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ABSTRACT
This work contributes to developing an agent based on deep re-
inforcement learning capable of acting in a beyond visual range
(BVR) air combat simulation environment. The paper presents an
overview of building an agent representing a high-performance
fighter aircraft that can learn and improve its role in BVR combat
over time based on rewards calculated using operational metrics.
Also, through self-play experiments, it expects to generate new air
combat tactics never seen before. Finally, we hope to examine a real
pilot’s ability, using virtual simulation, to interact in the same envi-
ronment with the trained agent and compare their performances.
This research will contribute to the air combat training context by
developing agents that can interact with real pilots to improve their
performances in air defense missions.

CCS CONCEPTS
• Computing methodologies→ Simulation support systems;
• Applied computing→Military.
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1 INTRODUCTION
Air combat is a complex and dynamic scenario involving highly
skilled pilots making split-second decisions to outmaneuver their
opponents [7]. Beyond visual range (BVR) air combat, in particular,
presents unique challenges and opportunities, as it involves engage-
ments taking place at ranges beyond the pilot’s ability to see the
enemy aircraft [10]. While modern air combat may still be within
visual range (WVR), the combat usually begins in BVR. This phase
is frequently the most critical as it can provide advantages and
drawbacks for succeeding phases [2]. The fundamental difficulty
for pilots in the fight is maneuver planning, which reflects both
sides’ tactical decision-making capacity and determines success
or failure [11]. Constructive computer simulations can mimic the
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most diverse BVR combat situations to investigate the effects of
new combat tactics, sensors, and armaments [6]. One of the main
challenges of constructive BVR combat simulation is to simulate
the complex behaviors of a pilot in all phases of combat. A pilot
can perform decision-making processes such as adapting to new
combat situations and conducting collective tactics with pilots from
other aircraft to employ an engagement [3], or launching a missile
at the proper instant [4].

The presented work proposes a model to create an autonomous
agent utilizing deep reinforcement learning (DRL) to operate in a
BVR air combat simulation environment. By learning from opera-
tional metrics, the agent will represent a high-performance fighter
aircraft that can enhance its capabilities over time. Furthermore,
we expected the generation of novel air combat tactics through
self-play experiments. The ultimate goal is to allow real pilots to
engage with the trained agent in the same environment using vir-
tual simulation and compare their performances. The framework’s
primary objectives are to design a BVR agent that can learn all the
tactics associated with this air combat mode, enhance its perfor-
mance through self-play techniques, and outperform a real pilot in
the context of BVR air combat.

2 RELATEDWORK
Several recent studies have exploredDRL algorithms for autonomous
decision-making in BVR air combat scenarios for different ap-
plications: generation of air combat tactics [15], maneuver plan-
ning [8, 11, 18, 19], and multi-UAV cooperative decision-making
methods [12, 13]. These works demonstrate the potential of DRL-
based approaches for decision-making in BVR air combat scenarios.
While these approaches have shown promising results, there is
still much work to do in developing more robust and sufficient
algorithms and evaluating the feasibility of these methods in real-
world applications. In contrast to these studies, our work focuses on
applying DRL techniques to BVR air combat using a high-fidelity
simulation environment. Besides, to the best of the authors’ knowl-
edge, no study has yet explored the use of DRL, combined with
self-play techniques, to train a high-performance agent that can
interact with a real pilot in the same simulation environment.

3 PROPOSED MODEL
The Rainbow algorithm [9] is a state-of-the-art DRL technique that
combines several improvements to the Deep Q-Network (DQN) [14]
algorithm to achieve better results. We will use this algorithm to
train our autonomous BVR air combat agent. The Rainbow algo-
rithm includes some improvements over the DQN algorithm, in-
cluding prioritized experience replay, distributional reinforcement
learning, and dueling networks. Prioritized experience replay [16]
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allows the agent to prioritize specific transitions in the replay buffer
based on their importance for learning. At the same time, distri-
butional reinforcement learning [1] estimates the distribution of
the discounted return instead of just the expected value. Finally,
dueling networks [17] separate the estimation of the state value
and the advantage function to improve the learning process.

We will use the Aerospace Simulation Environment (Ambiente de
Simulação Aeroespacial – ASA in Portuguese) as the simulation plat-
form to train and evaluate our agent. ASA is a custom-made, high-
fidelity, object-oriented simulation framework developed mainly in
C++ that enables the modeling and simulation of military opera-
tional scenarios to support the development of tactics and proce-
dures in the aerospace context for the Brazilian Air Force [5].

To manage the agent’s actions 𝑎(𝑡), we will consider the fol-
lowing possible tactics: Combat Air Patrol (CAP), Commit, Abort,
Break, Fire, and Support. CAP involves flying around a particular
location in a specific pattern; Commit means to engage a detected
target; Abort is a tactic of moving away from a threat; Break is
a sudden defensive maneuver when the radar detects a missile;
Fire is launching a missile at a target; and Support is the tactic to
aid the missile’s guidance until its seeker become activate [3, 4].
The agent’s state 𝑠 (𝑡) depends on the independent motion vari-
ables of the agent, such as position [𝑝𝑥 (𝑡), 𝑝𝑦 (𝑡), 𝑝𝑧 (𝑡)], velocity
[𝑣𝑥 (𝑡), 𝑣𝑦 (𝑡), 𝑣𝑧 (𝑡)], and orientation regarding roll 𝜙 (𝑡), pitch 𝜃 (𝑡),
and yaw 𝜓 (𝑡). Besides, the state includes comparative factors be-
tween the agent and the nearest detected target, such as relative
distance Δ𝑑 (𝑡), relative speed Δ𝑣 (𝑡), and relative angle Δ𝛼 (𝑡). Fi-
nally, the last part of the agent’s state is composed of the remaining
fuel 𝑓 (𝑡), the remaining missiles𝑚(𝑡), the health condition ℎ(𝑡),
and the status of the agent’s sensors 𝑠𝑠 (𝑡). During training, the
Rainbow algorithm will update the neural network based on the
rewards received by the agent 𝑟 (𝑡), calculated by the Defensive
Counter Air (DCA) Index [3], a probability of success for BVR com-
bat on DCAmissions whose objective is to establish a CAP. Figure 1
illustrates the agent’s interaction with the environment.

ACTIONS

Action: 𝑎𝑎(𝑡𝑡)
State: 𝑠𝑠(𝑡𝑡)

OBSERVATIONS
State changes: 𝑠𝑠(𝑡𝑡 + 1)

Reward: 𝑟𝑟(𝑡𝑡)
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Figure 1: Agent-environment interaction: 𝑎𝑡 , 𝑠𝑡 , and 𝑟𝑡 de-
note action, state, and reward at time step 𝑡 , with 𝑠𝑡+1 given
by the environment for the next iteraction.

4 CONCLUSIONS
This research aims to improve air combat training by developing
unmanned combat aerial vehicles (UCAVs) to interact with pilots

and enhance fighter performance in air defense missions. We will
release the source code for the general architecture to encourage
the development of diverse applications using the same simulation
platform. The technology developed in this work has the potential
to serve as a simulation-as-a-service (SimaaS) tool to meet various
simulation needs in the defense and aerospace industries.
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