
64 COMMUNICATIONS OF THE ACM | SEPTEMBER 2023 | VOL. 66 | NO. 9

research

I
M

A
G

E
 B

Y
 A

N
D

R
I

J
 B

O
R

Y
S

 A
S

S
O

C
I

A
T

E
S

,
U

S
I

N
G

 S
H

U
T

T
E

R
S

T
O

C
K

 key insights
 ˽ Dynamic certification of autonomous

systems requires the involvement
and distillation of knowledge from
diverse stakeholders, from engineers
to architects to regulators. It must start
at the beginning of the life cycle, where
decisions are most effective and cost of
design changes are lowest.

 ˽ Iterative assessment for dynamic
certification depends on the use and
context in which autonomous systems are
expected to deploy and must account for
both technical and social requirements.

 ˽ Multiple rounds of testing and
interrogating requirements via
formal methods provide insights into
the uncertainty present in varying
deployment scenarios, where they must
perform efficiently and safely.

AUTONOMOUS SYSTEMS ARE often deployed in complex
socio-technical environments, such as public roads,
where they must behave safely and securely. Unlike
many traditionally engineered systems, autonomous
systems are expected to behave predictably in varying
“open-world” environmental contexts that cannot be
fully specified formally. As a result, assurance about
autonomous systems requires the development of new
certification methods—codified checks and balances,
including regulatory requirements, for deploying

systems—and mathematical tools that
can dynamically bind the uncertainty
engendered by these diverse deploy-
ment scenarios. More specifically, au-
tonomous systems increasingly use al-
gorithms trained from data to predict
and control behavior in contexts previ-
ously not encountered. Using learning
is a critical step to engineer autonomy
that can successfully operate in hetero-
geneous contexts, but current certifica-
tion methods must be revised to ad-
dress the dynamic, adaptive nature of
learning. The heterogeneity that any
certification framework should address
for the design of autonomous systems
is twofold. The first relates to the system
itself and the heterogeneous compo-
nents that engender its behavior. The
second is the heterogeneity that certify-
ing must address in relation to the com-
plex socio-technical settings in which
the system is expected to behave.

We propose the dynamic certifica-
tion of autonomous systems—the iter-
ative revision of permissible 〈use, con-
text〉 pairs for a system—rather than
pre-specified tests that a system must
pass to be certified. Dynamic certifica-
tion offers the ability to learn while cer-
tifying, thereby opening additional op-
portunities to shape the development
of autonomous technology. This type
of comprehensive, exploratory testing,
shaped by insights from deployment,

Dynamic
Certification
for
Autonomous
Systems

DOI:10.1145/3574133

An attempt to provide a common language
between formal models, simulations,
real-world (testing) data, and regulatory
mechanisms.

BY GEORGIOS BAKIRTZIS, STEVEN CARR, DAVID DANKS,
AND UFUK TOPCU

https://dx.doi.org/10.1145/3574133
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3574133&domain=pdf&date_stamp=2023-08-23

SEPTEMBER 2023 | VOL. 66 | NO. 9 | COMMUNICATIONS OF THE ACM 65

66 COMMUNICATIONS OF THE ACM | SEPTEMBER 2023 | VOL. 66 | NO. 9

research

can enable iterative selection of ap-
propriate contexts of use. More specifi-
cally, we propose dynamic certification
and modeling involving three testing
stages: early-phase testing, transition-
al testing, and confirmatory testing.
Movement between testing stages is
not unidirectional; we can shift in any
direction depending on our current
state of knowledge and intended de-
ployments. We describe these stages
in more detail later, but the key is that
these stages enable system design-
ers and regulators to learn about and
ensure autonomous systems operate
within the bounds of acceptable risk.

Our proposal is similar to how the
Food and Drug Administration (FDA)
tests drugs in stages with increasing
scrutiny before the products are ap-
proved for public consumption. Rather
than a simple yes/no certification, the
FDA uses an iterative process of explor-
atory stages in which pharmaceutical
agents are first approved for limited
use in restricted contexts under careful
oversight. They are only gradually ap-
proved for broader use as post-approv-
al monitoring and subsequent stud-
ies demonstrate safety and efficacy.
Of course, FDA procedures cannot be
used directly for dynamic certification
of autonomous (software) systems, but
they provide an “existence proof” that
dynamic certification can work.

Technology creation involves at
least two different yet interdependent
types of decisions. Design decisions de-
termine the structure and intended
operation of the autonomous system,

including the evaluation functions
optimized during development and
revision/updates. Deployment deci-
sions determine the contexts and uses
for the autonomous system, including
designating certain situations as “do
not use” (or “use only with increased
oversight”). In practice, static certifi-
cation and regulatory systems often
focus only on deployment decisions
(and take the design decisions and
technical specifications as fixed). How-
ever, precisely because of the frequent
uncertainty about what counts as suc-
cess for an autonomous system, certifi-
cation of those systems must also con-
sider design decisions, using technical
specifications to predict performance
in contexts that are not encountered.

Dynamic certification includes
design decisions, particularly in the
early stages when changes have the
highest impact and lowest cost, often
before code or hardware have even
been built.15,35 Mathematical tools
from formal methods can thus play
an essential role in specifying autono-
mous systems at different levels of ab-
straction, even when they have not yet
been implemented. Formal methods
allow us to specify acceptable risks,
identify failures that inform mitiga-
tion strategies, and understand and
represent the uncertainty associated
with deploying autonomous systems
in heterogeneous environments. For-
mal models are also living documents
that encode design and deployment
decisions made throughout the life cy-
cle of the autonomous system. For ex-

ample, tracking changes in the speci-
fication of requirements throughout
the life cycle can offer a good picture
of the design problems and solutions
at a particular time and how those
changes reflect design shifts over
time. Successful dynamic certifica-
tion thus depends on translational
research by formal methods, autono-
mous systems, and robotics commu-
nities to establish proper procedures
to ensure that deployed systems are
unlikely to cause harm.

Dynamic certification relies on an
iterative assessment of the risks (and
benefits) introduced by deploying au-
tonomous systems for different uses
and contexts. Formal methods offer a
concrete basis for specification, verifi-
cation, and synthesis for autonomous
systems but do not guide the transla-
tion of our desired values and accept-
able risk into those formal models. We
require frameworks that explicitly allow
for ambiguities in specifications and
uncertainties and partial decisions in
modeling while remaining scalable to
practically relevant sizes. More general-
ly, dynamic certification will require an
appropriate co-evolution of regulatory
and formal frameworks. Having argued
for implementing parts of dynamic
certification via formal methods, it is
crucial to acknowledge other types of
analyses that could implement dynamic
certification, such as assurance cases,3
structured interrogation of require-
ments,7,28,38 and domain standards.12 In-
deed, these other types of methods and
their associated tools and metrics could
play valuable roles in the dynamic certi-
fication of autonomous systems.

Scenario
We motivate and illustrate our pro-
posed framework for dynamic certifi-
cation using a scenario with two inter-
acting systems: an unmanned aerial
vehicle (UAV) and a ground-based de-
livery robot simultaneously delivering
packages (see Figure 1). We require that
the UAV only operate while connected
to a wireless communication network.
If it (likely) loses connection, it must
land in place. A hazardous state results
if the UAV lands in the same location as
the ground-based robot. The UAV de-
signer seeks a high-level risk-mitigation
strategy that accounts for the ground-
based robot’s movement and limits the

Figure 1. Different 〈use, context〉 pairs result in different hazard conditions.

The arrows and shaded regions are possible trajectories: safe (blue) and hazardous (red).
Dotted lines indicate connectivity. (a) In suburban areas, the probability of losing connec-
tion is low because the signal has minimal attenuation. (b) In a city, buildings are made with
concrete and rebar and are laid out densely, increasing the probability of signal attenuation.
Therefore, the system is more likely to transition to a hazardous state in the city 〈use, con-
text〉 pair. When attempting to deploy in these different scenarios, we must check different
safety properties. Dynamic certification requires the development of a framework for
designers that easily adapts between the different scenarios.

(a) Suburban context (b) Urban context

SEPTEMBER 2023 | VOL. 66 | NO. 9 | COMMUNICATIONS OF THE ACM 67

research

probability of transitioning to a hazard-
ous state. This strategy requires speci-
fication of acceptable 〈use, context〉
pairs—for example, usable trajectories
or locations for the UAV. This high-lev-
el focus enables key abstractions and
simplifications. For instance, the de-
signer can abstract away the low-level
UAV controller and assume that it can
safely navigate between waypoints. In-
stead of modeling complex behaviors
about the ground-based robot—which
may not even be possible if the system
is outside of the designer’s control—the
designer can require that the UAV be ro-
bust against random movements of the
robot. Though this example is simpli-
fied in various ways (for example, only
including two robots), those simplifica-
tions serve to highlight key conceptual
points, including the value of formal
methods.

Dynamic Certification
Dynamic certification is built on two
fundamental operations: modeling
and testing. Modeling allows system
engineers to track design choices that
otherwise would be difficult to docu-
ment and adjust when issues arise
because of complex interactions be-
tween sub-components. Models also
enable the engineer to focus on the
interfaces between sub-components,
often abstracting away the individual
sub-components to focus on the be-
havior of the whole. Importantly, we
can use models to understand how the
system might succeed or fail before
the system is built—that is, for high-
impact, low-cost design decisions. In
contrast, testing involves the actual
implementations, focusing on wheth-
er the assumptions of the model and
resulting design decisions actually
function as expected in the physical
world. Conventional static certifica-
tion struggles when operational (or
regulatory) assumptions fail to hold
in reality. In contrast, dynamic certifi-
cation posits that modeling and test-
ing should be intertwined throughout
the system life cycle, so our models
(and assumptions) can be continually
refined as we better understand real-
world contexts. Certification of auton-
omous learning systems requires both
elements: testing, since the world can
surprise us and the system can change
through learning, and modeling, to

guide our design and testing decisions
through the massive search spaces.

Assurance requires specifying when,
where, and why an autonomous sys-
tem is being deployed within a socio-
technical context. But if autonomous
systems are expected to learn from their
environment and context of operation,
then there does not seem to be a stable
model for testing. Dynamic certification
turns this concern into a virtue: If our
base system model contains appropri-
ate parameters, we can iteratively refine
and augment this base model through
different testing procedures. This vir-
tue and the resulting testing procedures
come from the feedback and interac-
tion between stakeholders with differ-
ent concerns and expertise, making it
clear when testing procedures are suf-
ficient and accurate. Therefore, in the
long run, we can conduct sufficient
testing to have an accurate model that
assures stakeholders that systems will
operate as expected.

Specification of the base system
model for dynamic certification re-
quires (perhaps partial) identification
and description of the following four
components (inspired by Kimmelman
and London).20

 ˲ Modules of the system (primar-
ily software, but potentially hardware)
including the function(s) of each mod-
ule.

 ˲ Contexts in which the system is
expected to be able to operate success-
fully.

 ˲ Mappings from Context → Behav-
ior for “successful” performance in
various conditions.

 ˲ Variations in the environment for
which the system should be robust.

Given an initial specification of
these four elements for an autonomous
system, dynamic certification can be
divided into three distinct stages (with
no requirement for unidirectional pro-
gression through these stages). All four
components of the base-model specifi-
cation can be revised or adjusted dur-
ing each stage. Although discussions
of certification often focus on Con-
texts and Mappings, the inclusion of
design decisions in dynamic certifica-
tion means that other components can
also be adjusted—for example, adding
Modules to improve performance in
given Contexts).

The first stage, early-phase testing,

Dynamic
certification relies
on an iterative
assessment of
the risks (and
benefits) introduced
by deploying
autonomous
systems for
different uses and
contexts.

68 COMMUNICATIONS OF THE ACM | SEPTEMBER 2023 | VOL. 66 | NO. 9

research

In our running scenario, transitional
testing would involve testing (not just
modeling) system performance with
high-fidelity and hardware-in-the-loop
simulations4,9,34 or in controlled envi-
ronments—for example, a large indus-
trial park with limited public traffic.
This stage intends to gather enough
data to modify the formal system mod-
el to reflect reality further.

In the third and final stage, confir-
matory testing, the system is deployed
with significant oversight and moni-
toring, but no further controls beyond
those specified in the certification by
a set of 〈use, context〉 pairs. This stage
aims to determine, in real-world set-
tings, both system performance reli-
ability and the extent of system-user
value (mis)matches. The latter goal
is crucial because many autonomous
system “failures” involve a properly
functioning system that implements
different values than the users expect.
The system behaves correctly, but ac-
cording to a (perhaps implicit) notion
of success that is different from that
of the human users;a that is, the sys-
tem implements the wrong Mapping.
These divergences often appear only
once the system is in the hands of un-
trained users, so confirmatory testing
must initially include significant over-
sight to detect, record, and respond to
real-world performance failures and
value divergences. This monitoring
can be gradually reduced as we learn
the exact behavior of the system in
relevant real-world contexts—that is,
even this stage involves some explor-
atory testing.b In the running scenario,
confirmatory testing would involve su-
pervised deployment in a controlled
environment, possibly borrowing rules
and regulations from the operational
design domain.21 Changes to the sys-
tem design based on actual operation-
al contexts should reflect the formal
model; they must agree. Once testing
and modeling agree, the dynamic cer-
tification has ensured that the system
will behave acceptably and safely.

a Many classic examples of “AI run amok” fall
into this category. For example, the paperclip
maximizer6 simply has a different idea of “suc-
cess” than we do.

b Confirmatory testing is thus quite similar to
conformance testing but does not assume that
we have a fully specified set of standards and
behaviors that are provided in advance.

occurs in the development lab or oth-
er highly controlled settings. The two
main goals of this stage are to verify that
the integrated Modules implement the
intended Mappings and to develop ap-
propriate base models of the autono-
mous system for offline testing. The
first goal is relatively standard when
developing a software system—for ex-
ample, unit-testing. The second goal,
however, is much less common and
requires careful consideration of the
range of Contexts and Variations that
might be encountered in plausible de-
ployment environments. Importantly,
all four components of the base system
model must be (tentatively) specified
in early-phase testing; this stage is not
solely technology-focused. Given an
initial specification, early-phase test-
ing continues until the software sys-
tem is suitably verified and its expected
performance is sufficiently good in of-
fline testing. In the running scenario,
early-phase testing could take the form
of building and testing a gridworld
that models the high-level decision-
making for the UAV. In this stage, the
designer would identify anomalous
behavior, such as locations that create
deadlocks, thereby enabling design de-
cisions to mitigate situations that lead
to task degradation.14

In the second stage, transitional
testing, the system is deployed in real-
world environments, though with sig-
nificant oversight and control. The two
main goals of this stage are to identify
Contexts of real-world failure and to
characterize potential environmental
Variations. These goals require highly
active engagement and interventions;
this stage is not simply “deploy and
watch” or “compare to prior stan-
dards.” Rather, transitional testing
should involve, for example, focused
efforts to place the system into “hard”
contexts precisely to improve our un-
derstanding of the system. Transition-
al testing involves careful, systematic
efforts to determine the boundaries
of appropriate system performance.
The information produced by this test-
ing can be iteratively used to change
Modules, constrain Contexts, add
Mapping complexity, or increase Varia-
tion specificity. Transitional testing is
exploratory (helping to understand)
not merely confirmatory (checking
if the system performs as expected).

Dynamic
certification
uses testing
throughout the life
cycle, revealing
challenges and
trade-offs while
design decisions
and changes are
still possible.

SEPTEMBER 2023 | VOL. 66 | NO. 9 | COMMUNICATIONS OF THE ACM 69

research

to account for the gap between formal
models and reality. It is impossible to
make autonomous systems 100% safe
100% of the time, but we posit that for-
mal methods can significantly assist in
designing better, safer systems.

In particular, formal methods can
be highly valuable for the dynamic cer-
tification of an autonomous system.
Formal models can specify behavior
and system dynamics that are difficult
to implement and test without com-
mitting to a specific design. Formal
models can therefore be used as an aid
to inform what testing ought to take
place to ensure that the system will be-
have as expected. Formal models and
specifications can also be readily up-
dated given new data to improve analy-
sis precision as the system is deployed.

One formal model for autonomous
systems that is especially useful for
dynamic certification is the Markov
decision process (MDP). The MDP
models sequential decision making in
stochastic systems with nondeterminis-
tic choices.30 MDPs have been useful for
modeling high-level decisions in auton-
omous systems, such as collision-avoid-
ance,36 surveillance using ground-based
robots,23 and transmission exchange
for wireless sensor networks.2 Analysis
with MDPs typically requires that the
complete model be known a priori,18
but there is often significant model un-
certainty in early phases since many de-

sign and deployment decisions have yet
to be made. We can instead use a class
of model known as a parametric MDP,16
where parameters model variations in
transition probabilities. The param-
eters may thus represent design choices
(for example, requiring a perception
Module with a certain error rate or set-
ting specific thresholds for underlying
decision-making algorithms); deploy-
ment decisions and context character-
istics (for example, possible reductions
in visibility or likelihoods of interrup-
tion of information flow); or modeling
uncertainties (for example, unknown
characteristics of motion or reaction
time under off-nominal conditions).
Parametric MDPs have the specificity
and flexibility required for a base system
model that can be refined and improved
through exploratory early-phase testing.

We illustrate the use of paramet-
ric MDPs as an early-phase decision-
making tool in our running scenario
with two autonomous systems: a UAV
and a ground-based delivery robot, si-
multaneously delivering packages (see
Figure 2). For dynamic certification,
we want to iteratively identify uses and
contexts for which the UAV can safely
deploy while continually gathering ad-
ditional data to determine when it can
be deployed in more heterogeneous
environments. Safe deployment is crit-
ical in all phases (not just confirmatory
testing) due to the possibility of prob-

Current static certification frame-
works involve testing only late in the life
cycle after a particular system imple-
mentation has been built and is often
already deployed. They could theoreti-
cally play a role beyond setting perfor-
mance targets, but in practice, they
rarely do. In contrast, dynamic certifica-
tion uses testing throughout the life cy-
cle, revealing challenges and trade-offs
while design decisions and changes are
still possible. The benefits of life cycle-
wide testing require models that can
capture the “what”, “why”, and “how”,
along with connections to the eventual
system design. Formal models play a
particularly valuable role in dynamic
certification. In particular, formal mod-
els can be used early to interrogate our
assumptions about the system’s re-
quirements rather than only being used
late to provide provable guarantees. For-
mal methods also can give us the tools
to add stakeholder-specific semantics
to various models of behaviors, require-
ments, and architectures, thereby pro-
viding a common language to reason
about the system’s design.

Formal Methods for
Dynamic Certification
Formal models use the precision of
mathematical language to reveal mis-
understandings about the system’s
behavior and requirements.13,24,29,39
Formal specifications can model com-
plex systems before developing code or
synthesizing hardware architectures,
allowing systems engineers to inter-
rogate requirements and find clashes
and interaction faults early in the sys-
tem’s life cycle. Using formal models,
we can architect a system proactively:
no system exists yet, so our design-
decision effectiveness is highest and
the cost of changes lowest since we do
not have to bolt modifications onto a
preexisting design. Additionally, we
can often synthesize behaviors directly
from the formal model, which then
provides our implementation with
guarantees about important proper-
ties, such as safety.33 Finally, formal
models can inform testing procedures
by simulating different contexts and
becoming more comprehensive (and
therefore informative) as system data
is collected during deployment11,22—
with the caveat that there will always be
a need to interpret those formal results

Figure 2. Interrogating models containing different Contexts.

Using formal methods, we can interrogate models containing different contexts. For
example, a UAV (shown in red) deployed in a city (left) is more likely to lose connection and
be forced to land (opaque UAV) compared to a similar UAV operating in a suburban area.
For the city context, the value for probability p 1 would be larger than the suburban context
for the same parameter. This means we must account for and understand how the same
system can be less or more likely to encounter hazardous conditions when interacting with
ground-based agents (landing in the vicinity of the delivery robot). We include a possible
counterexample whereby the UAV drops connection and crash-lands on the delivery robot.
In a similar, albeit slightly modified context (right), we can choose to explicitly eliminate
the possibility of ground-based interactions by having the UAV enter the ground layer in a
prescribed controlled landing zone in the form of the building roofs (shaded red).

(a) Context without landing zones (b) Context with landing zones

Dynamic Certi�cation for Autonomous Systems 9

?1 ?2

Dynamic Certi�cation for Autonomous Systems 9

?1 ?2

70 COMMUNICATIONS OF THE ACM | SEPTEMBER 2023 | VOL. 66 | NO. 9

research

this mission (Figure 3). These prob-
abilities can then be used to provide
crucial guidance in the dynamic certi-
fication process.

For instance, when beginning the
early-phase testing stage, the designer
has minimal insight into the values
of p 1 or p 2 . One possible outcome is
that initially, the designer may as-
sume these probabilities correlate
with signal strength and are, therefore,
equal—that is, p 1 = p 2 . In such a case,
the formal model is a parametric MDP
with a single parameter. Under this as-
sumption, we can certify that the agent
will successfully perform its mission
no worse than ∼ 93% of the time (Fig-
ure 3a). However, during transitional
or confirmatory testing, we may gather
more information about the system
and learn that p 1 ≠ p 2 . In light of this
new information, we can return to
early-phase testing to reconsider the
UAV behavior (in this environment) as
modeled by a parametric MDP with two
parameters. In the process of synthe-
sizing these policies, we can now com-
pute the probabilities of success across
values for both parameters (Figure 3b).

The integrated modeling and test-
ing in dynamic certification can lead
us to specify a threshold on p 1 or p 2 for
safe deployment. We might identify
specific, measurable features that de-
fine appropriate deployment contexts.
For example, we might require that
 p 1 ∈ [0, 0 . 15] (Figure 3, highlighted in
gray). Our current design in suburban
contexts might satisfy this constraint
but require additional changes for
urban contexts. We might adjust the
design of the UAV (for example, using
a more reliable communications de-
vice) or instead adjust the context (for
example, providing additional signal
towers). In either case, we can justifi-
ably determine the systems, uses, and
contexts where safe deployment can be
assured (to a given probability).

Alternately, an urban context such
as Figure 1b could include buildings
that provide safe landing zones for the
UAV (Figure 2b). In this context, we can
compute a policy that ensures success
regardless of the values of p 1 and p 2 .
In other words, the contextual deploy-
ment face of safe landing locations
in the urban context alleviates the
need to test our model for many pos-
sible values of p 1 and p 2 . Specifically,

in demonstrating scalable behavior.
Simply, an agent that fails to behave
safely in such simple environments
is also unlikely to behave safely in the
real world.26 A parametric MDP can
model the composition of these three
modules into a single socio-technical
system. The UAV can land and take
off from anywhere in the region. It
will lose connection and land-in-place
with probability p 1 (opaque UAV in
Figure 2) and remain grounded until
it reestablishes connection with prob-
ability p 2 . We formalize the UAV goal
of safely delivering the package as the
requirement that the UAV behavior
maximizes the probability that it deliv-
ers a package to the green region while
not creating an incident by landing in
the same physical location as the de-
livery robot. We describe such a mis-
sion using the temporal logic formula
φ = ¬ Crash 𝖴 Goal , where Crash is true
when a landed UAV shares the same
location as the delivery robot. We thus
abstract away complex low-level inter-
actions involving landing or taking off
in a crowded region; instead, we focus
on the human-relevant behavioral un-
derstanding and characterization of
what might go wrong.

For the range of parameter values,
we compute policies for the system
using the Storm probabilistic model-
checking tool.10 When synthesizing the
optimal policy, that is, the policy that
satisfies the expression p max [φ] , we can
also compute the probability that an
agent employing this policy will satisfy

lematic incidents. For example, if the
UAV were to hit a delivery robot in early
testing, then even if there was no dam-
age to either system, this reportable
event might delay the UAV’s certifica-
tion and eventual deployment. Mitigat-
ing these issues at design time makes
it less likely that such an event would
occur and more likely that the system
would deploy within schedule.

Suppose we have a list of formal re-
quirements (perhaps translated from
human values) for UAV performance.
Parametric MDPs provide a useful
model to check what probability these
properties hold or, perhaps more im-
portantly, do not hold. In this context,
the UAV computes a policy that maxi-
mizes the probability of satisfying a
temporal logic specification. Based
on a finite number of samples of the
uncertain parameters, each of which
induces an MDP, we can estimate the
best-case probability that the policy
satisfies the required specification by
solving a finite-dimensional convex op-
timization problem.

More specifically, we have three
relevant, high-level Modules (Figure
2) that determine the movement of
the UAV, the movement of the robot,
and the communication status of the
UAV. When translating a physical en-
vironment such as the predefined sce-
nario (Figure 1) into a formal model,
we abstract roadway intersections as
states in a gridworld (Figure 2). While
gridworlds represent rather simplis-
tic modules, they are quite powerful

Figure 3. Probability a UAV satisfies its mission.

The probability that the UAV satisfies the specification when employing its optimal policy for
attempting to deliver a package without incident to the green square in the gridworld model
(Figure 2). In the highlighted regions, we show the expected parameter range for p 1 for both
suburban (gray) and urban (pink). The samples in green (b) are likely to complete the delivery
without incident while the UAVs operating in the environments shown in yellow and red
samples are more likely to land-in-place, increasing the probability of an incident occurring.

(a) Assumption that p 1 = p 2 (b) Assumption that p 1 ≠ p 2

0

0

1

0 0.1 0.2 0.3 0.4 0.5

1

0.98

P
ro

ba
bi

lit
y

of
 S

at
is

fa
ct

io
n

P
ro

ba
bi

lit
y

of
 S

at
is

fa
ct

io
n

Probability of Communication Change (p1, p2)

LosingCommunication (p1)

0.96

0.94

0.92
Regaining

Communicatio
n (p 2

)

0.75

0.5

0.25

0.25
0.5

0.25

0.5

SEPTEMBER 2023 | VOL. 66 | NO. 9 | COMMUNICATIONS OF THE ACM 71

research

stakeholder values and incorporates
them in modeling and testing autono-
mous systems. We have outlined one
way of implementing dynamic certi-
fication using formal methods and
models. In contrast to the current
practice of using formal methods for
guarantees once a system is built, we
can also use formal methods to model
values and restrictions within deploy-
ment scenarios and open environ-
ments. Formal methods can simulate
socio-technical parameters, not just
the technological system. The cen-
tral message of dynamic certification
is that we must implement precise
feedback loops between formal mod-
els, simulation environments, and in-
creasingly open-world deployments,
all to ensure that stakeholder values
are being protected and advanced.
Formal models provide a crucial tool
in these loops as they can justify dy-
namically evolving requirements.

A common concern when imple-
menting verification and certification
using formal methods is scalability.
However, scalability is not an issue
within dynamic certification because
we expect the formal model to provide
partial proof of safe deployment. Dy-
namic certification augments formal
models with testing for this reason.
Indeed, the feedback between mod-
els, testing, and stakeholder values
minimizes scalability issues found in
most static certification contexts. The
latter must test all behaviors of sys-
tems, while the former can focus on
the behaviors that lead to losses (vio-
lation of stakeholder values).27 Formal
methods thus do not need to scale
indefinitely;d however, that does not
mean we could instead require regu-
lators and designers to tame some of
the environmental complexity or limit
the required autonomy. Alternately,
one could require only that the formal
model demonstrates resilience in the
sense of a return to normalcy after an
uncontrolled action. This narrower
requirement can vastly reduce the sce-
narios for formal modeling and assur-

d This does not mean that bottlenecks cannot
be hit with partial models, but partial mod-
eling gives us the means to say something
meaningful about the relationship between
what the system ought (not) to do (that is, its
requirements) and what the exhibited behav-
ior actually is.

the UAV’s policy would have it fly be-
tween building rooftops only when
it can safely cross without collision
and loiter at the rooftop otherwise.
Of course, such a policy may result in
extremely long loitering times while
the UAV waits for the delivery robot to
move away from the goal region. We
could thus make the design decision to
include battery charge as an additional
parameter in the UAV parametric MDP
system model. This design decision
could change the acceptable deploy-
ment contexts, though the details de-
pend on what was learned through ex-
ploratory testing.

Certifying Autonomous Systems
in Socio-Technical Contexts
Testing in static certification can be
tractable because the target perfor-
mance is specified ahead of time.19 In
contrast, testing in dynamic certifica-
tion might appear completely intracta-
ble as it depends on the changing sys-
tem, use, and context. We propose that
the integration of modeling and test-
ing can make dynamic certification
feasible. A formal model can provide
precise, context-sensitive specifica-
tions for the system’s implementation
and inform the types of tests we con-
duct. This type of dynamic certification
will ideally result in believable and de-
fensible guarantees of correct opera-
tion.c More importantly, this dynamic
certification leads to early-phase mod-
els that can be used to interrogate re-
quired or acceptable behavior, even in
the absence of a specific software or
hardware implementation. Compared
to conventional certification regimes,
dynamic certification revises our as-
sumptions and improves decisions
or requirements before the system
is even built, all with the added ben-
efit of identifying the types of contexts
that led to design changes. The effort
to understand required assurances
can begin while we can still effectively
change the design or the broader so-
cio-technical context.

Dynamic certification systemati-
cally identifies context-dependent

c We cannot require infallible guarantees, as
they may be based on incorrect or imperfect
assumptions. No certification process can be
perfect, but dynamic certification has the ben-
efit of continued testing to detect incorrect
(formal) models.

Scalability is
not an issue
within dynamic
certification
because we expect
the formal model to
provide partial proof
of safe deployment.

72 COMMUNICATIONS OF THE ACM | SEPTEMBER 2023 | VOL. 66 | NO. 9

research

15. Frola, F.R. and Miller, C.O. System safety in aircraft
acquisition. Logistics Management Institute (1984);
https://perma.cc/QYV7-C5BY.

16. Hahn, E.M. et al. Synthesis for PCTL in parametric
Markov decision processes. In Proceedings of the
3rd NASA Intern. Symp. on Formal Methods, Lecture
Notes in Computer Science. Springer (2011).

17. Hosseini, S. et al. A review of definitions and measures
of system resilience. Reliability Engineering System
Safety (2016).

18. Junges, S. et al. Parameter Synthesis for Markov
Models (2019); arXiv:1903.07993 [cs.LO].

19. Kaner, C. What is a good test case? Conf. on Software
Testing Analysis Rev. East (2003).

20. Kimmelman, J. and London, A.J. The structure of
clinical translation: Efficiency, information, and ethics.
Hastings Center Report (2015).

21. Koopman, P. and Fratrik, F. How many operational
design domains, objects, and events? In Proceedings
on the 33rd Conf. on Artificial Intelligence, Workshop
on Artificial Intelligence Safety (2019).

22. Kress-Gazit, H. et al. Formalizing and guaranteeing
human-robot interaction. Communications of the ACM.
(2021).

23. Lahijanian, M. et al. Temporal logic motion planning
and control with probabilistic satisfaction guarantees.
IEEE Transactions on Robotics (2012).

24. Lamport, L. Specifying Systems: The TLA+ Language
and Tools for Hardware and Software Engineers.
Addison-Wesley (2002).

25. Lecomte, T. The bourgeois gentleman engineering and
formal methods. In Intern. Symp. on Formal Methods.
Springer (2019).

26. Leike, J. et al. AI Safety Gridworlds (2017); arXiv
preprint arXiv:1711.09883.

27. Leveson, N.G. Engineering a Safer World: Systems
Thinking Applied to Safety. MIT Press (2011).

28. Leveson, N.G. et al. Requirements specification for
process-control systems. IEEE Transactions on
Software Engineering (1994).

29. Luckcuck, M. et al. Formal specification and
verification of autonomous robotic systems: A survey.
ACM Comput. Surv. (2019).

30. Puterman, M.L. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley Sons
(2014).

31. Sekhon, J. and Fleming, C. Towards improved testing
for deep learning. In Proceedings of the 41st Intern.
Conf. on Software Engineering: New Ideas and
Emerging Results. IEEE/ACM (2019).

32. Sekhon, J. and Fleming, C. SCAN: A spatial context
attentive network for joint multi-agent intent
prediction. In Proceedings of the 35th AAAI Conf. on
Artificial Intelligence. AAAI Press (2021).

33. Seshia, S.A. et al. Formal methods for semi-
autonomous driving. In Proceedings of the 52nd Annual
Design Automation Conf. ACM (2015).

34. Shah, S. et al. AirSim: High-fidelity visual and physical
simulation for autonomous vehicles. In Proceedings
of the 11th Intern. Conf. on Field and Service Robotics.
Springer (2017).

35. Strafaci, A. What does BIM mean for civil engineers.
CE News Transportation (2008).

36. Temizer, S. et al. Collision avoidance for unmanned
aircraft using markov decision processes. In
Proceedings of the AIAA Guidance, Navigation, and
Control Conf. (2010).

37. Voas, J. and Schaffer, K. Whatever happened to formal
methods for security? Computer (2016).

38. Webster, M. et al. A corroborative approach to
verification and validation of human-robot teams.
Intern. J. Robotics Res (2020).

39. Wing, J.M. A specifier’s introduction to formal
methods. Computer (1990).

Georgios Bakirtzis (bakirtzis@utexas.edu) is Peter
O’Donnell Jr. postdoctoral fellow at The University of
Texas at Austin, USA.

Steven Carr is a postdoctoral fellow at The University of
Texas at Austin, USA.

David Danks is a professor of Data Science and
Philosophy at the University of California, San Diego, USA.

Ufuk Topcu is associate professor of Aerospace
Engineering and Engineering Mechanics at The University
of Texas at Austin, USA.

Copyright is held by the owner/authors.
Publication rights licensed to ACM.

At the same time, AI presents ad-
ditional challenges for the dynamic
certification of autonomous systems.
First, the distributed nature of much
AI and robotic development can lead
to significant communication barriers
between different stakeholders dur-
ing the requirements elicitation stage,
and research is needed to develop, test,
and validate structured approaches for
requirement and value elicitation. Sec-
ond, modular and scalable methods and
tools are needed to characterize precise-
ly—whether through formal methods or
otherwise—the connections between re-
quirements and system (mis)behavior,
particularly given the inevitable uncer-
tainties with AI-enabled systems. Third,
higher-fidelity causal models could im-
prove counterfactual reasoning in the
design and certification of autonomous
systems, as the certification processes
could then incorporate additional feed-
back loops that identify counterexam-
ples in data collection, provide diagnos-
tic capabilities, and clarify assumptions
used to evaluate performance of the
autonomous system in uncertain, open-
world environments.

References
1. ARGO AI. Argoverse: Public Datasets Supported by

Detailed Maps to Test, Experiment, and Teach Self-
Driving Vehicles How to Understand the World around
Them. (2022); https://tinyurl.com/2n52u8fn.

2. Alsheikh, M.A. et al. Markov decision processes with
applications in wireless sensor networks: A survey.
IEEE Communication Surveys and Tutorials. (2015).

3. Asaadi, E. et al. Dynamic assurance cases: A pathway
to trusted autonomy. Computer (2020).

4. Bacic, M. On Hardware-in-the-loop simulation. In
Proceedings of the 44th IEEE Conf. on Decision and
Control IEEE, (2005).

5. Bakirtzis, G. et al. Compositional thinking in
cyberphysical systems theory. Computer (2021).

6. Bostrom, N. Ethical issues in advanced artificial
intelligence. Rev. of Contemporary Philosophy (2006).

7. Bourbouh, H. et al. Integrating formal verification
and assurance: An inspection rover case study. In
Proceedings of the 13th Intern. Symp. on NASA Formal
Methods, Lecture Notes in Computer Science. Springer
(2021).

8. Bouvier, J. et al. Quantitative resilience of linear
driftless systems. In Proceedings of the Conf. on
Control and its Applications, SIAM (2021).

9. Curiel-Ramirez, L.A. et al. Hardware in the loop
framework proposal for a semi-autonomous car
architecture in a closed route environment. Intern. J.
on Interactive Design and Manufacturing (2019).

10. Dehnert, C. et al. A storm is coming: A modern
probabilistic model checker. In Intern. Conf. on
Computer Aided Verification. Springer (2017), 592-600.

11. Fan, C. Formal methods for safe autonomy: Data-
driven verification, synthesis, and applications. Ph.D.
Dissertation. University of Illinois at Urbana-
Champaign (2019).

12. Farrell, M. et al. Evolution of the IEEE P7009
standard: Towards fail-safe design of autonomous
systems. In Proceedings of the IEEE Intern. Symp. on
Software Reliability Engineering (2021).

13. Fisher, M. et al. Verifying autonomous systems.
Communications of the ACM (2013).

14. Fleming, C.H. et al. Cyberphysical security through
resiliency: A systems-centric approach. Computer
(2021).

ance,17 as others can specify what is
required for “normal behavior.”

Dynamic certification differs from
conventional certification not because
it proposes stages and feedback loops—
already present in static certification—
but based on the types of testing (ex-
ploratory, not just confirmatory) and
specification (partial, rather than com-
plete) in every stage. The more precise
data we can capture with models and
tools, the better-informed stakeholders
will be to ensure the operational needs
of the system. Toward this goal, research
must be conducted at the intersection
of robotics, control, learning, safety,
security, resilience, testing, and formal
methods. For example, roboticists must
include realistic dynamical models for
surrounding information that can be
given by learning;32 learning must be
interpretable based on test vectors;31
control must account for clashing safety
requirements based on dynamics;28 and
safety,25 security,37 and resilience8 must
be given formal interpretations based
on realism but allow partial modeling,
precisely to account for the uncertainty
arising from coupled learning systems.
Two recent improvements that will as-
sist with developing dynamic certifi-
cation are compositional verification,
which relates different model types,5
and more operational data—for exam-
ple, high-definition maps for streets in
major cities.1

Dynamic certification is an ap-
proach for autonomous systems that
attempts to provide a common lan-
guage between formal models, simu-
lations, real-world (testing) data, and
regulatory mechanisms. Dynamic cer-
tification requires advances in formal-
ism compatibility and co-design, the
development of high-fidelity simula-
tion tools that can input information
from formal models, expansive con-
text-aware testing vectors, and legal
codification of acceptable stages of
deployment. In light of these multi-
disciplinary aspects, it is unsurprising
that dynamic certification has been a
relatively under-explored approach.
However, dynamic certification prom-
ises better-designed, safer, and more
secure autonomous systems, providing
assurance of correct behavior and in-
creased deployment of those systems.
The effort to advance dynamic certifi-
cation can provide significant benefits.

