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In applications of queueing network models to computer system performance prediction, the com-
putational effort required to obtain an exact equilibrium solution of a model may not be justified by
the accuracy actually required. In these cases, there is a need for approximation or bounding
techniques that can provide the necessary information with less computational effort. This paper
presents a new technique that yields performance bounds for single-class separable queueing networks
consisting of fixed-rate and delay service centers. Unlike previous approximation or bounding
techniques, there is a smooth trade-off between computational effort and accuracy. Any level of
accuracy (including the exact solution) can be guaranteed by investing the necessary computational
effort. Performance bounds that are sufficiently tight for most practical purposes may be obtained
with a fraction of the effort required for the exact solution. Since bounds are produced, as opposed to
approximations, guarantees about the accuracy of a model solution can be provided.

Categories and Subject Descriptors: D.4.8 [Operating Systems]: Performance—modeling and
prediction; operational analysis; stochastic analysis

General Terms: Measurement, Performance

Additional Key Words and Phrases: Asymptotic analysis, balanced job bounds, bounding analysis,
product form networks

1. INTRODUCTION

Queueing network models are widely used as aids in computer system perform-
ance prediction. As a result of the infeasibility of computing the exact equilibrium
solution of the most general form of queueing networks, a restricted class known
as separable networks [12] has been used in practice. In this paper, separable
networks with a single customer class and with fixed-rate and delay service
centers are considered. Fixed-rate centers model system components that have a
single fixed rate at which customers are processed. Delay centers model system
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components at which queueing does not occur (such as at a collection of termi-
nals).

The solution of separable networks requires substantially less computation
than does the solution of those that are not separable. Even with separable
networks, however, it may be the case that the accuracy required does not justify
the computational effort of an exact solution. In these cases, approximation or
bounding techniques can provide the necessary information with substantially
less computational effort.

Bounding can be used in conjunction with an approximation technique, or it
can be used independently. In the former case, bounding provides a simple means
of determining a nontrivial upper bound on the error in the approximation, an
ability not found in most current approximation techniques. If the bounds are
sufficiently tight, or the accuracy requirements of the model solution are suffi-
ciently minimal, bounds can be used independently. In this case, bounds are
preferable to approximations since they provide more reliable information about
the location of the exact solution.

To be useful, a bounding technique should be analytically simple, effective with
a considerable reduction in computational effort, and reasonably accurate. Ideally,
there should be a trade-off between computational effort and accuracy.

Asymptotic bound analysis (ABA) [4, 6, 9] produces bounds on mean system
residence time and system throughput by considering the extremes of system
behavior: either no queueing delay takes place, or one or more centers operate at
capacity. ABA bounds are, in general, very loose. They have the advantages of
applying to a larger class of queueing networks than that considered here, and of
being analytically and computationally simple.

Balanced job bounds (BJBs) [15] are derived by considering related queueing
networks whose performance measures bound those of the original network.
These related networks have the property that all customers exhibit balanced
resource usage, a property that produces computationally and analytically simple
results. The bounds produced are bounds on mean system residence time and
system throughput. Bounds on individual center performance measures that
cannot be obtained directly from system measures have also been derived, in part
by using ABA and BJB analysis [5].

In Figure 1, ABA bounds and BJBs are shown for a sample model. The model
has fifty fixed-rate centers with loadings as follows: 1 center at 20/417, 2 at
19/417,5 at 18/417, 5 at 15/417, 5 at 10/417, 8 at 7/417, 8 at 5/417, 8 at 4/417, and
8 at 2/417. The loading of a center is defined as the product of the mean service
time per visit and the average number of visits per customer; for simplicity of
notation, the unit of time measurement used in this paper is such that the sum of
the fixed-rate center loadings equals one. A model with no delay centers has been
chosen since the BJB technique does not efficiently treat models with this type
of center. Another major disadvantage of BJBs (and ABA bounds) is that there
is no trade-off between computational effort and accuracy. If the accuracy
provided by BJBs or ABA bounds is insufficient, either the technique must be
abandoned or the model must be decomposed. ABA bounds, BJBs, or the bounds
that will be presented here can be computed for a submodel, and the result can
be combined with characteristics of the remaining centers to obtain an overall
solution of the model. In general, this solution will be more accurate than that
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X(N)

Fig. 1. Asymptotic and balanced job bounds on
system throughput (X(N)), and mean system resi-
dence time (R(N)), as functions of the number of
customers (N).

R(N)

—-— ABA Bounds
————— BJBs
Exact Solution

obtained by applying the respective bounding technique directly to the entire
model.

In this paper, performance bound hierarchies (PBHs) are developed. A PBH
consists of a hierarchy of successively more accurate upper or lower bounds on a
system performance measure, with the exact solution as its limit. By utilizing a
pair of PBHs, one on each side of the exact solution, any required accuracy level
can be attained with a corresponding level of computational effort. The technique
is also analytically simple, being based on the Mean Value Analysis (MVA)
solution algorithm for separable networks [10]. In fact, PBHs can be viewed as a
link between the exact solution algorithm and the single-class versions of approx-
imate MVA methods such as those in [1, 2, 13, 14].

2. PERFORMANCE BOUND HIERARCHIES
2.1 The PBH Approach

For a fixed-rate center k, the central equation in the MV A solution algorithm is
R (N) = Li[1 + nn(N — 1)], (1)

where R, (N) denotes the mean residence time of a customer at center & (in all of
its visits to center k) when there are N customers in the network, 72 (N — 1) is
the mean queue length at center 2 when there are N — 1 customers in the
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network, and L, is the loading of center & [10]. For computational purposes, all
of the delay centers in a model may be aggregated into a single delay center with
a loading equal to the sum of the individual loadings [11]. The loading of an
aggregate delay center will be denoted by Z. Since there is no queueing at a delay
center, the mean residence time at an aggregate delay center will also be equal to
Z. (In applying PBHs to a system with no delay centers, the value of Z is simply
zero in the following development.)

Indexing the fixed-rate centers of a queueing network model as centers 1
through K, and the delay center as center K + 1, the mean system residence time
R (N) will be defined as

K
R(N) =kz_: Ry (N). (2)

As motivated by the usual application of delay centers to the modeling of terminal
systems, R (N) excludes the residence time at the delay center. Little’s equation
[8] and the Forced Flow Law [4] yield, for each fixed-rate center £,

AN = 1) =NV = 1)

~ZTRN-T (N - 1). (3

Finally, eq. (3) may be substituted into eq. (1) to produce

RV - 1) (N—1>}. )

Equations (2) and (4) capture the relationship between mean residence times
with some given population and those with one fewer customer. The exact MVA
technique uses eqgs. (2) and (4) in iterating from a population level of one up to
the population level for which performance statistics are desired. Approximate
MVA techniques utilize an approximation of this exact relationship; for example,
in [13], it is assumed that R,(N — 1)/(Z + R(N — 1)) = R.(N)/(Z + R(N)).
Approximate MVA iterations are usually confined to adjacent population levels,
with the iteration continuing until the inexact approximating relationship pro-
duces consistent level N and N — 1 performance measures (by eqs. (2) and (4)).
Note that since approximate MVA is based in part on an inexact relationship,
any convergence is not, in general, to the exact solution.

In contrast, the PBHs that are presented here form a sequence of successively
tighter optimistic and pessimistic bound pairs that converge to the exact solution.
The members of the pessimistic (or optimistic) PBH are stated as upper (or
lower) bounds on mean system residence time, but corresponding bounds on
system throughput and center utilizations can be obtained in a straightforward
manner by using Little’s equation and the Forced Flow Law. PBHs are, like exact
MVA, based on the exact relationship between the performance measures of
adjacent population levels. Like approximate MVA, PBHs involve a variable
number of iterations; in particular, a level i PBH bound may be computed with
1 iterations using eqgs. (2) and (4). Unlike approximate MVA, since PBHs are
based only on exact relationships, any level of accuracy can be attained by
performing a sufficient number of iterations (although the number of iterations
performed must be chosen in advance of the computation).
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The defining equations for the level i mean system residence time bound
RY(N)(i = 1) in a PBH are

R};i—l)(N _ 1)
Z+RTIN-1)

RX)(N)=Lk[1+ (N—I)} (5)

and
R(')(N) = E R}e’)(N)- (6)
k=1

In these equations, the level i bound with N customers is derived from the level
i — 1 bound with N — 1 customers. Note that the level { — 1 bound cannot be
used to derive a tighter performance bound for the same population level, but
only for a population level with one additional customer. Assuming that N is
greater than i, to calculate the level i bound with N customers it is necessary first
to calculate the level 1 bound with N — { + 1 customers (using some choice of
R{P (N — i) values), then to calculate the level 2 bound with N — i + 2 customers,
until finally, continuing in this manner, the level i bound with N customers is
calculated. (For N < i, the bound computation reduces to exact MVA))

Whatever R (N — i) values are chosen, R}? (N) is exact for N < i, and as i
increases, increasingly accurate approximations are produced, in general, for
N > i. However, the choice of the R (N — i) values determines whether the
hierarchy members are optimistic bounds, pessimistic bounds, or merely approx-
imations. In the next two sections, initialization choices that produce the desired
bound hierarchies will be presented. It will be seen that the iterations of eqgs. (5)
and (6) can be carried out symbolically to yield expressions that are often much
simpler analytically and computationally than the iterations themselves. A PBH
computation algorithm that was derived from this symbolic iteration process is
presented in Section 3.

2.2 The Optimistic Hierarchy

Each optimistic hierarchy member will be denoted with a subscript opt. The
initialization required is

R (N) = %max[NLb -Z,1], (N

where b is the index of a bottleneck center (a fixed-rate center with a loading
greater than or equal to that of any other fixed-rate center). The optimistic
initialization yields

RO(N) = max[NL, — Z, 1], 8)

which corresponds exactly to the optimistic ABA bound (remembering that the
time unit chosen here is such that loadings at the fixed-rate centers sum to unity).
The individual center residence time choices spread this residence time evenly
among the K fixed-rate centers; this division is optimistic for highly loaded
centers and pessimistic for lightly loaded centers. A proof that this choice yields
a hierarchy of optimistic bounds is given in Appendix A.
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Upon denoting max[NL, — Z, 1] by a(N), egs. (5), (7), and (8) yield

0 (N) = 1 eW-1 \n_
R’aopt(N) Lk[l +K(Z+a(N—1))(N 1)] (9)
From eq. (6),
w _ 1 a(N-1) _ A
R (N)=1+ x <—————-Z+ aN =1 (N -1). (10)

When Z = 0, corresponding to a model with no delay centers, this bound is exactly
the BJB optimistic bound.
The level 2 optimistic PBH member is given by

1 a(N-2) _
1+E<Z+a(N—2) (N —-2)

RBIN)=1+S (N-1), (11
Z+1 +1 (20 =2 Ny
K\Z+ a(N —2)
where S = Y£_; L}. When Z = 0, this bound reduces to
RZ(N)=1+S(N-1). (12)

Any higher level optimistic bound can be similarly expressed analytically. In
practice, the optimistic asymptotic bound a (N)(i.e., R5%(N)) is used in conjunc-
tion with each optimistic PBH bound, since each PBH bound (of a level higher
than zero) will eventually cross the asymptotic bound as N increases. When the
asymptotic bound is greater than the PBH bound, the asymptotic bound is
utilized. Note that if the asymptotic bound is not used in this manner, the
optimistic hierarchy is not strictly nested, in that for some values of N a lower
level bound (the level zero bound, for example) may be tighter than a higher level
bound. However, there is evidence suggesting that when each bound is used in
conjunction with the asymptotic bound, the hierarchy is strictly nested.

These lower bounds on mean system residence time may also be expressed as
upper bounds on system throughput or center utilizations.

2.3 The Pessimistic Hierarchy

Each pessimistic hierarchy member will be denoted with a subscript pess. The
initialization required is

N fork=b»>

R}eol))ess(N) = {0 for k i b. (13)

The pessimistic initialization yields
R{%(N) = N, (14)

which corresponds to the trivial ABA pessimistic bound. The individual center
residence time choice is pessimistic for the bottleneck center and optimistic for
all other centers. A proof that this choice guarantees a hierarchy of pessimistic
bounds is given in Appendix B. This proof also shows that the hierarchy is nested,
in that the level i bound is guaranteed to be at least as tight as the level i — 1
bound.
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Equations (5), (13), and (14) yield

N-1
) Lb(l + (m)(N - 1)) fork=54
R pess(N) = (15)
L, for £ # b.

From eq. (6),

RB(N) =1+ Lb<Z+—];il>(N —-1). (16)

When Z = 0, this bound corresponds exactly to the BJB pessimistic bound.
The level 2 pessimistic PBH bound is

— 2
§+L (Z(ZJ\: N2-z %)
RE(N)=1+ — (N =1). (17)
Z+1+ L, =2
*Z+N-2)
If Z = 0, this reduces to
S+ L3N - 2)
@) = -
RE(N) =1+ (1 TLN=D) (N -1). (18)

Any higher level pessimistic bound can be similarly derived. These upper bounds
on mean system residence time may also be expressed as lower bounds on system
throughput or center utilizations. Optimistic and pessimistic PBH members are
shown in Figure 2 for the model of Figure 1. Figure 3 shows PBH bounds for the
model as modified by the addition of an aggregate delay center, with loading
4000/417.

3. HIERARCHY PROPERTIES

3.1 Convergence

Given level i optimistic and pessimistic PBH bounds, the width of the interval
defined by these bounds can be explicitly calculated. If the tightness of the
bounds is not sufficient, higher level PBH members can be utilized. (If the bound
tightness indicates that the level i + j bounds might be appropriate, for example,
it would be necessary to start over from R (N — i — j) values.) To minimize the
computational expense, it is useful to have information about the tightness of a
pair of bounds prior to computing those bounds. In this section, some preliminary
results on the speed of convergence of the optimistic and pessimistic hierarchies
to the exact solution are presented.

It is first necessary to choose a measure of bound tightness. The measure
chosen here is the magnitude of the percent relative error in the optimal (with
regard to minimizing the worst-case relative error) bound-based approximation.
In the case of mean system residence time, this approximation can be shown to
be

2R I(iie)ss (N)Ry};t (N)
Rl()lgss(N) + Rg’l;t(N) ’
ACM Transactions on Computer Systems, Vol. 1, No. 2, May 1983,
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which has an associated worst-case (or maximal) relative error magnitude of
R;()lgss(N) - Rc()l;;t(N)
Rggss(N) + R(()l[;t(N)

This maximal error would be attained only if one of the bounds coincided with
the exact solution. Similar expressions hold for other performance measures such
as system throughput. (However, the optimal throughput approximation and the
optimal residence time approximation are not, in general, related by Little’s
equation.)

The results that have been attained to date concern the supremum of the
maximal errors associated with the level { bounds, considering all possible
queueing networks of the type being treated and all possible population levels.
This supremum is, in practice, overly pessimistic, as it has been found to occur as
the number of centers and customers in the model tend to infinity. In fact,
experimental results and analytical verification for small { have indicated that
the supremum occurs as L, — 0 and L./L, — 0 for all 2 % b (which means that
the number of centers must tend to infinity, since Z’;Ll L, = 1). Similar evidence
shows that the population level that yields the supremum is that at which the
level i optimistic bound intersects the asymptotic bound (past which point the
asymptotic bound is used); this population level can be shown to tend to (Z + 1)/
Lb as Lb — 0 and Lk/Lb — 0.
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For this limit, each of the following limiting values hold:

Rt (N) — Ly R¥ess(N) = Ly, fork#b

. . Z+1
RE.«(N) — iLs R{ess(N) — — (21)
RO(N) — 1 ROLN) > 1+ Zj .

Also, since RY..(N) = R(N) for all i, R(N) must tend to 1. Since R (N) also
tends to 1, the maximal error at this limit must be achieved, implying that the
supremum of the maximal relative errors is also the supremum of the actual
relative errors. It then follows from eq. (20) and its equivalent for system
throughput that the supremum of the relative errors in mean system residence
time when using the level { bounds is (Z + 1)/(2{ + Z + 1) X 100%, while that for
system throughput is 1/(2f + 1) X 100%. These results are worst-case results and
therefore only provide an upper bound on the error encountered in practice; in
Figure 4, the actual and maximal relative errors for the model of Figure 3 and a
population level of 240 customers are shown as functions of i. (Note that although
the actual error magnitude for mean system residence time is not monotonically
decreasing with i in this case, the bound on the magnitude is.)
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3.2 Computational Efficiency

The straightforward method of calculating PBH bounds is to make direct use of
the defining iterative equations. With this approach, each level of iteration
requires approximately 4K arithmetic operations (the same as one iteration of
MVA). Thus, the level i member of the optimistic or pessimistic PBH can be
obtained in 4Ki operations. If i is chosen to be N, the exact solution is obtained
in 4KN operations (as with exact MVA). When the approximate forms of MVA
are used, convergence often requires ten iterations or more. Thus, with the same
computational effort, at least the fifth level members of the optimistic and
pessimistic PBH can be calculated.

One way to improve the computational efficiency of PBH bounds is to utilize
tighter hierarchy initializations. For example, a tighter pessimistic hierarchy
initialization is obtained by using egs. (15) and (16) (from the level 1 hierarchy
member) in place of egs. (13) and (14). Essentially, one MVA-like iteration is
replaced by a more computationally complex initialization.

However, PBH bounds can be calculated still more efficiently by not performing
any MVA-like iterations at all. After calculating L” = YK, L% for p = 1, 2,

.., I (which requires about 2Ki operations), the level { member of a PBH
evaluated at N is given by f (i, 1, N), where

fU-Lp+1LN-1)
Z+f(j-1L,1L,N-1)
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and the boundary conditions are
f©,p, N) = NL§™! (23)

for the pessimistic hierarchy, and
(p—1)

fO,p,N) =

max[NL, — Z, 1] (24)

for the optimistic hierarchy. These equations can be verified using egs. (5), (6),
(7), and (13), noting that f (j, p, N) = Y5, L 'R (N).

The evaluation of f (i, 1, N) requires approximately ;%/2 function evaluations,
each involving about four operations. (Thus, the computational cost of this
formulation is related to that of both the solution algorithm based on Polya’s
theory of enumeration [7] and CCNC [3].) Whenever i is chosen to be not much
larger than K, this formulation is more efficient than the straightforward method
based on MVA-like iterations. The results of the previous section and experimen-
tal results suggest that, in practice, i would rarely be chosen to be significantly
larger than K.

4. CONCLUSIONS

The performance bound hierarchy technique presented in this paper provides
links among Mean Value Analysis, approximate solution algorithms based on
Mean Value Analysis, and prior bounding techniques. The level 0 and 1 PBH
members correspond, respectively, to ABA and BJB bounds. For a system with
N customers, the exact solution is attained by the level N PBH member. With
comparable computational cost, PBHs provide guaranteed bounds on perform-
ance and convergence toward the exact solution (although each bound requires
a separate computation), while the approximate MV A-based approaches produce
results without any bound on the maximum possible error, and converge, in
general, to an answer other than the exact solution. In systems with a very large
number of devices and customers, the computational advantage of using an
estimate based on PBH bounds rather than an exact MVA solution can be
substantial.

Performance bound hierarchies permit a smooth trade-off between accuracy
and computational cost. For a stated constraint on accuracy, the bound level can
be chosen to minimize the computational cost. Alternatively, for a given compu-
tational budget, the bound level can be chosen such that the most accurate
possible answer is obtained.

In the context of multiple customer classes, the likelihood is greater that the
computational cost (in both space and time) of an exact solution may be
unacceptably high. We are currently developing PBHs for the case of multiple
classes.

APPENDIX A

For simplicity of notation, 72x(N) and 7i2{p. (V) will be denoted as n: and n,
respectively, in the following proof that each bound in the optimistic PBH is
indeed an optimistic bound. Also, the fixed-rate centers are assumed to be indexed
such that Ly = Ly, for 1 = k< K — 1. It is first necessary to prove the following
lemma.
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LEMMA. Suppose that for some i = 0,
n} @) n;

Yi- Yo Skt 1

2= j=K+1 (A-1)
Then
J J
Y=Y nf 2=j=<=K+1, (A-2)
= k=1

and

2£=1 Liny Zfa 1 Lkn};)
Si-1 14 Yhinf

Proor oF RELATION A-2. The proof is by downwards induction on j. For j
=K+ 1,Y54 n, = N = 3£ nf’, establishing the induction basis.

Assume that relation A-2 holds for j + 1, where 2 = j < K, and consider the
relation for ;. Relation A-1 applied for j + 1 yields

nj(l4).1 nj+1 nj > nj(t-i)-l E =1 nk ij 1 ng)

Yitin p= Yt n = Z£+1 ne B Yitin = Yitine Z e

Since Y th ne = Y45k nf by the inductive hypothesis, it must be the case that
Yhe1 ne = Yh-1 nf’; therefore, relation A-2 is established for j. By induction,
relation A-2 is established for2 =j= K + 1. O

2<j<K (A-3)

Proor oF RELATION A-3. The proof is by induction on j. For j = 2, relation
A-3 becomes

Lin; + Leny  Lin{ + Lynd
n+n  nP+nd

Since L; = L; and
nd ne
_ _>
n? +nd  n+n

by relation A-1, this relation will hold if

L1n1 + Llnz Lln“) + L1n§i)
m+n  nP+nd

As this expression is an equality, the induction basis is shown.
Assume that relation A-3 holds for j, where 2 < j < K, and consider the relation
for j + 1. First, note that
S4 Linf?

is maximized for minimized n{},, since for n{?; = ¢ = 0,

i Linf + L; @y - 3 Lynf) . . . .
Zt : k;i-i—l n ij)ﬂ(::jﬂ L < Zéﬂll ’};’};} = Lj+1 Ziill ni" > Ziill Lkng).
=1 - =1
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Given the assumed center indexing, this last relation is a contradiqtion. Therefore,
relation A-3 need only be shown under the assumption that n?, is minimized,

which by relation A-1 corresponds to
n;(fa)-l _ nj+1
YiEn®  Yiting
Starting with the inductive hypothesis, it follows that
Si-1 Lany - Yio1 Linf - <1 _ it ) Y41 Lens
Z£=1 n, Z£=1 n}f) 2 ‘3 N Z£=1 n
- (1 g2t ) e ant
Yiin ) Yi-inf
Yi-1 Ling - Y41 Lynf
S e - SELnP

Since

Ljvin;i _ Lj+1nj(ill

Yitine Yitinf
by assumption, this last relation establishes relation A-3 for j + 1. By induction,
relation A-3 is established for 2 < j < K, which establishes the lemma. O

The main result can now be shown.

THEOREM. Foralli=0, N=1,
R(N) = R§/(N), (A-4)
and
nf -
iy 0T Thor na

Proor. The proof is by induction on i.
Consider i = 0. By the correctness of ABA,

R(N) = max[NL, — Z, 1] = RO.(N).

Also, for 2 = j = K, relation A-5 becomes

for 2=j=<K+1 (A-5)

aN) 1

n®  Z+aNK 1l 0w

Yia nd® . aN) 1 j Y m
IZ¥aM K

This last relation holds since L, = Ly = ... = Ly implies that ny = n; = .- - = ng.
Finally, for j = K + 1, relation A-5 becomes

Z__n
nfh,  Z+alN) Z - Z _ ngw
SEInP N " Z+alN)” Z+R(N) YEin

The induction basis is now established.
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Assume that the theorem holds for i, and consider the theorem fori + 1 (i =
0). For N = 1, relations A-4 and A-5 are equalities; therefore, only N+ 1 (N=1)
need be considered. The preceding lemma applied with the inductive hypothesis
yields

lee(sl Lyng Zfsl Lkng)
¢ = ;¢ OB
Zk=1 ne Ek=1 ni

and

ng[
1

M =

K
anz
k=1 k

Applying the latter relation to the former yields
K K
Z Lin, = 2 Lkn}e"’,
k=1 k=1
implying that

K K

RIN+1)=3Y L.(1+n)= Y L.(1+ ni) = RGEV(N + 1).
k=1 k=1

This establishes relation A-4 for i + 1.

Now, assume that relation A-5 does not hold for i + 1 for some j, where 2 <j
< K. The definitions of 72x (N + 1) and 72§ (N + 1) then yield

Lj(l + nj(i)) Lj(l + nj)
Z+ RUV(N+1) (N+1) Z+R(N+1) (V+1)
: Ly(1 + nf?) : Lr(1 + ng)
Yo grrEw+n MY Mg R NP
1+np 1+n;

S LA+ 0P - Si LA+ nn)

From the inductive hypothesis and the previous lemma, this yields

ot nf?
1+nj 2£=1 nk < 1+nj
. Yio nf Yi-1 Lp(l + ng)’
Yhor L+ T5+——34-1 Lana
zfe=1 ne

Multiplying the numerator and denominator of the left-hand side by Y%-17.,
cross-multiplying, and then simplifying produces

J J J ] J J Y )
> Lknk(z n— 3y n§;’><nj 3 Lk<2 n— 3 n").
E=1 E=1 1 A=1 k=1

k= k=1

From the preceding lemma and the inductive hypothesis, %1 nx — Y4-1nf = 0;
this fact applied to the preceding inequality yields

7 J
Z Lknk <n; Z Lk.
k=1 k=1
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Since n; = n, = ... = ng, this last inequality is a contradiction. Therefore,
relation A-5 is established for 2 < j < K.
For j = K + 1, relation A-5 becomes

Z z
ZrRGO W+ MY _ZTRWN+D) (N+1)

N+1 - N+1

VA Z
= - = .
Z+RUEVIN+1) ~ Z+R(N+1)

As it has been established that R (N + 1) = R%:Y (N + 1), this last relation holds.
Relation A-5 and the theorem are therefore established for i + 1. By induction,
the theorem is established for i = 0. O

APPENDIX B

In the following proof that the pessimistic PBH forms a nested hierarchy of
pessimistic bounds, 7Z{%ess (N) and 7¥ 7l (N) will be denoted by nf and nf*?,
respectively. Since R, (N) is exact for i = N, it need only be shown that
RY(N)=RED(N)fori=0, N=1.

THEOREM. Fori=(0,N=1,

R{l(N) =z R (N) (B-1)
n =nf*y, (B-2)

and
ni*tV=nf 1<k=<K, k#b (B-3)

Proor. The proof will be by induction on i. Consider i = 0.

N-1
R%(N) Nz1+Lb<Z+N_1

)@= - Rz
establishing relation B-1. For i = 0, relation B-2 becomes
N _ B ()
Z+N" ~ Z+ R{s(N)

= N(R;,L)SS(N) - Rgll))ess(N)) + Z(N - R}JIIZess(N)) =0.

This last relation is easily seen to hold. Finally, relation B-3 holds for i = 0 since
nf® = 0 for £ # b. The induction basis is now established.

Assume that the theorem holds for i = 0 and consider i + 1. For N = 1, relations
B-1, B-2, and B-3 are equalities; therefore, only N + 1 (N = 1) need be
considered. Relation B-1 becomes

K K
RUNIN+ 1) =2REP(N+1) e ¥ L1 +nf)= Y L.(1+nf*")
k=1 k=1
o Ly(n® —nf*M) — ¥ Le(nf*Y —nf) =0.

kb
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From the inductive hypothesis, each term in the above expression is nonnegative.
This implies that the above relation will be established if it can be shown that

Ly(n® — nf*Y) = ¥ Ly(nf*Y —nf) = 0.
k#b
By dividing through by L;, and noting that
K ' R(i) (N)
l) = pess. N
2T IR
and
K ) R(i+1) (N)
i+1) pess N.
2 =T

it can be seen that this is equivalent to
Rpw(N) Rz (N)
Z+RY(N)~ Z+REP(N)’
Since R (N) = R (N) by the inductive hypothesis, this last relation holds,
and relation B-1 is established for i + 1.
Relation B-1 then yields
REEP(N +1)
Z+RUP(IN+1)

REI(N+1)

N+ 1)z rm N )

(N +1).

Expanding the numerators produces

E RED(N+1) K REA(N+1)
. N+1)= -
EZT RN+ NP VZ L T pma N

(N +1).

From this last relation, it can be seen that relation B-2 or relation B-3 could be
violated for { + 1 (at N + 1) only if there is a center 2 # b such that

REN(N+1) RIEFA(N +1)
- i 1
ZrROON+D VYV i rma e VP Y
L.(1 +n) L.(1 + ni*Y)

ZT RGN+ Z+REDN+1)

L.(1 +ni) >Z+ RPN + 1)
L.1+n{") " Z+REDIN+ 1)’

However, the right-hand side has been proven to be greater than or equal to 1,
and the left-hand side is less than or equal to one by the inductive hypothesis. As
this is a contradiction, relations B-2 and B-3 and the theorem are established for
i + 1. By induction, the theorem is established for { = 0. O
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After this paper was accepted for presentation at the 1982 ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems, and while it
was being refereed for publication, we learned that Professor Rajan Suri of
Harvard University had independently formulated a generalization of BJBs quite
similar to PBH bounds, calling them Generalized Quick Bounds.
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