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The brush-trajectory method, a very natural scheme for describing two-dimensional shapes used in 
graphic arts and typesetting applications, has been used in only a few systems largely ¢,wing to the 
computational complexity involved in transforming such descriptions into raster bit maps. This paper 
addresses the problem. For some specific brushes and trajectories we derive algebraic solutions for 
describing the resulting outlines. The result of dynamic transformations on the brush as it moves 
along the trajectory is also studied. A special closed, smooth, convex brush defined by a Jburth-order 
parametric equation is introduced to describe more complex shapes. An algorithmic solution to 
determining the outlines for an unconstrained brush is then presented. Finally, we present some 
ideas on a canonical brush and its use in solving the inverse problem, that is, determininl, the brush- 
trajectory description from given outlines. 

Categories and Subject Descriptors: 1.3.3 [Computer  Graphics]:  Picture/Image Generat:ion--display 
algorithms; 1.3.5 [Computer  Graphics]:  Computational Geometry and Object Modeling--curve, 
sur[ace, solid, and object representations 

General Terms: Algorithms 

Additional Key Words and Phrases: Bit-map coding, contour coding, brush-trajeciory coding, 
supporting line, deconvolution. 

1. INTRODUCTION 

Currently, much high-quality computer printing is being produced on digital 
typesetters, laser printers, and other raster devices. All these devices consider a 
page of printed text as a two-dimensional matrix of tiny dots or pixel.3, each to 
be painted with the appropriate color. For monochrome output this is either 
black or white. Each page is composed of various two-dimensional shapes, usually 
letter shapes and other figures. There are a number of methods by which these 
basic shapes may be encoded within a computer. We shall discuss some commonly 
used methods below. 

1.1 Bit-Map Coding 
The simplest and most direct method is to encode the shape as a two-diraensional 
array of bits, each specifying the color of the corresponding pixel. In the context 
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of creating, maintaining, producing, and manipulating a shape, any coding scheme 
can itself be characterized by a number of criteria, such as production speed and 
quality, ease of creation, variational flexibility, and storage space requirements. 

Bit-map coding allows complete freedom in the placement and intermixing of 
text and figures and results in high production speeds, but it is rather poor with 
respect to other criteria. The storage space required grows at the rate of the 
matrix size squared. For high-quality, high-resolution output, the information is 
enormous. For example, even with a typical low-resolution laser printer, a page 
may contain over 5 million pixels. The handling of such raster images makes 
heavy demands on computer memory and time. Creation and manipulation of 
such huge bitmaps are also problem ridden. A major drawback is that there is 
virtually no variational flexibility. Typographic variations, such as scaling, itali- 
cizing, lighter and bolder weights, etc., are very difficult to achieve. 

1.2 Contour Coding 

It can be easily verified that most of the shapes used in composing a page consist 
of collections of solid black regions, each covering a large number of pixels. This 
has been recognized in the past by computer graphics specialists. The choice of 
describing only the boundary, which usually is quite simple, and not the interior 
has been made in many graphics packages. Therefore, a shape is described by its 
idealized, directed contour, with the convention that its interior is filled black. 
The contour may be described as one or more closed loops of edges, each edge 
lying on a straight line, conic section, parametric cubic, or more complex curve. 
There are many algorithms for raster filling contour descriptions. Many CRT 
displays perform raster filling in hardware/firmware, before actually displaying 
the image on the screen. The contour coding method is certainly far more compact 
than the bit-map coding method, but it is not without its drawbacks when it 
comes to being used for graphic arts/typesetting. 

Contour coding can hardly be said to provide flexibility in shape variation. 
Scaling is well implemented, and this is the only variation that can be reasonably 
expected from this method. For instance, italics are not just slanted versions of 
the upright Roman letters. It should be possible to get bolder or lighter faces 
from one weight [1]. 

1.3 Brush-Trajectory Coding 

Many of the basic shapes occurring in printed texts and other graphic artwork 
can in fact be most naturally described as shapes generated by a brush moving 
along a given trajectory. This is obvious from technohistorical reasons as well. 
Figure 1 shows some typical examples of shapes that commonly occur and how 
such shapes can be easily described by some brush-trajectory combination. 

The brush-trajectory method is compact and permits shape variation with 
greater ease. It also brings out the underlying structure in a shape. Yet the brush- 
trajectory method is not without its problems. For one thing it is much harder to 
convert into a bit map than is a contour description and hence takes much longer 
processing time. Also, there are some shapes that are not easily described by this 
method, and they are best described by the contour coding method. 
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Fig. 1. (a) A horizontal  or vert ical  bar  of cons t an t  thickness .  (b) Circular  or elliptical shape of 
cons tan t  or varying thickness .  (c) Tall- l ike shape {quite common  in Ind ian  scripts). 

Experience has shown that this brush-trajectory method is quite convenient 
to use for shape description in typesetting and graphic arts application,s. Knuth's 
METAFONT system [5, 6] for alphabet design is based largely on thi<,~ method. 

Unfortunately, the methods known for converting such specifications into bit 
maps are computationally quite expensive. Basically, the bit-map-encoded brush 
is positioned pixel by pixel along the trajectory, and for each position the pixels 
covered by the brush are set to black. Such an algorithm usually ends up setting 
the same bit a large number of times, depending on the width of the brush. 
Processing time increases considerably with increase in resolution. AJ{so jaggies 
are difficult to avoid. Performance improvement is possible by selectively coloring 
only those pixels not previously painted. This, however, would require each pixel 
to be looked at individually. For very high resolution, there may not be adequate 
performance improvement. 

This discussion suggests that a better approach may be to accept the shape 
description in the brush-trajectory form, but then convert this description into 
a contour-encoded form so that raster filling can be done efficiently. Some work 
toward achieving this goal has been done by Guibas and Stolfi [3]. T:~leir work, 
however, places more emphasis on deriving a small set of mathematical tools so 
that many of these problems and their solutions can be specified within a 
computational geometric framework. Our interest today is somewhat more prag- 
matic. Specifically, we would like answers to questions such as: 

(1) How do we analytically specify a brush and are there any restrictions that 
the brush shape should satisfy? 
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(2) Traditionally, for variations in shape, artists have varied brush angle and 
pressure. How can these extra degrees of freedom be computationally simu- 
lated? 

(3) Given mathematical specifications for the brush and trajectory, can the 
contour encoding of the resulting shape be derived analytically? How much 
more complex does it get if one allows extra degrees of freedom such as brush 
angle and pressure? 

(4) Is there a single canonical brush which can be used to generate any shape 
with some trajectory? Is dynamic transformation of the brush essential? 

In the rest of this paper we shall try to provide answers to many of the above 
questions. 

2. CONVOLUTION OF FIGURES 

Let B and T be, respectively, the equations of the outlines of the brush and the 
trajectory. If the parametric form of the representation is chosen, then 

B = B(u) = [B,(u), By(u)] (1) 

and 

T = T(t) = [T=(t), Ty(t)], (2) 

where u and t are two scalar variables. 
For simplicity, let us initially restrict our discussion to the cases in which B is 

a closed, smooth, convex curve and T a continuous smooth curve. These condi- 
tions ensure that in any given direction, B has two and only two parallel tangent 
lines. We also assume that the brush moves parallel to itself along the trajectory, 
which means that there is only translation of the brush along the trajectory, but 
no transformation of shape (rotation or scaling) as the brush moves. This brush 
we denote as simple brush. 

Note: The above restrictions are not really essential, and we shall present a 
general solution toward the end of this paper. Below we present two useful 
theorems first stated by Guibas and Stolfi [3]. 

THEOREM 1 (OUTLINE THEOREM). Interior points of the brush never lead to 
outline points. Therefore, OUTLINE-F (trajectory, outline of brush). 

PROOF: Let b ~ B, t E T, and p = b + t E B + T. If b is an interior point of 
B, there must exist an open sphere Cb _ B centered around b. Cb + t ___ B + T is 
then an open sphere around the point b + t. Therefore, p is interior to B + T if 
b is an interior point. [] 

This theorem is quite obvious, but it helps us to realize that, in determining 
the contour, we need to consider only the outline of the brush, and not its interior. 
Hereafter, B denotes the outline of the brush. 

THEOREM 2 (Slope Theorem). Let B be the representation of the outline of a 
brush and T the representation of a trajectory. The boundary of the generated 
shape when the brush is moved along the trajectory can be expressed as a subset 
of the set of all points b + t such that  b E B, t E T, and the tangents to B and 
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T at these points are parallel. This operation is sometimes expressed as B . T  
and is called the convolution of the curves B and T [3]. 

Our present brush, constrained to be closed, smooth, and convex, k,I a special 
case of the more general brush introduced in the Modified Slope Theorem later 
in Section 5.1 of this paper. We shall discuss the applicability of the proof of the 
Modified Slope Theorem to this special case in Section 5.1. 

For the present, our interest is in obtaining analytical representations of the 
outline curves so that they can be computed efficiently. For this let u~3 note the 
following: Both B and T are continuous and smooth. B is also closed. The 
different instances of B, as it is moved along the trajectory T, can be thought of 
as a family of curves. The outline generated by a family of curves is known as 
the envelope of the family, which can be defined analytically from well-known 
principles of differential geometry [2]. 

If the equation of a family of curves is represented by F(x ,  y, t) = 0, where t is 
the parameter of the family, the envelope is found by solving 

F ( x ,  y, t) = 0 (3a) 

and 

OF (x, y, t) = 0 (3b) 
Ot 

simultaneously. 
If the curves of the family F (x, y, t) = 0 are described parametrically by 

x = x(u,  t) and y = y(u ,  t), (3c) 

where u is the parameter describing the points on any given curve and t is the 
family parameter distinguishing the different curves of the family, then we may 
obtain the parametric equation of the envelope by eliminating either u or t from 
eq. (3c) with the aid of 

Ox Oy Ox Oy _ O. (3d) 
Ou Ot Ot Ou 

This equation is equivalent to the eq. (3b) in parametric form. 
In our case, 

x = Bx(u) + Tx(t)  and y = By(u) + Ty(t) .  (3e) 

Therefore eq. (3d) transforms as follows: 

OB~ OTy OT~ OBy _ O. (3f) 
Ou Ot Ot Ou 

That is, 

oB,(u)ldu] 
= L ~ / , : < , "  (4) aB,(u)/duJ 

This is essentially Theorem 2 stated in a more analytical form. We :must note 
that this too acts as an analytical proof for Theorem 2. 
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In general, ul, u2, u 3 , . . . ,  u,  are the solutions to eq. (4): 

ul = / l ( h ) ,  

u2 -- h(tz), 

115 

u .  = f . ( t , ) .  

For our simple brush we obtain two solutions, that is, ul and u2 corresponding 
to two points on B. These two points we label as antipodal points of B for some 
particular tangent direction. Therefore, the outline curves O1 and 02 can be 
expressed as 

01, = B~(ul) + T~(tl) = hl=(tl), 
O1 = [01=, 01y], (5a) 

Oly = By(u1) + Ty(tl) = hly(tl), 

02, = B=(uu) + Tx(h) = h2=(h), 
02 = [02x, 02y], (5b) 

02y = By(u2) + Ty(h) = h2y(h). 

Note: 
(i) When the trajectory is not closed, the actual contour would include at each 

end, some segment of the brush boundary. These segments can be easily deter- 
mined and added to the contour representation. 

(ii) The outlines generated using the slope theorem form the actual contour 
only under conditions discussed below: 

Let Cs(t) denote the points on the outline as determined using the slope 
theorem at trajectory parameter value t, where t varies from 0 to 1. Br(t) denotes 
the region covered by the brush at trajectory parameter value t. 

Outlines generated using the slope theorem form the actual contour iff for 
all tl, t2, such that, 0 _< tl ~ t2 - 1, CS(tl) q~ Br(t2). 

Violation of this condition implies that  the brush-trajectory specification is 
such that the resulting outlines are overlapping or self-intersecting. Then a 
postprocessing phase which generates as its output one or more closed nonover- 
lapping and nonintersecting contours is needed. For this, one can make use of 
the winding number concept [3] or the graph manipulation approach common in 
geometric modeling [8]. 

(iii) Because of the inherent difficulty involved in dealing with situations in 
which the brush-trajectory specifications do not satisfy the above condition, one 
approach that may pay off is to raster fill the brush-trajectory specification 
directly, without the intermediate stage of contour detection. In this paper, 
however, we have not investigated this approach and have only discussed detec- 
tion of outlines. 

3. CONTOUR EQUATIONS FOR A FEW SAMPLE CASES 

3.1 Simple Elliptical Brush and Elliptical Trajectory 

Let B be an elliptical brush, with 

B~ -- a cos u, By = b sin u, (6) 
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(a) (b) 

Fig. 2. (a) A simple elliptical brush and elliptical trajectory. (b) Another example 
of a simple elliptical brush and elliptical trajectory. 

w h e r e  a a n d  b a re  t h e  m a j o r  a n d  m i n o r  axes  o f  t h e  e l l ipse ,  r e spec t ive ]y ,  a n d  t h e  
p a r a m e t e r  u va r i e s  f rom 0 to  24 r a d i a n s .  T h e  t r a j e c t o r y  e q u a t i o n  T ,  a l so  an  
e l l ipse ,  can  be  e x p r e s s e d  as  

Tx = p cos  t, Ty = q s in  t, 

w h e r e  p a n d  q a r e  t h e  m a j o r  a n d  m i n o r  axes  a n d  t va r i e s  f rom 0 to  27r r ad i ans .  
U s i n g  (4) we ge t  

t a n  u = - -  

w h e r e  k = b . p / a  . q .  T h e r e f o r e ,  

ul  = t a n - l ( k  • t a n  h )  

b . p  
• t a n t l  = k . t a n t ~ ,  

a . q  

a n d  u2 = ~ + t a n - l ( k  • t a n  h) .  

U s i n g  (5), we ge t  t h e  e q u a t i o n s  for  t h e  ou t l ines :  

01x = a • cos u I -~- p • cos  t l  = 
a • cos  h 

~/k 2. s in2t l  + COS2tl 
+ p • cos  h,  

Oly = b.  s in  ul  + q-  s in  h = 
b .  k - s i n t l  

~/k 2. sin2tl  + cos2tl 
+ q - s i n t l ,  

(7) 

(8a) 

Oex = - a .  cos ul  + p • c o s  t l ,  
(8b) 

02y = - b .  s in  ul  + q .  s in  h ,  

w h e r e  t l  va r i e s  f rom 0 to  2~- r a d i a n s .  I n  F i g u r e  2 we show t h e  o u t l i n e s  for  t y p i c a l  

va lue s  o f  a, b, p ,  a n d  q. 
T h e r e  a re  a few i n t e r e s t i n g  spec ia l  cases• 

C a s e  1: a = b = r; p = q = R;  r < R. E q u a t i o n  (8) t h e n  b e c o m e s  

O1 = [(R + r ) c o s  h,  (R + r ) s i n  h ] ,  

02  = [(R - r ) c o s h ,  (R - r ) s i n h ] .  
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(a) (b) 

(c) 

Fig. 3. Ca) Circular annulus (r < R) (shaded portion will be black). (b) Full circular disk (r > R). 
(The inner circle overlaps with the outer one.) (c) Shape generated when minor axis of elliptical 
brush is made 0. 

This  clearly shows tha t  if a circular brush of radius r moves along a circular 
t rajectory of radius R, where r < R, the resulting shape is a circular annulus with 
inner outline of radius (R - r) and outer  outline of radius (R + r) (Figure 3a). 

Case 2: a = b = r; p = q = R; r > R. Equat ion (8) now becomes 

O1 = [(r + R)cost l ,  (r + R)s inh] ,  (10) 

02 = [ - ( r  - R)cos t l ,  - ( r  - R)s inh] .  

Equat ion (10) clearly shows tha t  the inner boundary  is a circle of negative radius. 
In case r = R, 02 reduces to a point,  and the resulting shape changes from a 
circular annulus to a full disk of  radius (R + r) with no hole inside. A negative 
radius means overlapping of outlines. The  result is the same full disk (Figure 3b) 
after  the postprocessing operat ion ment ioned earlier. 

Case 3: b = 0. This  means tha t  the brush is a horizontal  line of length 2a. The  
outline equations are 

O1 = [(a + p -  cos h), q. sin tl], (11) 

02 = [ ( - a  + p .  cos h), q" sin tl]. 

The  outlines represented above are two ellipses whose centers are respectively, 
at  (a, 0) and (-a, 0) (Figure 3c). 
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If the brush becomes a vertical line of length 2b, the outlines are again two 
ellipses, but the centers are at (0, b) and (0, -b ) ,  respectively. 

Case 3 shows that  in certain cases it is possible to get analytical so]utions for 
an open curve brush from the general solution of some closed, smooth, convex 
brush. 

3.2 Elliptical Brush and Cubic Trajectory 

The brush B is represented by eq. (6). The trajectory T is a general parametric 
cubic curve. Let T be expressed as 

Tx = Pox + p lx .  t + p2 , .  t 2 Jr p3x" t 3, 

Ty = Poy + Ply" t -t- P2y" t 2 -I- P3y" t 3, 

where t varies from 0 to 1. 
Using (4) we get, 

where 

Therefore, 

tan u = 
1 1 

u m ,  

m/kl ml 

m b 
ml - k, ' kl = -a ' 

m = ~? (t = t,) = Ply + 2 .p2y . t l  + 3.pzy.t~ 
PI= + 2 .pex . t l  + 3-p3x. t~" 

u , .  

Therefore, the equations of the outlines are 

Olx 
a m l  

+ (Po, + Pix .  t, + P=x" t~ + Pax. t~), 

b 
017- + (Poy + Ply .  t, + P2y. t~ + Pzy. t3); 

(12) 

(13) 

(14a) 

a m l  
0 2 ,  - + (Pox + Plx" tl  J¢ P2," t~ + Pzx" t3), 

02y + (Poy 4" Ply" tl + P2y" t~ + Pay" t31). 

(14b) 

A few typical examples are shown in Figure 4. 

3.3 Dynamic Transformations of The Brush 

So far we have assumed that  the brush size and orientation remain fixed as the 
brush is moved along the trajectory. However, artists have achieved interesting 
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Fig. 4. (a) A simple elliptical brush and parametric cubic trajectory. (b) Another 
example of a simple elliptical brush and parametric cubic trajectory. 

effects by continuously changing the pressure and the angle of the brush as it is 
moved along the path. We now provide two extra degrees of freedom to the brush; 
continuous scaling and rotation about a reference point as it is moved along the 
trajectory. These are specified as functions of the same parameter as that used 
for the trajectory function specification. 

Thus the brush is now a function of two variable parameters, u and t, that is, 
B(u, t). If we now use this form of the brush, eq. (3e) takes the form 

x = Bx(u, t) + Tx(t), y = By(u, t) + Ty(t),  (3g) 

and the equation required for getting the envelope takes the form 

Ou + Ot ] - ~ u  + Ot ] = O" (3h) 

Solving eqs. (3g) and (3h) analytically is very difficult, almost impossible 
even for simple cases. What we would like to try, therefore, is to see if these condi- 
tions can be simplified so that a good approximation of the actual envelope is 
obtained analytically. For this we make use of the classical-mechanics idea of 
perturbation: If 

OS~ OT~ OSy OTy 
- -  << - -  and << 
Ot Ot Ot Ot ' 

then we get a good approximate envelope by initially ignoring the OBJOt and 
OBy/Ot terms in eq. (3h) and later perturbing the envelope equation thus obtained 
by the exact dynamic nature of the brush. For all practical purposes, this method 
of perturbation works well and a very good approximation of the actual envelope 
is obtained. Most of the existing systems [7] use this approach to approximate 
the envelope for dynamic brushes. 
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Again, we shall consider an elliptical brush, but  this t ime the major axis, minor  
axis, and the or ientat ion of B will be some functions of t, tha t  is, 

a = f l ( t ) ;  b = /2 ( t ) ;  0 = [3(t). 

The  equation of B can then  be wri t ten as 

B= = a .  cos u .  cos 0 + b. sin u .  sin 0, (15) 

By = - a .  cos u .  sin 0 + b. sin u .  cos 0. 

The  t rajectory T is again considered as a cubic parametr ic  curve whose .equation 
is (12). 

Following the same procedure,  we get 

b . s i n 0 . m - b . c o s 0  1 
tan u . . . .  , (16) 

a . c o s 0 . m  + a . s i n 0  ml 

where m is expressed by eq. (13). Therefore ,  the equations of the outlines are 

- a  • m~ b 
0 1 = = ' j ~ + m ~  " c o s 0 +  ~ .  s i n 0 +  T x ( t = h ) ,  

+ (17a) 
- a .  ml b 

O~ y-  ~f~+ ml 2 s i n 0 +  ~ +  • c o s 0 +  T y ( t = t l ) ;  

a.  mR b 
02x - ~ • cos0 - • s in0 + T= (t = t~), 

+ ~/1 + ml 2 (17b) 

a .  m~ b 
0 2 y =  J 1  + m~ " sin0 J l - +  m~ c o s 0 +  Ty ( t =  t~). 

A few typical examples are shown in Figure 5. 

4. DESIGNING A SPECIAL BRUSH 

The  brush shapes we have discussed so far are linear, circular, or elliptical. Wi th  
the freedom to t ransform a brush dynamically,  these brushes provide a powerful 
tool for shape description. In fact, as we show later, any pair  of outlines can be 
generated using one of these brushes with the dynamic t ransformat ion  capabili- 
ties. However, it may not  be very natural  from the user 's point  of view. Because 
of the basic symmetrical  nature  of the above brushes, there  exist complex shapes 
(Figure 6) which they cannot  easily and natural ly  describe. Therefore ,  we design 
a special brush tha t  is parametr ical ly  defined using a four th-order  polynomial.  
Later,  we impose conditions on the parameters  of the brush so tha t  the special 
brush approximates a line, a circle, or an ellipse, as desired. 

4.1 The Special Brush Equation 

Our intent ion is to choose a brush tha t  satisfies the following criteria: 

(1) B should be a closed, smooth,  and convex curve. 
(2) B should be computat ional ly  convenient  and, at  the same time, be flexible 

enough to permit  variat ion in brush shape. 
(3) B should be conceptually easy to comprehend.  
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Fig. 5. (a) A dynamically transformed elliptical brush and parametric 
cubic trajectory. (b) Another example of a dynamically transformed ellip- 
tical brush and parametric cubic trajectory. 
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% .  to .o." 

Fig. 6. 
ellipse. 

A shape difficult to produce using a symmetric brushlike circle or 
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Without  digressing into the details of the steps involved in arriving at the present 
brush equation, we shall present the end results with some notes explaining how 
it can be used conveniently. 

To make our brush equation computationally convenient, we have chosen a 
fourth-order polynomial. (The cubic does not  provide enough design flexibility 
for changing the brush shape.) If  we assume tha t  the brush outline always passes 
through the origin, B can be described by the following polynomial expression: 

B = B ( u )  = 4 u ( i  - u)(1 - 2u).  B1 + 6u2(1 - u) 2" B2, (18) 

where u is a scalar quant i ty  tha t  varies from 0 to 1, and B1, B2, and -I]i~ are the 
position vectors of three vertices P1, P2, and P3 of a characteristic triangle which 
determines the brush shape. It can be easily shown tha t  the characteristic triangle 
is in fact a special case of the generalized characteristic polygon of the Bernste in-  
Bezier polynomial curve [2]. In order to give some idea of how the characteristic 
triangle determines the brush shape, we present two examples in Figure 7. 

Also, it can be easily shown tha t  B is closed, smooth, and convex. 

4.2 Special Brush and Cubic Trajectory 

We can rewrite the brush eq. (18) as 

B~ = 4u(1 - u)(1 - 2u).  Bzx + 6u2(1 - u) 2. B2~, 
By fl 4u(1 fi u)(1 fi 2u).  B~y ff 6u2(1 fi u2) • B2y, (19) 

and T is expressed by eq. (12). From eq. (4) we can write 

[OBffOu 1 24B2y. u s + (24Bly-  36B2y). u 2 + (12B2y- 24Bly), u + 4Bly 
O~=/Ouj-2-~2=_ u~ + (24B~ _ 36B2y ) u2 + (12B2 _ 24B~) u + 4S~=-,rn, (20) 

where m is given by eq. (13). Simplifying (20) we obtain 

~ ' u  ~ + / 3 " u  2 + 7 " U +  ~ = 0, 

where 

(21) 

= 24B2y - 24B2x. m 

= (24Bly - 36B2y) - (24Blx - 36B2~). m 

7 = (12B2y - 24Bly) - (12B2x - 24B,~), m 

= 4B,y - 4B1~. m. 

Note tha t  the solution of eq. (21) will give rise to three roots, u,,  u2, and u3, of 
u. Any cubic equation has either one real and two imaginary roots, or three real 
roots. Since our brush is a closed, smooth curve, it must  have at  least two real 
roots; therefore, all ul, u2, and u3 are real. But  B is a convex curve too; therefore, 
it cannot  have more than  two parallel tangents  in any given direction. This seems 
puzzling, but is easily explained as follows. In any given direction only two out 
of three roots of u will lie within the range of 0 to 1. The other has to be discarded 
since B is defined only for u varying from 0 to 1. 

We can express eq. (21) in the following form: 

v 3 + q.  V + p  = 0, (22) 
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where 

v = u + 3 t  ~ , 

q = a 3 \ a ]  

P = a - 3 a  a + 2 7 \ a ] '  

Since all roots of u are real, we use t r igonometr ic  methods  to solve eq. (22). The  
roots of the cubic equation are then  given by 

where 

Therefore,  

n cos ¢, n cos + ~b , n cos - ~b , 

( c o s ¢ = - 4 p  -~qq]  . 

Ul = n c o s  ~b 3 a '  

u 2 = n c o s  +~b 3 a '  

ua = n cos -- ~b 3~" 

The  roots ul, u2, and u3 are some functions of t~. Therefore ,  for each point  t~ of 
T,  where h varies from 0 to 1, we have to find out  which two of the three roots 
lie within the range 0 to 1. Le t  these two roots be u '  and u" at  some par t icular  
point  h .  Therefore ,  the equations of  the outlines are 

0 ~  = B , ( u  = u')  + T~(t = t l ) ,  

0 ~  = B~(u = u ' )  + T A t  = t~) ;  
(24a) 

02x = Bx(u = u") + Tx(t = h) ,  

02y = B A u  = u") + T A t  = tl). 
(24b) 

It is impor tan t  to note at this point  tha t  even though we are able 1~o obtain 
analytical solutions to Ul, u2, and u3 above, the need to choose two out  of three 
makes it impossible to derive analytical  forms for the outlines. Therefore,  even 
though every point  on the outlines is analytically defined, determining the locus 
of points has to be done through procedural  means  only. A second look at  the 
labeling of the outlines generat ing the shape of Figure 6 illustrates this better.  
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4.3 Approximating a Line, Circle, or Ellipse 

Forming a straight line brush is ra ther  easy. Th e  only condition tha t  has to be 
imposed is to make the vectors B1 and B2 collinear. 

The  special brush cannot  be made to represent  an exact ellipse. It  can only 
approximate it. For  approximating an ellipse with major and minor  axes as p and 
q, respectively, we have to impose the following conditions: 

p = ½[B(3) - B(¼) [ = 3[ B~ 1, (25a) 

q = ½[B(~) - B(0)[  = ~ [ B 2 [ ,  (25b) 

B1. B2 = 0; (25c) 

tha t  is, the two vectors should be perpendicular.  
A circle can be approximated by making p and q equal. To  elaborate,  once 

again consider the special brush equation (18): 

At u = 0, B(0) = 0. 

At u = ~, B(~) = ~B~ + ~8B2. 

At u = ~, B(½) =3B2 .  

At u = 3, B(~)  = -~B~ + ~8B2. 

At u = 1, B(1) = 0. 

follows, Let  V, and V2 be the two vectors as 

V~ = BQ)  - B(~) = ~B~. 

V2 -- B(~)  - B ( 0 )  -- 8~B2. 

Now let the major and minor  axes, p and q, of the ellipse be 

P = ½1Vii; q = ½1V2[. 

It  is necessary, therefore,  for the vectors Vl and V2 to be perpendicular;  tha t  is, 
B1 and B2 should be perpendicular:  

B1-  B2 = 0. 

The  approximate coordinates of the center  will be 

27 B (128 2,, ~B2y), 
and the central  axis is or iented at an angle of 

lfBly~ tan-t ). 
Figure 8 compares the special brush with the exact ellipse (and circle) shown 
dotted. 

5. THE UNCONSTRAINED BRUSH 

Up to now we have chosen our brush curve to be a closed, smooth,  and convex 
curve. This  is mainly because we wished B to have two and only two parallel 
tangent  lines in any given direction. As the brush is moved along the trajectory,  
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(a) (b) 

Fig. 8. (a) The special brush approximation to an ellipse. (b) The special 
brush approximation to a circle. 

the tangent  points on the brush parallel to the direction of the t rajectory are 
chosen to yield the outline curves. If  B is chosen to be a more general cu]~ce, then  
for some part icular  direction(s) it is possible tha t  B has no tangent  line, one 
tangent  line, or more than  two tangent  lines parallel to this direction. Obviously, 
our slope theorem fails to determine the points on the outl ine curves in such 
cases. 

5.1 A Modified Slope Theorem 

If  B is any general curve (open or closed, but  piecewise slope continuous),  the 
points on the outline curves when B is at  some point  t of  T can be conreptual ly  
determined in the following manner  (Figure 9a): 

For  each point  b E B draw a line parallel to the tangent  direction, L of T at  t. 
Consider only those b's for which it is possible to construct  a circle however 
small with b as center  such tha t  within this circle all o ther  points  of B lie entirely 
on one side of the line drawn at b tha t  is parallel to L. The  point  b + t then  
becomes a point  on the outline curve. We call a point  such as b a supporting point 
with respect to the direction L. For  a closed, smooth, convex curve such a point  
is none other  than  a point  at which the drawn line is t angent  to B and is also a 
supporting line of the bounded, convex figure in tha t  direction. Le t  us rLote here 
tha t  a supporting line passes through at  least one point  of the figure an,d is such 
tha t  the figure lies entirely on one side of it. It  is well known tha t  in each 
direction there  can be drawn exactly two parallel support ing lines to a bounded 
convex figure. Since for a smooth curve these are the tangent  lines, it is easy to 
see tha t  this method  reduces to the s ta tement  of Theorem 2. 

The  slope theorem can now be restated as follows: 

THEOREM 2 (MODIFIED SLOPE THEOREM). The boundary of the shape resulting 
from moving B along T can be expressed as q subset of the set of all points b + t 
such that b ~ B, t E T, and b is a supporting point with respect to the direction of 
the line parallel to the tangent line of T (at t). 

PROOF. L.et B(uo) E B(u),  T(to) E T, P0 E B + T and po - B(uo) + T(to). We 
wish to show here tha t  if P0 is a point  on the boundary  of B + T then  for some 
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(;) 

(2) 

(3) 

(4} 

Uo + h ib • 

u o - h J  

(a) 

B 

" ° n i p  Lt 

(b) 

to -- k 

_ L 

/ \ 
. . . . )  

T 

Fig. 9. (a) Examples of supporting points of brushes of various shapes. (1) Closed, smooth, 
convex region. (2) Closed, convex region (not smooth). (3) Closed, smooth, concave region. 
(4) Open, smooth curve. (b) Figure for modified slope theorem. 
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T(to), B(uo) must be a supporting point of B with respect to the direction of the 
tangent of T at to, say L. 

In order to prove this, let us first assume that even though Po is a boundary 
point, B(uo) is not a supporting point with respect to the direction of L. (Figure 
9b) Draw two lines Lb and Lt passing through B(uo) such that Lt is parallel to L 
and Lb is perpendicular to Lt. Now choose h, k, however small, such that 

(1) [B(u)],o_h<u<, o is below Lt, and [B(u)],o<,<,o+h is above Lt. 

We shall use Bh to denote the part of the brush defined by [B(u)],o_h<=<,o+h. 

(2) [T(u)]~-h<t<to÷k which we shall denote as Th, such that, the tangent on Bh for 
any u is not parallel to the tangent at Th for any t. (We shall say 1;hat Ba is 
transverse to Tk.) 

Choice (1) above is possible because B is position and piecewise slope contin- 
uous and B(uo) is not a supporting point. Choice (2) is possible because T is both 
position and slope continuous and Lt is not a tangent to B at Uo. Clearly, Bh + 
T k C B  + T .  

Consider the following one-to-one continuous function: 

where 

and 

Thus, 

f: D --* C, 

D(u,  t) = Bh + Th, C(u, t) = B(uo) + Lb(u - Uo) + Lt ( t  - to), 

u o -  h < u < uo + h, to - t < t < to + k. 

f (Bh + Th) = B(uo) + Lb(u -- Uo) + Lt( t  - to). 

This f can be considered as composed of 

D(u,  t) = Bh + Tk ---) Bh + T{t0) + Lt( t  - to); because T is continuo~!s 

---) Bh + Lt ( t  - to) 

---) B(uo) + Lb(u - Uo) + Lt ( t  - to) =- C(u, t) 

because Bh is continuous and 
transverse to Tk. 

Clearly C(uo, to) is interior to C(u, t). Therefore, f - l ( C ( u ,  t)) is i:aterior to 
D(u,  t), because inverses of continuous functions preserve interior points. There- 
fore, Bh{uo) + Th(to) is interior to Bh + Th, that is, B(uo) + T(to) is interior to B 
+ T, that is, Po is interior to B + T. This, however, contradicts our initial premise 
that Po is a boundary point of B + T. Therefore, our assumption is incorrect and 
B(uo) must be a supporting point of B with respect to the direction of the tangent 
at T(to). 

5.2 The Supporting Points of a Piecewise Smooth Brush 

We consider brush shapes whose boundaries can be thought of as piecewise 
compositions of a number of open smooth curves. By piecewise comp¢,sition we 
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A C 

Piecewise definition of a brush. 

mean position continuity at the endpoints where two open curve segments meet. 
In general, there may be slope discontinuities at these endpoints. Figure 10 shows 
a shape whose boundary is defined by four open curves, A, B, C and D. 

We shall take up the task of analytically determining the supporting points of 
B, with respect to the direction of the tangent at t of T. Consider B1 as an open 
curve of B. It is easy to recognize the fact that  for any given direction, the 
supporting points are endpoints of B1 or points at which a line in that  direction 
is tangential to B1. Hence, we adopt the following procedure: 

(1) Take the two endpoints el and e2 of B1 as supporting points. 
(2) Also determine all the points pl, P2, . . . ,  P,  on B1, such that the tangents at 

these points are all parallel to the given direction, namely, the tangent to the 
trajectory T. 

(3) If the brush is a closed, filled region, then from pl, P2 . . . . .  p, ,  include only 
those points at which the line in the given direction lies locally outside the 
brush region. 

The above procedure is applied to all the curves constituting B, taking care to 
see that junction vertices of B are considered only once. 

We know that for a convex brush there can be two and only two supporting 
lines in any given direction. In the case in which the boundary of the brush has 
a linear segment in the given direction, the brush will have infinitely many 
supporting points in that  direction, and then we choose only one point from this 
connected set of supporting points. Using algebraic distances of the supporting 
points from the tangent line to T, we can sort the points chosen according to the 
earlier listed procedure and the two extremal points on either side of the tangent 
chosen to form the outlines. Figure 11 shows an example of a piecewiseoconvex 
brush and a cubic trajectory. Note here that this method can be used only in the 
case in which the brush is a closed convex region with its boundary defined in a 
piecewise manner. 

In the case of an open or a concave brush, the loci of the supporting points are 
considered as the outline curves. It is important to note that, in general, we may 
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,'"" %, 
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(,!' ' / "'.,.,.,, ~h~ . - ,  ~ ~ "~ / 

Fig. II. (a) Open, smooth brush and parametric cubic trajectory. (b) Closed, 
convex brush (not smooth) and parametric cubic trajectory. 

therefore have more than two outline curves; some of them possibly intersecting 
with one another. As noted earlier the actual boundary has to be derived from 
these outline curves using the winding number concept [3], or graph manipulation 
approach [8]. 

5.3 An Example: An Open Cubic Brush and a Cubic Trajectory 

Let the equation of B be 

B ffi qo + qx" u + q2" ~2 -F q z .  U 3 (26)  

with u varying from 0 to 1. T will be expressed by eq. (12). Using eq. (4) we can 
write 

] 3 ( u ) = T ( t = t l ) = m  or ~ . u  s + 8 . u + ~ = o  

o r  

U = 
- ~  +_ 4~ 2 - 4a~f 

2a 
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From ~he above equation we can conclude that B can have, at most, two tangent 
points in the direction of m. These, together with the endpoints, give us a 
maximum of four supporting points with respect to any given direction. It should 
be remembered that only those supporting points of B with parameter u value 
within 0 and 1 are to be considered. In tracing the loci of these points, we make 
use of the fact that, since T is continuous and smooth for small increments in 
its parameter t, the supporting points will always lie within a small neighborhood 
of B. (Fig. 11) 

6. DECONVOLUTION OF FIGURE OUTLINES 

So far, we have mainly concentrated on the derivation of outlines given a brush 
trajectory specification. In this section, we shall briefly discuss some issues 
involved in the inverse problem: deriving a brush trajectory specification given 
its outlines. Though at first sight this may seem unnecessary, we would like to 
point out its importance with the following arguments: 

There are many traditional fonts that have been contour coded or digitized 
using alphabet design systems like IKARUS [4]. If the brush trajectory specifi- 
cation for such fonts can be obtained, then detecting the structural similarities/ 
differences among different fonts should become possible. Also, because of the 
inherently large variational capability provided by computational techniques, it 
should now become possible to provide variations in old designs without violating 
the basic design integrity as built in by the designer using manual methods of 
calligraphic design. 

We begin by stating a few more theorems which help us in understanding the 
deconvolution problem. In all these cases we assume that the brush is a convex 
region. 

6.1 A Few More Theorems 

THEOREM 3 (POSITION-INVARIANCE THEOREM).  I f  x denotes  linear translation, 
then  

PROOF.  L e t  

( B  ~ ) , T = B , ( T  ~ ) = ( B , T )  ~. (27) 

B = [Bx, By] and T = [T=, Ty]. 

Let us move the origin from (0, 0) to some point (a, ~). Then 

B '  = B ~ = [(B~ - a ) ,  ( B y  - ~)]. 

Now B '  = B, since (a, fl) are some fixed points. Therefore, 1~' = B = T(t  = tl). 
Let ul and u2 be the two antipodal points which do not change even after B 

moves to (a,/3). Therefore, 

O1 = [(B=(u = ul) + T= - a), (By(u = ul) + Ty - /~ ) ] ,  

02 = [(B~(u = u2) + Tx - a), (By(u = u2) + Ty - ~)]. 

Thus the theorem is proved. 
This theorem implies that it does not matter which point of the brush is fixed 

with respect to the trajectory--the generated shape remains same. Only the 
contour moves as a whole. 
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A B 

Outlines which cannot be generated using any simple brush and any trajectory. 

THEOREM 4 (NONUNIQUENESS THEOREM). For any given outlines, there may 
exist more than one combination of brush-trajectory for generating them. 

PROOF. (See end of Theorem 6). 

THEOREM 5 (SIMPLE BRUSH INSUFFICIENCY THEOREM).  I f  a closed:, smooth, 
convex brush is only moved along the trajectory, without any dynamic i',ransfor- 
mation, then there may not exist any brush-trajectory combination that produces 
two given outlines C1 and C2, if for some point p on C1, there does not exist any 
point p '  on C2, where the tangents of C1 and C2 become parallel. 

PROOF. We prove this by a counterexample. Consider Figure 12, which repre- 
sents a pair of straight lines as outline curves. If the slopes of the :Lines are 
different, then it is not possible, without dynamic transformation to generate 
these as outlines using any closed, smooth, convex brush and any trajectory. 

6.2 Convolution Equations for the Canonical Brush 

We define the canonical brush as a straight-line brush with dynamic scaling and 
rotation as it is moved along the trajectory. We now try to see if this canonical 
brush can be used in the solution of the deconvolution problem. 

Equation (17) can be used directly to get the convolution equation=s in this 
case. The ellipse transforms to a straight line if any one of its axes is made 0. 
Let b = 0. Then 

1 
~ - -  ~ O .  

m l  

Therefore, 

Olx = - a - c o s  6 + T~(t = tl) = - a .  cos/~ + T~, 
(28a) 

01y = - a .  sin~ + Ty(t = tl) = - a .  sin/~ + Ty; 

02= = a .  cos/~ + T=, (28b) 

02y = a.  sin ~ + Ty. 

Note that a and 6 can be any function of t where t is the scalar parameter of the 
trajectory equation T. 
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THEOREM 6 (THE CANONICAL BRUSH THEOREM). A n y  pair  of  outl ines o / a  
convex region can be described in t e rms  of  a brush- t ra jec tory  representat ion,  i f  we  
choose the brush  as a s traight  line w i th  dynamic  t rans format ions  allowed on it. 

PROOF. Let  a pair of outlines be given by the following equations: 

C1 = [Clx ,  ely], 
Equating (28) and (29), we can write 

C1~ = - a -  cos 0 + Tx, 

C2x = a .  cos 0 + T~, 

Therefore, 

C2 = [C2~, C2y]. (29) 

Cly = - a .  s i n  0 + Ty; 

C2y = a .  sin 0 + Ty. 

C 2 ~ - C l x = P = 2 a . c o s 0  

C2y - Cly = Q = 2a- sin 0. 

Therefore, the length a and orientation angle 0 of the brush B will be given by, 

a = ½ • ~ + Q2, 0 = t a n - l ( Q / P ) .  (30) 

And the trajectory equation T will be 

Tx = Clx ÷ ~P, Ty = e ly  + ½Q. (31) 

Hence Theorem 6 is proved. [] 

Let  us take a simple example to demonstrate its working. Let  the contour be 
a circular annulus, with M as the radius of the inner circle and N as tha t  of the 
outer circle. Therefore, 

C1 = [M cos ¢, M sin ~b], C2 = [N cos ~b, N sin ~b]. 

So, 

And 

N - M  a - - -  , O = ~b 
2 

Tx = ~(N + M)cos ~b, Ty = ½(N + M)sin ~. 

If  we write N = R + r and M = R -  r, 

Tx = R cos ¢, Ty = R sin ~b. 

The length of the brush is constant;  tha t  is, a = r and the orientation function 0 
is 0 = ¢. Note tha t  the same pair of outlines would have been generated by a 
circular brush of radius r (see eq. (9)). This, therefore, proves Theorem 4 by 
example. 

For describing arbitrary regions using the canonical brush, it is necessary to 
first generate a convex subdivision of the given region and apply the method of 
Theorem 6. 

The canonical brush result is interesting but not  really very useful. This is 
because during the design phase a variety of brush shapes are used. The brush 
shapes are chosen such tha t  the desired shape is naturally produced. Thus the 
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deconvolution problem should be addressed to determining tl~e moist natural 
brush-trajectory combination for a given outline shape. A precise sp,~cification 
of the most natural combination is itself an open problem for further work. 
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