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In applications of queueing network models to computer system performance prediction, the com- 
putational effort required to obtain an exact equilibrium solution of a model may not be justified by 
the accuracy actually required. In these cases, there is a need for approximation or bounding 
techniques that can provide the necessary information with less computational effort. This paper 
presents a new technique that yields performance bounds for single-class separable queueing networks 
consisting of fixed-rate and delay service centers. Unlike previous approximation or bounding 
techniques, there is a smooth trade-off between computational effort and accuracy. Any level of 
accuracy (including the exact solution) can be guaranteed by investing the necessary computational 
effort. Performance bounds that are sufficiently tight for most practical purposes may be obtained 
with a fraction of the effort required for the exact solution. Since bounds are produced, as opposed to 
approximations, guarantees about the accuracy of a model solution can be provided. 

Categories and Subject Descriptors: D.4.8 [Opera t ing  Systems]:  Performance--modeling and 
prediction; operational analysis; stochastic analysis 

General Terms: Measurement, Performance 

Additional Key Words and Phrases: Asymptotic analysis, balanced job bounds, bounding analysis, 
product form networks 

1. INTRODUCTION 

Queueing network models are widely used as aids in computer system perform- 
ance prediction. As a result of the infeasibility of computing the exact equilibrium 
solution of the most general form of queueing networks, a restricted class known 
as separable networks [12] has been used in practice. In this paper, separable 
networks with a single customer class and with fixed-rate and delay service 
centers are considered. Fixed-rate centers model system components that  have a 
single fixed rate at which customers are processed. Delay centers model system 
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components at which queueing does not occur (such as at a collection of termi- 
nals). 

The solution of separable networks requires substantially less computation 
than does the solution of those that are not separable. Even with separable 
networks, however, it may be the case that the accuracy required does not justify 
the computational effort of an exact solution. In these cases, approximation or 
bounding techniques can provide the necessary information with substantially 
less computational effort. 

Bounding can be used in conjunction with an approximation technique, or it 
can be used independently. In the former case, bounding provides a simple means 
of determining a nontrivial upper bound on the error in the approximation, an 
ability not found in most current approximation techniques. If the bounds are 
sufficiently tight, or the accuracy requirements of the model solution are suffi- 
ciently minimal, bounds can be used independently. In this case, bounds are 
preferable to approximations since they provide more reliable information about 
the location of the exact solution. 

To be useful, a bounding technique should be analytically simple, effective with 
a considerable reduction in computational effort, and reasonably accurate. Ideally, 
there should be a trade-off between computational effort and accuracy. 

Asymptotic bound analysis (ABA) [4, 6, 9] produces bounds on mean system 
residence time and system throughput by considering the extremes of system 
behavior: either no queueing delay takes place, or one or more centers operate at 
capacity. ABA bounds are, in general, very loose. They have the advantages of 
applying to a larger class of queueing networks than that  considered here, and of 
being analytically and computationally simple. 

Balanced job bounds {BJBs) [15] are derived by considering related queueing 
networks whose performance measures bound those of the original network. 
These related networks have the property that  all customers exhibit balanced 
resource usage, a property that produces computationally and analytically simple 
results. The bounds produced are bounds on mean system residence time and 
system throughput. Bounds on individual center performance measures that  
cannot be obtained directly from system measures have also been derived, in part 
by using ABA and BJB analysis [5]. 

In Figure 1, ABA bounds and BJBs are shown for a sample model. The model 
has fifty fixed-rate centers with loadings as follows: 1 center at 20/417, 2 at 
19/417, 5 at 18/417, 5 at 15/417, 5 at 10/417, 8 at 7/417, 8 at 5/417, 8 at 4/417, and 
8 at 2/417. The loading of a center is defined as the product of the mean service 
time per visit and the average number of visits per customer; for simplicity of 
notation, the unit of time measurement used in this paper is such that the sum of 
the fixed-rate center loadings equals one. A model with no delay centers has been 
chosen since the BJB technique does not efficiently treat models with this type 
of center. Another major disadvantage of BJBs (and ABA bounds) is that  there 
is no trade-off between computational effort and accuracy. If the accuracy 
provided by BJBs or ABA bounds is insufficient, either the technique must be 
abandoned or the model must be decomposed. ABA bounds, BJBs, or the bounds 
that will be presented here can be computed for a submodel, and the result can 
be combined with characteristics of the remaining centers to obtain an overall 
solution of the model. In general, this solution will be more accurate than that  
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Fig. 1. Asymptotic and balanced job bounds on 
system throughput (X(N)), and mean system resi- 
dence time (R(N)), as functions of the number of 
customers (N). 
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obtained by applying the respective bounding technique  directly to the entire 
model .  

In this paper, performance bound hierarchies (PBHs)  are developed.  A P B H  
consists  of  a hierarchy of  success ively  more  accurate upper or lower bounds  on a 
sys tem performance measure,  with  the exact solut ion as its limit. B y  utilizing a 
pair of  PBHs ,  one on each side of  the exact  solution,  any required accuracy level  
can be attained with  a corresponding level  of  computat iona l  effort. T h e  technique  
is also analytically simple,  being based on the M e a n  Value Analysis  (MVA) 
solut ion algorithm for separable networks  [10]. In fact, P B H s  can be v iewed as a 
link be tween  the exact solut ion algorithm and the single-class versions of  approx- 
imate M V A  methods  such as those  in [1, 2, 13, 14]. 

2. PERFORMANCE BOUND HIERARCHIES 

2.1 The PBH Approach 

For a fixed-rate center k, the central equat ion in the  M V A  solut ion algorithm is 

R k ( N )  = Lk[1  + E k ( N  - 1)], (1) 

where Rk (N) denotes  the m e a n  residence t ime of  a customer  at center k (in all of  
its visits to center k) w h e n  there are N customers  in the network,  Ek(N - 1) is 
the m e a n  queue length at center k w h e n  there are N - 1 cus tomers  in the  

ACM Transactions on Computer Systems, Vol. 1, No. 2, May 1983. 



102 D.L. Eager and K. C. Sevcik 

network, and Lk is the loading of center k [10]. For computational purposes, all 
of the delay centers in a model may be aggregated into a single delay center with 
a loading equal to the sum of the individual loadings [11]. The loading of an 
aggregate delay center will be denoted by Z. Since there is no queueing at a delay 
center, the mean residence time at an aggregate delay center will also be equal to 
Z. (In applying PBHs to a system with no delay centers, the value of Z is simply 
zero in the following development.) 

Indexing the fixed-rate centers of a queueing network model as centers 1 
through K, and the delay center as center K + 1, the mean system residence time 
R (N) will be defined as 

K 

R(N) = ~ Rk(N). (2) 
k = l  

As motivated by the usual application of delay centers to the modeling of terminal 
systems, R (N) excludes the residence time at the delay center. Little's equation 
[8] and the Forced Flow Law [4] yield, for each fixed-rate center k, 

Rk (N - 1) 
f f k ( N -  1) - ( N -  1). (3) 

Z + R (N - 1) 

Finally, eq. (3) may be substituted into eq. (1) to produce 

[ R k ( N - 1 )  ( N - l ) ] .  (4) 
Rk(N) = Lk I + Z + R ( N _  I) 

Equations (2) and (4) capture the relationship between mean residence times 
with some given population and those with one fewer customer. The exact MVA 
technique uses eqs. (2) and (4) in iterating from a population level of one up to 
the population level for which performance statistics are desired. Approximate 
MVA techniques utilize an approximation of this exact relationship; for example, 
in [13], it is assumed that Rk(N - 1)/(Z + R ( N  - 1)) = Rk(N) / (Z  + R(N)) .  
Approximate MVA iterations are usually confined to adjacent population levels, 
with the iteration continuing until the inexact approximating relationship pro- 
duces consistent level N and N - 1 performance measures (by eqs. (2) and (4)). 
Note that since approximate MVA is based in part on an inexact relationship, 
any convergence is not, in general, to the exact solution. 

In contrast, the PBHs that are presented here form a sequence of successively 
tighter optimistic and pessimistic bound pairs that converge to the exact solution. 
The members of the pessimistic (or optimistic) PBH are stated as upper (or 
lower) bounds on mean system residence time, but corresponding bounds on 
system throughput and center utilizations can be obtained in a straightforward 
manner by using Little's equation and the Forced Flow Law. PBHs are, like exact 
MVA, based on the exact relationship between the performance measures of 
adjacent population levels. Like approximate MVA, PBHs involve a variable 
number of iterations; in particular, a level i PBH bound may be computed with 
i iterations using eqs. (2) and (4). Unlike approximate MVA, since PBHs are 
based only on exact relationships, any level of accuracy can be attained by 
performing a sufficient number of iterations (although the number of iterations 
performed must be chosen in advance of the computation). 
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The  defining equations for the level i mean  system residence t ime bound 
R(i)(N)(i >_ 1) in a P B H  are 

[ R~ i - I ' (N-1)  ( N - 1 )  1 (5) R~i)(N) = Lk 1 + Z  + R(i-l)(N - 1) 

and 
K 

R~i~(N) = ~, R~°(N). (6) 

In these equations, the level i bound with N customers is derived from the level 
i - 1 bound with N - 1 customers. Note tha t  the level i - 1 bound cannot  be 
used to derive a t ighter  performance bound for the same populat ion level, but  
only for a population level with one additional customer. Assuming tha t  N is 
greater than  i, to calculate the level i bound with N customers it is necessary first 
to calculate the level 1 bound with N - i + 1 customers (using some choice of 
R~ °~ (N - i) values), then  to calculate the level 2 bound with N - i + 2 customers, 
until finally, continuing in this manner,  the level i bound with N customers is 
calculated. (For N _< i, the bound computat ion reduces to exact MVA.) 

Whatever  R~ °) (N - i) values are chosen, R~ i) (N) is exact for N <_ i, and as i 
increases, increasingly accurate approximations are produced,  in general, for 
N > i. However,  the choice of the R~ °) (N - i) values determines whether  the 
hierarchy members  are optimistic bounds, pessimistic bounds, or merely  approx- 
imations. In the next  two sections, initialization choices tha t  produce the desired 
bound hierarchies will be presented.  I t  will be seen tha t  the i terations of eqs. (5) 
and (6) can be carried out  symbolically to yield expressions tha t  are often much 
simpler analytically and computat ional ly than  the i terations themselves.  A P B H  
computat ion algorithm tha t  was derived from this symbolic i terat ion process is 
presented in Section 3. 

2.2 The Optimistic Hierarchy 

Each optimistic hierarchy member  will be denoted with a subscript opt. Th e  
initialization required is 

1 
R~°)opt (N) = ~ max[NLb - Z, 1], (7) 

where b is the index of a bot t leneck center  (a fixed-rate center  with a loading 
greater than  or equal to tha t  of any other  fixed-rate center).  Th e  optimistic 
initialization yields 

(o) R opt (N) = max[NL~ - Z, 1], (8) 

which corresponds exactly to the optimistic ABA bound (remembering tha t  the 
time unit  chosen here  is such tha t  loadings at the fixed-rate centers sum to unity).  
The  individual center residence t ime choices spread this residence t ime evenly 
among the K fixed-rate centers; this division is optimistic for highly loaded 
centers and pessimistic for lightly loaded centers. A proof  tha t  this choice yields 
a hierarchy of optimistic bounds is given in Appendix A. 
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Upon denoting max[NLb - Z, 1] by a(N),  eqs. (5), (7), and (8) yield 

[ R~l)  pt ( N )  
LkL1 K + a ( N -  

From eq. (6), 

(9) 

1 / a(_N_- 1) \ 
b ) ( N -  1). (10) R(o~)t(N) = 1 + ~, \ Z  + a(N - 1) 

When Z -- 0, corresponding to a model with no delay centers, this bound is exactly 
the BJB optimistic bound. 

The level 2 optimistic PBH member is given by 

1 ( a ( N - 2 )  2 ) /  
(2) ( I + ~" \ Z  + a ( N -  ( N -  2) / 

Ropt(N)= 1 + 8  1 [ a ( N -  2)2) )~ ( N - l ) ,  (11) 

Z + I  + ~ \ Z + a ( N _  ( N - 2 )  

where S = ~g=l L~. When Z = 0, this bound reduces to 

R(o2r)t(N) = 1 + S (N  - 1). (12) 

Any higher level optimistic bound can be similarly expressed analytically. In 
practice, the optimistic asymptotic bound a (N)(i.e., R(o~t (N)) is used in conjunc- 
tion with each optimistic PBH bound, since each PBH bound (of a level higher 
than zero) will eventually cross the asymptotic bound as N increases. When the 
asymptotic bound is greater than the PBH bound, the asymptotic bound is 
utilized. Note that if the asymptotic bound is not used in this manner, the 
optimistic hierarchy is not strictly nested, in that for some values of N a lower 
level bound (the level zero bound, for example) may be tighter than a higher level 
bound. However, there is evidence suggesting that when each bound is used in 
conjunction with the asymptotic bound, the hierarchy is strictly nested. 

These lower bounds on mean system residence time may also be expressed as 
upper bounds on system throughput or center utilizations. 

2.3 The Pessimistic Hierarchy 

Each pessimistic hierarchy member will be denoted with a subscript pess. The 
initialization required is 

0) { N  f o r k = b  
R~oess(N) = for k # b. (13) 

The pessimistic initialization yields 

R (o£, (N) = N, (14) 

which corresponds to the trivial ABA pessimistic bound. The individual center 
residence time choice is pessimistic for the bottleneck center and optimistic for 
all other centers. A proof that this choice guarantees a hierarchy of pessimistic 
bounds is given in Appendix B. This proof also shows that the hierarchy is nested, 
in that the level i bound is guaranteed to be at least as tight as the level i - 1 
bound. 
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Equations {5), {13), and (14) yield 

Lb 1 +  Z + N - 1  ( N - l )  f o r k = b  

R~'l~e's(N) = (15) 
Lk for k # b. 

From eq. (6), 

Rpess(N) = l + Lb Z + N - 1  ( N - l ) .  (16) 

When Z = 0, this bound corresponds exactly to the BJB pessimistic bound. 
The level 2 pessimistic PBH bound is 

Z L2 (N - 2) 2 \ S +  
.(2) N b(Z-7~'-Z-2) ~ N  ) = 1  + - 1). (17) 

+ 1 +Lb  - "~~--~-~7~)// 

If Z = 0, this reduces to 

R (2~ ~ = 1 + ( S  + L~,(N - 2)~( N _ 1). (18) pe,,,*,, \ 1  + L---~--  ~ ' )  

Any higher level pessimistic bound can be similarly derived. These upper bounds 
on mean system residence time may also be expressed as lower bounds on system 
throughput or center utilizations. Optimistic and pessimistic PBH members are 
shown in Figure 2 for the model of Figure 1. Figure 3 shows PBH bounds for the 
model as modified by the addition of an aggregate delay center, with loading 
4000/417. 

3. H I E R A R C H Y  PROPERTIES  

3.1 C o n v e r g e n c e  

Given level i optimistic and pessimistic PBH bounds, the width of the interval 
defined by these bounds can be explicitly calculated. If the tightness of the 
bounds is not sufficient, higher level PBH members can be utilized. (If the bound 
tightness indicates that the level i + j bounds might be appropriate, for example, 
it would be necessary to start over from R~ °) (N - i - j )  values.) To minimize the 
computational expense, it is useful to have information about the tightness of a 
pair of bounds prior to computing those bounds. In this section, some preliminary 
results on the speed of convergence of the optimistic and pessimistic hierarchies 
to the exact solution are presented. 

It is first necessary to choose a measure of bound tightness. The measure 
chosen here is the magnitude of the percent relative error in the optimal {with 
regard to minimizing the worst-case relative error) bound-based approximation. 
In the case of mean system residence time, this approximation can be shown to 
be 

( i)  ( i)  2R pess ( N ) R  opt (N) 
R(i) N (i) , (19) poss( ) + Ro,t(N) 
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Fig. 2. P B H  b o u n d s  on  s y s t e m  t h r o u g h p u t  a n d  

m e a n  s y s t e m  r e s i d e n c e  t i m e  as  func t i ons  of t he  
n u m b e r  of cus tomer s .  
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which has an associated worst-case (or maximal) relative error magnitude of 

(i) ~ (i)- ( N  Rvoss(N) -/~op~, ) 
× 100%. (20) 

R(i) N ,ess( ) + R(o~t(N) 

This maximal error would be attained only if one of the bounds coincided with 
the exact solution. Similar expressions hold for other performance measures such 
as system throughput. (However, the optimal throughput approximation and the 
optimal residence time approximation are not, in general, related by Little's 
equation.) 

The results that have been attained to date concern the supremum of the 
maximal errors associated with the level i bounds, considering all possible 
queueing networks of the type being treated and all possible population levels. 
This supremum is, in practice, overly pessimistic, as it has been found to occur as 
the number of centers and customers in the model tend to infinity. In fact, 
experimental results and analytical verification for small i have indicated that  
the supremum occurs as Lb ---> 0 and Lk /Lb  ~ 0 for all k ~ b (which means that  
the number of centers must tend to infinity, since ~ = 1  Lk ---- 1). Similar evidence 
shows that the population level that yields the supremum is that at which the 
level i optimistic bound intersects the asymptotic bound (past which point the 
asymptotic bound is used); this population level can be shown to tend to (Z + 1)/ 
Lb as Lb --~ 0 and Lk /Lb  ---* O. 
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Fig.  3. P B H  b o u n d s  o n  s y s t e m  t h r o u g h p u t  a n d  

m e a n  s y s t e m  r e s i d e n c e  t i m e  in  a s y s t e m  i n c l u d i n g  

a d e l a y  c e n t e r  a s  f u n c t i o n s  o f  t h e  n u m b e r  o f  cus -  

t o m e r s .  

For  this limit, each of the following limiting values hold: 

R~i~opt(N)  -----> Lk R,~e~ess(N) --o Lk for k % b 

Z + I  
R,~i~opt(N) ~ iLb R~i~e~(N) ~ i (21) 

Z + I  
R"L R (i) , o~,~(N) ---> 1 - . p e s s ( N )  o 1 -t i 

n(i) g n , )  Also, since apess( ) >- R ( N )  for all i, R ( N )  mus t  tend to 1. SinceKopL (N) also 
tends to 1, the maximal  error  a t  this limit mus t  be achieved, implying tha t  the 
s u p r e m u m  of the maximal  relative errors is also the s u p r e m u m  of the actual  
relative errors. I t  then  follows f rom eq. (20) and its equivalent  for sys tem 
th roughput  tha t  the s u p r e m u m  of the relat ive errors  in mean  sys tem residence 
t ime when using the level i bounds  is (Z + 1)/(2i + Z + 1) × 100%, while t ha t  for 
sys tem th roughput  is 1/(2i + 1) x 100%. These  resul ts  are worst-case results  and 
therefore  only provide an upper  bound on the error  encountered  in practice; in 
Figure 4, the actual  and maximal  relative errors  for the model  of Figure 3 and a 
populat ion level of 240 customers  are shown as functions of i. (Note tha t  a l though 
the actual error magni tude  for mean  sys tem residence t ime is not  monotonica l ly  
decreasing with i in this case, the bound on the magni tude  is.) 
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Fig. 4. Error  m e a s u r e s  of  a p p r o x i m a t i o n s  based  
on P B H s  as funct ions  of  the  b o u n d  leve l  uti l ized.  
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3.2 Computational Efficiency 

The straightforward method of calculating PBH bounds is to make direct use of 
the defining iterative equations. With this approach, each level of iteration 
requires approximately 4K arithmetic operations (the same as one iteration of 
MVA). Thus, the level i member of the optimistic or pessimistic PBH can be 
obtained in 4Ki operations. If i is chosen to be N, the exact solution is obtained 
in 4KN operations (as with exact MVA). When the approximate forms of MVA 
are used, convergence often requires ten iterations or more. Thus, with the same 
computational effort, at least the fifth level members of the optimistic and 
pessimistic PBH can be calculated. 

One way to improve the computational efficiency of PBH bounds is to utilize 
tighter hierarchy initializations. For example, a tighter pessimistic hierarchy 
initialization is obtained by using eqs. (15) and (16) (from the level 1 hierarchy 
member) in place of eqs. (13) and (14). Essentially, one MVA-like iteration is 
replaced by a more computationally complex initialization. 

However, PBH bounds can be calculated still more efficiently by not performing 
any MVA-like iterations at all. After calculating L (p) = ~ = 1  L~ for p = 1, 2, 
. . . .  i (which requires about 2Ki operations), the level i member of a PBH 
evaluated at N is given by f(i, 1, N), where 

f ( j , p ,  N )  = L (p) + f ( j  - 1 , p  + 1, N - 1) (N  - 1), (22) 
Z +  f ( j -  1, 1, N -  1) 
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and the boundary conditions are 

f (0, p, N) = NL~ -1 (23) 

for the pessimistic hierarchy, and 
L (P- 1) 

f (0, p, N) - - -  max[NLb - Z, 1] (24) 
K 

for the optimistic hierarchy. These equations can be verified using eqs. (5), (6), 
(7), and (13), noting that f (j, p, N) K = ~k=~ L~-IR~)(N). 

The evaluation of f (i, 1, N) requires approximately i2/2 function evaluations, 
each involving about four operations. (Thus, the computational cost of this 
formulation is related to that  of both the solution algorithm based on Polya's 
theory of enumeration [7] and CCNC [3].) Whenever i is chosen to be not much 
larger than K, this formulation is more efficient than the straightforward method 
based on MVA-like iterations. The results of the previous section and experimen- 
tal results suggest that, in practice, i would rarely be chosen to be significantly 
larger than K. 

4. CONCLUSIONS 

The performance bound hierarchy technique presented in this paper provides 
links among Mean Value Analysis, approximate solution algorithms based on 
Mean Value Analysis, and prior bounding techniques. The level 0 and i PBH 
members correspond, respectively, to ABA and BJB bounds. For a system with 
N customers, the exact solution is attained by the level N PBH member. With 
comparable computational cost, PBHs provide guaranteed bounds on perform- 
ance and convergence toward the exact solution (although each bound requires 
a separate computation), while the approximate MVA-based approaches produce 
results without any bound on the maximum possible error, and converge, in 
general, to an answer other than the exact solution. In systems with a very large 
number of devices and customers, the computational advantage of using an 
estimate based on PBH bounds rather than an exact MVA solution can be 
substantial. 

Performance bound hierarchies permit a smooth trade-off between accuracy 
and computational cost. For a stated constraint on accuracy, the bound level can 
be chosen to minimize the computational cost. Alternatively, for a given compu- 
tational budget, the bound level can be chosen such that  the most accurate 
possible answer is obtained. 

In the context of multiple customer classes, the likelihood is greater that  the 
computational cost (in both space and time) of an exact solution may be 
unacceptably high. We are currently developing PBHs for the case of multiple 
classes. 

APPENDIX A 

For simplicity of notation, ,'ik (N) and E~i)opt (N) will be denoted as nk and n ~  i) , 

respectively, in the following proof that each bound in the optimistic PBH is 
indeed an optimistic bound. Also, the fixed-rate centers are assumed to be indexed 
such that Lk ___ Lk+l for 1 _ k _< K - 1. It is first necessary to prove the following 
lemma. 
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L E M M A .  

T h e n  

a n d  

Suppose  tha t  for  s o m e  i >_ 0, 

n )  i) n j  
2 < _ j < _ K +  1. (A-l )  

J J 

nk >_ Y, n~ i) 2 _ j _< K + 1, (A-2) 
k ~ l  k ~ l  

~,/~=l Lknk  > ~ '~1  Lkn~ i) 
2 ~ j ~< K. (A-3) 

2 " ~ 1  n k  - -  2 ~ 1  n~ i) 

PROOF OF RELATION A-2. The  proof  is by downwards induction on j .  For  j 
K'~K+I n (i) = K + 1, ~K+~ nk = N = ~k=~ k , establishing the induction basis. 

Assume tha t  relat ion A-2 holds for j + 1, where 2 _ j _ K, and consider the 
relation for j .  Relat ion A-1 applied f o r j  + 1 yields 

n ~i) , (i) . E~=l nk 2Jk=, n~  ~ J + l  n j + l  n j + l  , v j + l  

~,i÷1 n~i~ ~- Yi+-A ~ ~ ~'~+~ n >- 1 -  ~ ~ ~ _  v~+x n~i~. 

Since ~+_-~ n~ >/ ,~=1 ~ by the inductive hypothesis,  it must  be the case tha t  
~ 1  n~ _> ~ = ~  n~); therefore,  relat ion A-2 is established for j .  By induction, 
relation A-2 is established for 2 _ j _< K + 1. [] 

PROOF OF RELATION A-3. 
A-3 becomes 

Since L~ _> L2 and 

The  proof  is by induction on j.  For  j = 2, relat ion 

L l n l  + L2n2 L ln~  ° + L2n~ i~ 

n l  + n2  - -  n ~  i) + n ~  i~ 

n ~i) n2 

n t  i) + n~ i ) -  nl  + n2 

by relation A- l ,  this relat ion will hold if 

L l n l  + Lln2 L ln~  i) + L l n ~  i) 

nl + n2 - n~ i~ + n~ i~ 

As this expression is an equality, the induction basis is shown. 
Assume tha t  relat ion A-3 holds for j ,  where 2 _<j < K, and consider the relat ion 

for j + 1. First, note  tha t  

y j+l L n ~i~ k ~ l  k k 

~j+l  nq) k = l  k 

is maximized for minimized-(i~ since for - (/) > > 0, • ~ J + l  E • v j + l ,  - -  - -  

~ 1  L n (i~ (i~ v j+l L rt  (i) k k + L j + l ( n j ÷ ~ -  e) <z:'~=l h k 
2~+__~ n~i, _ ~ 2 t+~ n~i) ~ Lj+,  2~+_-~ n~ i~ > 2~+= 1L~n~". 
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Given the assumed center  indexing, this last  relat ion is a contradiction.  Therefore ,  
relat ion A-3 need only be shown under  the assumpt ion  t ha t  .~j+l- (~) is minimized, 
which by  relat ion A-1 corresponds to 

n li) n j+ l  j + l  

~ = ~ 1 + 1  n " ? , k ~ l  k / ~ k ~ l  k 

Start ing with the inductive hypothesis ,  it follows tha t  

~ '~ l  Lknk > ~ = l  Lkn~i) ( nj+l ) ~ l  Lknk 
2"~=1 nk -- 2~=1 n~ i) =:* 1 -- 2~+=11nk 2 i - l  nk 

Since 

n)i)+l ) 2~-1Lkn~  i) 
>_ 1 v T ~  n ~, ) ~T=I " -~  /_,h= l k 

2/~=1 Lknk 2 ~ = 1  Lkn~ i) 

L j + l n j + l  Lj+lnj+l (i) 

by assumption,  this last  relat ion establishes relat ion A-3 for j ÷ 1. By  induction, 
relat ion A-3 is established for 2 _< j __ K, which establishes the  lemma.  [] 

The  main  result  can now be shown. 

T H E O R E M .  

and  

For all i >_ 0, N _> 1, 

R ( N )  >_ R(o~t(N), (A-4) 

n} ~) nj 
> - -  for 2 _ < j _ < K + I .  (A-5) 

2 ~ 1  n~ i) - -2~-1  nk 

PROOF. The  proof  is by  induction on i. 
Consider i = 0. By  the correctness  of ABA, 

- -  ---- Ropt (N). R (N) - m a x [ N L b  Z, 1] (o) 

Also, for 2 _ j <_ K, relat ion A-5 becomes 

a ( N )  1 
N 

nJ °) Z + a (N) K 1 n i - - - . : ~  . 
Z~-I n~ °) a ( N )  1 J ~,~-1 nk 

J Z + a ( N )  K N 

This  last  relat ion holds since L1 -> L2 - • • • - LK implies t ha t  nl >-- n2 >-- • . .  >-- nK. 
Finally, for j -- K + 1, relat ion A-5 becomes  

Z 
N 

n~)+l Z + a ( N )  Z Z nK+l 
~ K + I  n(O) z2k=l ~ N Z + a ( N ) - -  Z + R ( N )  nk" 

The  induction basis is now established. 
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Assume that the theorem holds for i, and consider the theorem for i + 1 (i - 
0). For N = 1, relations A-4 and A-5 are equalities; therefore, only N + 1 (N ___ 1) 
need be considered. The preceding lemma applied with the inductive hypothesis 
yields 

K Y~k=l Lknk >_ 2kK~l Lkn~ i) 

2t(=1 nk 21~--1 n~ ') ' 

and 
K K 

Z nk>-- 2 n~i). 
k = l  k = l  

Applying the latter relation to the former yields 
K K 

Z Lknk >-- 2 Lkn~i), 
kffil k=l  

implying that 
K 

R ( N +  i) -- F, 
K 

Lk(1 + nk) > ~ Lk(1 + n~ i)) P(i+l)[Nr - -  ~ ~ t o p t  ~z,  + 1). 
k = l  

This establishes relation A-4 for i + 1. 
Now, assume that relation A-5 does not hold for i + 1 for some j, where 2 ~ j 

rT(/+1) _ K. The definitions of Ek (N + i) and ~ opt (N + I) then yield 

Lj(1 + n) i)) (N + 1) Lj(1 + nj) (N + i) 
D(i+l)t~,r + 1) Z+ R(N + 1) 

< Lk(1 + nk) ( N +  1) Lk(1 + n~ i)) (N + 1) ~=1 Z + R ( N  + 1) 
~ = 1  Z "}- R(oip+t')(N + 1) 

1 + nJ ~) 1 + nj =:,. < 
Egffil Lk(1 + n~ i)) E~ffi~ Lk(1 + nD" 

From the inductive hypothesis and the previous lemma, this yields 
Z/~=, n i  i) 

l + n ~  ~g=l nk l + n /  
< 

Z~=I n• )Z~_I Lknk Z ~ ,  Lk(1 + n D "  
Z~=, Lk ~ Zi=~ nk 

Multiplying the numerator and denominator of the left-hand side by Y,{=ank, 
cross-multiplying, and then simplifying produces 

Lknk n k -  ~ n~ i) < nj Lk ~ n~ i) k=l a k=, k=, a nk -- . 
= = k = l  ] 

From the preceding lemma and the inductive hypothesis, ~=~ nk - Y/k=ln~ i) >-- 0; 
this fact applied to the preceding inequality yields 

J J 
Z Lknk < nj ~ Lk. 

k = l  k = l  
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Since n l  --> n2  --> 

relat ion A-5 is established for 2 _< j __ K. 
For  j = K + 1, relat ion A-5 becomes  

Z 
(N + 1) 

o ( i + l )  
Z ÷ l t o p t  (N + 1) 

N + I  

• ' '  >-- nK, this last  inequali ty is a contradiction.  Therefore ,  

Z 

Z +  R ( N  + 1) 

N + I  

Z 

(N + 1) 

Z 
]E;) ( i +  1 ) Z "[- - $ o p t  (N + 1) Z + R (N + 1) 

- -  D ( i +  1) As it has  been established tha t  R (N + 1) > ~opt (N + 1), this  last  relat ion holds. 
Relat ion A-5  and the t heo rem are therefore  establ ished for i + 1. By  induction, 
the theorem is established for i _> 0. [] 

APPENDIX B 

In the following proof  tha t  the pessimistic P B H  forms a nested h ierarchy of 
pessimistic bounds,  E~i)pe~ (N) and E li÷l) ,~pess  ( N )  will be denoted by  n~ i) and n~ i+'), 
respectively. Since ~n(i)pe~ (N) is exact  for i _> N, it need only be shown tha t  
R(i) N R(i+l) /~"  ,e~s( ) >  for i_> 0, N >  1. - -  ~ p e s s  x * ,  ,' 

T H E O R E M .  

a n d  

For  i >_ 0, N>_ 1, 

R (i),es~ ,eNd, _> R~ie+,~)(N) (B- l )  

n~ i) >_ n~ i+1) , (B-2) 

n~ i+ll>_n~ il l < _ k < _ K ,  k # b .  (B-3) 

PROOF. The  proof  will be by induction on i. Consider i = 0. 

R(O) ~N~ = N>_ I + L ~ ( z N - 1  ) l:~(1) ~N~ pes~, , ~ . ~ -  1 ( N -  1) = ~*pe~, ,, 

establishing relat ion B-1.  For  i = 0, relat ion B-2  becomes  

N y > _  R}}~e~(N) N 
(1) Z + N Z + Rpe~(N)  

(~) N ¢* N(Rpess( ) - R~l)pess(N)) + Z ( N  - R~I),e~(N)) >__ O. 

This  last  relat ion is easily seen to hold. Finally, relat ion B-3  holds for i = 0 since 
n~ °) = 0 for k # b. The  induction basis is now established. 

Assume tha t  the t heo rem holds for i _> 0 and consider i + 1. For  N = 1, relat ions 
B - l ,  B-2,  and B-3  are equalities; therefore,  only N + 1 (N >_ 1) need be 
considered. Relat ion B-1 becomes 

K K 
R(i+2)/N + 1) ¢* ~, Lk(1 + n~ i)) > ~ Lk(1 + n~ i+1)) R ( i + i ) ( N  ÷ 1) > . * p  . . . . . .  

~ pess - -  
k = l  k = l  

<=> Lb(n~, i) -- n~, i+1~) -- ~ Lk(n~ i+1~ -- n~ il) >_ O. 
k~b 
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From the inductive hypothesis,  each te rm in the above expression is nonnegative.  
This implies tha t  the above relation will be established if it can be shown tha t  

L b ( n ~  i) - n~ i+1)) -- ~ L b ( n ~  i+1) - n~ i)) > 0. 
k#b 

By dividing through by Lb, and noting tha t  

g ~(i) N a , e . (  ) 
E n~i )= (i) N N 

k=l Z ÷ Rpess(  ) 

and 
K 
Z n ~ i + l ) -  R~i~)(N) 

k=l Z "~ ~ ( i + l ) / h ] ' J  N, ~* pess x - , /  

it can be seen tha t  this is equivalent  to 

R (i) ~N~ R( i+l ) t~  peas', / -*pess x-* ! 

r.(i) N R (i+~)tM] " Z + a p e . s (  ) - - Z +  , e ~ . - . .  

(i) Y ~(i+1) tN) Since Rpe~( ) - > -.p.,, , . , ,  by the inductive hypothesis,  this last relat ion holds, 
and relation B-1 is established for i + 1. 

Relation B-1 then  yields 
R i+I)/M ] q ~ ( i + 2 ) / T V  + 1) pess x - , ÷  1) -*pess x-, 

P(i+I)(N+ 1) ( N +  1) ~ p(i+Z)lN ( N +  1). Z -[- --pess Z + --pe~ , + 1) 

Expanding the numerators  produces 
~ p{i+2) i N  R~i+:~(N + 1) . . . p  . . . .  -]- 1) 

~(i+1) (N + 1) _ R(i+2)t~ ¢ (N + 1). k = l Z + . . p e ~  ( N +  1) k = l Z +  ,ess ,-, + 1) 

From this last ~:elation, it can be seen tha t  relat ion B-2 or relat ion B-3 could be 
violated for i + 1 (at N + 1) only if there  is a center  k ~ b such tha t  

R i+~) N R i+z) N ~pe~( + 1) ~ve~( + 1) 
Z +  R ~ : ) ( N +  1) ( N +  1 ) > Z + . . p e , ,  u (~+2) (N + 1) (N + 1) 

Lk(1 + n~ i)) Lk(1 + n~ i+1)) 
P(i+I)(N + 1) > t~(i+z)tN + 1) Z "~ . .  pess Z ÷ .~ pess ", '" 

(i+ 1)/M L h ( 1  + n~ i)) Z ÷ --pess , - ,  ÷ 1) 

]?(i+2)/~V ÷ 1) " L k ( l + n ~  i+1)) Z + . . ,  . . . . . .  

However, the r ight-hand side has been proven to be greater  than  or equal to 1, 
and the left-hand side is less than  or equal to one by the inductive hypothesis.  As 
this is a contradiction, relations B-2 and B-3 and the theorem are established for 
i + 1. By induction, the theorem is established for i _> 0. [] 
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After this paper was accepted for presentation at the 1982 ACM SIGMETRICS 
Conference on Measurement and Modeling of Computer Systems, and while it 
was being refereed for publication, we learned that Professor Rajan Suri of 
Harvard University had independently formulated a generalization of BJBs quite 
similar to PBH bounds, calling them Generalized Quick Bounds. 
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