
An HDLC Protocol Specification and Its
Verification Using Image Protocols

A. UDAYA SHANKAR and SIMON S. LAM

University of Texas at Austin

We use an event-driven process model to specify a version of the High-Level Data Link Control
(HDLC) protocol between two communicating protocol entities. The protocol is verified using the
method of projections. The verification serves as a rigorous exercise to demonstrate the applicability
of this method to the analysis of real-life communication protocols.

The HDLC protocol has two characteristics found in most real-life communication protocols. First,
the HDLC protocol operates under real-time constraints that are important not only for its perform-
ance but also for its correct logical behavior. We specify this real-time behavior using time variables
and time events. Second, the HDLC protocol has three distinguishable functions: connection man-
agement, and one-way data transfers between the protocol entities. For each of these functions, we
construct an image protocol using the method of projections. With each image protocol we obtain
inductively complete invariant assertions that state various desirable logical safety properties. From
the properties of image protocols it follows that these safety properties as proved for the image
protocols are also satisfied by the HDLC protocol presented herein. We also suggest a minor
modification to HDLC that will make it well-structured.

Categories and Subject Descriptors: C.2.2 [Computer -Communica t ion Networks]: Network Pro-
tocols-protocol architecture, HDLC, protocol verification; C.3 [Computer Sys tems Organiza-
tion]: Special-Purpose and Application-Based Systems--real-time systems; D.2.4 [Sof tware Engi-
neering]: Program Verification--correctness proofs; F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying and Reasoning About Programs--assertions, invariants, pre- and
post-conditions, specification techniques

General Terms: Algorithms, Languages, Verification

Additional Key Words and Phrases: Communication protocols, data link control, HDLC protocol,
method of projections, image protocols, message-passing networks, communicating processes

1. INTRODUCTION

T h e H i g h - L e v e l D a t a L i n k C o n t r o l (H D L C) p r o t o c o l c o r r e s p o n d s t o a l a y e r 2

p r o t o c o l w i t h i n t h e O S I r e f e r e n c e m o d e l [7, 8, 9, 23]. I t is i n t e n d e d to p r o v i d e

r e l i a b l e f u U - d u p l e x d a t a t r a n s f e r b e t w e e n l a y e r 3 p r o t o c o l e n t i t i e s , u s i n g e r r o r -

p r o n e p h y s i c a l c o m m u n i c a t i o n c h a n n e l s o f l a y e r 1. T h e s p e c i f i c a t i o n o f H D L C in

t h e I S O d o c u m e n t s p r e c i s e l y d e f i n e s l o w - l e v e l p r o t o c o l f u n c t i o n s , s u c h as e r r o r

This work was supported by NSF Grants ECS78-01803 and ECS83-04734.
This paper was submitted for publication in Transactions on Computer Systems by the authors and
not by the SIGCOMM Symposium Program Committee. Author's addresses: A. U. Shankar, Depart-
ment of Computer Science, University of Maryland, College Park, MD 20742; S. S. Lam, Department
of Computer Sciences, University of Texas at Austin, Austin, TX 78712.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1983 ACM 0734-2071/83/1100-0331 $00.75

ACM Transactions on Computer Systems, Vol. 1, No. 4, November 1983, Pages 331-368.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F357377.357384&domain=pdf&date_stamp=1983-11-01

332 A.U. Shankar and S. S. Lam

Fig. 1. The protocol system model.

detection and frame synchronization. Formats of three types of frames specifying
the encoding of control and data messages are also clearly defined. Aside from
these basic definitions, however, the HDLC documents leave many options to be
decided by the protocol implementor. In particular, one can choose from a variety
of data link configurations and three operational modes that specify balanced or
unequal relationships among the communicating entities. Also, various subsets of
the messages can be used, instead of the entire set defined. Further, some aspects
of HDLC are described informally in English and are not rigorously specified.

In this paper, we use an event-driven process model to specify a version of the
HDLC protocol, and then apply the method of projections to verify it [13, 16,
20]. This verification serves as an exercise for demonstrating the applicability of
this method (see Figure 1). P1 is a primary HDLC entity and P2 a secondary
HDLC entity operating in the Asynchronous Response Mode (ARM). C1 and C2
are unreliable communication channels. Our protocol uses the basic repertoire of
HDLC commands and responses (with the exception of the CMDR response). It
includes the use of poll/final cycles for checkpointing and connection manage-
ment, timers for timeouts, cyclic sequence numbers and sliding windows of size N
for data transfers, and ready/not ready messages for flow control [8]. Our protocol
incorporates all of the principal HDLC functions.

1.1 Analysis of Multifunction Protocols

The HDLC protocol has at _least three distinguishable functions: connection
management, and one-way data transfers in two directions. A multifunction
protocol such as HDLC is very complex and cannot be easily analyzed. To reduce
the complexity of analysis, an approach that appears attractive is to decompose
each protocol entity into modules for handling the different functions of the
protocol. For example, each protocol entity in HDLC may be decomposed into
three functional modules as shown in Figure 2. Each module communicates with
a corresponding module in the other protocol entity to accomplish one of the
three functions. Bochmann and Chung [2] used a decomposition approach to
specify a version of the HDLC protocol. However, the decomposition approach
does not seem to facilitate analysis of the protocol. The main difficulty is that
significant interaction exists among the modules. We identify two types of
dependencies. First, modules interact through shared variables within an entity.
Second, they also interact because data and control messages sent by different
modules in one entity to their respective modules in the other entity are typically
encoded in the same protocol message (shared protocol messages).

Most communication protocols that have been rigorously analyzed and pre-
sented in the literature are concerned with a single function: either a connection
management function [1, 10, 14] or a one-way data transfer function [22, 6, 4].
For example, both safety and liveness properties have been formulated and
proved for Stenning's protocol [22, 6]. Stenning's protocol is a one-way data
transfer protocol. It corresponds to the interaction of a data send module and a

ACM Transactions on Computer Systems, Vol. 1, No. 4, November 1983.

An HDLC Protocol Specification and Its Verification • 333

connection

manager

I dat: send

data

receive

. >

.~ >

connection

manager

data

receive

data send

Fig. 2. Functional decomposition of HDLC.

data receive module in isolation (see Figure 2). Any interaction between these
modules and other modules is not accounted for. As such, this protocol constitutes
just one function of a real-life protocol such as HDLC. The following question
arises: Are the safety and liveness properties that are proved for the one-way
data transfer protocol still valid when it is implemented as part of a multifunction
protocol with the two types of dependencies mentioned above?

We use the method of projections [11, 12, 13, 16, 20] to break up our HDLC
protocol analysis problem into smaller problems. The theory of projections is
described in [13] and [16]; we will not go into its details here. The projection
method is different from the straightforward approach of decomposing protocol
entities into functional modules. The objective is to construct from the given
HDLC protocol an image protocol for each of the three functions that are of
interest to us (referred to as the projected functions).

An image protocol is specified just like any real protocol. The states, messages
and events of entities in an image protocol are obtained by treating groups of
states, messages and events in the original protocol as equivalent and aggregating
them. As a result, an image protocol is smaller than the original protocol. Any
safety property that holds for the image protocol also holds for the original
protocol. Additionally, if an image protocol satisfies a well-formed property then
it is faithful: Any logical property, safety or liveness, that can be stated for the
image protocol holds in the image protocol if and only if it also holds in
the original protocol. (Fairness in the scheduling of enabled events in the
original protocol system is assumed; that is, no enabled event will be indefinitely
delayed [15].)

The objective of our construction procedure is to generate the smallest image
protocol that is of sufficient resolution to verify a desired logical property A0 of
the projected function. For example, the image protocol that is constructed for
HDLC connection management is similar to a handshake protocol [1]. The image
protocol for HDLC one-way data transfer is similar to other one-way data transfer
protocols based on a sliding window mechanism, but is augmented with initiali-
zation and checkpointing features. There are two methods that we use to
determine the desired resolution. The first method is applicable when Ao is a
safety (including real-time) property. The second method constructs a well-
formed image protocol, and is applicable whether A0 is a safety or liveness
property. In each method, an initial resolution derived from Ao is successively
refined.

The construction of well-formed image protocols involves an examination of
protocol entities individually. There is no need to examine the global reachability

ACM Transactions on Computer Systems, Vol. 1, No. 4, November 1983

334 A.U. Shankar and S. S. Lam

space of the image protocol interaction or of the original protocol interaction.
Given a multifunction protocol (such as HDLC), a well-formed image protocol
can always be obtained for each function by increasing its resolution. However,
the successful construction of well-formed image protocols that are much smaller
than the original multifunction protocol depends upon whether the multifunction
protocol has a good structure. Thus, one can think of a multifunction protocol as
being well-structured if it possesses small well-formed image protocols for its
functions.

1.2 Real-Time Behavior

Another important characteristic of real-life communication protocols is that
they are time-dependent systems. Real-time constraints (such as bounded re-
sponse times, packet lifetimes, etc.) exist within individual entities and channels
[21]. These local time constraints give rise to global precedence relations between
remote events. Such global relations are essential to the correct functioning of
the protocol system. The modeling of real-time behavior has usually been ne-
glected in previous protocol analyses.

To verify a time-dependent system, it is necessary to include measures of real
time in the modeling of the protocol system. If time is not modeled explicitly,
then one is forced to resort to informal arguments about global timing relations
in the system. Such informal arguments are inadequate and are the source of
many protocol system design errors [3].

The real-time behavior of communication protocols has implications regarding
the formulation of liveness assertions. Typically, if a protocol does not achieve
progress (transfer of data, establishment of a connection, etc.) within a bounded
time duration T, then the protocol resorts to some alternative action (abort, reset,
retransmission, etc.). The protocol will not wait for a finite but unbounded
amount of time. Hence, a temporal logic liveness assertion [6] such as "eventually,
a data block will be transferred" is not realistic. More appropriate is a real-time
specification such as "if within a time duration T the data block is not transferred
then at least n retransmissions of the data block have occurred, all of which
failed, and the protocol has reset."

We model measures of time by incorporating time variables and time events
into our protocol system model [17]. With time variables and time events, the
real-time behavior of communication protocols can be stated by safety assertions;
temporal logic liveness assertions are not needed.

1.3 Summary of This Paper

In Section 2, we first describe an event-driven process model of a protocol system.
Each component (entity or channel) of the protocol system is modeled as an
event-driven process that manipulates a set of variables local to itself and
interacts with adjacent components by message passing. The model includes
several realistic protocol features such as multifield messages and the use of
timers. This model is then used to specify the HDLC protocol.

In Section 3, we apply the method of projections to verify the HDLC protocol.
In Section 3.1, we outline the definition of image protocols and two methods for
obtaining image protocols. In Sections 3.2, 3.3 and 3.4, we construct from the
given HDLC protocol an image protocol for each of the three functions that are
ACM Transact ions on Computer Systems, Vol. 1, No. 4, November 1983.

An HDLC Protocol Specification and Its Verification 335

of interest to us. For each image protocol, we obtain invariant safety assertions
concerning some desired logical behavior of the projected function. From the
properties of image protocols these assertions also hold for the entire HDLC
protocol.

Of the three image protocols obtained, the image protocol for connection
management is well-formed. However, the image protocols for the one-way data
transfers are not well-formed. In order for these data transfer image protocols to
be well-formed, they have to be made substantially larger to account for depen-
dencies in the HDLC protocol between the two one-way data transfer functions.

In Section 3.5, we describe a minor modification to the HDLC protocol that
allows small well-formed image protocols to be constructed for each of the one-
way data transfer functions, as well as for the connection management function.
The invariant safety assertions obtained in Sections 3.2, 3.3 and 3.4 continue to
hold for the connection management and data transfer image protocols of the
modified HDLC protocol. The HDLC protocol with this modification can be
regarded as a well-structured protocol.

2. AN HDLC/ARM PROTOCOL

In this section, we describe the HDLC/ARM protocol for two protocol entities.
ARM denotes the Asynchronous Response Mode of operation. Let P1 be the
primary HDLC entity, and let P2 be the secondary HDLC entity. P1 sends
messages to P2 using channel C1, and P2 sends messages to P1 using channel C2
(see Figure 1). There is a user at entity P1 and a user at entity P2. The HDLC
protocol system offers the users a reliable connection that (a) can be opened/
closed by the user at P1, and (b) when open, allows each user to send data blocks
to the other user in sequence (without loss, duplication or reordering).

2.1 Assumptions about the Environment

To obtain assertions about the logical behavior of the protocol system, a few
assumptions are needed about the environment in which HDLC operates. At any
time, channel Ci contains a (possibly empty) sequence of messages sent by Pi, for
i = 1 and i = 2. Messages in the channels may be corrupted by noise, but not
reordered or duplicated. When Pi sends a message, that message is appended to
the tail of the message sequence in Ci. When channel Ci is not empty, the first
message (at the head of the message sequence) can be removed and passed on to
Pj (j # i), provided that the message is not corrupted. If the message is corrupted,
it is deleted and not passed on to Pj (we assume a perfect error-detection
mechanism). The frame-level functions of HDLC [7], such as the frame formatting
of HDLC messages, bit insertion/deletion to make flags unique, error detecting,
etc., are not considered as part of the entities P1 and P2, but have been included
in the channel model. Finally, messages in the channels have a bounded lifetime.
The first message in channel Ci is deleted if it has been in the channel for a
specified time, denoted by MaxDelay~.

2.2 Event-Driven Process Model

Each component of the protocol system (i.e., protocol entity or channel) is
modeled as an event-driven process that manipulates a set of variables local to

ACM Transact ions on Computer Systems, Vol. 1, No. 4, November 1983

336 A.U. Shankar and S. S. Lam

itself and interacts with adjacent components by message passing. Th e events of
an ent i ty consist of message sends, message receptions and changes internal to
the entity. The events of a channel correspond to t ransformations on the channel
message sequence. An event can occur only if variables of the protocol system
satisfy certain conditions, referred to as the enabling condition of the event.
When an enabled event occurs, variables of the protocol system are affected.
Whenever an event-driven process has enabled events, any one of t h em can
o c c u r .

2.2.1. Time Variables and Time Events. In HDLC, each protocol ent i ty
guarantees certain constraints on the t ime intervals be tween occurrences of
events involving tha t entity. Also, recall tha t messages in channels have bounded
lifetimes. Because (physical) t ime elapses at the same rate everywhere, these
t ime constraints give rise to precedence relations between remote events in
different components. Fur thermore , these precedence relat ions are vital to the
proper functioning of the H D L C protocol. We cannot adequate ly model such a
t ime-dependent system by using only ent i ty and channel events. I t is necessary
to relate the elapsed t imes measured at different components . We do this by
introducing t ime variables in the components to measure elapsed t ime in integer
ticks, and t ime events to age the t ime variables [16, 17].

Each time variable takes its values from Nt = (O f f , 0, 1, 2 , . . . }. A t ime variable
is t e rmed inactive if its value is Off; otherwise it is t e rmed active. T h e value of a
t ime variable can be changed in only two ways. First, it can be aged by a t ime
event. When an active t ime variable is aged its value is incremented by 1; when
an inactive t ime variable is aged its value is not affected. Second, a t ime variable
in a component can be reset to any value in Nt by a system event involving tha t
component . Thus, for an active t ime variable, the difference between its current
value and the value it was last reset to indicates the t ime elapsed since the last
reset.

We will use two types of t ime variables in our model: global time variables and
local time variables. All global t ime variables in a system model are aged by the
same t ime event, referred to as the global time event. Thus, all active global t ime
variables are coupled. The global t ime event models the elapse of physical t ime
in the protocol system model. Global t ime variables are typically used to model
t ime constraints tha t are satisfied by components wi thout the use of timers.

Local t ime variables are used to model the t imers tha t are implemented in
system components. To each local t ime variable t there is a unique local time
event tha t ages t (and t alone). Thus, t is not directly coupled to any o ther t ime
variable. To specify its accuracy, we associate with t a global time variable t*
and a reset value to. Whenever t is reset, bo th t* and to are reset to the same
value, t* is affected by the global t ime event like any o ther global t ime variable.
The accuracy of local t ime variable t is specified by its accuracy axiom which
bounds t - t* at any time. For example, the accuracy axiom I t - t* I --- 1 + a (t*
- to) can specify a t imer with maximum relative error a in its clock f requency
(Off - Off is t reated as 0).

In this model, nei ther the local t ime event of t nor the global t ime event can
occur if such an occurrence would violate the accuracy axiom. By placing
additional constraints on the set of allowed values for t ime variables, o ther types
of t ime constraints satisfied by a component can be modeled. For example, let t

ACM Transactions on Computer Systems, Vol. 1, No. 4, November 1983.

An HDLC Protocol Specification and Its Verification 337

be a t ime variable t ha t is reset to 0 by event el and reset to Off by event e2. Let
D be a specified delay. Then, to model the t ime constra int t ha t e2 occurs no la ter
than D t ime units since the occurrence of el, we include (t < D) in the enabling
condition of the t ime event of t. Such constraints on t ime events are known as
time axioms. (For a more detailed presentat ion, the reader is referred to [16] and
[17].)

2.2.2. Messages of the Protocol Model. T h e messages of the protocol sys tem
have mult iple fields, and are specified in t e rms of message types. A message type
is specified by a tuple of the fo rm (M, F~, F2 Fn), where n >_ 0. T h e first
componen t contains the name of the message type and is a constant . T h e o ther
components (if any) are the fields of the message type. Each field is a p a r a m e t e r
tha t can take values f rom a specified set. The messages sent by each ent i ty are
specified by a list of such message types. For simplicity, we often use M to refer
to (M, F1,/72 Fn).

2.2.3. Variables of the Entities and Channels. Each protocol ent i ty has a set
of variables, each with a specified domain of values. Some of these var iables can
be auxiliary variables used only in specif icat ion/verif icat ion of the protocol
system. Also, some of these var iables can be t ime var iables used in model ing t ime
constraints satisfied by the entity.

In channel Ci, we associate with every message in t ransi t a global t ime value
tha t indicates the t ime spent by tha t message in the channel. Th is t ime value is
referred to as the age of the message. For channel Ci, we define Channeli as the
variable tha t represents , a t any time, the sequence of (message, age) pairs in Ci.

2.2.4. Events of the Protocol Model. T h e events of the protocol sys tem model
can be categorized into ent i ty events, channel events, and t ime events. We will
describe t h e m in tha t order. The re are three types of ent i ty events. We describe
these events for ent i ty Pi.

1. For each message type (M, F~ Fn) sent by Pi, there is a S e n d _ M event.
This event is enabled if the values of the variables of Pi satisfy a specified enabling
condition predicate. I t s occurrence appends an M- type message (M, f~ , f ,) to
the tail of Channeli, and upda tes the values of the var iables of Pi (where fk is an
allowed value of Fk).

2. For each message type (M, F 1 , . . . , Fn) sent by Pj(j # i), there is a R e c _ M
event. This event is enabled if the first message in Channelj is any M- type
message (M, fl, . . . , f ,) . I t s occurrence removes the message (M, fl, • • . , fn) f rom
Channelj and upda tes the values of variables of P~.

3. An internal event of P~ involves no messages. I t is enabled if the ent i ty
variables of Pi satisfy a specified predicate. I t s occurrence upda tes the values of
the ent i ty variables. In terna l events are used to model interact ions of the ent i ty
with its local user or channel controller, as well as t imeouts and o ther internal
t ransi t ions of the entity.

Note tha t bo th send and receive events affect the s ta te of a channel, as well as
the s tate of the entity.

We now describe the channel events. For i = 1 and i = 2, the channel loss
event for channel Ci is enabled whenever Channeli is not empty . I ts occurrence
deletes the first (message, age) pair in Channeli. (Recall t ha t the channel behavior

ACM Transact ions on Computer Systems, Vol. 1, No. 4, November 1983.

338 A.U. Shankar and S. S. Lam

in Section 2.1 requires only tha t the first message in each channel m a y be lost.
The re is no loss of general i ty here because every message mus t become the first
message in the channel before it can be received and checked for errors.)

We now define the local t ime events and the global t ime event for the protocol
model. For each local t ime variable t in Pi, there is a local t ime event whose
occurrence ages t; this event is enabled if its occurrence does not cause t to violate
its accuracy axiom or any t ime axiom involving t. The re is one global t ime event
whose occurrence ages all global t ime variables, including the age values in
Channel1 and Channel2. This t ime event is enabled if its act ion does not cause
any of the t ime or accuracy axioms to be violated, or result in an age value in
Channeli t ha t exceeds MaxDelayi for i= 1 and i = 2.

For each entity, we assume mutua l exclusion be tween the occurrence of events
of tha t entity. Fur thermore , we assume tha t s imul taneous occurrences of events
in different components of the protocol sys tem can be represen ted as an a rb i t r a ry
sequence of occurrences of the same events. This la t ter a ssumpt ion is reasonable
because events in communica t ion protocol sys tems can usually be defined in such
a way tha t thei r occurrences are instantaneous.

2.3 HDLC Messages

Messages sent by P~.

Each of the message types of P1 has a Poll bit-field (abbrevia ted as P field) t ha t
can take the value 0 or 1. Any message with the P field set to 1 is referred to as
a Poll.

1. (U, P, Command)
This U message type represents the Unnumbered frames sent by P1 for
connect ion managemen t . T h e Command field can take the value S A R M or
DISC. S A R M stands for Set Asynchronous Response Mode, and reques ts P2
to go on-line. D I S C s tands for Disconnect , and reques ts P2 to go off-line.

2. (I, P, Data, NS, N R)
This I message type represents the Information frames sent by P1 for t rans-
port ing da ta blocks to P2. Le t D A T A B L O C K S denote the set of da ta blocks
t ha t can be t ranspor ted by the H D L C protocol. T h e Data field contains a user
da ta block, and can take any value f rom DATABLOCKS. N S and N R are
sequence numbers tha t take values f rom (0, 1 , . . . , N - 1}. (N is 8 for normal
H D L C operat ion and 128 for extended H D L C operation.) N S is referred to as
the send sequence number, and is used to identify the posit ion of the da ta
block in the sequence of user da ta blocks. Successive user da ta blocks are sent
with increasing send sequence number s {modulo N). N R is referred to as the
receive sequence number, and indicates the send sequence n u m b e r of the
I f rame next expected a t P1. N R is an acknowledgement for da ta flowing in the
reverse direction (i.e., f rom P2 to P1), and acknowledges all da ta blocks wi th
send sequence numbers up to N R - 1. Finally, an I f rame with P field set to
1 indicates tha t P1 is r eady to receive da ta f rom P2.

3. (S, P, RStatus, N R)
This S message type represents the Supervisory frames sent by P1 for flow
control and acknowledgement . T h e RStatus field can take the value R R or
R N R , indicating t ha t P1 is respect ively Ready or N o t R e a d y to receive da ta

ACM Transact ions on Compute r Systems, Vol. 1, No. 4, November 1983

An HDLC Protocol Specification and Its Verification 339

from P2. The NR field is the receive sequence number and has been described
above.

Messages sent by P2.

Each of the message types of P2 has a Final bit-field (abbreviated as F field} tha t
can take the value 0 or 1. Any message with the F field set to 1 is referred to as
a Final. P2 responds to a received Poll by sending a Final at the earliest
opportunity.

1. (U, F, Response)
This U message type represents the Unnumbered frames sent by Pe. Th e
Response field can take the value UA or DM. UA stands for Unnumbered
Acknowledgement, and is sent to acknowledge recept ion of and compliance
with a U command received from P1. DM stands for Disconnected Mode, and
is sent when P2 is off-line as a response to any message (except for SARM)
received from P1.

2. (I, F, Data, NS, NR)
This I message type represents Information frames sent by P2. Th e Data, NS
and NR fields are similar to those in the I frames sent by P~ {except tha t the
roles of P1 and P2 are interchanged}. Also, an I frame with the F field set to 1
indicates tha t P2 is ready to receive data f rom P1.

3. (S, F, RStatus, NR)
This S message type represents Supervisory frames sent by P2. T h e RStatus
and NR fields are similar to those in the S frames sent by P~ {except tha t the
roles of P1 and P2 are interchanged).

Note tha t message types sent by P1 and Pe have similar names. This should,
however, cause no confusion. (The P and F fields actually occupy the same bit
position in HDLC frames. T h a t bit is referred to as the P / F bit [7].)

2.4 Variables of the HDLC Protocol Entities

Variables of P1.

P~, the pr imary HDLC entity, has the following variables (the domain of each
variable is also listed using a Pascal-like notation).

{The following variables are primarily used in the Pol l /Final cycle.}

Poll_bit: (0, 1);
(Poll_bit = 1 indicates tha t the next message to be sent by P1 is a Poll.
Initially, Poll_ bit = 0.}

Poll_ Timer: (Off, 0, 1, 2 , PollTimeoutValue);
(Poll_ Timer is a local t ime variable which is active (5 Off) if and only if a
Poll is outstanding; an active Poll_ Timer indicates the t ime elapsed since
the Poll was sent. Poll_ Timer is reset to Off ei ther upon receiving the
acknowledging Final, or when Poll_ Timer = PollTimeoutValue {Timeout
event). Initially, Poll_ Timer = Off.}

SPoil_Timer: (Off, 0, 1, 2);
($Poll_ Timer is the global t ime variable associated with Poll_ Timer. Ini-
tially, $Poll_ Timer = Off.}

ACM Transact ions on Computer Systems, Vol. 1, No. 4, November 1983.

340 A.U. Shankar and S. S. Lam

Poll_Retry_ Count: (0, 1 , MaxRetryCount);
Poll_Retry_ Count indicates the number of Timeouts that have occurred
since the last Final was received. Initially, Poll_Retry_ Count = 0.}

{The following variable is primarily used in connection management.}

Mode: {Open, Opening, Closed, Closing, LinkFailure);
(Mode indicates the status of the data link as perceived by P1. Mode is set
to LinkFailure when Poll_Retry_Count exceeds MaxRetryCount. Initially,
Mode = Closed.}

{The following variables are primarily used in sending data blocks to P2.}

Source: array[0 .. ~] of DATABLOCKS;
{Source is a history variable that records the data blocks given by the local
user to P1 to send to the remote user gt P2.}

User_ in, S, A: 0 . . oo;
{ User_ in, S and A are pointers to Source {see Figure 3a). User_ in points to
where the local user places his next data block. S points to the data block to
be next sent to P2. A points to the data block to be next acknowledged by P2.
All three pointers are intialized to 0 when the data link is opened {when
Mode is set to the value Open). Data blocks from Source[A] to Source
[User_in - 1] are saved in a buffer of size SBuffSize.}

VS, VA, VCS: 0 . . N - 1;
{VS, VA and VCS are pointers {modulo N) to Source. VS{VA) indicates the
send sequence number of the next data block to be sent {acknowledged). VS
and VA are initialized to 0 when the data link is opened. VCS is described
below.}

Checkpoint_ Cycle: Boolean;
{Checkpoint_ Cycle is set to True when a Poll is sent and data is outstanding;
VCS is set to the sequence number of the most recently sent data block.
Checkpoint_ Cycle is set to False when either the data block indicated by
VCS is acknowledged, or a Final is received and that data block remains
unacknowledged. In the latter case, retransmission of data blocks starting
from VCS is initiated. Checkpoint_ Cycle is initialized to False when the data
link is opened.}

Remote_RStatus: (RR, RNR);
{Remote_ RStatus indicates the data receive status of P2. It is initialized to
RR when the data link is opened.}

{The following variables are primarily used in receiving data blocks from P2.}

Sink: array[0. . ~] of DATABLOCKS;
(Sink is a history variable that records the sequence of data blocks received
from P2 and to be delivered to the local user.}

User_out, R: 0 .. oo;
{User_out and R are pointers to Sink (see Figure 3b). User_out points to
the data block to be next delivered to the local user. R points to where the

ACM Transact ions on Compute r Systems, Vol. 1, No. 4, November 1983

An HDLC Protocol Specification and Its Verification • 341

User in

(vs) s

(VA) A

r
i

i

i

i

i

i

i

i

i

!

' i 2
1

. i

0
(a)

empty

data blocks
awaiting
transmission

data blocks
sent but not yet
acknowledged

data blocks
sent and
acknowledged

data blocks
in send
buffer

empty I

received data
blocks await- I
ing delivery
to user

received data
blocks deliv-
ered to user

(b)

<- R (VR)

<-- User out

Fig. 3. Pictorial representation of pointer positions for source and sink history arrays: (a) source
array; (b) sink array.

next data block received in sequence from P2 will be placed. Both pointers
are initialized to 0 when the data link is opened. Da ta blocks from Sink
[User_out] to Sink[R - 1] are saved in a buffer of size RBuffSize.}

VR: 0 . . N - 1;
(VR is a pointer (modulo N) to Sink, and indicates the sequence number of
the data block next expected. VR is initialized to 0 when the data link is
ope[*ed.}

Loca~RStatus: (RR, RNR);
(Local_RStatus indicates the data receive status of P1. I t is initialized to
R R when the data link is opened.}

Variables of P2.

P2, the secondary H D L C entity, has the following variables (along with their
domains):

(The following variables are primarily used in the Pol l /Final cycle.}

Final_bit: (0, 1);
(Final_ bit = 1 if and only if a Poll has been received and the acknowledging
Final not yet sent. Initially, Final_ bit = 0.}

$Response_ Time: (Off, 0, 1, 2 MaxResponseTime);
($Response_ Time is an auxiliary global t ime variable which is active when
Final_ bit = 1; when active it indicates the t ime elapsed since receiving the
Poll. Initially, $Response_ Time = Off.}

(The following variables are primarily used in connection management.}

Mode: (Open, Opening, Closed, Closing);
(Mode indicates the status of the data link as perceived by P2. Initially,
Mode = Closed.}

ACM Transactions on Computer Systems, Vol. 1, No. 4, November 1983.

342 A.U. Shankar and S. S. Lam

U_Response: (UA, DM, None);
{ U_ Response indicates the kind of U message to be next sent by P2. Initially,
U_Response = None.}

{The meaning and usage of the remaining variables are as described for P1,
except that the roles of P1 and P2 are interchanged. Also, in checkpointing, the
roles of Poll and Final are interchanged.}

{The following variables are primarily used in sending data blocks to P1 }.

Source: ar ray[0 . . 00] of DATABLOCKS; {history variable of data blocks}
User_in, S, A: 0 .. 0% {pointers to Source}

VS, VA, VCS: 0 . . N - 1; {pointer variables modulo N}
Checkpoint_ Cycle: Boolean;

Remote_RStatus: (RR, RNR);

{The following variables are primarily used in receiving data blocks from P1 }.

Sink: ar ray[0 . . 00] of DATABLOCKS; {history variable of data blocks}
User_out, R: 0 .. 0% {pointers to Sink}
VR: 0 .. N - 1; {pointer variable modulo N}
Local RStatus: (RR, RNR);

Note that many variables in P1 and P2 have the same names. Wherever this might
cause ambiguity, we qualify the variable names with numerical subscripts, for
instance, Model and Mode2.

2.5 Events of the HDLC Protocol

The events of the HDLC protocol system are formally specified in Tables I-V
(all tables may be found in Appendix B). (A prose description can be found in
[19].) The events of the entities are shown in Tables I and II. The program
statements in upper case {POLL_SENT, FINAL_RECEIVED, INITIALIZE_
SEND_VARIABLES, etc.) stand for code segments that are shown in Table III.
When used in an entity event, the variables they refer to are the variables of that
entity. We use the notation @ and @ to refer to addition modulo N and
subtraction modulo N respectively. Poll_ Timer (in P1) has the accuracy axiom
[Poll_ Timer - $ P o l l _ Timer [<_ 1 + a ($Poll_ Timer), where a is the maximum
relative error in Poll_ Timer's clock frequency. P2 satisfies the local time axiom
$Response_ Time <_ MaxResponseTime. Finally, in order to have at most one
Poll outstanding at any time, we assume that PollTimeoutValue > 1 + (1 +
a)(MaxDelayl + MaxResponseTime + MaxDelay2).

The channel events are specified in Table IV.
The time events of the HDLC protocol are specified in Table V. Pol l -Timer_

Tick is the local time event for Poll_ Timer. Global_Tick is the global time event
of the system. The procedure Age (in the actions of the time events) ages all its
time variable arguments by one tick. Note that the global time event cannot age
$Response_ Time beyond MaxResponseTime, nor can it cause a message to stay
in Channeli for longer than MaxDelay, nor can it cause Poll_ Timer to be more
inaccurate than as specified by its accuracy axiom. Similarly Poll_ Timer_ Tick

ACM Transactions on Computer Systems, Vol. 1, No. 4, November 1983

An HDLC Protocol Specification and Its Verification • 343

cannot cause Poll_ Timer to be more inaccurate than as specified by its accuracy
axiom.

The initial state of the HDLC protocol system is given by the following value
assignments to the protocol system variables: both Channel1 and Channel2 are
empty; entity variables have the initial values specified in Section 2.4. Note that
some of the entity variables concerned primarily with data transfer functions are
not initialized until the data link is opened (Mode set to the value of Open).

3. IMAGE PROTOCOLS AND SAFETY PROPERTIES

The HDLC protocol described offers three distinguishable functions to the users:
connection management, and one-way data transfers in two directions. We would
like to examine the logical behavior of the HDLC protocol with respect to these
functions.

We note that these three functions are not independent of each other. Depen-
dencies of the two types described in Section 1.1 (shared variables and shared
protocol messages) are present. We mention some of them here. First, the Poll/
Final cycle (a handshaking mechanism in the protocol) is used by all three
functions; that is, Poll and Final messages, Poll_bit, Poll_Timer, Poll_Retry_
Count and Final_ bit are shared by all three functions. Second, the connection
management function interacts with the data transfer functions at opening (when
the data transfer variables are initialized), and at closing {when data transfer is
inhibited); the variable Mode in each entity, and the SARM, DISC and UA
messages are shared by all three functions. Third, the data transfers in the two
directions interact through I frames that carry data in one direction and acknowl-
edgment for data in the opposite direction. In addition, an incoming I frame with
the Poll (Final) field set to 1 conveys flow control information for outgoing data.

Such dependencies present major obstacles for protocol analysis using a decom-
position approach. We use the approach of protocol projections to obtain an
image protocol for each function. In Section 3.1, we outline a procedure for
constructing image protocols of sufficient resolution to verify desired logical
properties of individual functions. We also briefly describe how to obtain induc-
tively complete assertions that imply desired safety properties.

An assertion is inductively complete for a protocol system if (a) the initial
condition of the protocol system satisfies the assertion, and (b) for each event in
the protocol, given that the assertion holds before the event occurrence, the
enabling condition and the action of the event are sufficient to show that the
assertion holds after the event occurrence. In Sections 3.2, 3.3 and 3.4, we use the
approach outlined in Section 3.1 to obtain image protocols for each of the HDLC
functions, and state inductively complete assertions that imply some desired
safety properties.

In Section 3.5, we describe a minor modification to HDLC that allows us to
obtain small well-formed image protocols for the three functions of interest. The
modification involves the addition of a one-bit flow control field to the HDLC
information frames. These well-formed image protocols are faithful to the HDLC
protocol. (We have not, however, investigated liveness properties of the HDLC
protocol or of our modified version of the HDLC protocol in this paper.) We

ACM Transact ions on Computer Systems, Vol. 1, No. 4, November 1983.

344 A.U. Shankar and S. S. Lam

propose that this modified HDLC protocol can be considered to be well-struc-
tured.

3.1 Verification Via Projections

In this section, we briefly outline the method of protocol projections. In Section
3.1.1, we define image protocols. In Section 3.1.2, we describe two iterative
methods for generating an image protocol of sufficient resolution to verify a
specified property A0 of a given function. For a detailed and formal presentation
of the theory and methodology, see [13, 16, 20].

3.1.1. Image Protocol Definition. An image protocol is defined with respect to
a given subset of entity variables of the original protocol. For i = 1 and i -- 2, let
Vi denote the set of entity variables of Pi in the HDLC protocol, and let V~ denote
the subset of Vi representing the entity variables of an image protocol. Messages
and events of the image protocol are defined based on V~ and V~_.

Each value assignment to the variables in Vi represents a state s of entity Pi.
The portion of this value assignment that corresponds to variables in V~ repre-
sents the image s' of s.

For each message type (M, _F) sent by Pi (where _F denotes the fields of M), its
image is denoted by (M', E'), where F_' is obtained by deleting those fields in _F
that do not affect variables in Vj (j # i) in the Rec_M event of Pj. The image of
any M-type message (M, D is given by (M', _f'), where [' consists of those field
values in [corresponding to F_'.

Each HDLC entity event specifies a set of entity state transitions (which
involve messages in the case of send and receive events). For example, the
Send_M event, which involves variables in Vi and fields in _F, specifies transitions
of the form (s, r, (M, _f)); that is, when Pi is in some state s satisfying the enabling
condition of Send_M, the action of Send_M leaves Pi in some state r and sends
message (M, [). The image of Send_M is an event Send_M' involving V~ and E',
and satisfying the following: Send_M' specifies a transition (s', r', (M', [')) if and
only if Send_M specifies a transition (s, r, (M, f)) for some s, r and(M, [) whose
images are s', r' and (M', [') respectively. The images of receive events and
internal events are similarly defined. (The image events were obtained directly
from the HDLC event descriptions without explicitly considering their state
transitions [16].)

The image message types and the image entity events serve as the message
types and entity events of the image protocol. Also, image message types and
image entity events that have no effect on variables in V~ and V~ are eliminated
in the image protocol; those that have identical effects are merged. The behavior
of the communication channels is the same in the image protocol system as in
the HDLC protocol system. The initial values of the image protocol variables are
the same as the initial values of the corresponding HDLC variables.

An image protocol as constructed above captures only part of the behavior of
the original protocol. However, we have shown that a safety property that holds
in the image protocol also holds in the original protocol. Also, well-formed image
protocols are faithful to the original protocol in all of their safety and liveness
properties. Informally, an image protocol is well-formed if the following holds: in
ACM Transactions on Computer Systems, Vol. 1, No. 4, November 1983

An HDLC Protocol Specification and Its Verification 345

the image protocol, if an entity event e' takes the entity from state r ' to state s'
and involves message m', then in the original protocol, from every entity state r
whose image is r' there is a sequence of entity events that will take the original
protocol to a state where an event e whose image is e' can occur [13, 16].

We have not investigated liveness properties of the HDLC protocol. We can
decide whether certain states will be eventually reached (a typical liveness
assertion) by examining the execution paths of the system. The expressive power
of our model for such liveness assertions is limited, when compared with models
that incorporate temporal logic semantics [15]. Recall however that communi-
cation protocols are time-dependent systems, and that progress properties of such
systems can be stated as safety assertions involving time variables.

3.1.2. Constructing an Image Protocol of Desired Resolution. We next de-
scribe an iterative method that attempts to find the smallest image protocol that
is of sufficient resolution to verify a desired safety property A0 of the projected
function.

For i = 1 and i = 2, let V~ denote the entity variables of Pi that appear in the
assertion Ao. We first describe the iterative step. Construct an image protocol
using V~ and V~ as the set of entity variables. Verify if assertion A0 holds in this
image protocol (see below). If it does, then from the properties of image protocols
A0 holds in the HDLC protocol and the verification is over. If A0 does not hold in
the image protocol, then there is a sequence of events, referred to as a test
sequence, that takes the image protocol from its initial condition to global state
that violates A0 (see below). Consider the event sequences in the HDLC protocol
that have images equal to the test sequence. If any of these HDLC event
sequences can occur in the HDLC protocol, then A0 does not hold in the HDLC
protocol, and the verification is over. If none of these HDLC event sequences can
occur, that is because some HDLC variables (not included in V~ U V~) inhibit
certain events from occurring. Include these variables in V~ and repeat the above
iterative step until termination. In the worst case, termination occurs with the
image protocol being equal to the original protocol.

Although this approach may at first appear to be inefficient, since in each
iteration we check whether A0 holds for an image protocol, this is in fact not the
case because at each iteration, even if we cannot verify A0, we can usually
establish properties of the image protocol that are helpful in verifying Ao. (For
example, the image protocol may not transfer data correctly, but it does ensure
correct Poll/Final handshake and data link initialization.) Since each succeeding
image protocol is a refinement of all earlier image protocols, these properties,
once established, need not be verified again.

To verify A0 for an image protocol, we do an iterative search for an inductively
complete safety assertion A that implies A0. Initially A equals A0. The iterative
step is as follows. For each event e of the image protocol, determine the weakest
precondition [5] that must hold before the occurrence of e in order that A holds
immediately after the occurrence of e. Let C denote the conjunction of A and all
the weakest preconditions. If C is equivalent to A and the initial state of the
image protocol satisfies C, then A is inductively complete, A0 holds for the image
protocol, and the search is over. If the initial state of the image protocol does not
satisfy C, then by examining the trace of the iterations, a test sequence can be

ACM Transact ions on Computer Systems, Vol. 1, No. 4, November 1983.

346 • A.U. Shankar and S. S. Lam

determined that takes the image protocol from its initial state to a state violating
A0. In this case, Ao does not hold and the search is over.

If neither of the above conditions holds, then replace A by C and repeat the
iteration. If at any point we determine (by inspection) that a safety property T
holds for the image protocol, then A can be replaced by the conjunction of A and
T. This speeds up the search by constraining the weakest preconditions.

The above iterative method can be used only for verifying safety assertions. A
variation on this method can be used when A0 is either a safety or liveness
assertion. In this second method, each image protocol that is obtained is tested
for well-formedness (instead of testing whether A0 holds). If the test for well-
formedness fails, then the failure will point out additional HDLC entity variables
to include in constructing the next image protocol. Repeat this step until a well-
formed image protocol is obtained. Since well-formed image protocols are faithful,
any outcome which results from verifying A0 on the image protocol is valid for
the original protocol.

Note that the check for well-formedness involves an examination of each
protocol entity individually. It does not involve an analysis of the global interac-
tion of the intermediate image protocols. Hence, this checking can be performed
efficiently. On the other hand, given a safety assertion Ao, the image protocol
resulting from the first method is usually smaller (never larger) than that obtained
from the second method. Since real-life communication protocols are typically
time-dependent systems with real-time specifications stated as safety properties,
the first method is usually more useful in practice.

3.2 Image Protocol for Connect ion Management

The first image protocol we show is for the connection management function. A
desirable property of the HDLC protocol with respect to this function may be
stated as follows:

(Model = Open ~ Mode2 = Open) and (Model = Closed ~ Mode2 = Closed)

This property can be stated using only the variables Mode in PI and Mode in
P2- Starting from this initial set of entity variables, and applying the first method,
we determine that the following variables are also needed: Poll_ bit, Poll_ Timer,
SPoil_Timer and Poll_Retry_Count in P1; Final_bit, $Response_Time and
U_Response in P2. The resulting image protocol (described below) is also well-
formed--using the second method would result in the same image protocol.

The images of the HDLC message types can now be defined as follows. First,
there are the message types sent by P1. The image of message type (U, P,
Command) is defined by (U', P, Command) (i.e., all the fields of the U Message
type are needed in the image protocol). The image of both (I, P, Data, NS, NR)
and (S, P, RStatus, NR) can be defined by (I' P) where I' denotes a (new)
message type that corresponds to either an I or an S frame of the HDLC protocol.
Next, there are the message types sent by P2. The image of message type (U, F,
Response) is (U', F, Response). The image of both (I, F, Data, NS, NR) and (S,
F, RStatus, NR) can be defined by (I', F). Thus (U', P, Command) and (I', P)
are the message types sent by P1, and (U', F, response) and (I', F) are the
message types sent by P2.

ACM Transactions on Computer Systems, Vol. 1, No. 4, November 1983

An HDLC Protocol Specification and Its Verification 347

The entity events of the image protocol are displayed in Tables VI and VII.
The channel and time events of the image protocol are exactly as the channel
and time events shown in Tables IV and V for the HDLC protocol. These events
are obtained by taking the images of the corresponding events of the HDLC
protocol (Tables I, II, IV and V). In the event Send_U' of Table VI, the enabling
condition and action are the same as in the event Send_ U of Table I, except that
U is replaced by U'. This notation is also used in the remaining tables.

The initial state of this image protocol is obtained from the HDLC protocol:
Model = Mode2 = Closed, U_Response = None, Poll_ T imer = $Poll_ T imer ---
$Response_ T ime = Off, Pol l_bi t = F ina l_b i t = 0, P o l l _ R e t r y _ C o u n t -- 0, and
Channell and Channel2 are empty.

The reader is referred to [16] for additional details.

3.2.1. Safety properties. For this image protocol, the following assertion con-
cerning the Poll/Final cycle has been shown to be inductively complete, hence
invariant. (A proof can be found in Appendix A. It is shown as an illustration of
our technique. Proofs of other assertions to be introduced below are omitted for
brevity.) In the assertions, SAge denotes the age of the associated message in the
channel.

Pol l /F ina l (PF) Assertions.

PF1. Poll_ bit = 1 ~ Poll_ T imer = Off

PF2. Poll_ Timer = Off ~ No Poll in Channell
and Final_ bit = 0
and no Final in Channel2

PF3. (Poll, SAge) in Channel~ ~ Poll_ T imer ~ Off
and SPoil_ Timer = SAge
and exactly one Poll in Channel1
and Final_ bit = 0
and no Final in Channel2

PF4. Final_ bit = 1 ~ Poll_ T imer ~ Off
and SPoll_ T imer <_ MaxDelay l + $Response_ T ime
and no Poll in Channel1
and no Final in Channel2

PF5. (Final, SAge) in Channel2 ~ Poll_ Timer ~ Off
and $Poll_ Timer <_ MaxDelayl + M a x R e s p o n s e T i m e + SAge
and no Poll in Channel~
and Final_ bit = 0
and exactly one Final in Channel2

For this image protocol, the conjunction of the PF assertions and the following
assertions concerning connection management are inductively complete, hence
invariant (proof in [16, 18]).

Connection M a n a g e m e n t (CM) Assertions.

CM1. (a) Mode~ = Open ~ Mode2 -- Open and no U' frames in Channel l
and no U' frames in Channel2 and U_Response = None

ACM Transact ions on Computer Systems, Vol. 1, No. 4, November 1983.

348 A.U. Shankar and S. S. Lam

(b) Model = Closed ~ M o d e 2 -~ Closed and Channel~ is e m p t y
and Channel2 is e m p t y and U_Response = None

(c) (I', P) in Channel1 ~ Mode2 = Open

CM2. Pol l_ T imer = Off ~ no U ' f rames in Channel~
and no U ' f rames in Channel2 and U_Response = None
and (Mode2 = Open or Mode2 = Closed)

CM3. (U', P, C o m m a n d) in Channel l ~ exactly one U ' f rame in Channel1
and (U', 1, C o m m a n d) is a t tail of Channel l
and (C o m m a n d = S A R M ~ Mode~ = Opening)
and (C o m m a n d = DISC ~ Mode l = Closing)
and (Mode2 = Open or Mode2 = Closed) and U _ R e s p o n s e = None
and no U ' f rames in Channel2

CM4. U_Response # None ~ F i n a l _ b i t = 1
and Channel~ is e m p t y and Channel2 has no U ' f rames
and (U_Response = UA ~ (Mode~ = Mode2 = Opening

or Mode~ = Mode2 = Closing))
and (U_Response = D M ~ (Model = Closing

and Mode2 = Closed))

(U', F, Response) in Channel2 ~ Channel1 e m p t y
and exactly one U ' f rame in Channel2 and F = 1
and (Response = D M ~ Mode2 = Closed and Mode~ = Closing)
and (Response = UA ~ (Mode2 = Closed and Mode~ = Closing)

or (Mode2 = Open and Mode~ = Opening))
and U_Response = None

CM5.

3.3 Image Protocol for P1 to P2 Data Transfer

We now consider the function of one-way da ta t ransfer f rom P1 to P2. Two
desirable proper t ies of the H D L C protocol with respect to this funct ion m a y be
s ta ted as follows.

I f Model = Mode2 = Open then
1. Sink2[i] = Sourcel[i] for 0 __ i < User_out2
2. O < _ A I < _ S I < A I + N

The first p roper ty s ta tes tha t da ta is t ransfer red in sequence; the second tha t the
m a x i m u m n u m b e r of outs tanding da ta blocks (and therefore the m i n i m u m storage
requi rement) a t P~ is N - 1. These proper t ies can be s ta ted using only the
var iables Mode, Source, A and S in P~, and Mode, S i n k and User_ou t at P2.

Star t ing f rom this initial set of ent i ty variables, and applying the first method ,
we de termine t ha t the following var iables are needed: Pol l_bi t , P o l l _ T i m e r ,
$Poll_ Timer, P o l l _ R e t r y _ Count, User_ in, VS, VA, VCS, Checkpoin t_ Cycle and
R e m o t e _ R S t a t u s in P1, and Fina l_ bit, $Response_ Time, U_Response , R, VR
and L o c a l _ R S t a t u s in P2. T h e result ing image protocol (described below) has
sufficient resolut ion to verify the desired safety proper ty . However , it is not well-
formed. In fact, we have shown in [16] t ha t to obta in a wel l - formed image protocol
for this function, we would have to include a lmos t the entire H D L C protocol.

ACM Transact ions on Computer Systems, Vol. 1, No. 4, November 1983.

An HDLC Protocol Specification and Its Verification 349

We now define the images of the HDLC message types sent by P1. T h e image
of message type (U, P, Command) is (U', P, Command). Th e image of (I, P,
Data, NS, NR) is defined as (I', P, Data, NS), where I' is a new message type
tha t corresponds to an I f rame of the HDLC protocol. Th e image of (S, P,
RStatus, NR) is (S', P) , where S' is a new message type corresponding to an S
frame of the HDLC protocol.

Next, we define the images of the HDLC message types sent by P2. Th e image
of (U, F, Response) is (U', F, Response) . Th e image of (I, F, Data, NS, NR) is
(r , F, NR), where I ' denotes a new message type corresponding to an I frame of
the HDLC protocol. The image of (S, F, RStatus, NR) is (S', F, RStatus, NR) .

Thus (U', P, Command), (I', P, Data, NS) and (S', P) are the message types
sent by P1, and (U', F, Response), (I', F, NR) and (S', F, RStatus, NR) are the
message types sent by P2.

The events of the image protocol system are obtained by taking the images of
the HDLC protocol system [16]. The events of the protocol entities in the image
protocol are shown in Tables VIII and IX. The channel and t ime events for this
protocol are exactly as described in Tables IV and V. Th e initial s tate of this
protocol is the same as tha t of the HDLC protocol.

We note tha t the image protocol does in fact display a minor liveness proper ty
tha t the original protocol does not have: the number of I' frames in channel C2
can exceed N. In fact, the Send_I ' event of P2 is the only event tha t causes the
image protocol not to be well-formed [16]. In Section 3.5, we suggest a minor
modification to HDLC tha t will correct this and allow us to construct small well-
formed image protocols for the one-way data t ransfer functions, as well as for the
connection management function.

3.3.1. Safety Properties. For this image protocol, we have verified (by using the
method described in Section 3.1.2) the desired safety propert ies of the projected
function.

Notation.
We first describe some notat ion tha t is used in the assertion. Recall tha t

Channel1 and Channel2 represent the sequence of messages in C1 and C2 respec-
tively. We shall think of Channell (Channel2) as a sequence of messages from left
to right; the tail of Channel~ (Channel2) is at the left, and the head of Channell
(Channel2) is at the right. When Channel1 (Channel2) contains only one message,
the tail and the head point to the same message.

The following notat ion is used in describing the state of Channel1. Given
integers s and vs such tha t s _> 0 and 0 _< vs < N, the notat ion (s, vs) denotes the
tuple (I', Data, NS), where Data contains Source[s] and NS contains vs. Let _x be
a sequence whose elements are ei ther U' frames or entries of the form (s, vs).
Channel1 is said to satisfy x_, if, by deleting all S' f rames in Channel~ and by
deleting the P field in all r f rames in Channel~, the resulting sequence equals _x.
Given two consecutive elements x~, x2 in _x, we say tha t a Poll is to the immediate
left of x2 to mean tha t it is in between x2 and xl. We say tha t a Poll is to the left
of x2 to mean tha t it is anywhere to the left of x2.

Given integers n, s and vs such tha t 0 _< n __ s and 0 _< vs < N, the nota t ion
(s - 1, vs e 1) . . (s - n, vs e n) denotes the sequence (s - 1, vs e 1), (s - 2,

ACM Transact ions on Compute r Systems, Vol. 1, No. 4, November 1983

350 A.U. Shankar and S. S. Lam

vs e 2), . . . , is - n, vs e n) i f n > 0, and the empty sequence i f n = 0. E i ther
way, n is the length of the sequence. (We use a simple comma to denote
concatenation.)

Finally, whenever the t e rm [Old_In fo_Sequence] appears in the assertions, it
denotes any sequence (possibly empty) of entries of the form is, vs) . We use
[Old_In fo_Sequence] to refer to the is, vs) sequence obtained f rom the r frames
in Channel1 pertaining to a data connection tha t is in the process of being reset.

The following notat ion is used in describing the state of Channel2. Given an
integer vr such tha t 0 _ vr < N, the nota t ion [vr] denotes ei ther an empty
sequence or any sequence of one or more receive sequence numbers, each
equalling vr. Let y_ be a sequence whose elements are e i ther U' f rames or entries
of the form [vr]. An instance of y_ is any sequence of U' f rames and N R fields
obtained by (arbitrarily) fixing the length of each [vr] in y_. Channel2 is said to
satisfy y_ if, by replacing all S' and r frames in Channel2 by their N R fields, the
resulting sequence equals an instance of y_.

Given integers m and vr such tha t m _ 0 and 0 _ vr < N, the nota t ion
[vr] . . [vr e m] denotes the sequence [vr], [vr e 1], . . . , [vr e m] if m > 0,
and the sequence [vr] if m = O. For convenience we assume tha t if m > 0, t hen
[vr e m] is not empty.

Whenever the t e rm [Old_Ack_Sequence] occurs in the assertions, it denotes
any sequence (possibly empty) of entries of the form [vr]. We use [O l d _ A c k _
Sequence] to refer to the [vr] sequence obtained from the r and S' f rames in
Channel2 pertaining to a data connect ion tha t is in the process of being reset.

Lastly, (Final, N R) denotes an I' or S' f rame whose F field equals I and whose
receive sequence number equals N R .

Data Trans fer Assert ions .

The assertions A1-A6 listed below, in conjunct ion with the P F assertions, are
inductively complete, and hence invariant (proof appears in [16, 18]. A1-A5 are
concerned with conditions tha t hold during opening/closing of the data link; A6
is concerned with conditions of data t ransfer tha t hold when the data link is open.

A1. (a) Mode l = Open ~ Mode2 = Open and no U' frames in Channel~
and no U' frames in Channel2 and U_Response = None

(b) Model = Closed ~ Mode2 = Closed and Channel1 is empty
and Channel2 is empty and U_Response = None

(c) (r , P, Data, N S) or iS', P) in Channel1 ~ Mode2 = Open.

A2. Pol l_ T imer = Off ~ U_Response = None
and (Mode2 = Open or Mode2 = Closed).

A3. (U', P, C o m m a n d) in Channel1
Channel1 satisfies (U', 1, C o m m a n d) , [O ld_ In fo_Sequence]

and i C o m m a n d = SARM ~ Model = Opening)
and (C o m m a n d = DISC ~ Model = Closing)
and iMode2 = Open or Mode2 = Closed) and U_Response -- None
and Channel2 satisfies [O ld_Ack_Sequence] .

A4. U_Response ~ None ~ F i n a l _ b i t = 1
and Channel1 is empty and Channel2 satisfies [O l d _ A c k _ S e q u e n c e]

ACM Transact ions on Compute r Systems, Vol. 1, No. 4, November 1983

An HDLC Protocol Specification and Its Verification 351

and (U_Response = UA ~ (Model = Mode2 = Opening
or Model = Mode2 = Closing))

and (U_Response = D M ~ (Model = Closing
and Mode2 = Closed)).

A5. (U', F, Response) in Channel2 ~ Channel1 e m p t y
and((Channel2 satisfies (U', 1, DM), [Old_Ack_Sequence]

and Mode2 = Closed and Model = Closing)
or (Channel2 satisfies (U', 1, UA), [Old_Ack_Sequence]

and Mode2 = Closed and Mode~ -- Closing)
or (Channel2 satisfies [0], (U', 1, UA), [Old_Ack_Sequence]

and Mode2 = Open, VR = R = User_out = 0, U_Response = None
and Mode~ = Opening)).

{A5 supplies the initial condition for the next assertion, A6, to hold when the
data link is opened at P1.}

A6. I f Mode~ = Open then (Mode2 = Open and B1 and B2 and B3 and B4 and
(B5 or B6)) holds, where B1-B6 are the assert ions listed below.

B1. Source[i] = Sink[i] for 0 _< i < User_out <_ R.

{Data is t ransferred in sequence.}

B2. A < _ R < _ S < A + N.

{The number of outs tanding blocks in P1 is always less t han N.}

B3. A mod N = VA, S mod N = VS, R mod N = VR.

{With B2 above, this asserts t ha t the modulo N s ta te var iables point to the
same data blocks in Source and Sink, as pointed to by A, S and R.}

B4. Checkpoint_ Cycle = True ~ VS (3 VA > VCS 0 VA.

{The data blocks with sequence numbers VA, VA @ 1, . . . , VS e 1 are
outstanding. When a checkpoint cycle is ongoing, then of these da ta blocks,
the subset with sequence numbers VA, VA ~ 1 VCS were outs tanding
when the Poll was sent.}

B5. (a) Channel~ satisfies (S - 1, VS (3 1) . . (S - n, VS (3 n) where 0 _< n _<
S - R .

{Channel~ has a (possibly empty) sequence of I ' f rames containing successive
da ta blocks. I f n = S - R then (S - n, VS (3 n) is the next da ta block
expected by P2. I f n < S - R, then the da ta block next expected by P2 has
been lost, none of the I ' f rames current ly in Channel~ will be accepted by P2,
and P~ is not ye t aware of the loss.}

(b) Channel2 satisfies [V R . . [VR (3 m] where 0 __ m _< R - A.

{Channel2 contains a (possibly empty) sequence of successive receive se-
quence numbers . I f rn > 0 then [VR (3 m] consists of at least one I ' or S '
f rame with its receive sequence n u m b e r equal to VR (3 rn.}

(c) Checkpoin t_Cycle and Poll in Channel~ ~ (n = 0 and VCS = VS (3 1)
or (n > 0 and Poll is with or to immedia te left of (S - i, VS (3 i)

where i = VS (3 VCS)

ACM Transactions on Computer Systems, Vol. 1, No. 4, November 1983.

352 A.U. Shankar and S. S. Lam

or (n > 0 and Poll is to r ight of (S - n, V S e n)
and n = (V S @ V C S) - 1).

(Relates posit ion of a checkpoint Poll in Channe l1 to VCS.}

(d) C h e c k p o i n t _ C y c l e and F i n a l _ b i t -- 1 and (V R e V A <_ V C S e V A)
S - n > R .

(I f checkpoint Poll has reached P2 and all da ta up to the checkpoint has not
been received a t P2, then da ta blocks are lost.}

(e) C h e c k p o i n t _ Cycle and (Final, N R) in Channel2
and (N R e N A <_ V C S e V A) ~ N R = V R and S - n > R.

(I f checkpoint Final is in C2 and its N R does not acknowledge all da ta blocks
up to VCS, t hen da ta blocks are lost and the Final ' s N R equals VR.}

B6. (P1 realized (some t ime ago) t ha t P2 was receiving out of sequence I ' f rames,
and has commenced (or is abou t to commence) re t ransmiss ion of in sequence
I ' frames.}

(a) C h a n n e l l satisfies (S - 1, V S e 1 } . . (S - j , V S e j }, (So - 1, VSo e 1 }
. . (so - k, vso (S k) w h e r e j = S - A , A + N > so > so - k > R, and vso
= So mod N.

(The head of Channel~ consists of one or more old out-of-sequence I ' f r ames
(So - 1, vso e 1} . . (So - ks VSo e k) , followed by zero or more in-sequence
I ' f rames (S - 1, V S e 1} . . (S - j , V S e j } . }

(b) Channel2 satisfies [V R].

(Channe l2 has zero or more receive sequence numbers , all equal to VR.}

(c) R = A.

(P1 has de te rmined the current value of R exactly. Hence (S - j , V S e j),
the first of the new r f rames in Channel~, is the one next expected by P2.}

(d) (There is no Poll in Channel1 with or to the r ight of (So - 1, VSo e 1)) and
F i n a l _ bit = 0 and no Final in Channel2 .

(Since (So - 1, VSo e 1) was the last I ' f r ame sent before re t ransmiss ion was
init iated th rough checkpointing, the Poll is e i ther not outs tanding or has
been sent af ter (So - 1, VSo e 1) was sent.}

(e) C h e c k p o i n t _ Cycle and Poll in C h a n n e l l ~ Poll is wi th or to the left of
(S - i, V S (5 i) where i = V S e VCS.

(Relates posit ion of a checkpoint Poll in Channel~ to VCS.}

3.4 Image Protocol for P2 to P1 Data Transfer

We now consider the function of one-way da ta t ransfer f rom P2 to P~. T w o
desirable proper t ies of the H D L C protocol concerning this funct ion m a y be s ta ted
as follows:

I f Mode2 = Mode~ ffi Open then

1. Sink~[i] = Source2[i] for 0 _< i < User_ou t l
2. O < _ A 2 < _ S g < A 2 + N

ACM Transactions on Computer Systems, Vol. 1, No. 4, November 1983.

An HDLC Protocol Specification and Its Verification 353

The first property states that data is transferred in sequence; the second that the
maximum number of outstanding data blocks (hence the minimum storage
requirement) at P2 is N - 1. These properties can be stated using only the
variables Mode, Sink, and User_out at P1, and Mode, Source, S and A at P2. As
in the case of the P1 to P2 data transfer, we can construct an image protocol using
the variables Poll_ Timer, $Poll_ Timer, Poll_Retry_ Count, VR, R, and Local_
RStatus at P1, and Final_bit, $Response_ Time, U_Response, User_in, VS, VA,
VCS, Checkpoint_ Cycle and Remote_RStatus at P2. (This image protocol is not
well-formed.)

The images of message types sent by P1 can be defined as follows. The image
of message type (U, P, Command) is (U', P, Command). The image of (I, P,
Data, NS, NR) is defined as (I', P, NR), where I' is a new message type
corresponding to an I frame in the HDLC protocol. The image of (S, P, RStatus,
NR) is (S', P, RStatus NR).

Next we consider the images of the HDLC message types sent by P2. The
image of (U, F, Response) is (U', F, Response). The image of (I, F, Data, NS,
NR) is (I', F, Data, NS), where I' is a new message type corresponding to an I
frame of the HDLC protocol. The image of (S', F, RStatus, NR) is (S', F), where
S' is a new message type corresponding to an S frame of the HDLC protocol.

Thus, in the image protocol, (U', P, Command), (I', P, NR) and (S', F, RStatus,
NR) are the message types sent by P1, and (U', F, Response), (I', F, Data, NS),
and (S', F) are the message types sent by P2.

The events of P1 and P2 are shown in Tables X and XI, respectively. The
channel and time events of this image protocol are as in Tables IV and V. The
initial state of this image protocol is the same as that of the HDLC protocol.

3.4.1. Safety Properties. For this image protocol, we have verified the desirable
safety properties of the projected function. The following assertions, in conjunc-
tion with the PF assertions, are inductively complete and hence invariant. The
notation used in these assertions is similar to the notation used in the assertions
for the image protocol of P1 and P2 data transfer (with the role of P1 and P2,
Channel~ and Channel2, and Poll and Final interchanged).

The assertions C1-C6 listed below hold at all times. C1-C5 are concerned with
conditions that hold during opening/closing of the data link; C6 is concerned with
conditions of data transfer that hold when the data link is open.

C1. (a) Model = Open ~ Mode2 = Open and no U' frames in Channel~
and no U' frames in Channel2 and U_Response = None

(b) Model = Closed ~ Mode2 = Closed and Channel~ is empty
and Channel2 is empty and U_Response = None

(c) (I', P, NR) or (S', P, RStatus, NR) in Channel~ ~ Mode2 = Open.

C2. Poll_ Timer = Off ~ U_ Response = None
and (Mode2 = Open or Mode2 = Closed).

C3. (U', P, Command) in Channel1
Channel1 satisfies (U', 1, Command), [Old_Ack_Sequence]

and (Command = SARM ~ Model = Opening)
and (Command = DISC ~ Model = Closing)

ACM Transact ions on Computer Systems, Vol. 1, No. 4, November 1983

354 A.U. Shankar and S. S. Lam

and (Mode2 -- Open or Mode2 = Closed) and U _ R e s p o n s e -- None
and Channe l2 satisfies [O l d _ I n f o _ S e q u e n c e] .

C4. U _ R e s p o n s e ~ None ~ F i n a l _ b i t = 1
and Channe l1 is e m p t y and Channe l2 satisfies [O l d _ I n f o _ S e q u e n c e]
and (U _ R e s p o n s e = UA ~ (Mode l ---Mode2 = Opening

or M o d e l = Mode2 = Closing))
and (U _ R e s p o n s e = D M ~ (Mode l = Closing

and Mode2 = Closed)).

C5. (U', F, R e s p o n s e) in Channe l2 ~ Channel1 e m p t y
and ((Channel2 satisfies (U', 1, DM), [O l d _ I n f o _ S e q u e n c e]

and Mode2 = Closed and Mode~ = Closing)
or (Channe l2 satisfies (U', 1, UA), [O l d _ I n f o _ S e q u e n c e]

and Mode2 = Closed and M o d e l = Closing)
or (Channel2 satisfies (S - 1, V S e 1) . . (0, 0), (U', 1, UA),

[O l d _ I n f o _ S e q u e n c e]
and Mode2 = Open, V A = A = O, 0 <_ V S = S < N ,

C h e c k p o i n t _ Cycle = False, U _ R e s p o n s e = None
and M o d e l = Opening)).

{C5 supplies the initial condit ion for the next assertion, C6, to hold when the
da ta link is opened a t P~.}

C6. I f M o d e l = Open then (Mode2 = Open and D1 and D2 and D3 and D4 and
(D5 or D6)) holds, where D 1 - D 6 are the asser t ions listed below.

D1. Source[i] = S ink[i] for 0 ___ i < U s e r _ o u t <_ R .

D2. A < _ R < _ S < A + N.

D3. A m o d N = VA, S mod N = VS, R m o d N = VR.

D4. C h e c k p o i n t _ Cycle = True ~ V S e V A > V C S e VA.

D5. (a) Channe l2 satisfies (S - 1, V S e 1) . . (S - n, V S e n)
where 0 _< n _ S - R.

(b) Channel1 satisfies [V R] . . [V R e m]
where 0 <_ m _ R - A.

(c) C h e c k p o i n t _ C y c l e and Final in Channe l2 ~ (n = 0 and V C S = V S @ 1)
or (n > 0 and Final is with or to immedia te left of (S - i, V S G i)

where i = V S e V C S)
or (n > 0 and Final is to r ight of (S - n, V S e n)

and n = (V S e V C S) - 1).

(d) C h e c k p o i n t _ Cycle and P o l l _ T i m e r = Off
and (VR e V A <_ V C S ~ VA) ~ S - n > R .

(e) C h e c k p o i n t _ C y c l e and (Poll, N R) in Channe l1
and (N R e V A <_ V C S 0 VA) ~ N R = V R and S - n > R.

D6. (a) Channe l2 satisfies (S - 1, V S e 1) . . (S - j , V S e j),
(S o - 1, VSo ~ 1) . . (s 0 - k, VSo e k)

ACM Transact ions on Computer Systems, Vol. 1, No. 4, November 1983.

An HDLC Protocol Specification and Its Verification 355

where j = S - A, A + N > So :> So - k > R, and VSo = So mod N.

(b) Channel1 satisfies [VR].

(c) R = A.

(d) (There is no Final in Channel2 with or to right of (So - 1, VSo e 1))
and Poll_ Timer ~ Off and no Poll in Channel~.

(e) Checkpoint_ Cycle and Final in Channel2
Final is with (S - j, VS e j).

3.5 A Proposed Modification to HDLC

We observed above that HDLC protocol cannot be considered to be well-struc-
tured, since it does not have well-formed image protocols that are significantly
smaller than the HDLC protocol itself for all of its functions. We will now
introduce a minor modification to the I message in the HDLC protocol. This
modification allows us to obtain small well-formed image protocols for each of
the one-way data transfer functions.

Our modification consists of adding an RStatus field to the HDLC I message
type. In place of the message type (I, P, Data, NS, N R) sent by Pi, we will use
the message type (IM, P, Data, NS, NR, RStatus), where IM (standing for I
modified) is the name of the message type. In place of the message type (I, F,
Data, NS, NR) sent by P2, we will use the message type (IM, F, Data, NS, NR,
RStatus). Note that the RStatus field can be implemented using a field of one
bit.

The usage of this IM message type is similar to the usage of the HDLC I
message type, except for the following difference. The P field being set to 1 does
not indicate any flow control information; instead, the RStatus field is used to
convey flow control information exactly as in an S frame. The events of this
modified HDLC protocol system are shown in Tables XII and XIII. Note that
the only difference between this modified HDLC protocol and the original HDLC
protocol (Tables I and II) is that Send_I and Rec_I have been replaced by Send_
IM and Rec_IM, respectively. This modified HDLC protocol possesses small
well-formed image protocols for each of its functions [16] and can be considered
to be well-structured.

In particular, the image protocol obtained for connection management in
Section 3.2 (Tables VI and VII) is still valid and well-formed (where I' is now the
image of IM and S).

In the image protocol for one-way data transfer from P1 to P2, we have the
same entity variables as before (Section 3.3). The message type U is not changed
in the image protocol (as before). The image of message types IM and S sent by
e l are I' and S' respectively, as already defined. The message types IM and S
sent by P2 are both projected onto the same image message type S (i.e., the Data
and N S fields in IM are deleted). The events of P1 (P2) in the image protocol are
exactly as shown in Table VIII (Table IX), except that Rec_I '(Send_I ') is
missing. This image protocol can easily be shown to be well-formed [16].

The image protocol for one-way data transfer from P2 to P1 can be similarly
constructed. The entity variables of P1 and P2 in the image protocol are as defined

ACM Transact ions on Computer Systems, Vol. 1, No. 4, November 1983

356 A.U. Shankar and S. S. Lam

in Section 3.4. The message types IM and S sent by P1 are both projected onto
the same message type S. The message types IM and S sent by P2 have the
images I' and S' respectively as already defined. The events of P1 (P2) in the
image protocol are exactly as shown in Table X (Table XI), except that Send_I'
(Rec_I') is missing. This image protocol can easily be shown to be well-formed.

The connection management assertions obtained in Section 3.2.1, and the data
transfer assertions obtained in Sections 3.3.1 and 3.4.1 continue to be invariant
for the image protocols of this modified HDLC protocol. In addition, because
these image protocols are well-formed, they are faithful to the modified HDLC
protocol.

4. CONCLUSION

We have specified a version of the HDLC protocol using an event-driven process
model, and verified it using the method of projections. The verification serves as
a rigorous exercise in demonstrating the applicability of our method to the
analysis of real-life protocols.

The HDLC protocol specified is based upon the Asynchronous Response Mode
(ARM) of operation between two protocol entities, and includes all of its impor-
tant features. It uses the basic repertoire of HDLC commands and responses
(with the exception of the CMDR response), and includes the use of poll/final
messages for checkpointing and connection management, timers for timeouts,
cyclic sequence numbers, sliding windows of size N for data transfers, and ready/
not ready messages for flow control.

The HDLC protocol has two characteristics found in most real-life communi-
cation protocols. First, the HDLC protocol is a time-dependent system, that is,
HDLC operates under real-time constraints that are important not only for the
protocol's performance efficiency but also for its correct logical behavior. Such
time-dependent behavior cannot be handled by liveness assertions of the temporal
logic variety. By including time variables and time events in our protocol model,
we specify the HDLC time-dependent behavior in terms of safety assertions.

Second, HDLC is a multifunction protocol. It implements three distinguishable
functions: connection management, and one-way data transfers between two
protocol entities. Using the method of projections, we have constructed for each
function an image protocol containing only those portions of the HDLC protocol
that are needed to verify the desired correctness properties of that function. In
each case, an inductively complete assertion implying the desired behavior was
obtained.

Of the three image protocols obtained, only the connection management image
protocol is well-formed. In order to construct a well-formed image protocol for
one-way data transfer, almost the entire HDLC protocol has to be included in
the image. This is due to dependencies in the two data transfer functions of
HDLC. Thus, we say that the HDLC protocol as currently specified is not well-
structured. We then introduced a minor modification to the HDLC protocol, in
the form of an additional one-bit flow control field in the HDLC I frame format.
With this modification, small well-formed image protocols can be constructed for
each of the HDLC functions of interest. Our modified version of HDLC can be
considered as as well-structured protocol.

ACM Transact ions on Compute r Systems, Vol. 1, No. 4, November 1983.

An HDLC Protocol Specification and Its Verification 357

APPENDIX A

PROOF OF PF ASSERTIONS.

Initially, Poll_ bit = O, Poll_ Timer = Off, Final_ bit = O, $Response_ Time = Off,
and the channels are empty . Hence, PF2 holds nonvacuously, while the res t of
the PF assert ions hold vacuously. We will next show tha t the PF assert ions are
t rue af ter the occurrence of any event, provided tha t they are t rue before the
event occurrence. This will t hen establish the P F assert ions as a sys tem invariant.

We first introduce some nota t ion tha t is used in the proof. T h e name of a
variable will be used to denote its value before the occurrence of an event. We
will now consider each of the events of the image protocol sys tem and show tha t
the PF assert ions are not violated by any of them.

Entity events of P1. U s e r _ r e q _ c o n n and Use r_ req_d i sc do not affect any of
the PF assertions.

In order to send a Poll (using ei ther S e n d _ U ' or Send_Y), the condit ion Poll_
bit = 1 mus t hold. F rom PF1 and PF2, this means t ha t there is no Poll in
Channell, no Final in Channel2, and Final_ bit = O. After the event, Poll_ Timer
=$Pol l_ Timer = 0, and there is a single (Poll, SAge) in Channel1 with SAge
= 0 (Poll is e i ther a U ' or I ' frame). This establ ishes PF3 af ter the event. T h e
other PF assert ions are vacuously true.

Sending a non-Poll message does not affect the PF assertions.
When a Final message (either a U' or an I ' f rame) is received, f rom PF5 we

have the following: there is no Poll in Channel~, Final_ bit = 0 and Channel2 has
exactly one Final. Hence af ter the event occurrence, PF2 holds nontrivially, while
the other PF assert ions hold vacuously.

Recept ion of a non-Final message does not affect the PF assertions.
Reques t_ Poll event makes PF1 hold nontrivially. T h e o ther P F assert ions are

not affected and continue to hold.
Po l l_T imeou t event can occur only when Poll_Timer >_ PollTimeoutValue.

Since PollTimeoutValue > 1 + (1 + a)(MaxDelayl + MaxResponseTime
+ MaxDelay2), and (from the accuracy axiom)]Poll_ Timer - $Poll_ Timer[<_
1 + a $Poll_ Timer, we have $Poll_ Timer > MaxDelay~ + MaxResponseTime
+ MaxDelay2. I f any one of PF3, PF4 or PF5 held nonvacuously before the
Poll_ T imeou t event occurrence, tha t would imply ei ther tha t channel C1 contains
an over-age message (SAge > MaxDelay~ in PF3), or t ha t ent i ty Pe waits too long
to send a Final ($Response_ Time > MaxResponseTime in PF4), or t ha t channel
C2 contains an over-age message {SAge > MaxDelay2 in PF5). Because of the
local t ime axioms of these components , none of this can occur. Hence, PF3, PF4
and PF5 will hold vacuously before the P o l l _ T i m e o u t event. Hence PF2 holds
nonvacuously af ter the P o l l _ T i m e o u t event.

Entity events of P2. T h e recept ion of Poll (either a U ' or an I ' f rame) means
tha t PF3 held nonvacuously. Also, f rom the local t ime axiom for channel C~ we
have t ha t $Poll_ Timer = SAge <- MaxDelay~. After the recept ion of the Final,
Final_bi t = 1 and $Response_ Time = 0. Hence PF4 holds nonvacuously af ter
the event. T h e other PF assert ions hold vacuously.

In order to send a Final message, Final_ bit must equal 1. Hence PF4 holds
nonvacuously. Also, f rom the local t ime axiom of ent i ty P2 ($Response_ Time <_

ACM Transact ions on Computer Systems, Vol. 1, No. 4, November 1983

358 A.U. Shankar and S. S. Lam

MaxResponseTime), we have that SPoil_Timer <_ MaxDelayl +
MaxResponseTime. After the event occurrence, Final_ bit = O, $Response_ Time
= Off, and a (Final, SAge) message with SAge = 0 has been placed in the
Channele. Hence, PF5 holds nonvacuously after the event occurrence, while the
other PF assertions hold vacuously.

Reception of a non-Poll message or sending of a non-Final message does not
affect the PF assertions.

Channel Events. Recall that the only channel event we have is a loss of the
first message in any channel. The only effect of this message loss on the PF
assertions is to transform PF3 (or PF4) from nonvacuously true to vacuously
true. Hence the channel events do not violate the PF assertions.

Time Events. The occurrence of Pol l_Timer_Tick does not affect the PF
assertions since Poll_ Timer is never set to Off by this event. The occurrence of
the global time event increments by 1 tick both the left and right hand sides of
the expressions involving $Poll_ Timer in PF3, PF4, and PF5. Hence, none of the
PF assertions are violated by the time events. []

ACM Transact ions on Compute r Systems, Vol. 1, No. 4, November 1983

APPENDIX B

T a b l e I . E v e n t s o f P r i m a r y H D L C E n t i t y P1

Event Name

1. User_req_conn

2. User_req disc

3. User_puts_data

4. User_gets_data

5. Send U

6. Rec U

7. Poll Tlmeout

8. Request_Poll

9. Send I

I0. Send S

I I . Rec I

12. Rec S

E n a b l l n ~ C o n d i t i o n

Mode ~ Opening
a n d Mode ~ C l o s i n g

Mode = Open

Mode = Open
and (User_in-A<Sbufslze)

Mode = Open
and (R-User_out • O)

(Mode = Open ing
or Mode = C l o s i n g)
a n d P o l l b i t = I

flrst(Channel 2) = U

Poll_Timer~PollTimeoutValue

Poll Timer = O f f

Mode = Open

and vSeVA < N-I
and S < User In
and Remote RStatus = RR
and not(Poll bit = i
and Local RS~atus = RNR)

Mode = Open

flrst(Cbannel 2) = I

flrst(Channel 2) = S

Action

Mode := Opening

Mode := Closing

{User places data in
S o u r c e [U s e r i n] }
U s e r i n := U s e r in * 1

{User extracts data block
from Slnk[User out])
User out := UsEr out + I;
If Local RStatus ~ RNR

then-Local RStatus := RR

i f Mode = Open ing
t h e n Command := SARM;

If Mode = Closing
then Command := DISC;

put(Channel I , (U,i,Command));

POLL SENT

get(Channel 2, (U,R,Response));

I f Response = DM
t h e n Mode := Closed:

If (Response = UA and Mode = Closing)
t h e n Mode := Closed;

If (Response = UA and Mode = Opening) then
beg in

Mode := Open;
INITIALIZE SEND VARIABLES;
INITIALIZE-REC VARIABLES -.

end ;
If F = I then FINAL RECEIVED

Reset(Poll Timer, Off);
If Poll Re~y_Count e MaxRetryCount

then Poll Retry Count:=Poll Retry Count+1
else Mode := LinkFailure

Poll bit := I

put(Channel I , (I,Poll_bit.Source[S],VS,VR))

VS := VS 8 i; S := S + i;
If Poll bit = i then

begh*
CHECKPOINT SENT:
POLL SENT

end

put(Channel t , (S,Poll_blt,Local_RStatus,VR))

if Poll bit = 1 then
begl~

CHECKPOINT SENT:
POLL SENT

end
E e t (C h a n n e l 2 , (I , F , D a t a , N S , N R)) ;
i f Mode = Open then

begin
DATA NS RECEIVED;
NR RECEIVED;
i f F = i t h e n

beg in
CHECKPOINT RECEIVED:
FINAL RECEIVED;
Remote RStatus ;= RR

end
end

get(Channel2,(S,F,RStatus,NR));

If Mode = Open t h e n
beg in

Remote RStatus := RStatus;
NR RECEIVED;
I f F = 1 t h e n

beg in
CHECKPOINT RECEIVED;
FINAL RECEIVED

end
end

T a b l e I I . E v e n t s o f S e c o n d a r y H D L C E n t i t y P2

Event Name

I. User_puts_data

2. User_gets_data

3. Rec U

4. Send U

5. Send I

6. Send s

7 . Rec I

8 . Rec S

EnabllnK Condition

Mode = Open
and (User ln-A<SbufSlze)

Mode = Open
and (R - User out > O)

flrst(Channel I) = U

U_Response ~ None

Mode = Open
a n d VSSVA < N-I
a n d S < U s e r in
and Remote RStatus = RR
a n d n o t (F i n a l _ b i t = 1

a n d Loca l RStatus = RNR)

Mode = Open

f i r s t (C h a n n e l 1) = I

f i r s t (C h a n n e l 1) = S

A c t i o n

(U s e r p l a c e s d a t a b l o c k i n S o u r c e [U s e r _ i n])
U s e r In := U s e r In + 1

<User e x t r a c t s d a t a b l o c k f rom S i n k [U s e r _ o u t] }
U s e r o u t := U s e r o u t + 1;
If Lo~al RStatus ~ RNR

then-Local RStatus := RR

get(Channel 1, (U,P,Command)) ;

I f U Response ~ UA t h e n
G e ~ n

If Command = SARM then
begin

Mode := Open ing ;
U_Response := UA

e n d ;
If (Command = DISC a n d Mode = Open) then

beg in
Mode := C l o s i n g ;
UResponse := UA

end ;
i f (Command = DISC and Mode = C losed)

t h e n U_Response := DM;
I f P = 1 t hen POLL RECEIVED

end

p u t (C h a n n e l 2. (U , F l n a l _ b t t , U _ R e s p o n s e)) ;
U Response := None;
I f -Mode = C l o s i n g t h e n Mode := C losed ;
| f Mode = Opening t h e n

begin
Mode := Open;
INITIALIZE SEND VARIABLES;
INITIALIZE-REC VARIABLES

end ;
If Final bit = 1 then FINAL SENT

put (Channel 2. (I °Flnal_blt, Source Is] ,VS.VR)) ;

VS := VS g 1; S := S + l ;
i f F i n a l b i t = I t h e n

beg in -
CHECKPOINTSENT ;
FINAL SENT

end

put (Channel2, (S, Final_blt, Loeal_RStatus, VR)) ;

I f Final blt = 1 t h e n
begln-

CHECKPOINT_SENT ;
FINAL SENT

end
g e t (C h a n n e l 1 , (I,P,Data,NS,NR)) ;
I f U_Response ;~ UA t h e n

beg in
I f Mode = C losed

t h e n U_Response := DM;
i f Mode = Open t h e n

beg in
DATA NS RECEIVED;
NR RECEIVED;
i f P = 1 t h e n

beg in
CHECKPOINT RECEIVED;
POLL RECEIVED ;
Remo~e RStatus := RR

end
end

end

get(Ohannell, (S.PoRStatus, NR));

If UResponse ~ UA then
begin

i f Mode = C losed
then U_Response := DM;

i f Mode = Open t hen
beg in

Remote R S t a t u s := RStatus;
NR REC~.IVED;
I f P = 1 t h e n

beg in
CHECKPOINT RECEIVED;
POLL RECEIVED

end
end

end

An HDLC Protocol Specification and Its Verification

Table III. Details of Code Segments Used in Tables

361

POLL SENT::
-Reset(Poll Timer. 0);
Poll bit :~ 0

FINAL RECEIVED::
Rese t (Po l l Timer, Off) ;
Poll_Retry~Count := 0

POLL RECEIVED::
-Final b i t := 1:
Reset~SResponse_Tlme. O)

FINAL SENT::
Final bit := O:
Reset~$Response_Tlme. Off)

INITIALIZE SEND VARIABLES::
User in := O: S := O; A :: O:
VS :E O; VA := O;
Checkpoint_Cycle := False ;
Remote RStatus := RR

INITIALIZE REC VARIABLES::
User ~ut 7= 0; R := 0; VR := 0:
LocaT RStatus := RR

DATA NS RECEIVED::
If (VR = NS and Local RStatus = RR) then

begin
Sink[R] := Data:
R :: R + I; VR :: VR $ I;
if R - User out = RbuffSlze

then Local RStatus := RNR
end

CHECKPOINT SENT::
if VS ~ VA then

begin
Checkpoint_Cycle := True;
VCS := VS 8 1

end

NR RECEIVED::
If Checkpoint_Cycle and NR 8 VA > VCS 8 VA

then Checkpoint_Cycle := False ;
A := A + NR 8 VA; VA := NR

CHECKPDINT RECEIVED::
If Checkpolnt_Cycle then

begin
Checkpoint_Cycle := False ;
VS := VA: S : : A

end

Table IV. Events of Channel Ci for the Protocol System

Event Name

Message_Loss

Enablln~ Condition

Channel i is not empty

Action

Delete the first message in Channel i

Table V. Time Events for the Protocol System

Event Name

1. Poll Timer Tick

2. Global Tick

Enablln~ Condition

(Poll Timer - SPoil Timer)
-~ a($Pon_Tlmer)

(SPell Timer - Poll Timer)
a($Poll Timer)

and ($Response ~lme
< MaxResponseTlme)

and (a l l ages in Channel 1
< MaxDelay l)

and (a l l ages in Channel 2
< MaxDelay 2)

Action

AgeCPoll_Tlmer)

Age(SPoil_Timer);

Age($Response_Tlme);

Age(all ages in Channell);

Age(all ages In Channel 2)

ACM Transactions on Computer Systems, Vol. 1, No. 4, November 1983.

362 A.U. Shankar and S. S. Lam

T a b l e VI . E v e n t s o f P~ in t h e I m a g e P r o t o c o l fo r C o n n e c t i o n M a n a g e m e n t

Event Name

I. User_req_conn

2. User_req_dlsc

3. Send U"

4. Rec U'

5. Poll Timeout

6. Request_Poll

7. Send I'

8. Rec I"

EnablinK Condition Action

(same as in Table i)

(same as in Table i)

(same as in Table 1)

f i r s t (C h a n n e l 2) = U ~ ge t (Channe l s . (U ' ,F ,Response)) ;
if Response = DM

then Mode := C l o s e d ;
I f (Response=UA and M o d e = C l o s i n g)

t h e n Mode := C l o s e d ;
If (Response=UA and Mode=0pening)

then Mode := Open;
If F = I then FINAL RECEIVED

(same as in Table 1)

(same as In Table 1)

Mode = Open put(Channel t, (I',Poll_blt));

if Poll bit = i then POLL SENT

f i r s t (C h a n n e l 2) = I' ge t (Channe l 2, (I ' , F)) ;
if Mode = Open then

If F = 1 then FINAL RECEIVED

T a b l e VII . E v e n t s o f P2 in t h e I m a g e P r o t o c o l f o r C o n n e c t i o n M a n a g e m e n t

Event Name Enablln K Condition Action

I. Rec U' (same as in Table 2)

2. Send_U" U_Response ~ None put(Channel s, (U~Flnal_blt,U_Response));

U_Response := None;
if Mode = Closing

then Mode := Closed;
| f Mode = Opening

then Mode := Open;
if Final bit = I

then-FINAL SENT

3. Send_I ' Mode = Open put (Channe l 2, (I ' , F l n a l _ b l t)) ;
if Final blt = 1 then FINAL SENT

4. Rec_I ' f i r s t (C h a n n e l 1) = I ' g e t (Channe l I. (I ' , P)) ;
if U_Response ~ UA then

begin
If Mode = Closed

then U_Response := DM;
]f (Mode = Open and P = i)

then POLL RECEIVED
end

ACM Transact ions on Compute r Systems, Vol. 1, No. 4, November 1983

An HDLC Protocol Specification and Its Verification • 363

T a b l e VII I . E v e n t s o f P] in t h e I m a g e P r o t o c o l f o r t h e H D L C P1 t o P2 D a t a T r a n s f e r

Event Name Enablln~ Condition Action

i. User_req_conn (same as in Table I)

2. User_req_dlsc (same as in Table i)

3. User_puts data (same as in Table i)

4. Send U" (same as in Table i)

5. Rec_U' flrst(Channel 2) = U l get(Channel 2. (U~F,Response));

i f Response = DM
t hen Mode := Closed;

if (Response=UA and Mode=Closlng)
then Mode := Closed;

If (Response=UA and Mode=Opening) then
begin

Mode := Open;
INITIALIZE SEND VARIABLES

end;
if F = 1 then FINAL RECEIVED

6. Poll Timeout (same as in Table 1)

7. Request_Poll (same as in Table 1)

8. Send I' Mode = Open put(Channel I. (I',Poll_blt,Source[S],VS));

and VSOVA < N-I VS := VS $ I; S := S + I;
and S < User in i f Poll bit = 1 then
and Remote RStatus = RR b e g ~

- CHECKPOINT SENT;

9. Send S' Mode = Open

I0. Rec I' flrst(Channel 2) : I"

POLL SENT -
end

put(Channel I , (S',Poll_blt));

if Poll bit = 1 t hen
b e g ~

CHECKPOINT SENT;
POLL SENT -

end

get(Channel 2, (I',F,NR));

if Mode = Open then
begin

NR RECEIVED;
if F = 1 then

begin
CHECKPOINT RECEIVED;
FINAL RECEIVED;
Remote RSbatus := RR

end
end

II. Rec S' (same as in Table I)

ACM Transact ions on Computer Systems, Vol. 1, No. 4, November 1983.

364 • A.U. Shankar and S. S. Lam

T a b l e I X . E v e n t s o f P2 in t h e I m a g e P r o t o c o l fo r t h e H D L C PI t o P2 D a t a T r a n s f e r

Event Name

1. User_sets_data

2. Rec U'

3. Send U'

4. Send I'

5. Send S'

6. Rec I"

Enablln~ Condition Action

(same as In Table 2)

(same as in Table 2)

U_Response ~ None put(Channel 2. (U~Flnal_blt, U_Response));
U Response := None;
I~Mode = C los ing

then Mode = Closed;
If Mode = Opening then

begin
Mode := Open;
INITIALIZE SEND VARIABLES

end;
i f Final_bit = 1 then FINAL_SENT

put(Channel 2, (I ' . F i n a l _ b l t . V R)) ;
i f F ina l bit = 1 then FINAL SENT

Mode : Open

and n o t (F i n a l b i t = 1
and Local~RStatus=RNR)

Mode = Open

f i r s t (C h a n n e l 1) = I '

7. Rec_S' f i r s t (C h a n n e l 1) = S'

put(Channel 2, (S~Final_bit.Local_RStatus.VR));
If Final bit = I then FINAL SENT

get(Channel1° (l',P,Data,NS));

|f U Response ~ UA then
~egln

i f Mode = Closed
then U_Response := DM;

If Mode = Open then
begin

DATA NS RECEIVED;
i f F ~ l - t h e n POLL RECEIVED

end
end

Eet(Channel 1. (S',P));
If UResponse ~ UA then

begln
i f Mode = Closed

then U_Response := DM;
If Mode = Open and P = 1

then POLL RECEIVED
end

ACM Transactions on Computer Systems, Vol. I, No. 4, November 1983

An HDLC Protocol Specification and Its Verification • 365

T a b l e X. E v e n t s o f P~ in t h e I m a g e P r o t o c o l fo r t h e H D L C P2 to P , D a t a T r a n s f e r

Event Name

I. User_req conn

2. User_req_dlsc

3. Usergetsdata

4. Send U"

5. Rec U'

6. Poll Timeout

7. RequestPoll

8. Send I'

9 . Send S'

I0. Rec I"

il. Rec S'

Enablln~ Condition Action

(same as in Table I)

(same as In Table I)

(same as In Table i)

(same as In Table 1)

f i r s t (C h a n n e l 2) = U' get(Channel20 (U~F,Response)) ;
if Response = DM

then Mode := Closed;
if (Response=UA and Mode=Closlng)

then Mode := Closed;
i f (Response=UA and Mode=Opening) then

begin
Mode := Open;
INITIALIZE REC VARIABLES

end;
If F = i then FINAL RECEIVED

(same as in Table i)

(same as In Table i)

Mode = Open put(Channel I, (I',Poll blt,VR));

and not(Poll bit : I If Poll bit = I then POLL SENT
and Loca~_RStatus=RNR) - -

Mode = Open put(Channell. (S'°Poll_blt°Local_RStatus,VR)) ;

If Poll bit = I then POLL SENT

first(Channel 2) = I' get(Channel 2. (I',F,Data,NS));

If Mode = Open then
begin

DATA NS RECEIVED;
if F = I then FINAL RECEIVED

end

flrst(Channel 2) = B' get(Channel 2. (S',F));

if Mode = Open then
if F = i then FINAL RECEIVED

ACM Transact ions on Compute r Systems, Vol. 1, No. 4, November 1983

366 A.U. Shankar and S. S. Lam

T a b l e XI . E v e n t s of P~ in t h e I m a g e P r o t o c o l for t h e H D L C P2 to PI D a t a T r a n s f e r

Event Name

I. User_puts_da ta

2. Rec U"

3. Send U"

4. Send I"

EnablinK Condition Action

(same as in Table 2)

(same as in Table 2)

U_Response ~ None

Mode = Open

and VS 8 VA < N-I
and S < User in
and Remote RStatus = RR

5, Send S' Mode = Open

6. Rec_l' flrst(Channel I) = I'

put(Channel 2. (U',Flnal b i t .U_Response)) ;
U_Response := None;
If Mode = Closing

then Mode := Closed;
if Mode = Opening then

begin
Mode := Open;
INITIALIZE SEND VARIABLES

end;
if Final bit = I then FINAL SENT

put(Channel 2, (I ' ,Final_blt,Source [S] ,VS)) ;

VS := VS 8 I ; S := S + 1;
if Final bit = 1 then

begin
CHECKPO I NT_SENT;
FINAL SENT

end

put(Channel s, (S ' , F l n a l _ b i t)) ;
If Final bit = 1 then

begin-
CHECKPOINT SENT;
FINAL SENT-

end

ge~(Channel 1. (I' ,P,NR)) ;
If U_Response ~ UA then

begin
if Mode = Closed

then UResponse := DM;
If Mode = Open then

begin
NR RECEIVED;
if P = 1 then

begin
CHECKPOINT RECEIVED;
FINAL RECEYVED ;
Remote RStatus := RR

end
end

end

7. Rec S" (same as in Table 2)

ACM Transactions on Computer Systems, Vol. 1, No. 4, November 1983

An HDLC Protocol Specification and Its Verification

Table XII. Events of P~ in the Modified HDLC Protocol

3 6 7

Event Name

I. Send IM

Enablin K Condition

Mode = Open

and VSOVA < N-1
and S < User in
and Remote RS%atus = RR

2. Rec_IM flrst(Channel 2) = IM

Action

put(Channell,(IM,Pon blt,Source[S],VS,VR,Local_RS%atus));

VS := VS ~ 1; S := S + 1;
If Poll bit = 1 then

b e g ~
CHECKPOINT SENT;
POLL SENT -

end

get(Channel 2, (IM,FoData,NS,NR,RStatus));

If Mode = Open then
begin

DATA NS RECEIVED;
NR RECEIVED;
Remote RStatus := RStatus;
if F = ~ then

begin
CHECKPOINT RECEIVED;
FINAL RECEIVED

end

end

[User_req_conn, User req dlsc, User_puts data, User_gets data, Send_U, Rec_U, Poll_Tlmeout,
Request_Poll, Send_S, Rec_S, are the same as in Table 1~

Table XIII. Events of P2 in the Modified HDLC Protocol

Event Name

1. Send IM

Enablln~ Condition

Mode = 0pen

and VS8VA < N-I
and S < User in
and Remote RStatus = RR

2. Rec_IM flrst(Channel I) = IN

Action

put(Channel2,(IM,Flnal_blt,Source[S],VS,VR,Local_RStatus));

VS := VS $ 1; S := S + 1;
if Final blt = I then

begin-
CHECKPOINT SENT;
FINAL SENT-

end

get(Channel I , (IM,P,Data ,NS,NR,RSta tus)) ;

l f U_Response ~ UA then
begin

i f Mode = Closed
then U_Response := DM;

if Mode = Open then
begin

DATA SS RECEIVED;
NR RECETVED;
Remote RStatus := RStatus;
If P = ~ then

begin
CHECKPOINT RECEIVED;
POLL RECEIVED

end

end
end

[User_puts_data, User_gets_data. Send_U, Rec_U, Send_S, Rec_S, are the same as in Table 2]

REFERENCES
1. BOCHMANN, G.V. Finite state description of communication protocols. Comput. Networks 2, (Oct.

1978), 361-372.
2. BOCHMANN, G.V., AND CHUNG, R.J. A formalized specification of HDLC classes of procedures. In

Conf. Rec. National Telecommunication Conference, (Los Angles, Dec. 1977), IEEE, New York,
pp. 519-530.

ACM Transactions on Computer Systems, Vol. 1, No. 4, November 1983.

368 A.U. Shankar and S. S. Lam

3. BOCHMANN, G.V., AND C.A. SUNSHINE, Formal methods in communication protocol design. I E E E
Trans. Commun. COM 28, 4 (April 1980), 624-631.

4. BRAND, D. AND JOYNER, W.H. Verification of HDLC. I E E E Trans. Commun. COM 30, 5 (May
1982), 1136-1142.

5. DIJKSTRA, E.W. A Discipline of Programming. Prentice-Hall, Englewood, Cliffs N.J., 1976.
6. HAILPERN, B.T. AND OWICKI, S.S. Verifying network protocols using temporal logic. Tech. Rep.

192, Computer Systems Laboratories, Stanford University, Stanford, Calif., June, 1980.
7. INTERNATIONAL STANDARDS ORGANIZATION. Data Communincations--HDLC Procedures--

Frame Structure. Ref. No. ISO 3309, International Standards Organization, Geneva, Switzerland,
1979.

8. INTERNATIONAL STANDARDS ORGANIZATION. Data Communications HDLC Procedures--Ele-
ments of Procedures. Ref. No. ISO 4335, International Standards Organization, Geneva, Switzer-
land, 1979.

9. INTERNATIONAL STANDARDS ORGANIZATION. Data Communications--HDLC Unbalanced
Classes of Procedures. Ref. No. ISO 6159, International Standards Organization, Geneva, Swit-
zerland, 1980.

10. KUROSE, J. The specification and verification of a connection establishment protocol using
temporal logic. In Proc. 2nd Int. Workshop on Protocol Specification, Testing and Verification,
(Idyllwild, Ca., May 17-20, 1982}, IFIP, New York, pp. 43-62.

11. LAM, S.S. AND SHANKAR, A.U. Protocol projections: A method for analyzing communication
protocols. In Conf. Rec. National Telecommunications Conference, (New Orleans, Nov. 1981),
IEEE, New York.

12. LAM, S.S. AND SHANKAR, A.U. Verification of communication protocols via protocol projections.
In Proc INFOCOM '82, (Las Vegas, March 30-April 1, 1982), IEEE, New York, pp. 229-237.

13. LAM, S.S., AND SHANKAR, A.U. Protocol Verification via Projections. Tech. Rep. 207, Dept. of
Comput. Sci., Univ. of Texas at Austin, Aug., 1982. To appear in I E E E Trans. Softw. Eng.

14. RAZOUK, R. Modeling X.25 using the graph model of behavior. In Proc. 2nd Int. Workshop on
Protocol Specification, Testing and Verification, (Idyllwild, Ca., May 17-20, 1982). IFIP, New
York, pp. 197-214.

15. SCHWARTZ, R.L. AND MELLIAR-SMITH, P.M. From state machines to temporal logic: Specification
methods for protocol standards. I E E E Trans. Commun. COM-30, 12 (Dec. 1982), 2486-2496.

16. SHANKAR, A.U. Analysis of communication protocols via protocol projections. Ph.D. thesis, Dept.
of Electrical Engineering, University of Texas at Austin, Austin, Tx., December, 1982.

17. SHANKAR, A.U. AND LAM, S.S. On time-dependent communication protocols and their projections.
In Proc. 2nd Int. Workshop on Protocol Specification, Testing and Verification, (Idyllwild, Ca.,
May 17-20, 1982), IFIP, New York, pp. 215-235.

18. SHANKAR, A.U. AND LAM, S.S. An HDLC Protocol Specification and its Verification using
Image Protocols. Tech. Rep. 212, Dept. of Computer Sciences, University of Texas at Austin,
September, 1982 (first version).

19. SHANKAR, A.U. AND LAM, S.S. Specification and verification of an HDLC protocol with ARM
connection management and full-duplex data transfer. In Proc. A C M SIGCOMM "83 Symposium,
(Austin, Tx., March 8-9, 1983), ACM, New York, pp. 38-48.

20. SHANKAR, A.U. AND LAM, S.S. Application of Projections to a Structured Model of Communi-
cation Protocols. Tech. Rep. 214, Dept. of Computer Sciences, University of Texas at Austin,
1983 (in preparation).

21. SLOAN, L. Mechanisms that enforce bounds on packet lifetimes. Presented at A C M SIGCOMM
"83 Symposium, University of Texas at Austin, March 1983. A C M Trans. Comput. Syst. 1, 4 (Nov.
1983), 311-330 (this issue).

22. STENNING, N.V. A data transfer protocol. Comput. Networks 1 (Sept. 1976), 99-110.
23. ZIMMERMANN, H., OSI Reference Model-- The ISO model of architecture for open systems

interconnection. IEEE Trans. Commun. COM-28, 4 (April 1980), 425-432.

Received September 1982; revised May 1983, accepted July 1983

ACM Transactions on Computer Systems, Vol. 1, No. 4, November 1983

