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ABSTRACT
We investigate the applicability of U-Net based models for seg-
menting Urinary Bladder (UB) in male pelvic view UltraSound (US)
images. The segmentation of UB in the US image aids radiologists
in diagnosing the UB. However, UB in US images has arbitrary
shapes, indistinct boundaries and considerably large inter- and
intra-subject variability, making segmentation a quite challenging
task. Our study of the state-of-the-art (SOTA) segmentation net-
work, U-Net, for the problem reveals that it often fails to capture
the salient characteristics of UB due to the varying shape and scales
of anatomy in the noisy US image. Also, U-net has an excessive
number of trainable parameters, reporting poor computational ef-
ficiency during training. We propose a Slim U-Net to address the
challenges of UB segmentation. Slim U-Net proposes to efficiently
preserve the salient features of UB by reshaping the structure of
U-Net using a less number of 2D convolution layers in the con-
tracting path, in order to preserve and impose them on expanding
path. To effectively distinguish the blurred boundaries, we propose
a novel annotation methodology, which includes the background
area of the image at the boundary of a marked region of interest
(RoI), thereby steering the model’s attention towards boundaries. In
addition, we suggested a combination of loss functions for network
training in the complex segmentation of UB. The experimental re-
sults demonstrate that Slim U-net is statistically superior to U-net
for UB segmentation. The Slim U-net further decreases the number
of trainable parameters and training time by 54% and 57.7%, re-
spectively, compared to the standard U-Net, without compromising
the segmentation accuracy. The project page with source code is
available at https://sites.google.com/view/slimunet.
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1 INTRODUCTION
Ultrasound (US) imaging is one of the most commonly used di-
agnostic modalities for a variety of clinical examinations, includ-
ing bedside and point-of-care diagnosis, pre- and post-operative
evaluation, and facilitating surgical interventions. Compared to
other imaging modalities, such as Computed Tomography (CT) and
Medical Resonance Imaging (MRI), the US is the least ionizing, in-
expensive, portable and provides real-time feedback. In all of these
examinations, accurate segmentation of anatomical structures is
desirable for appropriate diagnosis [26]. In particular, segmentation
of the Urinary Bladder (UB) in pelvic view US images is used for
discriminating the bladder shape, identifying diverticula, stones,
malignant tumours and free fluid (blood) during trauma. In gen-
eral, the segmentation is manually done by the sonographer while
manipulating the US probe over the patient body. However, the
increasing demand for these examinations places a significant bur-
den on the medical community [31], as the diagnosis by the US
requires a skilled sonographer to obtain the appropriate images. In
densely populated nations such as India or during pandemics such
as COVID-19, it is exceedingly challenging to meet the enormous
demand due to the shortage of experts [9]. Therefore, it is desirable
to automate the UB segmentation in US images.

There exist several challenges to automatic US image segmenta-
tion. Unlike MRI or CT, US images exhibit spurious effects due to
variations in anatomical structures, the existence of blurred image
boundaries, shadowing artifacts, and artifacts caused by patient
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Figure 1: Ultrasound images dataset ofmale pelvic view. The
urinary bladder in pelvic view shows large variability in
shape and size along with blurred boundaries, thereby mak-
ing the task of segmenting it quite challenging.

movement or handheld movement of the probe [25]. Some of these
effects can be seen in Fig. 1, where UB is appearing in varying
shapes and scales with indistinct boundaries, making the segmen-
tation problem quite complex. In addition, manual segmentation
by the sonographers causes inter- and intra-observer variability,
thus restricting the reliability of UB diagnostics.

Numerous published articles have attempted to address the issue
of US image segmentation for various procedures. In past, classi-
cal algorithms for ultrasound image segmentation methods have
been presented using the clustering method [5], watershed trans-
form methods [7, 15], Markov’s random field method [17], active
contours [21], and statistical model-based methods [33]. In recent
years, the huge success of Deep Convolutions Neural Networks
(D-CNN) for natural image segmentation [23] has led to state-of-the-
art results for medical image segmentation [19]. Zhang et. al. [36]
proposed a coarse-to-fine stacked fully convolution network (CFS-
FCN) to incrementally segment the lymph nodes from ultrasound
images. Their framework is comprised of two FCN-based modules,
with the first FCN generating an intermediate segmentation map
which is then utilized by the second FCN in conjunction with the
raw image to produce the final lymph node segmentation. Wu et al.
[35] introduced cascaded FCN (casFCN) for fetal ultrasound image
segmentation to overcome the issues of boundary deficiency in
images. In this work, the FCN model is integrated with the Auto-
context scheme to stack a series of models that utilizes both the
appearance features from images and the contextual features ex-
tracted by the preceding model. Mishra et al. [24] proposed a FCN
model with attention to boundaries, where coarse resolution layers
identify the object region from the background and fine resolution
layers define the object’s boundary. The framework is validated
for blood region and lesion segmentation. However, the pooling
operation of FCN, in general, has resulted in the loss of information
for a pixel location in US images, degrading boundary details, and
is therefore not conducive to medical image segmentation.

To overcome this issue, the encoder-decoder architecture has
been developed to restore the spatial dimension and pixel loca-
tion features by utilizing inverse operations, such as convolution-
deconvolution and pooling-unpooling. Cunningham et al. [6] used

a encoder-decoder architecture, DeconvNet [27] for ultrasound seg-
mentation of cervical muscle. Ronnerberger et al. [32] proposed a
U-Net model consisting of an encoder-decoder with skip connec-
tions to incrementally adopt the long-range feature relationships.
The encoder extracts high-level and low-level features, whereas
the decoder reconstructs the image using skip connections. U-net
performed exceptionally well on various biomedical image seg-
mentation (BIS) tasks and won the ISBI 2015 competition. U-Net
has numerous advantages, including (1) simultaneous use of global
appearance features (handled by expanding path) and contextual
features (handled by contracting path); (2) performs better for seg-
mentation tasks evenwith a small training dataset; and (3) processes
the entire image to create segmentation maps, which aids in pre-
serving the comprehensive context of the input image, a significant
advantage over patch-based segmentation methods [22, 32]. How-
ever, several limitations of the standard U-Net have been observed
in segmenting medical imaging data [11, 14]: (1) Difficulty in seg-
menting US images with anatomical structures of varying shapes
and scales; (2) Majority of the fine-grained details are lost; (3) Ex-
cessive number of trainable parameters that increases computation
time during training and real-time testing.

Several U-Net improvements were subsequently developed to
solve its limitations and improve segmentation performance across
various modalities. Lie et al. [16] modified the U-Net with deep con-
nections (Dense U-Net) to segment the levator hiatus in ultrasound
images of a female pelvic. The dense connections contributed to
increasing the number of trainable parameters and feature reuse.
Lin et al. [18] proposed a semantic embedding and shape-aware
U-Net model (SSU-Net) for eyeball segmentation, where they used
a Signed Distance Field (SDF) instead of a binary mask as the label
to learn the shape information and semantic embedding module to
combine semantic features at coarser levels. Byra et al. [3] modified
the U-Net utilizing selective kernels (SKU-Net) for breast mass seg-
mentation in US images by replacing each convolution layer with
an SK module with two branches, one of which generates feature
maps using dilated convolutions and the other without dilation.
The SKU-Net has proved to be effective at handling breast masses of
varying sizes. Punn et al. [28] substituted the standard convolution
layers with inception layers of Google-Net [34] (Inception U-Net) to
segment nuclei in microscopy cell images. Recently, they extended
their model for breast cancer segmentation in ultrasound images
using cross-spatial attention (CSA) block, which uses multi-scale
information by concatenating multi-level encoder feature maps
with corresponding decoder blocks to obtain better correlation
and develop spatial attention feature maps [29]. Dunnhofer et al.
[8] merged the U-net and Siamese framework (Siam-U-Net) for
real-time tracking of femoral condyle cartilage in knee ultrasound
images. Even though that numerous variations of U-Net have been
proposed by adding convolutional layers or recurrent layers in
skip connections, these modifications have either contributed more
trainable parameters to the network or resulted in subpar perfor-
mance for segmenting intricate anatomical features.

Key contributions: In order to address the complexity of UB for
segmentation in US images, we propose a reshaped version of U-
Net, termed Slim U-Net. The key contribution of this work can be
summarized as follows:
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(1) We proposed a segmentation framework by reshaping the
structure of standard U-Net [32] using lesser number of
2D convolution layers to preserve simple features extracted
in the initial 2D convolution at each stage and imposing
them on the expanding path. The reduction in convolution
operations will help in avoiding the speckle noise-induced
complexity of features, resulting in better segmentation.

(2) Considering the boundary of anatomical structure as an
important clue for the segmentation model, we propose a
new annotation methodology to consider the background
area at the bounds of RoI to steer the model’s attention
towards the boundaries of UB.

(3) We propose utilizing a combination of loss functions for
training the network in order to extract fine-grained features
of the bladder.

2 DATASET COLLECTION AND CURATION
Dataset Collection: The dataset consists of US images collected
during the feasibility study of our in-house developed Telerobotic
Ultrasound (TR-US) system [4, 30] with All India Institute of Med-
ical Sciences (AIIMs), New Delhi (a public hospital and medical
research university in India). The AIIMS Institute Ethics Committee
approved the study (Ref. No. IEC-855/04.09.2020,RP-16/2020). The
study was conducted from October 2021 to December 2021. Before
the scanning operation, informed written consent was obtained
from the volunteers, and their privacy was protected by anonymiz-
ing their identifiers in the image. The US dataset contains male
pelvic view images, which consist of the urinary bladder, prostate
and seminal vesicles. A sonographer records the images for each
participant using a Sonosite M-TURBO ultrasound equipment with
a C5-1 curved probe. The US machine’s collected images were in-
stantly transferred to the computer using Epiphan DVI2USB 3.0
(Epiphan Video, Ontario, Canada) and saved in a .PNG format.

Dataset Annotation: The deep-learning-based image segmen-
tation algorithms rely heavily on expert-annotated images with
marked regions of interest (RoI) using contours for optimal perfor-
mance. There exist several annotation methods to effectively draw
the contours in the images [1]. However, the manual annotation of
US images is a time-consuming, labour-intensive, and expensive
procedure. In our dataset, the boundary of the urinary bladder is
required to be annotated in pelvic view US images. After careful
evaluation of our US image dataset, it has been observed that the
boundaries of the urinary bladder consist of a wide zone of pixels
with gradually shifting grey levels (i.e dispersed) and open contours
(i.e discontinued). Depending on the intricacy of the UB in US im-
ages, annotating a single image could take anywhere from minutes
to hours. This would still be susceptible to annotation noise, which
would affect the performance of the segmentation model. [13]. To
overcome these concerns, a novel method for annotating the UB
boundary is provided. We have included the background area at
the margins of marked RoI to steer the model’s attention towards
urinary bladder boundaries. The proposed annotation methodology
is demonstrated in Fig. 2. Our proposed annotation methodology
will have the following advantages: (1) accurately captures the
dispersed and discontinued boundaries definitions and makes the

Proposed

Standard

Figure 2: Visual comparison of annotation methodologies.
Standard annotation methodology is represented by a red
line, while the proposed annotation is represented by a
green color line

model robust to discriminating the UB from the background; (2)
minimizes the labour, time and concentration required for annotat-
ing the images as the radiologist is only required to roughly mark
the UB boundary.

A radiologist with more than 15 years of experience in abdomen
radiology did the annotation of US dataset using SuperAnnotate
(see https://superannotate.com/). A single polygon with multiple
points is drawn in every image, spanning the irregular shape of
UB using the proposed annotation technique. The polygons repre-
senting the ROI were then exported to a JSON file for all images in
the dataset. Later, a python script has been used to generate corre-
sponding ground truth masks with pixels labelled as 1 representing
the ROI and as 0, representing the background.

Dataset Augmentation There exist several traditional and ad-
vanced methods for data augmentation to generate a diversity of
images for the small dataset [10]. The most common traditional
methods used for images are scaling, cropping, flipping, rotation,
adding noise and translation. These methods help to enhance the
performance of CNNs and also addresses the issue of data scarcity,
especially in medical imaging dataset. However, for medical images,
it isn’t necessary that the accuracy of CNNs will increase due to
these data augmentation techniques [10]. Especially for ultrasound
images, it is recommended not to use rotation, scaling, cropping,
adding noise and translation, as they will alter the characteriza-
tion/physics of US images. The local features around the anatomical
structures in ultrasound images appear according to the probe’s
standard field of view, position and orientation during scanning. As
such, vertical flipping can not be applied due to the conical field of
view of the US probe. However, horizontal flipping can be applied
to mirror the anatomical structures, as they can appear on both
sides of the cone during scanning. The horizontal flipping resulted
in approximately doubling the dataset images.

Dataset Statistics After data collection, sorting and augmenta-
tion, we have 124 images having a resolution of 504 × 378 pixels.
All the ground truth masks were stored with the same file name of
the corresponding raw image. Each image had three channels (Red,
Green, and Blue), but we transformed them all to grayscale mode
with a single channel. These images and ground truth masks were
resized to 128 × 128 before training the model.

https://superannotate.com/
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Figure 3: Architecture of Slim U-Net for urinary bladder (UB) segmentation in pelvic view US images. The left side represents
the reshaped contracting path (encoder). At the bottom of each block is written𝑊 × 𝐻 × 𝑁 , where 𝐻 is the height,𝑊 is the
width, and 𝑁 is the number of channels.

Dataset Splits Each dataset was split into training data and val-
idation data with a 9 : 1 ratio. Further, each model is validated
using 10−fold cross-validation metrics across the full dataset to
assert how effectively the model generalises to new data. The cross-
validation splits also ensured that the images from different subjects
were present either in the training or test set.

3 ULTRASOUND IMAGE SEGMENTATION
METHODOLOGY

The basic architecture of the proposed US image segmentation
model is inspired by U-net, which is a state-of-the-art segmentation
network for BIS. We propose using a smaller number of 2D con-
volution layers in the standard U-Net’s contracting path (encoder)
and naming it as Slim U-Net. Our hypothesis is to preserve simple
features extracted in the initial 2D convolution in each stage and
immediately impose them on the expanding path. In the case of
Standard U-Net, two convolution layers prior to every max pooling
extract more complex features that are not required for segmenting
bladder in ultrasound images. Our proposed architecture performs
better because a single layer before every max pooling layer ex-
tracts simple features to avoid the complexity imposed by speckle
noise. Further, in pursuit of extracting more complexity may lead to
learning the speckle noise in raw images. Thus, reducing the redun-
dant convolutional layers and fine-tuning the model is a preferable
option. As such, the Slim U-net would be able to handle the variabil-
ity in the appearance of UB. Further, the reduction in the number
of trainable parameters will decrease the computation time of the
model without compromising the performance of the segmentation
efficacy. Since the UB shape is quite complicated to segment, we
have used multiple loss functions to train the network, so that the
model would be able to capture fine-grained and coarse-grained
characteristics of the dataset images. Note that the choice of a loss
function is modality dependent and any combination of loss func-
tions may not improve the network performance. The model will
finally output the predicted mask of the given input US image.

3.1 Model Architecture
The proposed model architecture, Slim U-Net, is shown in Fig.
3. The network consists of one 2D convolution layer (Conv2D),
followed by a Batch Normalization layer, Rectified Linear Unit
(ReLU) as activation function, dropout as regularization layer, a
max pooling layer (i.e down sampling) of 2 × 2 in the contracting
path. Similarly for the expansive path, an Up-sampling layer of
2 × 2 was added after each Conv2D layer. Each Conv2D layer is
padded convolution with kernel size as 3×3. Along the contracting
path, the number of filters was doubled subsequently with each
convolutional layer. The vice versa of this pattern was replicated
in the expanding path, ending up with the same number of filters
in the last 3 × 3 convolutional layer of expanding path. Another
noteworthy feature in Slim U-net is a dropout layer after max
pooling in the contracting path and after the concatenation layer
in the expanding path. Dropout is an important hyper-parameter
of neural networks and helps in preventing over-fitting on a small
dataset. Our hyper-parameter selection experiments revealed that
segmentation efficiency declines if the dropout rate is increased to
0.25 or above using an Adam optimizer’s default learning rate of
0.001.

3.2 Loss function
A loss function is an essential component of a medical image seg-
mentation model and is used for penalizing the network during
training if there is a divergence between the predicted pixel label
and the ground truth label for each pixel. In the literature [20],
loss functions are classified into four categories as Region-based
Loss, Boundary-based loss, Compound Loss and Distribution-based
loss. Each loss function has its benefits and drawbacks, and its use
is specific to segmentation tasks in image datasets. However, the
commonly used segmentation losses for medical imaging are the
cross-entropy and the soft dice score. Cross-entropy measures log-
arithm values of predicted probabilities and corrected probabilities
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of each pixel in the image. For the problems based on binary im-
age segmentation, binary cross-entropy works well on pixel-level
classification [12]. The Binary Cross-Entropy (BCE) loss function
is mathematically expressed as follows:

𝑳𝐵𝐶𝐸 = −𝒚𝑡 𝑙𝑜𝑔(𝒚𝑝 ) − (1 −𝒚𝑡 )𝑙𝑜𝑔(1 −𝒚𝑝 ) (1)
where 𝒚𝑡 and 𝒚𝑝 represents ground truth mask and predicted mask
of the given US image, respectively. Another widely used loss func-
tion in medical image segmentation is the Dice coefficient (DC),
which measures the overlap between the predicted image and the
ground truth image. Consequently, DC consider the information
both locally and globally, which is quite useful for achieving higher
accuracy. Originally, the DC was developed for binary data and can
be expressed as follows:

𝐷𝐶 =
2 |𝑨⋂

𝑩 |
|𝑨| + |𝑩 | (2)

where |𝑨⋂
𝑩 | represents the common elements between sets 𝑨

and 𝑩, and |𝑨| represents the number of elements in set 𝑨 (and
likewise for set 𝑩). The loss function from DC is formulated for
image segmentation tasks as follows:

𝑳𝐷𝐶 = 1 −
(
2𝒚𝑡𝒚𝑝 + 𝒔

𝒚𝑡 +𝒚𝑝 + 𝒔

)
(3)

where 𝒔 is smoothing constant, whichwill speed up the optimization
[2] and prevent the division by zero in fraction.

There is another metric similar to the Dice coefficient i.e. Jaccard
Index (JI), widely known as Intersection over Union (IoU). Jaccard
index gives the ratio of intersection between the predicted mask
and ground truth mask over the union of these two. This form of
the Jaccard index is not differentiable. To address this issue, an
approximation of the Jaccard index is used as a loss function, as
follows:

𝑳 𝐽 𝐼 = 1 −
𝒚𝑡𝒚𝑝 + 𝒔

𝒚𝑡 +𝒚𝑝 −𝒚𝑡𝒚𝑝 + 𝒔
(4)

For segmentation of the urinary bladder in our dataset, we have
compared three combinations of the above three loss functions,
defined as 𝑳𝐷 , 𝑳𝐷𝐽 and 𝑳𝐷𝐽 𝐵 .

𝑳𝐷 = 𝑳𝐷𝐶 (5)
𝑳𝐷𝐽 = 𝑳𝐷𝐶 + 𝑳 𝐽 𝐼 (6)

𝑳𝐷𝐽 𝐵 = 𝑳𝐷𝐶 + 𝑳 𝐽 𝐼 + 𝑳𝐵𝐶𝐸 (7)
Our exhaustive study on the loss functions revealed that using 𝑳𝐷𝐽 𝐵

i.e. a combination of BCE, DC and JI loss gives the best accuracy
in comparison to the other two loss functions, denoted by 𝑳𝐷 and
𝑳𝐷𝐽 .

4 RESULTS AND DISCUSSIONS
4.1 Implementation Details
The model has been implemented using Python 3.8 and Keras 2.7.0.
The training and testing of the model have been done on a Dell
workstation with NVIDIA Quadro RTX 5000 with 16GB memory.
All the images in the dataset and their corresponding masks were
resized to 128 × 128 each. The input image is also converted to
grey-scale mode. The optimizer used is Adamwith a learning rate of
0.001. The batch size used for training is 4. The dropout rate was set

to 0.125 for all layers in the model. The model was trained with 50
epochs with three types of callbacks, including Model checkpoint,
Early stopping and Reduce learning rate on plateau. After analyzing
learning curves, we realized that 50 epochs are enough to compare
two architectures as the best fit condition never went beyond 45
epochs. Early stopping criteria have the patience of 10 epochs. The
Reduce learning rate on plateau callback was used to reduce the
learning rate by a multiplication factor of 0.1 with the patience of
5 epochs if there is stagnation in validation loss. The lower bound
for reducing the learning rate was set to 0.00001. To avoid over-
fitting on a limited US dataset, we used horizontal flips to augment
the images in our dataset, as explained in Section 2. In the model
network, the first 3 × 3 convolutional layer in the contracting
path has 32 number of filters. For other layers, the number of
filters was picked as mentioned in the model architecture in section
3.1. To normalize the output of each convolutional layer, batch
normalization was performed before the ReLU activation layer.
Finally, the sigmoid activation function was calculated over the last
layer for pixel-level labelling to generate the output segmentation
mask.

4.2 Evaluation Metrics
In order to evaluate the performance of the proposed model for
urinary bladder segmentation in pelvic view US images, we em-
ployed five metrics, namely, Precision (P), Recall (R), F1 Score (F1),
Dice Coefficient (DC) and Intersection over Union (IoU). F1 score
is a commonly used metric for image segmentation and is given
by the harmonic mean of pixel precision and pixel recall. If the
value of these metrics is close to 100 (i.e. 100%), it implies that
the output mask accurately overlaps with the ground truth mask.
We also noted the training time per epoch to validate the model’s
computational efficiency. To assert the generalizability of the model
on the dataset, we reported our results on 10-fold cross-validation
test (Mean±Standard deviation) and the fold with best performance,
termed as best fold in this paper.

4.3 Segmentation results for our dataset
Qualitative evaluation:We illustrate the urinary bladder segmen-
tation results by comparing the results of Slim U-net with proposed
annotation to those of standard U-Net with standard annotation,
as shown in Fig. 4. The proposed method successfully captures the
discontinuous and deficient UB boundaries in the noisy regions
of the image. The substantial variation in urinary bladder shape
and scale is also inferred successfully. Hence, the proposed Slim
U-net guided by our novel annotation methodology along with the
multi-loss function is an effective method for ultrasound image
segmentation.

Quantitative evaluation: We evaluate the proposed model using
the evaluation criteria outlined in Section 4.2. The values of these
evaluation metrics for the 10-fold cross-validation and the best fold
are reported in Table 2. The best validation set scores on pelvic view
US image dataset are: 98.9% Precision, 98.75% Recall, 98.82% F1,
98.69% DC and 97.42% IoU. In 10-fold cross-validation, the scores
are: 98.60 ± 0.36 Precision, 97.98 ± 0.74 Recall, 98.29 ± 0.34 F1,
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Pelvic View U-Net

IoU=0.9687 IoU=0.9894

IoU=0.8853 IoU=0.9669

IoU=0.9483 IoU=0.9732

IoU=0.8853 IoU=0.9669

IoU=0.9687 IoU=0.9894

Slim U-Net

(a)

(b)

(c)
Standard annotation Proposed annotation

Figure 4: The urinary bladder appears (a) at a smaller scale
than regular anatomy, (b) with blurred boundaries, and (c)
with regular anatomy but surrounded by prostate. Slim U-
Net aids in finding salient regions by preserving global fea-
tures and paying close attention to UB borders, an essential
segmentation characteristic, and reports a higher IoU.

98.10 ± 0.37 DC and 97.29 ± 0.71 IoU, which shows the generaliz-
ability of the proposed Slim U-Net across the dataset.

4.4 Ablation study
We performed multiple ablation studies of the proposed Slim U-net
to get better insight into the modifications proposed in the annota-
tion methodology, network structure and loss function.

Choice of Annotation: To validate the choice of proposed an-
notation, we compared the results of Slim U-net with the proposed
annotation (Slim U-Net+PA) and with the standard annotation
methodology (Slim U-Net+SA). In the case of standard annotation,
the RoI boundary is marked to enclose the UB while excluding the
background region as shown in Fig. 2. The results of the ablation
study are demonstrated in Table 1 and Fig. 5.

Table 1: Comparison of segmentation performance of the
proposed Slim U-net on standard and proposed annotation.

Annotation Best Fold Cross Validation

P R F1 DC IoU P R F1 DC IoU

Standard 98.42 98.83 98.63 98.50 97.04 98.79 97.17 97.96 97.80 95.72
±0.33 ±1.89 ±0.90 ±0.92 ±1.73

Proposed 98.90 98.75 98.82 98.69 97.42 98.60 97.98 98.29 98.10 97.29
±0.36 ±0.74 ±0.34 ±0.37 ±0.71

For the first US image (top row) in Fig. 5, the model trained using
standard annotation (SA) masks has segmented the prostate as UB.

For the image in the second row, it predicts the UB pixels on the
basis of low-level features. And the image in the third row fails to
capture the clear boundaries of UB. However, the model trained
using our proposed annotation masks shows promising results in
all three samples. Thus, it is validated that the features learned on
dispersed edges of the anatomical structures increase the segmen-
tation accuracy in US images.

Slim U-Net + PASlim U-Net + SAUS Image with SA US Image with PA

Figure 5: Qualitative evaluation of the ablated version of
SlimU-net with Standard Annotation (SA) and Proposed An-
notation (PA). Themodel with SA get influenced by the pres-
ence of prostate and noise in the image, whilemodelwith PA
pinpoints the discriminating boundaries and correctly pre-
dicts the mask.

Choice of model architecture: The proposed Slim U-net is com-
pared with the standard U-Net to demonstrate the effectiveness
of the proposed modification in network structure. The results
are summarized in Table 2 and illustrated using the US images in
Fig 6. Standard U-Net is the architecture proposed in [32], which
performs a block of two 3 × 3 convolutional layers before each
down-sampling and up-sampling layer through contracting and
expanding path. And the output of the convolutional block is also
used in skip connections at different stages of the path. However, to
standardize the ablation study, parameters such as input image size
(i.e. 128× 128), number of filters and batch size are kept similar for
both the architectures. Note that we have also used the proposed
annotation methodology in both standard (Std.) and proposed U-
Net. From Table 2, it can be noted that Slim U-Net outperforms Std.
U-Net on P, R, F1, DC and IoU by 0.14%, 0.19%, 0.16%, 0.15% and
0.30%, respectively. Similar improvements have also been noticed
for other loss functions and 10-cross validation tests. Also learning
curves depicted that learning with Std. U-Net was overfitting for
other loss functions. Thus, it is evident that our proposed model
preserves the anatomical appearance features of UB with less num-
ber of contractions, reporting the highest IoU for segmenting it
from male pelvic view US images.
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Table 2: Statistical analysis of ablated versions of the proposed Slim U-net for different model architecture and loss functions
using the proposed annotation. The proposedmodel, SlimU-Net with 𝑳𝐷𝐽 𝐵 loss function significantly outperforms it’s ablated
versions on the test set and 10-fold cross validation test.

Model Loss Best Fold Cross Validation

P R F1 DC IoU P R F1 DC IoU
Std. U-Net

𝑳𝐷
96.09 98.13 97.09 97.1 94.37 42.35 ± 45.5 66.84 ± 46.56 45.08 ± 42.82 45.14 ± 42.7 39.56 ± 41.88

Slim U-Net 98.51 97.83 98.16 98.04 96.17 98.51 ± 0.45 97.83 ± 0.86 98.16 ± 0.43 98.04 ± 0.54 96.17 ± 1.0

Std. U-Net
𝑳𝐷𝐽

95.45 96.78 96.11 96.11 92.53 10.94 ± 30.02 17.71 ± 37.53 12.0 ± 30.49 12.27 ± 37.37 10.88 ± 28.99
Slim U-Net 98.57 97.74 98.15 98.04 96.17 98.57 ± 0.43 97.74 ± 0.91 98.15 ± 0.44 98.04 ± 0.56 96.17 ± 1.07

Std U-Net
𝑳𝐷𝐽 𝐵

98.76 98.56 98.66 98.54 97.13 98.04 ± 0.66 97.83 ± 0.74 97.93 ± 0.41 97.7 ± 0.44 95.52 ± 0.84
Slim U-Net 98.90 98.75 98.82 98.69 97.42 98.60 ± 0.36 97.98 ± 0.74 98.29 ± 0.34 98.10 ± 0.37 97.29 ± 0.71

IoU: 97.34IoU: 85.69 

US Image Ground truth Std. U-Net Slim U-Net

IoU: 96.07IoU: 95.88

IoU: 99.41IoU: 85.80

Figure 6: Comparison of predictedmask and IoU for ablated
version of Slim U-net for different model architecture with
best selected loss function (𝑳𝐷𝐽 𝐵). Note that the Slim U-net
outperforms the Standard (Std.) U-Net on IoU by 2−15% for
these three samples.

Choice of loss function: The proposed loss function is validated
by comparing the performance of Slim U-Net by training it with
various loss functions described in Section 3.2. The results are sum-
marized in Table 2 and illustrated using the US images in Fig 7.
As reported in Table 2, the Slim U-net with proposed loss func-
tion, 𝑳𝐷𝐽 𝐵 , reported the highest values for evaluation metrics and
outperforms its ablated version with 𝑳𝑫 on P, R, F1, DC and IoU
by 0.39%, 0.93%, 0.67%, 0.66% and 1.28%, respectively. Similar
improvements have also been noticed over Slim U-net with 𝑳𝐷𝐽 .
The results in Fig. 7 shows that the Slim U-net with 𝑳𝐷𝐽 𝐵 achieves
highest IoU of 97.31, while its ablated version with loss function,
𝑳𝐷𝐽 and 𝑳𝐷 , achieves 90.10 and 93.05, respectively. We also no-
ticed the improvement in the performance of standard U-net with
the proposed loss function, which further validates our choice of
loss function for the segmentation of urinary bladder in male pelvic
view US images.

IoU = 97.31IoU = 93.05 IoU = 90.10

US Image Ground Truth Slim U-Net + LD Slim U-Net + LDJ Slim U-Net + LDJB

Figure 7: Comparison of predictedmask and IoU for ablated
version of Slim U-net using different combination of loss
function.

4.5 Comparison of Computational efficiency
We demonstrated the computational efficiency of the proposed Slim
U-net by comparing the training time per epoch with the standard
U-Net. The results are given in Table 3. The number of trainable
parameters in the standard U-net is 45.51% more than the pro-
posed Slim U-net. Due to the increase in the number of trainable
parameters, standard U-Net reports low computational efficiency
and takes 42.30% more training time per epoch than the proposed
Slim U-Net. However, both architectures have approximately simi-
lar testing times. Thus, the proposed Slim U-net is computationally
efficient without compromising the segmentation accuracy on a
highly variable dataset of pelvic US images.

Table 3: Comparison of trainable parameters, training time
per epoch (in sec) and testing time per image (in sec)

Model Standard U-Net Slim U-Net

Trainable parameters 8, 635, 809 4, 705, 377
Training time per epoch 9.55 5.51

Testing time 1.015 1.015

5 CONCLUSION
We addressed the challenge of urinary bladder segmentation in
male pelvic view ultrasound images. We presented a form of U-Net,
Slim U-Net, with fewer 2D convolutions in the contracting path,
which enables the network to retain the simple anatomical appear-
ance features learnt in the contracting path and impose them on the
expanding path, in order to deal with the enormous variety of UB in
US images. We offer a unique annotation strategy and multiple loss
functions to make our network resilient to indistinct UB boundaries
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and noise in the US image. The extensive experiments show that
the Slim U-Net combined with proposed annotation and multiple
loss functions improves the performance in comparison to standard
U-Net. Moreover, the ablation analysis of the proposed framework
validated the effect of model components on segmentation perfor-
mance. Our future work will aim to study the effectiveness of the
proposed algorithm for assisting the manual scanning by a sono-
grapher as well as automatic scanning using robotic ultrasound
proposed in [30]. We will also validate the generalizability of the
model by applying Slim U-net for segmentation of other organs
like kidney, gall bladder, liver, and prostate which pose challenges
similar to UB in US images.
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