the size of the angles actually found in polygonal approxima- 
tions of the outlines of characters from various fonts. Table I summarizes these 
results. This table was obtained by finding the polygonal approximations for each 
of the 120 characters of each font with the method mentioned in Section 5. About 
two-thirds of the vertices in all fonts fall in the range 150-210 ° . Direct display of 
the results showed that  indeed these were vertices placed in the curved parts of 
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Table I. Distribution of Polygonal Angles for Various Fonts  
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Percent of vertices in each angle range 

Font  +30 ° 30-90 ° 90-150 ° 150-210 ° 210-270 ° 270-330 ° 

Times Roman 0.06 5.03 18.71 65.10 10.22 0.88 
Times Italic 0.26 5.40 20.20 63.79 9.61 0.74 
Helvetica 0.32 7.47 12.03 72.28 6.91 0.99 
Spartan 0.00 7.34 13.32 69.88 8.13 1.32 

Table II. Distributions of Polygonal Angles in Subranges" 

Distribution in subranges 

Font  90-110 ° 110-120 ° 120-130 ° 130-140 ° 140-150 ° 

Times Roman 304 38 37 82 178 
Times Italic 261 50 37 95 238 
Helvetica 243 14 12 8 26 
Spartan 182 26 13 28 54 
Times Bold 310 51 29 63 169 
Greek 306 36 46 100 240 

Distribution in subranges 

Font  210-220 ° 220-230 ° 230-240 ° 240-250 ° 250-270 ° 

Times Roman 149 40 16 16 128 
Times Italic 131 58 17 36 82 
Helvetica 19 5 12 8 130 
Spartan 26 15 16 17 111 
Times Bold 152 38 17 24 144 
Greek 176 56 19 26 152 

~Absolute Counts. 

Table III. Sparsest  10 ° Range (Percent of total in parentheses) 

Font  Between 90 and 180 ° Between 180 and 270 ° 

Times Roman 120-130 (1.08) 230-240 and 240-250 (0.47) 
Times Italic 120-130 (1.10) 230-240 (0.50} 
Helvetica 130-140 (0.32) 220-230 (0.20} 
Spartan 120-130 (0.57) 220-230 (0.66} 

the character  outlines. A more detailed histogram in the 90°-150 ° and 210°-270 ° 
reveals a bimodality, as shown in Tables II  and III.  

I f  the distribution of angles were uniform, each 10 ° interval would contain 
about  3 percent of the angles. Because of the sparsity of the distribution around 
130 ° and 230 ° it is reasonable to assume tha t  the vertices found by the polygonal 
approximation have two origins. Some correspond to true vertices of the contour  
(around 90 ° or 270 °) and others to approximations of the curved parts. Further-  
more the low density of the distribution in the in-between region suggests tha t  
we n e e d  n o t  by very  a c c u r a t e  in  the  s e l ec t ion  of the threshold angle al.  In the 
examples given in Section 9, we have selected al equal to 70 ° so tha t  angles less 
than 110 ° or greater than 250 ° are classified as hard. 
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