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 key insights
	˽ Dynamic certification of autonomous 

systems requires the involvement 
and distillation of knowledge from 
diverse stakeholders, from engineers 
to architects to regulators. It must start 
at the beginning of the life cycle, where 
decisions are most effective and cost of 
design changes are lowest.

	˽ Iterative assessment for dynamic 
certification depends on the use and 
context in which autonomous systems are 
expected to deploy and must account for 
both technical and social requirements.

	˽ Multiple rounds of testing and 
interrogating requirements via 
formal methods provide insights into 
the uncertainty present in varying 
deployment scenarios, where they must 
perform efficiently and safely.

AUTONOMOUS SYSTEMS ARE often deployed in complex 
socio-technical environments, such as public roads, 
where they must behave safely and securely. Unlike 
many traditionally engineered systems, autonomous 
systems are expected to behave predictably in varying 
“open-world” environmental contexts that cannot be 
fully specified formally. As a result, assurance about 
autonomous systems requires the development of new 
certification methods—codified checks and balances, 
including regulatory requirements, for deploying

systems—and mathematical tools that 
can dynamically bind the uncertainty 
engendered by these diverse deploy-
ment scenarios. More specifically, au-
tonomous systems increasingly use al-
gorithms trained from data to predict 
and control behavior in contexts previ-
ously not encountered. Using learning 
is a critical step to engineer autonomy 
that can successfully operate in hetero-
geneous contexts, but current certifica-
tion methods must be revised to ad-
dress the dynamic, adaptive nature of 
learning. The heterogeneity that any 
certification framework should address 
for the design of autonomous systems 
is twofold. The first relates to the system 
itself and the heterogeneous compo-
nents that engender its behavior. The 
second is the heterogeneity that certify-
ing must address in relation to the com-
plex socio-technical settings in which 
the system is expected to behave.

We propose the dynamic certifica-
tion of autonomous systems—the iter-
ative revision of permissible ​〈use, con-
text〉​ pairs for a system—rather than 
pre-specified tests that a system must 
pass to be certified. Dynamic certifica-
tion offers the ability to learn while cer-
tifying, thereby opening additional op-
portunities to shape the development 
of autonomous technology. This type 
of comprehensive, exploratory testing, 
shaped by insights from deployment, 
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can enable iterative selection of ap-
propriate contexts of use. More specifi-
cally, we propose dynamic certification 
and modeling involving three testing 
stages: early-phase testing, transition-
al testing, and confirmatory testing. 
Movement between testing stages is 
not unidirectional; we can shift in any 
direction depending on our current 
state of knowledge and intended de-
ployments. We describe these stages 
in more detail later, but the key is that 
these stages enable system design-
ers and regulators to learn about and 
ensure autonomous systems operate 
within the bounds of acceptable risk.

Our proposal is similar to how the 
Food and Drug Administration (FDA) 
tests drugs in stages with increasing 
scrutiny before the products are ap-
proved for public consumption. Rather 
than a simple yes/no certification, the 
FDA uses an iterative process of explor-
atory stages in which pharmaceutical 
agents are first approved for limited 
use in restricted contexts under careful 
oversight. They are only gradually ap-
proved for broader use as post-approv-
al monitoring and subsequent stud-
ies demonstrate safety and efficacy. 
Of course, FDA procedures cannot be 
used directly for dynamic certification 
of autonomous (software) systems, but 
they provide an “existence proof” that 
dynamic certification can work.

Technology creation involves at 
least two different yet interdependent 
types of decisions. Design decisions de-
termine the structure and intended 
operation of the autonomous system, 

including the evaluation functions 
optimized during development and 
revision/updates. Deployment deci-
sions determine the contexts and uses 
for the autonomous system, including 
designating certain situations as “do 
not use” (or “use only with increased 
oversight”). In practice, static certifi-
cation and regulatory systems often 
focus only on deployment decisions 
(and take the design decisions and 
technical specifications as fixed). How-
ever, precisely because of the frequent 
uncertainty about what counts as suc-
cess for an autonomous system, certifi-
cation of those systems must also con-
sider design decisions, using technical 
specifications to predict performance 
in contexts that are not encountered.

Dynamic certification includes 
design decisions, particularly in the 
early stages when changes have the 
highest impact and lowest cost, often 
before code or hardware have even 
been built.15,35 Mathematical tools 
from formal methods can thus play 
an essential role in specifying autono-
mous systems at different levels of ab-
straction, even when they have not yet 
been implemented. Formal methods 
allow us to specify acceptable risks, 
identify failures that inform mitiga-
tion strategies, and understand and 
represent the uncertainty associated 
with deploying autonomous systems 
in heterogeneous environments. For-
mal models are also living documents 
that encode design and deployment 
decisions made throughout the life cy-
cle of the autonomous system. For ex-

ample, tracking changes in the speci-
fication of requirements throughout 
the life cycle can offer a good picture 
of the design problems and solutions 
at a particular time and how those 
changes reflect design shifts over 
time. Successful dynamic certifica-
tion thus depends on translational 
research by formal methods, autono-
mous systems, and robotics commu-
nities to establish proper procedures 
to ensure that deployed systems are 
unlikely to cause harm.

Dynamic certification relies on an 
iterative assessment of the risks (and 
benefits) introduced by deploying au-
tonomous systems for different uses 
and contexts. Formal methods offer a 
concrete basis for specification, verifi-
cation, and synthesis for autonomous 
systems but do not guide the transla-
tion of our desired values and accept-
able risk into those formal models. We 
require frameworks that explicitly allow 
for ambiguities in specifications and 
uncertainties and partial decisions in 
modeling while remaining scalable to 
practically relevant sizes. More general-
ly, dynamic certification will require an 
appropriate co-evolution of regulatory 
and formal frameworks. Having argued 
for implementing parts of dynamic 
certification via formal methods, it is 
crucial to acknowledge other types of 
analyses that could implement dynamic 
certification, such as assurance cases,3 
structured interrogation of require-
ments,7,28,38 and domain standards.12 In-
deed, these other types of methods and 
their associated tools and metrics could 
play valuable roles in the dynamic certi-
fication of autonomous systems.

Scenario
We motivate and illustrate our pro-
posed framework for dynamic certifi-
cation using a scenario with two inter-
acting systems: an unmanned aerial 
vehicle (UAV) and a ground-based de-
livery robot simultaneously delivering 
packages (see Figure 1). We require that 
the UAV only operate while connected 
to a wireless communication network. 
If it (likely) loses connection, it must 
land in place. A hazardous state results 
if the UAV lands in the same location as 
the ground-based robot. The UAV de-
signer seeks a high-level risk-mitigation 
strategy that accounts for the ground-
based robot’s movement and limits the 

Figure 1. Different ​〈use, context〉​ pairs result in different hazard conditions. 

The arrows and shaded regions are possible trajectories: safe (blue) and hazardous (red). 
Dotted lines indicate connectivity. (a) In suburban areas, the probability of losing connec-
tion is low because the signal has minimal attenuation. (b) In a city, buildings are made with 
concrete and rebar and are laid out densely, increasing the probability of signal attenuation. 
Therefore, the system is more likely to transition to a hazardous state in the city ​〈use, con-
text〉​ pair. When attempting to deploy in these different scenarios, we must check different 
safety properties. Dynamic certification requires the development of a framework for 
designers that easily adapts between the different scenarios.

(a) Suburban context (b) Urban context
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probability of transitioning to a hazard-
ous state. This strategy requires speci-
fication of acceptable ​〈use, context〉​ 
pairs—for example, usable trajectories 
or locations for the UAV. This high-lev-
el focus enables key abstractions and 
simplifications. For instance, the de-
signer can abstract away the low-level 
UAV controller and assume that it can 
safely navigate between waypoints. In-
stead of modeling complex behaviors 
about the ground-based robot—which 
may not even be possible if the system 
is outside of the designer’s control—the 
designer can require that the UAV be ro-
bust against random movements of the 
robot. Though this example is simpli-
fied in various ways (for example, only 
including two robots), those simplifica-
tions serve to highlight key conceptual 
points, including the value of formal 
methods.

Dynamic Certification
Dynamic certification is built on two 
fundamental operations: modeling 
and testing. Modeling allows system 
engineers to track design choices that 
otherwise would be difficult to docu-
ment and adjust when issues arise 
because of complex interactions be-
tween sub-components. Models also 
enable the engineer to focus on the 
interfaces between sub-components, 
often abstracting away the individual 
sub-components to focus on the be-
havior of the whole. Importantly, we 
can use models to understand how the 
system might succeed or fail before 
the system is built—that is, for high-
impact, low-cost design decisions. In 
contrast, testing involves the actual 
implementations, focusing on wheth-
er the assumptions of the model and 
resulting design decisions actually 
function as expected in the physical 
world. Conventional static certifica-
tion struggles when operational (or 
regulatory) assumptions fail to hold 
in reality. In contrast, dynamic certifi-
cation posits that modeling and test-
ing should be intertwined throughout 
the system life cycle, so our models 
(and assumptions) can be continually 
refined as we better understand real-
world contexts. Certification of auton-
omous learning systems requires both 
elements: testing, since the world can 
surprise us and the system can change 
through learning, and modeling, to 

guide our design and testing decisions 
through the massive search spaces.

Assurance requires specifying when, 
where, and why an autonomous sys-
tem is being deployed within a socio-
technical context. But if autonomous 
systems are expected to learn from their 
environment and context of operation, 
then there does not seem to be a stable 
model for testing. Dynamic certification 
turns this concern into a virtue: If our 
base system model contains appropri-
ate parameters, we can iteratively refine 
and augment this base model through 
different testing procedures. This vir-
tue and the resulting testing procedures 
come from the feedback and interac-
tion between stakeholders with differ-
ent concerns and expertise, making it 
clear when testing procedures are suf-
ficient and accurate. Therefore, in the 
long run, we can conduct sufficient 
testing to have an accurate model that 
assures stakeholders that systems will 
operate as expected.

Specification of the base system 
model for dynamic certification re-
quires (perhaps partial) identification 
and description of the following four 
components (inspired by Kimmelman 
and London).20

	˲ Modules of the system (primar-
ily software, but potentially hardware) 
including the function(s) of each mod-
ule.

	˲ Contexts in which the system is 
expected to be able to operate success-
fully.

	˲ Mappings from Context ​→​ Behav-
ior for “successful” performance in 
various conditions.

	˲ Variations in the environment for 
which the system should be robust.

Given an initial specification of 
these four elements for an autonomous 
system, dynamic certification can be 
divided into three distinct stages (with 
no requirement for unidirectional pro-
gression through these stages). All four 
components of the base-model specifi-
cation can be revised or adjusted dur-
ing each stage. Although discussions 
of certification often focus on Con-
texts and Mappings, the inclusion of 
design decisions in dynamic certifica-
tion means that other components can 
also be adjusted—for example, adding 
Modules to improve performance in 
given Contexts).

The first stage, early-phase testing, 

Dynamic 
certification relies 
on an iterative 
assessment of 
the risks (and 
benefits) introduced 
by deploying 
autonomous 
systems for 
different uses and 
contexts.
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In our running scenario, transitional 
testing would involve testing (not just 
modeling) system performance with 
high-fidelity and hardware-in-the-loop 
simulations4,9,34 or in controlled envi-
ronments—for example, a large indus-
trial park with limited public traffic. 
This stage intends to gather enough 
data to modify the formal system mod-
el to reflect reality further.

In the third and final stage, confir-
matory testing, the system is deployed 
with significant oversight and moni-
toring, but no further controls beyond 
those specified in the certification by 
a set of ​〈use, context〉​ pairs. This stage 
aims to determine, in real-world set-
tings, both system performance reli-
ability and the extent of system-user 
value (mis)matches. The latter goal 
is crucial because many autonomous 
system “failures” involve a properly 
functioning system that implements 
different values than the users expect. 
The system behaves correctly, but ac-
cording to a (perhaps implicit) notion 
of success that is different from that 
of the human users;a that is, the sys-
tem implements the wrong Mapping. 
These divergences often appear only 
once the system is in the hands of un-
trained users, so confirmatory testing 
must initially include significant over-
sight to detect, record, and respond to 
real-world performance failures and 
value divergences. This monitoring 
can be gradually reduced as we learn 
the exact behavior of the system in 
relevant real-world contexts—that is, 
even this stage involves some explor-
atory testing.b In the running scenario, 
confirmatory testing would involve su-
pervised deployment in a controlled 
environment, possibly borrowing rules 
and regulations from the operational 
design domain.21 Changes to the sys-
tem design based on actual operation-
al contexts should reflect the formal 
model; they must agree. Once testing 
and modeling agree, the dynamic cer-
tification has ensured that the system 
will behave acceptably and safely.

a	 Many classic examples of “AI run amok” fall 
into this category. For example, the paperclip 
maximizer6 simply has a different idea of “suc-
cess” than we do.

b	 Confirmatory testing is thus quite similar to 
conformance testing but does not assume that 
we have a fully specified set of standards and 
behaviors that are provided in advance.

occurs in the development lab or oth-
er highly controlled settings. The two 
main goals of this stage are to verify that 
the integrated Modules implement the 
intended Mappings and to develop ap-
propriate base models of the autono-
mous system for offline testing. The 
first goal is relatively standard when 
developing a software system—for ex-
ample, unit-testing. The second goal, 
however, is much less common and 
requires careful consideration of the 
range of Contexts and Variations that 
might be encountered in plausible de-
ployment environments. Importantly, 
all four components of the base system 
model must be (tentatively) specified 
in early-phase testing; this stage is not 
solely technology-focused. Given an 
initial specification, early-phase test-
ing continues until the software sys-
tem is suitably verified and its expected 
performance is sufficiently good in of-
fline testing. In the running scenario, 
early-phase testing could take the form 
of building and testing a gridworld 
that models the high-level decision-
making for the UAV. In this stage, the 
designer would identify anomalous 
behavior, such as locations that create 
deadlocks, thereby enabling design de-
cisions to mitigate situations that lead 
to task degradation.14

In the second stage, transitional 
testing, the system is deployed in real-
world environments, though with sig-
nificant oversight and control. The two 
main goals of this stage are to identify 
Contexts of real-world failure and to 
characterize potential environmental 
Variations. These goals require highly 
active engagement and interventions; 
this stage is not simply “deploy and 
watch” or “compare to prior stan-
dards.” Rather, transitional testing 
should involve, for example, focused 
efforts to place the system into “hard” 
contexts precisely to improve our un-
derstanding of the system. Transition-
al testing involves careful, systematic 
efforts to determine the boundaries 
of appropriate system performance. 
The information produced by this test-
ing can be iteratively used to change 
Modules, constrain Contexts, add 
Mapping complexity, or increase Varia-
tion specificity. Transitional testing is 
exploratory (helping to understand) 
not merely confirmatory (checking 
if the system performs as expected). 

Dynamic 
certification 
uses testing 
throughout the life 
cycle, revealing 
challenges and 
trade-offs while 
design decisions 
and changes are 
still possible.



SEPTEMBER 2023  |   VOL.  66  |   NO.  9  |   COMMUNICATIONS OF THE ACM     69

research

to account for the gap between formal 
models and reality. It is impossible to 
make autonomous systems 100% safe 
100% of the time, but we posit that for-
mal methods can significantly assist in 
designing better, safer systems.

In particular, formal methods can 
be highly valuable for the dynamic cer-
tification of an autonomous system. 
Formal models can specify behavior 
and system dynamics that are difficult 
to implement and test without com-
mitting to a specific design. Formal 
models can therefore be used as an aid 
to inform what testing ought to take 
place to ensure that the system will be-
have as expected. Formal models and 
specifications can also be readily up-
dated given new data to improve analy-
sis precision as the system is deployed.

One formal model for autonomous 
systems that is especially useful for 
dynamic certification is the Markov 
decision process (MDP). The MDP 
models sequential decision making in 
stochastic systems with nondeterminis-
tic choices.30 MDPs have been useful for 
modeling high-level decisions in auton-
omous systems, such as collision-avoid-
ance,36 surveillance using ground-based 
robots,23 and transmission exchange 
for wireless sensor networks.2 Analysis 
with MDPs typically requires that the 
complete model be known a priori,18 
but there is often significant model un-
certainty in early phases since many de-

sign and deployment decisions have yet 
to be made. We can instead use a class 
of model known as a parametric MDP,16 
where parameters model variations in 
transition probabilities. The param-
eters may thus represent design choices 
(for example, requiring a perception 
Module with a certain error rate or set-
ting specific thresholds for underlying 
decision-making algorithms); deploy-
ment decisions and context character-
istics (for example, possible reductions 
in visibility or likelihoods of interrup-
tion of information flow); or modeling 
uncertainties (for example, unknown 
characteristics of motion or reaction 
time under off-nominal conditions). 
Parametric MDPs have the specificity 
and flexibility required for a base system 
model that can be refined and improved 
through exploratory early-phase testing.

We illustrate the use of paramet-
ric MDPs as an early-phase decision-
making tool in our running scenario 
with two autonomous systems: a UAV 
and a ground-based delivery robot, si-
multaneously delivering packages (see 
Figure 2). For dynamic certification, 
we want to iteratively identify uses and 
contexts for which the UAV can safely 
deploy while continually gathering ad-
ditional data to determine when it can 
be deployed in more heterogeneous 
environments. Safe deployment is crit-
ical in all phases (not just confirmatory 
testing) due to the possibility of prob-

Current static certification frame-
works involve testing only late in the life 
cycle after a particular system imple-
mentation has been built and is often 
already deployed. They could theoreti-
cally play a role beyond setting perfor-
mance targets, but in practice, they 
rarely do. In contrast, dynamic certifica-
tion uses testing throughout the life cy-
cle, revealing challenges and trade-offs 
while design decisions and changes are 
still possible. The benefits of life cycle-
wide testing require models that can 
capture the “what”, “why”, and “how”, 
along with connections to the eventual 
system design. Formal models play a 
particularly valuable role in dynamic 
certification. In particular, formal mod-
els can be used early to interrogate our 
assumptions about the system’s re-
quirements rather than only being used 
late to provide provable guarantees. For-
mal methods also can give us the tools 
to add stakeholder-specific semantics 
to various models of behaviors, require-
ments, and architectures, thereby pro-
viding a common language to reason 
about the system’s design.

Formal Methods for 
Dynamic Certification
Formal models use the precision of 
mathematical language to reveal mis-
understandings about the system’s 
behavior and requirements.13,24,29,39 
Formal specifications can model com-
plex systems before developing code or 
synthesizing hardware architectures, 
allowing systems engineers to inter-
rogate requirements and find clashes 
and interaction faults early in the sys-
tem’s life cycle. Using formal models, 
we can architect a system proactively: 
no system exists yet, so our design-
decision effectiveness is highest and 
the cost of changes lowest since we do 
not have to bolt modifications onto a 
preexisting design. Additionally, we 
can often synthesize behaviors directly 
from the formal model, which then 
provides our implementation with 
guarantees about important proper-
ties, such as safety.33 Finally, formal 
models can inform testing procedures 
by simulating different contexts and 
becoming more comprehensive (and 
therefore informative) as system data 
is collected during deployment11,22—
with the caveat that there will always be 
a need to interpret those formal results 

Figure 2. Interrogating models containing different Contexts. 

Using formal methods, we can interrogate models containing different contexts. For 
example, a UAV (shown in red) deployed in a city (left) is more likely to lose connection and 
be forced to land (opaque UAV) compared to a similar UAV operating in a suburban area. 
For the city context, the value for probability ​​p​ 1​​​ would be larger than the suburban context 
for the same parameter. This means we must account for and understand how the same 
system can be less or more likely to encounter hazardous conditions when interacting with 
ground-based agents (landing in the vicinity of the delivery robot). We include a possible 
counterexample whereby the UAV drops connection and crash-lands on the delivery robot. 
In a similar, albeit slightly modified context (right), we can choose to explicitly eliminate 
the possibility of ground-based interactions by having the UAV enter the ground layer in a 
prescribed controlled landing zone in the form of the building roofs (shaded red).

(a) Context without landing zones (b) Context with landing zones
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this mission (Figure 3). These prob-
abilities can then be used to provide 
crucial guidance in the dynamic certi-
fication process.

For instance, when beginning the 
early-phase testing stage, the designer 
has minimal insight into the values 
of ​​p​ 1​​​ or ​​p​ 2​​​. One possible outcome is 
that initially, the designer may as-
sume these probabilities correlate 
with signal strength and are, therefore, 
equal—that is, ​​p​ 1​​ = ​p​ 2​​​. In such a case, 
the formal model is a parametric MDP 
with a single parameter. Under this as-
sumption, we can certify that the agent 
will successfully perform its mission 
no worse than ​∼​93% of the time (Fig-
ure 3a). However, during transitional 
or confirmatory testing, we may gather 
more information about the system 
and learn that ​​p​ 1​​ ≠ ​p​ 2​​​. In light of this 
new information, we can return to 
early-phase testing to reconsider the 
UAV behavior (in this environment) as 
modeled by a parametric MDP with two 
parameters. In the process of synthe-
sizing these policies, we can now com-
pute the probabilities of success across 
values for both parameters (Figure 3b).

The integrated modeling and test-
ing in dynamic certification can lead 
us to specify a threshold on ​​p​ 1​​​ or ​​p​ 2​​​ for 
safe deployment. We might identify 
specific, measurable features that de-
fine appropriate deployment contexts. 
For example, we might require that  
​​p​ 1​​ ∈ ​​ [​​0, 0 . 15​]​​​​ (Figure 3, highlighted in 
gray). Our current design in suburban 
contexts might satisfy this constraint 
but require additional changes for 
urban contexts. We might adjust the 
design of the UAV (for example, using 
a more reliable communications de-
vice) or instead adjust the context (for 
example, providing additional signal 
towers). In either case, we can justifi-
ably determine the systems, uses, and 
contexts where safe deployment can be 
assured (to a given probability).

Alternately, an urban context such 
as Figure 1b could include buildings 
that provide safe landing zones for the 
UAV (Figure 2b). In this context, we can 
compute a policy that ensures success 
regardless of the values of ​​p​ 1​​​ and ​​p​ 2​​​. 
In other words, the contextual deploy-
ment face of safe landing locations 
in the urban context alleviates the 
need to test our model for many pos-
sible values of ​​p​ 1​​​ and ​​p​ 2​​​. Specifically,  

in demonstrating scalable behavior. 
Simply, an agent that fails to behave 
safely in such simple environments 
is also unlikely to behave safely in the 
real world.26 A parametric MDP can 
model the composition of these three 
modules into a single socio-technical 
system. The UAV can land and take 
off from anywhere in the region. It 
will lose connection and land-in-place 
with probability ​​p​ 1​​​ (opaque UAV in 
Figure 2) and remain grounded until 
it reestablishes connection with prob-
ability ​​p​ 2​​​. We formalize the UAV goal 
of safely delivering the package as the 
requirement that the UAV behavior 
maximizes the probability that it deliv-
ers a package to the green region while 
not creating an incident by landing in 
the same physical location as the de-
livery robot. We describe such a mis-
sion using the temporal logic formula ​
φ = ¬ Crash 𝖴 Goal​, where ​Crash​ is true 
when a landed UAV shares the same 
location as the delivery robot. We thus 
abstract away complex low-level inter-
actions involving landing or taking off 
in a crowded region; instead, we focus 
on the human-relevant behavioral un-
derstanding and characterization of 
what might go wrong.

For the range of parameter values, 
we compute policies for the system 
using the Storm probabilistic model-
checking tool.10 When synthesizing the 
optimal policy, that is, the policy that 
satisfies the expression ​​p​ max​​​[φ]​​, we can 
also compute the probability that an 
agent employing this policy will satisfy 

lematic incidents. For example, if the 
UAV were to hit a delivery robot in early 
testing, then even if there was no dam-
age to either system, this reportable 
event might delay the UAV’s certifica-
tion and eventual deployment. Mitigat-
ing these issues at design time makes 
it less likely that such an event would 
occur and more likely that the system 
would deploy within schedule.

Suppose we have a list of formal re-
quirements (perhaps translated from 
human values) for UAV performance. 
Parametric MDPs provide a useful 
model to check what probability these 
properties hold or, perhaps more im-
portantly, do not hold. In this context, 
the UAV computes a policy that maxi-
mizes the probability of satisfying a 
temporal logic specification. Based 
on a finite number of samples of the 
uncertain parameters, each of which 
induces an MDP, we can estimate the 
best-case probability that the policy 
satisfies the required specification by 
solving a finite-dimensional convex op-
timization problem.

More specifically, we have three 
relevant, high-level Modules (Figure 
2) that determine the movement of 
the UAV, the movement of the robot, 
and the communication status of the 
UAV. When translating a physical en-
vironment such as the predefined sce-
nario (Figure 1) into a formal model, 
we abstract roadway intersections as 
states in a gridworld (Figure 2). While 
gridworlds represent rather simplis-
tic modules, they are quite powerful 

Figure 3. Probability a UAV satisfies its mission.

The probability that the UAV satisfies the specification when employing its optimal policy for 
attempting to deliver a package without incident to the green square in the gridworld model 
(Figure 2). In the highlighted regions, we show the expected parameter range for ​​p​ 1​​​ for both 
suburban (gray) and urban (pink). The samples in green (b) are likely to complete the delivery 
without incident while the UAVs operating in the environments shown in yellow and red 
samples are more likely to land-in-place, increasing the probability of an incident occurring.

(a) Assumption that ​​p​ 1​​ = ​p​ 2​​​ (b) Assumption that ​​p​ 1​​ ≠ ​p​ 2​​​
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stakeholder values and incorporates 
them in modeling and testing autono-
mous systems. We have outlined one 
way of implementing dynamic certi-
fication using formal methods and 
models. In contrast to the current 
practice of using formal methods for 
guarantees once a system is built, we 
can also use formal methods to model 
values and restrictions within deploy-
ment scenarios and open environ-
ments. Formal methods can simulate 
socio-technical parameters, not just 
the technological system. The cen-
tral message of dynamic certification 
is that we must implement precise 
feedback loops between formal mod-
els, simulation environments, and in-
creasingly open-world deployments, 
all to ensure that stakeholder values 
are being protected and advanced. 
Formal models provide a crucial tool 
in these loops as they can justify dy-
namically evolving requirements.

A common concern when imple-
menting verification and certification 
using formal methods is scalability. 
However, scalability is not an issue 
within dynamic certification because 
we expect the formal model to provide 
partial proof of safe deployment. Dy-
namic certification augments formal 
models with testing for this reason. 
Indeed, the feedback between mod-
els, testing, and stakeholder values 
minimizes scalability issues found in 
most static certification contexts. The 
latter must test all behaviors of sys-
tems, while the former can focus on 
the behaviors that lead to losses (vio-
lation of stakeholder values).27 Formal 
methods thus do not need to scale 
indefinitely;d however, that does not 
mean we could instead require regu-
lators and designers to tame some of 
the environmental complexity or limit 
the required autonomy. Alternately, 
one could require only that the formal 
model demonstrates resilience in the 
sense of a return to normalcy after an 
uncontrolled action. This narrower 
requirement can vastly reduce the sce-
narios for formal modeling and assur-

d	 This does not mean that bottlenecks cannot 
be hit with partial models, but partial mod-
eling gives us the means to say something 
meaningful about the relationship between 
what the system ought (not) to do (that is, its 
requirements) and what the exhibited behav-
ior actually is.

the UAV’s policy would have it fly be-
tween building rooftops only when 
it can safely cross without collision 
and loiter at the rooftop otherwise. 
Of course, such a policy may result in 
extremely long loitering times while 
the UAV waits for the delivery robot to 
move away from the goal region. We 
could thus make the design decision to 
include battery charge as an additional 
parameter in the UAV parametric MDP 
system model. This design decision 
could change the acceptable deploy-
ment contexts, though the details de-
pend on what was learned through ex-
ploratory testing.

Certifying Autonomous Systems 
in Socio-Technical Contexts
Testing in static certification can be 
tractable because the target perfor-
mance is specified ahead of time.19 In 
contrast, testing in dynamic certifica-
tion might appear completely intracta-
ble as it depends on the changing sys-
tem, use, and context. We propose that 
the integration of modeling and test-
ing can make dynamic certification 
feasible. A formal model can provide 
precise, context-sensitive specifica-
tions for the system’s implementation 
and inform the types of tests we con-
duct. This type of dynamic certification 
will ideally result in believable and de-
fensible guarantees of correct opera-
tion.c More importantly, this dynamic 
certification leads to early-phase mod-
els that can be used to interrogate re-
quired or acceptable behavior, even in 
the absence of a specific software or 
hardware implementation. Compared 
to conventional certification regimes, 
dynamic certification revises our as-
sumptions and improves decisions 
or requirements before the system 
is even built, all with the added ben-
efit of identifying the types of contexts 
that led to design changes. The effort 
to understand required assurances 
can begin while we can still effectively 
change the design or the broader so-
cio-technical context.

Dynamic certification systemati-
cally identifies context-dependent 

c	 We cannot require infallible guarantees, as 
they may be based on incorrect or imperfect 
assumptions. No certification process can be 
perfect, but dynamic certification has the ben-
efit of continued testing to detect incorrect 
(formal) models.

Scalability is 
not an issue 
within dynamic 
certification 
because we expect 
the formal model to 
provide partial proof 
of safe deployment.
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At the same time, AI presents ad-
ditional challenges for the dynamic 
certification of autonomous systems. 
First, the distributed nature of much 
AI and robotic development can lead 
to significant communication barriers 
between different stakeholders dur-
ing the requirements elicitation stage, 
and research is needed to develop, test, 
and validate structured approaches for 
requirement and value elicitation. Sec-
ond, modular and scalable methods and 
tools are needed to characterize precise-
ly—whether through formal methods or 
otherwise—the connections between re-
quirements and system (mis)behavior, 
particularly given the inevitable uncer-
tainties with AI-enabled systems. Third, 
higher-fidelity causal models could im-
prove counterfactual reasoning in the 
design and certification of autonomous 
systems, as the certification processes 
could then incorporate additional feed-
back loops that identify counterexam-
ples in data collection, provide diagnos-
tic capabilities, and clarify assumptions 
used to evaluate performance of the 
autonomous system in uncertain, open-
world environments. 
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ance,17 as others can specify what is 
required for “normal behavior.”

Dynamic certification differs from 
conventional certification not because 
it proposes stages and feedback loops—
already present in static certification—
but based on the types of testing (ex-
ploratory, not just confirmatory) and 
specification (partial, rather than com-
plete) in every stage. The more precise 
data we can capture with models and 
tools, the better-informed stakeholders 
will be to ensure the operational needs 
of the system. Toward this goal, research 
must be conducted at the intersection 
of robotics, control, learning, safety, 
security, resilience, testing, and formal 
methods. For example, roboticists must 
include realistic dynamical models for 
surrounding information that can be 
given by learning;32 learning must be 
interpretable based on test vectors;31 
control must account for clashing safety 
requirements based on dynamics;28 and 
safety,25 security,37 and resilience8 must 
be given formal interpretations based 
on realism but allow partial modeling, 
precisely to account for the uncertainty 
arising from coupled learning systems. 
Two recent improvements that will as-
sist with developing dynamic certifi-
cation are compositional verification, 
which relates different model types,5 
and more operational data—for exam-
ple, high-definition maps for streets in 
major cities.1

Dynamic certification is an ap-
proach for autonomous systems that 
attempts to provide a common lan-
guage between formal models, simu-
lations, real-world (testing) data, and 
regulatory mechanisms. Dynamic cer-
tification requires advances in formal-
ism compatibility and co-design, the 
development of high-fidelity simula-
tion tools that can input information 
from formal models, expansive con-
text-aware testing vectors, and legal 
codification of acceptable stages of 
deployment. In light of these multi-
disciplinary aspects, it is unsurprising 
that dynamic certification has been a 
relatively under-explored approach. 
However, dynamic certification prom-
ises better-designed, safer, and more 
secure autonomous systems, providing 
assurance of correct behavior and in-
creased deployment of those systems. 
The effort to advance dynamic certifi-
cation can provide significant benefits.




