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Abstract—Convolutional neural networks (CNNs) are a rep-
resentative class of deep learning algorithms including convo-
lutional computation that perform translation-invariant classi-
fication of input data based on their hierarchical architecture.
However, classical convolutional neural network learning meth-
ods use the steepest descent algorithm for training, and the
learning performance is greatly influenced by the initial weight
settings of the convolutional and fully connected layers, requiring
re-tuning to achieve better performance under different model
structures and data. Combining the strengths of the simulated
annealing algorithm in global search, we propose applying it
to the hyperparameter search process in order to increase
the effectiveness of convolutional neural networks (CNNs). In
this paper, we introduce SA-CNN neural networks for text
classification tasks based on Text-CNN neural networks and im-
plement the simulated annealing algorithm for hyperparameter
search. Experiments demonstrate that we can achieve greater
classification accuracy than earlier models with manual tuning,
and the improvement in time and space for exploration relative
to human tuning is substantial.

Index Terms—Simulated Annealing Algorithm; Text Classifi-
cation; Deep Learning; Self-optimization

I. Introduction

In recent years, significant breakthroughs have been
achieved in the field of convolutional neural networks for text
classification, and Yoon Kim [1] proposed a straightforward
single-layer CNN architecture that can outperform traditional
algorithms in a variety of uses. Rie Johnson and Tong Zhang
[2] applied CNNs to high-dimensional text data and learned
with embed small text regions for classification. Tong He and
Weilin Huang [3] proposed a convolutional neural network
that extracts regions and features related to text from image
components. This type of model use vectors to characterize
each sentence in the text, which are then merged into a matrix
and utilized as input for constructing a CNN network model.

Numerous experiments have shown, however, that the per-
formance of neural networks is highly dependent on their
architecture [4] [5] [6]. Due to the discrete nature of these
parameters, accurate optimization algorithms cannot be used
to resolve the architecture optimization problem [7]. Manually
tuning the parameters of a model to optimize its performance
for different tasks is not only inefficient, but also likely to miss

the optimal parameters, resulting in a network architecture that
does not achieve maximum performance, which is not advanta-
geous in comparison to traditional classification algorithms [8].
In addition, the widely utilized grid search is an enumerative
search, i.e., it tries every possibility by performing a cyclic
traversal of all candidate parameter choices, which is marked
by its high time consumption and limited globalization. There-
fore, it is practical to use an algorithm to automatically and
fairly rapidly determine the optimal architecture of a neural
network.

It has been shown that tuning neural network hyperparam-
eters with metaheuristic algorithms not only simplifies the
network [9] [10], but also enhances its classification perfor-
mance. In this paper, we use simulated annealing algorithm
to optimize the neural network architecture, and we model
the neural network hyperparameter optimization problem as
a dual-criteria optimization problem of classification accuracy
and computational complexity. The resulting network achieves
improved classification performance in the text classification
task.

II. Background and RelatedWork
A. The current utilisation text classification in neural networks

Text classification was initially done by using knowledge
engineering to build an expert system and perform classifica-
tion, which is a laborious task with limited accuracy. After that,
along with the development of statistical learning methods and
machine learning disciplines, the classical approach of feature
engineering plus shallow classification models developed grad-
ually (Fig.1). During this period, rule-based models: decision
trees [11], probability-based models: Nave Bayes classification
algorithms [12] [13], geometry-based models: SVM [14]and
statistical models: KNN [15], etc. However, these models
typically rely heavily on time-consuming feature engineering
or large quantities of additional linguistic resources, and are
ineffective at learning semantic information about words.

In recent years, research on deep learning that incorporates
feature engineering into the process of model fitting has signif-
icantly enhanced the performance of text classification tasks.
Kim [1] explored the use of convolutional neural networks
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Fig. 1. A diagrammatic representation of the process of shallow learning

with multiple windows for text classification, a method that has
been widely adopted in industry due to its high computational
speed and parallelizability. Yang et al [16] proposed HAN, a
hierarchical attention mechanism network that mitigates the
gradient disappearance problem caused by RNNs in neural
networks. Johnson and Zhang [17] proposed a word-level deep
CNN model that improves network performance by increasing
network depth without significantly increasing computational
burden.

Additionally to convolutional neural networks and recurrent
neural networks, numerous researchers have proposed more
intricate models in recent years. The capsule networks-based
text classification model proposed by Zhao et al [18]. outper-
formed conventional neural networks. Google proposed the
BERT model [19], which overcomes the problem that static
word vectors cannot solve the problem of a word having
multiple meanings. However, the parameters of each of the
aforementioned deep learning models have a substantial effect
on network performance and must be optimized for optimal
network performance.

B. Current research status on the simulated annealing method
and associated neural network optimization

The Simulated Annealing Technique is a stochastic opti-
mization algorithm based on the Monte Carlo iterative so-
lution approach that was first designed for combinatorial
optimization and then adapted for general optimization. Its
fundamental concept is based on the significance sampling
approach published by Metropolis in 1953, but Kirkpatrick
et al. [20] did not properly implement it into the field of
combinatorial optimization until 1983.

Fig. 2. Simulated annealing method picture schematic.

The algorithm for simulated annealing is taken from the
process of metal annealing [21], which may be summarized
roughly as follows. The simulated annealing technique begins
with a high initial temperature, then as the temperature pa-
rameter decreases, it searches for the optimal solution among
all conceivable possibilities. The SA method has a probability
of accepting a solution that is worse than the initial one, i.e.
the locally optimal solution can probabilistically jump out
and finally converge to the global optimum. This likelihood
of accepting a suboptimal answer decreases until the SA
approaches the global optimal solution.

The standard optimization process of the simulated anneal-
ing algorithm can be described as follows.

Algorithm 1 Simulate Anneal Arithmetic
input : Initial feasible solution: x0 ;

Initial temperature: T0 ;
Termination temperature : T f ;
Iteration number: k

x←− xk, T ←− T0, k ←− 0
while k 6 kmax and T > T f do

xk ←− NEIGHBOR(s)
δ f = f (xk) − f (x)
if ∆ f < 0 or RANDOM(0, 1) 6 P(∆ f ,T ) then

x←− xk

end if
T ←− COOLING(T, k, kmax)
k ←− k + 1

end while

SA has been utilized extensively in VLSI [22], production
scheduling [23], machine learning [24], signal processing [25],
and other domains as a general-purpose stochastic search
method. Boltzmann machine [26], the first neural network ca-
pable of learning internal expressions and solving complicated
combinatorial optimization problems, utilizes the SA principle
for optimization precisely, therefore the optimization potential
of SA is evident.

RasdiRere et al. [27] employed simulated annealing to auto-
matically construct neural networks and alter hyperparameters,
and experimental findings revealed that the method could
increase the performance of the original CNN, demonstrating
the efficacy of this optimization technique. Mousavi et al. [28]
updated a solar radiation prediction model by integrating artifi-
cial neural networks and simulated annealing with temperature
cycling to increase ANN calibration performance. Choubin et
al. [29] utilized the simulated annealing (SA) feature selection
approach to find the influential factors of PM modeling based
on current air detection machine learning models for the spatial
risk assessment of PM10 in Barcelona.

According to the study, however, there is no research on the
combination of simulated annealing and neural networks for
text categorization tasks. This research conducts tests on neural
networks employing simulated annealing to enable automated
hyperparameter search, based on the fact that neural networks
now generate superior outcomes in text categorization.



III. METHODS
A. Convolutional neural networks for text processing tasks
(Text-CNN)

Convolutional neural networks (CNN) originated in the field
of computer vision; however, with the recent deformation of
the CNN input layer, this neural network structure has been
steadily transferred to the field of natural language processing,
where it is often referred to as Text CNN. The schematic is
seen below.

Fig. 3. Schematic diagram of Text-CNN.

A text statement consists of n words, therefore the text
is separated according to words and each word is mapped
to the Word Embedding layer as a k-dimensional vector. At
this point, for this input model, the text may be regarded
as a n × k single-channel picture. During the processing of
the convolution layer, the convolution is used to extract the
relationships between tuples containing different numbers of
words, i.e., to generate new features and obtain different
feature maps, when the width of the convolution kernel is
equal to the dimension k of the word vector.

The feature map in the form of an n-dimensional vector is
then sampled using max-pooling to determine the maximum
value, and the data is pooled and utilized as input to the
fully connected layer. The softmax function[Eq. (1)] is then
employed to convert these probabilities into discrete 0 or 1
class labels in order to solve this classification challenge.

y = so f tmax(W1h + b1) (1)

As demonstrated in Eq. (2), a cross-entropy loss function is
frequently utilized for the classification job in model training.

Loss = −

n∑
i=1

yi × log(y
′

i) (2)

where yi is the label value corresponding to the real probability
distribution of the ith sample, y

′

i is the prevalence measure

corresponding to the projected probability distribution of the
ith sample, and n is the number of samples in the training set.

The hyperparameter optimization process of the neural
network by simulated annealing method is shown below.

Fig. 4. Flowchart of neural network hyperparameter tuning using simulated
annealing.

B. Hyperparametric optimization method based on multi-
objective simulated annealing method

In this study, we use the MOSA algorithm proposed by
Gülcü and Kuş [30] to optimize the hyperparameters of
the convolutional neural network in order to find the most
suitable parameters quickly and achieve a higher accuracy rate.
Similar to the single-objective SA algorithm, we extend the SA
algorithm, which only considers the error rate of the network
implementation, to consider the two objectives of the number
of FLOPs required by the network and the error rate of the
network, respectively, and define the stopping criterion of the
simulated annealing method as the number of iterations.

1) Main flow of MOSA algorithm: The MOSA algorithm
primarily uses Smith’s Pareto dominance rule [31] due to
complications such as the need for two target values to be on
the same scale, followed by the application of decision rules to
aggregate the probabilities, and the need to maintain different
temperatures due to the different probabilities evaluated for
each target. All non-dominated solutions encountered during
the search are stored in an external archive, A, when the first
iteration begins at the initial temperature. As new solutions are
accepted, A is updated (by inserting the new solution X’ and
removing all solutions dominated by it) and a superior solution
is eventually formed as the Pareto frontier. As depicted in the
following flowchart, whenever a new solution X’ is obtained,
X and A are updated based on the dominance relationship
between the current solution X, the new solution X’, and the
solution in the external archive A. This process of re-visiting
previously visited archive solutions is known as the return-to-
base strategy. In contrast to the single-target SA algorithm, the
∆F calculation used to determine the probability of acceptance
is different in this method. For calculation purposes, a single
temperature will be maintained regardless of the number of
targets.

2) Setting and calculation of temperature and probability
for SA method: First, the initial and finale temperatures.



Fig. 5. Schematic diagram of MOSA algorithm flow.

Theoretically, the higher the initial temperature setting, the
better, but since the time required for convergence increases
correspondingly with the temperature, it is necessary to make a
compromise between convergence time and convergence accu-
racy. To define Tinit, we apply a real-time initial temperature
selection strategy. In this strategy, rather than using Eq. (3)
to calculate the initial probability value for a given initial
temperature (where ∆F is the amount of deterioration in the
objective function and Tcur is the current temperature).

pacc = min{1, exp(−∆F/Tcur)} (3)

We use Eq. (4) to calculate the initial temperature with an
initial probability value (where Fave is the average amount
of deterioration penalty calculated during short-term ”aging”).
tfinal is also defined by this method of real-time temperature
adjustment)

Tinit = −(∆Fave/(ln(pacc))) (4)

3) Acceptance criteria in searching parameters: In this
experiment, the number of iterations is used to define the
stopping criterion for the simulated annealing method. The
rationale is as follows: if poor early performance is observed
on the validation set, the current training process is terminated
and the next search round is initiated. This approach has the
benefit of introducing noise while decreasing the total running
time of the HPO method. In each iteration of the simulated
annealing method, the newly generated configuration is trained
on the training set of the original training set and evaluated
on the validation set (i.e., the test split of the original training
set). We apply the Xavier weight initial value setting term,
a learning rate of 0.001, the Rmsprop optimizer, and a batch
size of 32.

4) Optimization of the Simulated Annealing method: Start-
ing with the initial solution I and initial temperature Tinit, the
iterative process “generate a new solution → calculate the ob-
jective function difference → accept or reject” is repeated for
the current solution and temperature. Tcur is gradually decayed,
and if the optimal error rate achieved on the validation set does

not improve after three consecutive calendar hours, the training
procedure is terminated, indicating that the current solution is
the approximate optimal solution, i.e. the optimal state of the
network has been reached.

IV. EXPERIMENTS AND RESULTS

A. Introduction to the experimental data set

This experiment utilized two short text categorization
datasets, the MR dataset and the TREC dataset. MR is a dataset
for the sentiment analysis of movie reviews, with each sample
classified as positive sentiment or negative sentiment. The CR
dataset consists of reviews of five electronic products, and
these sentences have been manually tagged with the sentiment
of the reviews. TREC is a question classification dataset in
which each data point represents a question description, and
the job entails categorizing a question into six question kinds,
including person, place, numerical information, abbreviation,
description, and entity.

The table displays the statistical information of the three
data sets.

TABLE II
Statistics for the text classification dataset

Dataset #C AvgLen Dsize |V | |Vpre | Test

MR 2 20 10662 18765 16448 CV
CR 2 19 3775 5340 5046 CV

TREC 6 10 5952 9592 9125 50
* C: number of target categories, AvgLen: average sentence length, DSize:

dataset size, |V |: number of words, |Vpre |: number in pre-trained word
vector, Test: test set size (CV means there was no standard train/test split
and thus 10-fold CV was used)

Several samples from each of the two datasets are provided
below.
• It’s a square, sentimental drama that satisfies, as comfort

food often can. [MR Dataset, tags: positive].
• The sort of movie that gives tastelessness a bad rap. [MR

Dataset, tags: negative].
• this camera is so easy to use ! [CR Dataset, tags:

positive].
• the sound level is also not as high as i would have

expected . [CR Dataset, tags: negative].
• What is Australia’s national flower? [TREC Dataset,

tags: place]
• Who was the first man to fly across the Pacific Ocean?

[TREC Dataset, tags: person]

B. Introduction to the comparison model

Comparing the model in the article to the experimental
model in Kim’s [1] study for experimentation.
• CNN-rand: All word vectors are initialized at random

before being utilized as optimization parameters during
training.

• CNN-static: All word vectors are directly acquired with
the Word2Vec tool and are fixed.



TABLE I
Relationship between the number of external and internal iterations calculated for different values of cooling rate.

Iteration budget Tinit T f inal Cooling rate #Outer iterations #Inner iterations

250 0.577 0.12 0.99 156.2 1.6
250 0.577 0.12 0.95 30.6 8.1
250 0.577 0.12 0.9 14.9 16.7
250 0.577 0.12 0.85 9.6 25.8
250 0.577 0.12 0.8 7.0 35.5

* The table is cited from Gülcü and Kuş’s experiment [30] on the effect of MOSA cooling rate on the number of iterations

• CNN-multichannel: A mix of CNN-static and CNN-non-
static, i.e. two types of inputs.

• DCNN [32]: Dynamic Convolutional Neural Network
with k-max pooling.

• MV-RNN [33]: Matrix-Vector Recursive Neural Network
with parse trees.

C. SA-CNN parameter setting

1) Parameter setting of MOSA: In this research, we em-
ployed the identical parameter settings for the simulated an-
nealing approach as Gülcü and Kuş [30], set the starting initial
probability value to 0.5, and derived Tinit ≈ 0.577 and T f inial ≈

0.12 in a similar fashion. The link between the number of
exterior and internal iterations estimated for different cooling
rate values is depicted in the table.2.
The number of outer iterations defines the number of search
networks, whereas the number of inner iterations determines
the number of single network training iterations. As the
cooling rate, we chose 0.95, where the number of external
cycles is greater than the number of internal cycles, to ensure
that as many network structures as possible are searched for
and to avoid repeated training of a single network structure
as much as possible, thereby avoiding becoming trapped in a
local optimal solution of network selection.

2) Search range of neural network hyperparameters: In
this study, we utilize a 300-dimensional word2vec trained
by Mikolov [34] as the initial representation and continually
update the word vector during the training process, similar
to Kim’s [1] approach. In this paper, the empirical range of
hyperparameters to be tuned in the network is provided so
that the simulated annealing technique can search for a new
solution from the existing one. Expanding the range of search-
able hyperparameters may result in improved experimental
outcomes, provided computational resources permit.
• Conv:

– kernelCount: [32, 64, 96, 100, 128, 160, 256]
– dropoutRate: [0.1, 0.2, 0.3, 0.4, 0.5]

• fullyConnected:
– unitCount: [16, 32, 64, 128, 256, 512]
– dropoutRate: [0.1, 0.2, 0.3, 0.4, 0.5]

• learningProcess:
– activation: [relu, leaky relu, elu, tanh, linear]
– learningRate: [0.0001, 0.001, 0.01, 0.0002, 0.0005,

0.0008, 0.002, 0.004, 0.005, 0.008]

– batchSize: [64, 128, 256]

• seedNumber: 40
• ratioInit: 0.9

D. Experimental results and discussion

1) Comparison of model accuracy results: The following
table shows the accuracy of different CNN models for text
classification tasks on MR, CR and TREC datasets.

TABLE III
Accuracy of different models on the dataset.

Model MR CR TREC

CNN-rand 76.1 79.8 91.2
CNN-static 81.0 84.7 92.8

CNN-non-static 81.5 84.3 93.6
CNN-multichannel 81.1 85.0 92.2

D-CNN - - 93.0
MV-RNN 79.0 - -

SA-CNN(This article) 80.7 83.2 93.8

As shown in the table.3, on the MR and CR datasets,
the model presented in this paper outperformed other neural
network structures, leading the authors to conclude that, due
to a lack of computational resources, the parameter search
range was restricted and the optimal network was not found.
Nevertheless, the performance of the convolutional neural
network was utilized, and on the TREC dataset, the model SA-
CNN achieved the highest accuracy rate. Under the assumption
of using the same model structure, the experimental results
demonstrate that using the simulated annealing algorithm
to find the optimal hyperparameters not only reduces the
tediousness of manual parameter tuning, but also yields better
parameters than manual tuning if the search range is correct,
thereby achieving a high test accuracy.

2) Discussion of experimental results: In order to compre-
hend the characteristics of the ideal hyperparameters discov-
ered by the simulated annealing technique, the following tables
list the top 3 optimal hyperparameters sought by the algorithm
in the TREC dataset.



TABLE IV
TOP3 hyperparameters on TREC dataset.

Hyperparameters Top1 Top2 Top3

filter num of win 3 100 100 32
filter num of win 4 64 64 50
filter num of win 5 32 64 50
activation function tanh Relu Relu.85

Learning Rate 0.002 0.002 0.002
Dropout Rate 0.4 0.1 0.4

Batch size 64 64 64

Compared to manual tuning, the simulated annealing algo-
rithm may search for hyperparameter combinations that one
would not ordinarily consider; for instance, the number of
CNN convolutional kernels for the Top1 model on the TREC
dataset is 100, 64, and 32 for three different strings, which is a
combination that one would not ordinarily consider. Therefore,
by utilizing the simulated annealing process to optimize the
neural network’s hyperparameters, it is theoretically possible
to acquire hyperparameter combinations that have not been
considered or disregarded based on prior experience, and so
achieve improved performance.

V. CONCLUSION

In this article, we proposed a machine learning method com-
bining simulated annealing and convolutional neural networks.
The main goal is to adjust the hyperparameters of neural
networks using simulated annealing in order to prevent manual
tuning parameters into local optima, thus failing to enhance
neural network performance. The experimental results demon-
strate that the method of implementing simulated annealing
to tune the hyperparameters of a neural network is effective
in overcoming the constraints of manual parameter tuning,
is practical, and can be theoretically applied to additional
natural language processing problems. Due to the limited
resource space and the different cooling rate for defining the
initialization, which may result in different time costs and
architecture, the final solution may only be an approximate
optimal solution, and this approximation may differ. Conse-
quently, the simulated annealing method may be integrated
with other algorithms or the multi-objective simulated an-
nealing algorithm may be further optimized, thereby further
enhancing the efficiency of the simulated annealing algorithm
on neural network optimization.
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