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ABSTRACT
Evaluating robustness is an important goal in simulation-based
analysis. Robustness is achieved when the controllable factors of
a system are adjusted in such a way that any possible variance in
uncontrollable factors (noise) has minimal impact on the variance
of the desired output. The optimization of system robustness using
simulation is a dedicated and well-established research direction.
However, once a simulation model is available, there is a lot of
potential to learn more about the inherent relationships in the sys-
tem, especially regarding its robustness. Data farming offers the
possibility to explore large design spaces using smart experiment
design, high performance computing, automated analysis, and inter-
active visualization. Sophisticated machine learning methods excel
at recognizing and modelling the relation between large amounts
of simulation input and output data. However, investigating and an-
alyzing this modelled relationship can be very difficult, since most
modern machine learning methods like neural networks or random
forests are opaque black boxes. Explainable Artificial Intelligence
(XAI) can help to peak into this black box, helping us to explore
and learn about relations between simulation input and output. In
this paper, we introduce a concept for using Data Farming, machine
learning and XAI to investigate and understand system robustness
of a given simulation model.
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1 INTRODUCTION
Modeling and simulation are well-established methods for the anal-
ysis of systems. Various objectives can be targeted when simulation
experiments are conducted and subsequently analyzed. One of
those goals is the evaluation of robustness. Robustness is particu-
larly important for example for production and logistic systems,
but the basic concept is applicable to any other system as well.
Robustness is achieved when the controllable factors of a system
are set such that any variance in the uncontrollable factors (noise)
has minimal effect on the variance of the desired output [39]. For
calculating the robustness of a system, the quality-loss-formulas
originating from the commonly known Taguchi method can be used
[45]. Taguchi came from a background of quality engineering and
management, and he found that it is more cost-efficient to reduce
the variance in the process instead of optimizing for pure maximum
performance [31]. Optimizing system robustness using simulation
is a well-established research direction, for example using meta-
modeling [30, 35] or even artificial intelligence [5]. However, once
a simulation model is available, there is great potential to learn
more about the inherent relationships of the system, particularly
with respect to its robustness [8]. Data farming offers the opportu-
nity to explore large design spaces using smart experiment design,
high-performance computing, automated analysis, and interactive
visualization. This can be used to discover surprises in the system
by uncovering aspects that may have been previously hidden or un-
known. Learning more about the general behavior of the model can
facilitate decision making [7, 21, 37]. With data farming approach,
we can use the generated bulk of simulation data to train metamod-
els using sophisticated machine learning methods. Those in turn
are ideally suited for mapping even the most complex relationships
between input and output data [41]. However, using those machine
learning models to actually explore and analyze this modeled rela-
tionship in order to learn more about the underlying system can
be very difficult, as most modern machine learning methods such
as neural networks or random forests are opaque black boxes [7].
Explainable AI (XAI) can help peek into this black box and explore
and learn the relationships between simulation input and output
[3]. In this paper, we present an approach for using data farm-
ing, machine learning, and XAI to explore, explain and understand
the system robustness of a given simulation model. This includes
for example identifying robust configurations, identifying critical
combinations of noise factor values, and investigating which factor
values and combinations contribute to robustness and which do not.
The remainder of this paper is structured as follows: In Section 2,
we give an overview of system robustness and robustness analysis,
including a brief introduction into Taguchi’s quality-loss-formulas.
This is then followed by a brief introduction into data farming and
the use of machine learning for the analysis of large quantities of
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Table 1: Types of loss functions for different targets

Type of loss function Formula

Nominal-the-best 𝜂 = 10 𝑙𝑜𝑔10 ( 𝜇
2

𝜎2 )

Smaller-the-better 𝜂 = −10 𝑙𝑜𝑔10 ( 1𝑛
𝑛∑
𝑗=1

𝑦2
𝑗
)

Larger-the-better 𝜂 = −10 𝑙𝑜𝑔10 ( 1𝑛
𝑛∑
𝑗=1

1
𝑦2
𝑗

)

simulation data, as well as explainable artificial intelligence. We
then present our concept for using data farming, machine learning
and XAI for robustness analysis in Section 3, followed by an exem-
plary case study in Section 4. In Section 5 we give some concluding
remarks and a discussion of possible future work.

2 RELATEDWORK
2.1 System Robustness and Simulation-based

Robustness Optimization
Robustness refers to setting the controllable factors of a system
in such a way that the variance from uncontrollable noise has a
minimal effect on a given output [39]. Variations due to noise can
originate from a variety of sources. For example, fluctuations in
customer demand can lead to fluctuations in the mix of orders
that are being processed in the system, which in turn influences
the system performance. This effect can dramatically increase in a
supply chain, commonly known as the bullwhip effect [18].

A very popular method for measuring robustness is the Taguchi
method. Genichi Taguchi [45] developed a methodology for evalu-
ating decision alternatives not only on the basis of their outcome
value, but also the variability around that outcome against the noise.
Taguchi developed formulas to calculate the loss in quality that
results from deviation from a desired value. Taguchi considers the
loss as a quadratic function that has zero value exactly when the
measured value of y is equal to the desired target outcome 𝜏 [31]:

𝑄 (𝑦) = 𝑘 (𝑦 − 𝜏)2

The parameter k is a constant corresponding to the application,
which specifies the magnitude of the loss. Since the deviations from
the target value are observed for different noise factor configura-
tions in the course of robustness optimization, an expected value
of the loss can be calculated for each configuration in the following
form [36],

𝑄 (𝑦) = 𝑘
[
(𝜇 − 𝜏)2 + 𝜎2

]
where 𝜇 and 𝜎2 indicate the mean and variance of the measured
output variable for a tested configuration of controllable factors.
Thus, the loss takes into account not only the mean of the measured
output variable but also its variance. However, using a loss func-
tion in this form the deviation of the mean value from the target
value is often too dominant and the sensitivity to noise variables,
expressed by the variance, is not considered enough. Therefore,
this is taken into account by performing a logarithmic transforma-
tion into the so-called signal-to-noise ratio (S/N-ratio) [31]. This
ratio can directly be used as a measure of robustness, also called
the loss function. Besides a loss function that aims to minimize

against a distinct target value 𝜏 (nominal-the-best), there is also a
function available for minimizing the target value (𝜏 =0, smaller-
the-better) and the reciprocal thereof for maximizing the target
value (larger-the-better) [31]. The goal of the robustness optimiza-
tion is to minimize the loss by maximizing 𝜂, which is the value
of the S/N-ratio over j different settings of noise and n different
settings of controllable factors. In Table 1, we summarized the three
types of loss functions and their respective formulas according to
[31].

Taguchi’s work on robustness analysis had a great impact and
was very influential among statisticians [27]. A more in-depth re-
view on the subject of Taguchi method and other robust design
concepts can be found in Park et al. [29]. As already mentioned,
both controllable and uncontrollable factors (noise) must be taken
into account when calculating robustness. This is what makes ro-
bustness analysis so interesting from the perspective of simulation
research. In principle, all factors can be controlled in a simulation
model, but we can still make a distinction between factors that can
be controlled in reality (also called decision factors) and those that
cannot be controlled there [39]. Separate experiment plans need to
be created for the control factors as well as for the noise factors.
Each factor value combination of one respective experiment plan
represents a configuration, i.e. a control factor configuration (also
called system configuration) or noise factor configuration, respec-
tively [39]. For the calculation of the robustness, we then need
to simulate every noise factor configuration in combination with
every system configuration [8]. This means that both plans need
to be combined in a crossed experiment plan, so that a robustness
measure for each row of the decision factor plan can be calculated
against all noise factor combinations [8]. Obviously, the number
of required experiments can get large very quickly because of the
crossed experiment design. This is where aspects of data farming
become very interesting, on the one hand because of its smart ex-
periment design approaches, on the other hand for its capability
of automated analysis of large quantities of simulation output data
using data mining and machine learning, as discussed in the next
section. In data farming based robustness analysis demonstrated in
[8], we can specifically target the robustness in much broader way
than traditional robustness analysis. That means that we explicitly
include the whole range of factor value combinations, even those
that could be considered as exotic, unrealistic or far from what is
considered as a normal operation. That way we can explore when a
system reaches a form of stable equilibrium, dependent on what we
define as noise factors. We could even define the load of the system
as noise to see how the system performs under a wide variety of
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different loads and howwe can make it robust against varying loads
[8].

2.2 Data Farming and Knowledge Discovery in
Simulation Data

In many simulation projects, a traditional simulation study usu-
ally attempts to achieve a specific, predefined objective, such as
scenario-based analysis or even simulation-based optimization. This
can still leave much room for actually understanding the behav-
ior of the model in terms of global factor-to-ouput relationships
[15, 28]. Sometimes discovering new and interesting relationships
that were previously unknown and that fall outside the predefined
scope of the simulation study design can improve decision-making.
For this reason, the data farming approach has been developed
[14, 15]. Data farming refers to the method of generating data from
a simulation model using smart but still large-scale experimental
designs, high-performance computing for massively parallelized
experiments to create a nearly complete coverage of possible sys-
tem responses, and an automated, machine-aided analysis [16, 38].
Data farming research has also always involved the application of
advanced data analysis techniques in order to handle these large
volumes of simulation outputs and derive relevant and adequate in-
sights [21, 37]. As an extension, the concept of knowledge discovery
in simulation data was developed to take a deep dive into the anal-
ysis part of data farming, providing a process model and workflow
for the application of data mining and machine learning techniques,
as well as suitable interactive visualizations [7]. This is particularly
useful for models with a large number of relevant outcomes that
have a complex, multidimensional response surface. It makes the
analysis and interpretation of even large amounts of simulation
data from complex models much more manageable, as has been
demonstrated in various case studies, e.g. see [11, 17, 19, 44]. Sim-
ulation outputs can be aggregated into multidimensional groups
representing different system behavior patterns by using pattern
recognition methods such as clustering [6]. Then, the relationship
between factors and outputs can be analyzed using supervised ma-
chine learning algorithms. Those algorithms can generate models
that represent the relationship between simulation input and out-
put data, from which in turn generalizable rules about the system
can be extracted. In combination with human interpretation and
reasoning, this can contribute to knowledge generation and facili-
tate decision making. When training a supervised algorithm, each
simulation experiment acts as a learning record [7]. In other words,
a classification problem needs to be solved. Extracting decision
rules from the underlying classification model is only possible from
white-box algorithms. White-box means that those algorithms pro-
vide their internal mapping of their x-y relation in an interpretable,
human-readable form, like for example a decision tree classifier
does. However, in robustness analysis, the relationship between
control factors and the S/N-ratio can be notoriously complex and
uneven, as shown exemplarily in Figure 1. Here we can see the
relation of two control factors and the S/N-ratio of one simulation
output from the even comparatively simple case study model that
we use for demonstrating our concept later on in Section 4.

One can clearly see how complex the surface of robustness can
get, even in a simple model. Those machine learning algorithms

Figure 1: Complex surface of system robustness against two
control factors

that are capable to model even the most complex, non-linear rela-
tionships are usually opaque black-boxes, for example ensemble
methods like large random forests or artificial neural networks.
There is a tradeoff between accuracy in terms of predictive power,
and interpretability [26]. White-box, interpretable algorithms are
simpler, easy to compute and easy to understand. On the other end
of the spectrum, black-box algorithms are usually highly accurate
and can model non-linear, non-smooth relationships, thereby re-
quiring a lot of computation time and their internal decision-rules
are difficult or impossible to comprehend [26]. In order to over-
come the lack of interpretability for such black-box algorithms, XAI
can help to make these rules and relationships visible and explain
them in an understandable and comprehensible manner. Therefore,
the application of XAI enables us to use even the most complex
black-box algorithms for rule extraction and knowledge generation
from our simulation data. A more detailed introduction into XAI is
provided in the next section.

2.3 Explainable Artificial Intelligence
The transparency of decisions made by artificial intelligence and
machine learning algorithms is becoming increasingly important,
especially when people’s daily lives are directly affected. A decision
explained as "because the computer said so" is not acceptable and
can even lead to legal problems if it is suspected of being unfair
and discriminatory, for example in areas such as credit scoring
[3, 13]. Some regulators, for example in the European Union, are
even considering a "right to explanation" [12, 40]. However, it is
not only consumers who are affected by the decisions made by
machine learning. In fact, numerous stakeholders can benefit from
the transparency of such algorithms, such as risk analysts, regu-
lators, and developers [2]. On the other hand, black-box machine
learning and artificial intelligence methods, such as artificial neural
networks, are among the most powerful algorithms for regression
and classification tasks. As already mentioned in the previous sec-
tion, due to the complexity of these algorithms compared to their
white-box counterparts, for example simple linear regression, there
is a trade-off between performance and interpretability. For this
reason, XAI has recently become a popular area of research with
the goal of making black-box algorithms transparent. The term XAI
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actually encompasses a very broad range of different methods, and
so do efforts to catalog and categorize these methods [1, 32, 46].

The taxonomy of methods according to [43] is divided among
four categories: Model-agnostic vs. model-specific methods, global
vs. local explanation, the timing of application and the form of
presentation. The first category is concerned with the flexibility of
the XAI methods’ applicability [1, 2]. Model-agnostic methods are
usually independent from the type of the underlying algorithm, be-
cause their explanation is based solely on the relationship between
input and output in consideration of the model’s prediction. Model-
specific methods, on the other hand, are specifically tailored to a
particular algorithm, for example artificial neural networks used for
image classification [23]. The next category is global versus local
explanation. Global explanation methods aim to explain tendencies
on a more general level, for example by evaluating global feature
importance. Local explanation methods on the other hand are used
to explain individual samples predicted by the machine learning
algorithm [20, 24]. Furthermore, XAI-methods can be distinguished
by means of their timing of application. Pre-model methods are
applied on the data directly, before the model is even trained [43],
like for example methods of dimensionality reduction [25]. In- and
post-model application is a matter of whether the XAI algorithm
is directly integrated into the model or is applied to it afterwards
[43]. In the last category, we distinguish XAI methods according
to the form of presentation of the explanation, like for example
text or tabular-based models, or visualization methods that directly
visualize relations. This could be for example in the form of acti-
vation maps for the layers of a neural network [23, 43]. The most
commonly used and frequently cited packages for XAI that are
also publicly available are Local Interpretable Model-Agnostic Ex-
planations (Lime) [33], Anchors High-Precision Model-Agnostic
Explanations (Anchors) [34], and SHapley Additive exPlanations
(SHAP) [22].

Only a few efforts have recently been made to use XAI for the
purpose of facilitating simulation and especially data farming result
analysis. However, the existing work is already very promising and
yield a lot of potential for further development and future research,
but none is focusing on system robustness. Feldkamp developed a
basic workflow [4] according towhich XAI approaches andmethods
can be used in the context of data farming output analysis: As a
rule of thumb, only model-agnostic methods should be applied in
order to remain independent from the type of machine learning
algorithm. The workflow basically is top down with increasing level
of detail, but also increasing computational cost. For example, the
complete set of simulation result data can be investigated using
global explanation methods like permutation feature importance.
This does not explain distinct relations from factor values to output
values, but can get insight about the influence of factors on the
general variability of the simulation output. When drilling down
further into the data by filtering on a distinct subset of output
values, this subset can then be seen as a distinct class, so that its
relation to the factor values can be explained using local explanation
methods for classification problems like SHAP or Anchors. This
can then be further drilled down to the explanation of even single
experiments, where the outcome of single simulation output can
be explained using local explanation methods that support the
explanation for regression prediction models (that maps factors to

Figure 2: Concept for Robustness Analysis Using Data Farm-
ing and XAI

a numeric output) [4]. A summary of the possible applications for
XAI for data farming output analysis is given in Table 2.

Feldkamp et al. applied this workflow in a real world case study
conducted in the context of automotive manufacturing [9]. Serré
et al. applied XAI-methods for explaining metamodels generated
within a data farming process [41], and also presented case studies
in the context of defense applications [42]. In the next section, we
present our concept for using XAI for robustness analysis.

3 CONCEPT FOR ROBUSTNESS ANALYSIS
USING DATA FARMING AND XAI

In this section, we explain the concept for using machine learning
and XAI to analyze and better understand system robustness. This
includes for example identifying robust configurations, identify-
ing critical combinations of noise factor values, and investigating
which factor values and combinations contribute to robustness and
which do not. This differs from approaches of optimizing robust-
ness, where the overall most robust configuration can be found, but
we learn nothing about the underlying rules and relations regarding
why the system is robust. Figure 2 shows the general workflow of
this concept, which we will walk through exemplarily in the next
section using a case study. The coloring shows which data from a
sub step is processed in the subsequent steps.

The first step is data generation. In accordance with the basic
idea of data farming, the basis for this is to generate a very large
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Table 2: Applications of XAI for data farming output analysis [4]

Application XAI approach XAI method

Investigating important factors in the
global dataset

Global explanations Permutation feature importance

Investigating important factors and
relations for specific filters, explanation for
specific filters on the dataset

Global explanations,
local explanation

Permutation feature importance,
explanation for classification

Explanation for a specific experiment Local explanation Explanation for regression

amount of simulation data by combining all - or at least a very large
number of - possible factor combinations, which allow a compre-
hensive insight into the model and its behavior. This is based on
smart experiment design on the one hand and on the other hand
on high performance computing and parallelization, as explained
in Section 2.2. However, it must be taken into account that the
number of experiments that need to be conducted is leveraged even
more by crossing control and noise factor plans. In the second step,
the signal-to-noise ratio for the considered output is calculated for
each configuration of the control factors over all configurations of
the noise factors, according to the formulas given in Section 2.1.
I.e., for each configuration of control factors a robustness value is
calculated. At the end of this step a set of factor value combinations
x is mapped to the robustness value y. That means robustness al-
ways applies to one output variable under consideration. If we want
to investigate the robustness for more than one output variable,
this step must be repeated for each of the considered outputs. I.e.,
the set of factor combinations x is matched by a set of robustness
values for different outputs. In the third step, both machine learning
and XAI come into play. Here we must distinguish whether only a
single robustness measure is of interest or whether the robustness
of several outputs is to be investigated simultaneously. In the first
case (Figure 2, step 3a), a regressor is trained that maps the relation-
ship between the control factors and the corresponding robustness
measure. Preference should be given to regression algorithms that
are able to establish complex, non-linear relationships, such as ran-
dom forests or artificial neural networks. The trained regressor can
then be analyzed with XAI by explaining selected control factor
configurations. For example, we can take the configuration with the
highest and lowest measured robustness value and let XAI explain,
why the robustness is high or low respectively. This can be used to
derive information about the system robustness.

The second case, where we aim to understand the robustness
of multiple outputs simultaneously, is slightly more complicated
and consists of several sub steps (Figure 2, step 3b). Here, we first
apply a clustering algorithm to the multidimensional robustness
values. Using clustering algorithms like k-means, we are able to
uncover structures within multiple dimension. The clustering al-
gorithm groups according to similarity. Thus, groups are formed
so that such control factor configurations in the same cluster are
very similar with respect to robustness of multiple outputs, and
at the same time very dissimilar to control factor configurations
outside of their own cluster. While the clustering algorithm helps
to group the robustness data, it can be difficult to subsequently un-
derstand, characterize, and qualitatively evaluate the composition

of the clusters manually, because we have a lot of data with each
data point having multiple dimensions. It is therefore helpful to
first train a machine learning algorithm that initially only maps
the relationship between the robustness dimensions and the cor-
responding clusters. In contrast to the regressor in step 3a, which
maps the direct relationship between control factor configurations
and a metric robustness value, a classifier is now required, since
the clusters each represent discrete classes. With the subsequent
use of XAI, the clusters can now be explained by explaining their
centroids, i.e., the respective midpoints of the clusters.

With this knowledge about the inherent structures of robustness,
the final relationship between the control factor configurations and
those structures represented by the clusters can be established by
training another classifier. This maps accordingly from the con-
trol factor configurations to the clusters. If this model is in turn
explained by XAI, finally knowledge about the system robustness
can be obtained, or more precisely, about the relationship between
the control factor configurations and the resulting structures and
distributions of the system robustness. In the next section, this
workflow will illustrated using a short case study as an example.

4 CASE STUDY
4.1 Simulation Model, Experiment Design, and

Data Generation
In this chapter, we will demonstrate the workflow of the concept
presented in the previous section using a straightforward case
study as an example. The simulation model was adapted from [5],
where we used this model in order to optimize robustness in terms
of finding the most robust configuration. In this work, we added
more decision factors for the experiment design in order to explore
the inherent relation between factors and robustness and learn
what factors and factor values contribute to robustness and what
might even be counter-productive for robustness by using our
proposed method. The model was implemented using Siemens
Plant Simulation. A screenshot of the model is shown in Figure 3.

The simulation model represents a small assembly line. In this
model, three different job types are loaded onto carriers that are
then transported via a conveyor system. Some jobs are processed
on station 1, that can be scaled up to 5 slots, other job types are
processed on station 2. At the end of the line, there is a quality
inspection (station 3), that decides whether or not a processed
job needs rework, which is the case for a fixed proportion of jobs.
Jobs that need rework take the conveyor back to the main queue,
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Figure 3: Screenshot of the simulation model implemented
in Plant Simulation

otherwise they are unloaded from their carrier and leave the sys-
tem. The mixture of jobs can vary, and arriving jobs are kept in a
buffer until they are cleared to get mounted on a free carrier. Some
stochastic effects arise through machine reliability and the propor-
tion of jobs that fail the quality assurance and are rescheduled for
manufacturing. Therefore, individual experiments with the same
factor configurations need to be replicated multiple times to get a
meaningful average for corresponding outputs.

The goal here is to make the line robust against variations in the
product mixture. Therefore, the proportions of job types that are
summed up to the total product mix can be varied and are consid-
ered the uncontrollable noise in the model, because we make the
assumption that it is not possible to control which types are ordered
by the customer or any upstream production system that feeds
into this system. Regarding the experiment plan, we used a nearly
orthogonal nearly balanced mixed design template (NOB-Mixed-
Design) that offers 512 design points [48], which is a renowned
experiment design for data farming projects [47]. Table 3 shows a
breakdown of all control factors and their respective factor limits.

For the experiment design for the noise configurations, we used
a simplex lattice design, which is the full-factorial equivalent in
a mixture design problem. With a grid size of 10, this resulted in
66 design points. For the crossed design needed for the robustness
calculation, this finally resulted in 512 x 66 = 33792 simulation
experiments.

Figure 4: S/N-ratio for the output mean cycle time over all
control factor configurations

4.2 Application and Results of Robustness
Explanation

4.2.1 Calculation of Robustness for Cycle Time. After all exper-
iments are conducted, we first have to calculate the robustness
measures via signal-to-noise ratio. In the first approach, we only
look at one single output, and we chose the mean cycle time of jobs
for this purpose. If we assume that this output should be as low as
possible while also being robust, we apply the smaller-the-better
formula according to Taguchis robustness formulas (see Table 1).
Figure 4 shows the distribution of the robustness over all 512 con-
trol factor configurations. For easier comparison, the values have
been transformed on a scale from 0 to 1, where 0 represents the
least robust and 1 represents the most robust configuration.

4.2.2 Explanation of the Relation between Factors and Robustness
of Cycle Time. Following the workflow outlined in the previous
section, we can now train a regression model to map the relation be-
tween control factors and the robustness directly. For this purpose,
we used a boosted decision tree regressor using adaptive boosting
with 100 estimators and maximum depth of 10000. This algorithm
is very good at approximating complex input/output-relations, but
opaque in terms of traceability. The R-squared performance for the
total dataset was at 99.99%. Note that in this approach, an overfit-
ting is actually desired, since we don’t what to use the regressor
to predict the y of unknown x, but to map the relation between
x and y as exact as possible in order to gain knowledge out of it.
Therefore, in the next step, we used XAI to explain the mapped
relation. For this purpose, we used SHAP-values [22] using the
respective python package (see https://github.com/slundberg/shap).
Figure 5 shows the explanation of the most robust control factor
configuration (S/N-ratio = 1).

Table 3: Control factors and factor limits

Factor name Description Margins

S1NumberOfSlots Number of parallel slots for station 1 1-5 (discrete)
NumberOfCarriers Number of work piece carriers for the

conveyor system.
1-100 (discrete)

Queue1Capacity Maximum capacity of queue 1 5-100 (discrete)
Queue2Capacity Maximum capacity of queue 2 5-100 (discrete)
Conveyor1Speed Speed of conveyor 1 in meters per second 1-4 (continuous)
Conveyor2Speed Speed of conveyor 2 in meters per second 1-4 (continuous)
ConveyorMSpeed Speed of conveyor main in meters per

second
1-4 (continuous)

S3ProcTime Process time of station 3 in seconds 1-60 (continuous)
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Figure 5: Explanation of regression model for the simulation
experiment that exhibits the highest robustness using SHAP

Figure 6: Explanation of regression model for the simulation
experiment that exhibits the lowest robustness using SHAP

The result of the SHAP-value calculation is broadly comparable
to the coefficients of linear regression model, but the relationship
between x and y is not of a linear nature. This means that we can
track each factors contribution (which can be positive or negative)
to the overall prediction, comparable to what the coefficients of a
linear regression model would do the target value. We can see, that
the trained regressor predicts a value of 1 for this control factor
configuration (f(x)=1), while the expected mean over all samples
is 0.509 (E[f(x)]=0.509). The plot shows the contribution of every
factor and its corresponding value for the explained sample with
respect to the predicted value. Starting from expected mean, these
contributions show how the explained sample is dragged away from
this mean value towards the actual predicted value. The conclusion
from Figure 5 that we can learn therefore is, that the most import
contribution to the robustness of the cycle time of jobs is having
five carriers. The fact that we have five carriers in the system adds
0.24 to the prediction of the perfect robustness value of 1 for this
factor configuration, followed by the process time of 14 for station
3, which adds 0.11 to the robustness and five slots for station 1,
which adds 0.07 to the robustness of the cycle time. A lower number
of carriers will probably result in jobs waiting for transport, but a
higher number will presumably clog the system, as we can see in
Figure 6. Here, the explanation of the control factor configuration
with the lowest robustness regarding cycle time is shown.

The predicted robustness is zero, and we can see how various
factors drags the robustness away from the expected mean towards
zero. For example, the fact that we have only one slot for station 1
decreases the predicted robustness by 0.3, followed by a very high
number of 97 carriers in system. So we can conclude here that a high

Figure 7: Value distribution for multiple robustness dimen-
sions

number of carriers may clog the system in combination with only
one available slot for station 1. This probably results in a bottleneck
that probably contributes most to a very unstable, non-robust cycle
time. In fact, the contribution of having only one slot for station
1 to the prediction of a poor robustness is over four times as high
as the contribution of having five slots to a prediction of perfect
robustness. Interestingly, in this control factor configuration, the
process time for station 3 was 10 seconds, which actually increases
the robustness by 0.03, but with a contribution of only 0.03 this is
probably negligible.

4.2.3 Explanation of the Relation between Factors and Robustness
of multiple Outputs. As explained in the previous section, this ap-
proach can also be used to investigate the robustness for multiple
dimensions. In this particular example, we want to investigate the
robustness of four outputs, namely throughput, mean cycle time,
mean carrier utilization and mean station utilization. Except for
mean cycle time, we assume for all other outputs that these should
be robust and as high as possible, therefore Taguchis larger-the-
better formula is applied. Figure 7 shows the distribution for the
corresponding S/N-ratios over all control factor combinations.

We can see that the distribution of values is very irregular and
uneven. For mean station utilization and throughput, the mean
expected robustness is high, which means that most control factor
configurations are robust anyway, however there are some outliers
with very poor robustness. For the mean carrier utilization, it is
the opposite, while mean cycle time is almost evenly distributed.
Using a correlation matrix shown in Figure 8, we can see that
the relationship of the four dimensions to each other is also very
heterogeneous.

We can see that some dimensions are correlated slightly posi-
tively, while others correlated negatively, and some do not correlate
at all. The strongest correlation is between the S/N-ratios of mean
cycle time and throughput, which is still only 0.56. This shows that,
even in this comparatively simple simulation model, the global,
multi-dimensional space of robustness is in fact very uneven und
not linear. To uncover possible structures in this space, we can use
a clustering algorithm, as we have outlined in the previous section.
To find the best possible structuring of data, we tested two differ-
ent clustering algorithms, namely k-means and Gaussian mixture
model clustering (GMM), each with different numbers of clusters.
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Figure 8: Correlation matrix for multiple robustness dimen-
sions

Figure 9: Cluster size evaluation using silhouette coefficient

To evaluate the goodness of the clustering, we calculated the sil-
houette score, where a higher number indicates a better clustering,
as shown in Figure 9.

Given the results of the silhouette score calculation, a clustering
using k-meanswith three clusters is to be preferred. Figure 10 shows
a matrix plot of the clustering in the four-dimensional robustness
data.

As we can see from Figure 10, the distribution of data in those
clusters can be cumbersome to manually review and understand,
with clusters even overlapping to some extend in some dimen-
sions. Following our proposed workflow, we can therefore train
a classifier that maps the relation between the robustness values
and their respective clusters, which can then be explained using
XAI afterwards. For this purpose, we used a random forest clas-
sifier with 1000 estimators, achieving an R-squared performance
of 100%. In the next step, we used the Lime python package (see
https://github.com/marcotcr/lime) to explain each of the cluster’s

Figure 10: Distribution of clusters in their respective robust-
ness dimensions

Figure 11: Explanation of clusters using Lime

center to get a textual and easy-to-understand explanation of each
cluster composition. This is shown in Figure 11.

The lime explanation shows the contribution of each feature
value to the overall probability of the prediction to respective cluster.
Using this information, we can rename the clusters with more
meaningful cluster names, as shown in Table 4 below.

Now we have identified the composition of the clusters and
meaningfully condensed the multidimensional space of robustness.
We can therefore conclude how robustness distributes in the sys-
tem over the four dimensions that we selected. In fact, there is
no scenario where we can make all four outputs (throughput, cy-
cle time of jobs, utilization of carriers, and utilization of stations)
very robust at the same time. If want a robust throughput, we can
combine this either with making the cycle time robust, or with
making station utilization robust. This is probably due to the fact
that if we want the output of jobs to be robust and stable in terms
of quantity and cycle time, we need a higher number of slots for
station 1. This in turn will let the mean utilization of the stations
fluctuate when product mixtures occur through noise factors that
do not put enough load on the system in order to adequately uti-
lize all slots of station 1. In fact, the configurations that have the
highest robustness for throughput will also exhibit a high variance
in station utilization. Following the workflow that we proposed in
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Table 4: Renaming of clusters

Cluster Renamed clusters

Cluster 1 “throughput and cycle time will be robust”
Cluster 2 “highest robustness in throughput, but carrier and station util. will have high variance”
Cluster 3 “throughput and station util. will be robust, but cycle time and carrier util. will have high variance”

Figure 12: Explanation of classification model using Anchors

the previous section, we can now train a final classifier that maps
the relation between factors and those clusters. For this purpose,
we again used a large random forest of classification trees. This
relation can then again be explained using XAI. Figure 12 shows
the result of the explanation using the Anchors python package
(see https://github.com/marcotcr/anchor).

Here, we took the control factor configurations whose S/N-ratios
were most similar to the respective cluster center for each of the
three clusters. The Anchors-XAI-method focuses on the feature
values, in our case the values of the control factor configurations,
and the corresponding prediction probability of the classifier. Be-
cause we renamed our cluster with meaningful information in the
previous step, we can now conclude meaningful and condensed
information about the control factors and their relation to the global
system robustness represented by the three clusters. Because we
learned from the previous step that we actually cannot achieve
a perfect robustness for all four dimensions at the same time, we
basically have to prioritize accordingly to desired requirements, and
the results in Figure 12 then tell us how to get there. Interestingly,
some of the required factor value combinations are quite different
from what we expected in advance. For example if we want to
achieve a good robust throughput and cycle time of jobs, we need
process time of station 3 to be 45s and at least 51 carriers. However,
we already learned in Section 4.2.2 that in order to achieve the
maximum possible robustness for cycle time, we actually need a
much smaller number of carriers. This in turn seems not be possible
in combination with any other output dimension, where we actu-
ally need a higher number of carriers. We can achieve the highest
robustness in throughput at the cost of a high variance in mean
station and carrier utilization. On the other hand, we can achieve a
robust throughput and mean station utilization, but at the expense
of a high variance in mean cycle time and mean carrier utilization,
assuming we have enough slots for station 1 and if we are willing
to increase the number of carriers to over 51. However, this figure
is only one illustrative example. Actually we can use several points
from the clusters and have them explained. This way, which each
explanation we can iteratively learn more about the relation of the
factor values and their combination to the respective clusters in
order to gain more your knowledge about the system.

4.2.4 Summary of Findings for the Case Study using the proposed
Concept. In summary, we learned some insight about the behavior
of the system in terms of robustness using the proposed method.
Those can then be used for decision-making and improving robust-
ness of the system. When considering the single selected output
cycle time of jobs, we could conclude that a carrier number of five
is by far the most important factor for making the cycle time of
jobs robust against variations in the product mixture. On the other
hand, while having five slots for Station 1 contributes to the ro-
bustness a little bit, having only one slot contributes strongly to a
very poor robustness when combined with having a large number
of carriers that might clog the system. Furthermore, this is only
true when considering cycle time and ignoring the robustness of
other outputs. Therefore, we also carried out an investigation of
robustness over multiple output dimensions, namely, throughput,
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cycle time of jobs, utilization of carriers, and utilization of stations.
First, XAI helped us to structure and understand the simulation
output data. By separating the output data into three clusters and
letting XAI explain their components, we concluded that there is no
scenario where we can achieve high robustness in all four output
dimensions simultaneously. In fact, we rather have to prioritize the
robustness of some outputs in favor of the robustness of others.
Finally, we used XAI to explain a model that mapped the factor
values to these clusters. Through this explanation, we could con-
clude what factor settings can be used in order to achieve system
robustness according to one if the clusters.

5 CONCLUSION AND FUTUREWORK
In this paper, we proposed a concept for using data farming, ma-
chine learning and explainable AI to investigate the system robust-
ness. The applicability of the concept was demonstrated in an exem-
plary case study. In general, the application of black box machine
learning algorithms and the subsequent removal of the opaqueness
of those algorithms through XAI provides a whole new range of
possibilities for simulation output analysis, especially when large
quantities of simulation data are given and an automated yet a
qualitatively appealing analysis is needed. Furthermore, this work
contributes in closing the gap between simulation and AI/machine
learning research communities. However, in future research, this
workflow could even further be automated by presenting the user
the most useful visualizations at any given stage of the process,
thereby maximizing the users capability for visual reasoning [10].
Furthermore, the small scale of the simulation model used in the
presented case study was chosen in order to illustrate the concept.
This simulation model obviously does not actually require a data
farming study to be understood thoroughly, but rather was used to
demonstrate that insights can be found using the presented method.
The applicability of this concept should therefore be put to test
using more complex simulation models and large-scale experimen-
tation from real world projects in future research. For instance,
further research is needed for solutions when the data volumes
for large-scale simulation models and large-scale experiment plans
grow also very large, as some XAI methods can sometimes be very
computationally intensive.
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