
Open challenges for Machine Learning based

Early Decision-Making research

Alexis Bondu, Youssef Achenchabe, Albert Bifet, Fabrice Clérot,
Antoine Cornuéjols, Joao Gama, Georges Hébrail,

Vincent Lemaire, Pierre-François Marteau

May 23, 2022

Abstract

More and more applications require early decisions, i.e. taken as soon
as possible from partially observed data. However, the later a decision is
made, the more its accuracy tends to improve, since the description of the
problem to hand is enriched over time. Such a compromise between the
earliness and the accuracy of decisions has been particularly studied in
the field of Early Time Series Classification. This paper introduces a more
general problem, called Machine Learning based Early Decision Making
(ML-EDM), which consists in optimizing the decision times of models in
a wide range of settings where data is collected over time. After defining
the ML-EDM problem, ten challenges are identified and proposed to the
scientific community to further research in this area. These challenges
open important application perspectives, discussed in this paper.

1 Introduction

In numerous real situations, we have to make early decisions in the absence
of complete knowledge of the problem at hand. For example, such decisions
are necessary in medicine [1] when a physician must make a diagnosis, possibly
leading to an urgent surgical operation, before having the results of all medical
tests. In such situations, the issue facing the decision makers is that, most of
the time, the longer the decision is delayed, the clearer is the likely outcome
(e.g. the critical or not critical state of the patient) but, also, the higher the
cost that will be incurred if only because decisions taken earlier allow one to be
better prepared. We thus seek to make decisions at times that seem to be the
best compromises between the earliness and the accuracy of our decisions.

Similarly in Machine Learning, when the input data is acquired over time,
there can be situations with a trade-off between the earliness and accuracy
of decisions. For instance, this is the case for anomaly detection, predictive
maintenance, patient health monitoring, self-driving vehicles (see Section 10).
In each case, the decisions are time-sensitive (e.g. in an autonomous car, it is

1

ar
X

iv
:2

20
4.

13
11

1v
2

 [
cs

.L
G

]
 2

0
M

ay
 2

02
2

critical to detect obstacles on the road as early as possible and at the same time
as reliably as possible, in order to plan safe avoidance trajectories if needed).
In general, it is assumed that there is a gain of information over time, i.e.
delaying decisions tends to make them more reliable (e.g. the certainty about
the existence or absence of an obstacle on the road becomes more and more
accurate as the car gets closer).

This earliness vs. accuracy dilemma is part of many decision making scenar-
ios, and is particularly involved in the problem of Early Classification of Time
Series (ECTS). But, as we will see, it takes place in a larger perspective.

Early Classification of Time Series: a particular case

The ECTS problem consists in finding the optimal time to trigger the class pre-
diction of an input time series observed over time. As successive measurements
provide more and more information about the incoming time series, ECTS al-
gorithms aim to optimize online the trade-off between the earliness and the
accuracy of their decisions.

More formally, the individuals1 considered are time series of finite length
T . At testing time, the measurements of the incoming time series are received
over time, and the history of measurements available at time t is denoted by
xt = 〈x1, . . . , xt〉. It is assumed that each time series can be ascribed to
some class y ∈ Y, and the task is to make a prediction about the class of each
incoming time series as early as possible, because a time increasing cost must
be paid when the decision is triggered. In the ECTS problem, a single decision
is triggered for each incoming time series, which is irrevocable and final. An
ECTS approach is generally made of two main components: (i) an hypothesis2

h ∈ H capable of predicting the class y ∈ Y of the incoming series at any time,
such that h(xt) = ŷ with t ∈ [1, T] ; (ii) a triggering strategy capable of making
decisions at the right moments, denoted by Trigger. Both the hypothesis and
the triggering strategy are learned in batch mode (i.e. offline), by using a
training set made of complete time series with their associated labels.

A short state of the art on Early Classification of Time Series

This paragraph provides an overview of the ECTS approaches. For a recent and
more complete survey, the reader can refer to [2, 3]. The pioneering approaches
were based on some form of confidence criterion and waited until a predefined
threshold is reached before triggering their decisions. For instance, in [4, 5, 6],
a classifier is learned for each time step and various stopping rules are used
(e.g. threshold on confidence level). In [7], such a threshold is indirectly set
since the best time step to trigger the decision is estimated by determining the
earliest time step for which the predicted label does not change, based on a
1NN classifier. Similarly, [8] proposes a method where the accuracy of a set of

1The term individual refers to any type of statistical unit studied.
2An hypothesis is a candidate predictor which approximates the concept P (y|xt).

2

probabilistic classifiers is monitored over time, which allows the identification
of time steps from whence it seems safe to make predictions.

Then, more informed approaches appeared which explicitly take into account
the cost of delaying the decisions. A notable example is [9] where the conflict
between earliness and accuracy is explicitly addressed. Moreover, instead of
setting the trade-off in a single objective optimization criterion as in [10], the
authors keep it as a multi-objective criterion and to explore the Pareto front of
the multiple dominating trade-offs.

The Economy approach [3, 11] goes one step further by casting the ECTS
problem as searching to optimize a loss function which combines the expected
cost of misclassification at the time of decision, plus the cost of having delayed
the decision thus far. This well-founded approach is non-myopic, as it is able to
anticipate measurements which are not yet visible at decision time by estimat-
ing the expected costs for future time steps. This approach leads to the best
performances observed to date, and [3] shows that the non-myopic feature of
this approach explains its strong performances through an ablation study.

Limitations of the ECTS problem

While ECTS covers a wide range of applications, it does not exhaust all cases
where a Machine Learning model can be applied on data acquired over time,
and where the trade-off between the earliness and the accuracy of decisions
must be optimized. Indeed, ECTS, as defined above, is limited to:

• a classification problem ;

• an available training set which contains completely and properly labeled
time series ;

• a decision deadline T that is finite, fixed and known ;

• unique decisions for each incoming time series ;

• decisions that once made can never be reconsidered ;

• fixed decision costs which do not depend on the triggering time and the
decisions made.

All of these assumptions might be questioned and point to research issues. The
purpose of this paper is to propose research directions for extending ECTS
toward a more generic problem, that we call Machine Learning based Early
Decision-Making (ML-EDM).

This position paper is organised as follows. Section 2 first defines the ML-
EDM problem, shows how a triggering strategy can be learned, and positions
ML-EDM with respect to Reinforcement Learning. A series of ten challenges
is then proposed in order to develop ML-EDM approaches for a wide range of

3

problems. Section 3 specifies the decision costs involved in ML-EDM problems,
and explains the origin of these costs. Section 4 considers a variety of learning
tasks, and Section 5, a variety of data types. Section 6 gives some leads to ad-
dress the problem of online ML-EDM. Section 7 extends ML-EDM to revocable
decisions. Section 9 gives an overview on the proposed challenges, and makes
a synthesis of long and short term application perspectives. Then, Section 10
provides some examples of applications of the ML-EDM techniques. At last,
Section 11 concludes with perspectives for the development of the ML-EDM
field in the coming years.

2 Definition of ML-EDM

This section defines what ML-EDM is by answering the following questions:
A- What is an early decision? B- How to learn a triggering strategy from train-
ing data? C- Can a triggering strategy be learned by Reinforcement Learning?

Question A - What is an early decision?

Basically, Early Decision Making consists in: (i) observing pieces of information
over time ; (ii) deciding when to make a decision ; and (iii) making the deci-
sion itself. In the following, increasingly complex decision-making problems are
considered in order to progressively lead to a general definition of ML-EDM.

Two types of problems can be distinguished [12]. Decision-making under
ignorance refers to a category of problems where the set of possible outcomes is
known, but no information about their probabilities is available. By contrast,
decision-making under uncertainty deals with problems where the probabilities
of the possible outcomes are known, or partially known.

Optimal Stopping Problem [13] is a canonical case of interest, where the
decision to make is simply to stop receiving new pieces of information. More
formally, {Xi} is a sequence of random variables observed successively, whose
joint distribution is known. Let {ri} be a sequence of reward functions, such that
ri is a function of the observed values x1, . . . , xi. The objective is to maximize
the reward, deciding after observing the value of the random variable Xi, either
to stop and accept the reward ri, or to observe the value of the next random
variable Xi+1. A number of optimal stopping problems have been extensively
studied in the literature, such as:

• The Shepp’s urn [13] which is filled with a known number of $1 bills, and
a known number of anti-bills of -$1. Here, the reward is the sum of the
bills gathered until the end of the game. The objective is to maximize our
payoff by stopping to draw objects in this urn at the best time.

• The secretary problem [14] consists in selecting the largest possible value
(which is unknown), among a sequence of values of known size observed
in a uniform random order. At each step the choice is, either to stop and
keep the last observed value, or to continue.

4

These two problems involve decision making under uncertainty, since the
system under study is perfectly known and the probability of the possible out-
comes can be estimated. For instance, in the Shepp’s urn the probability of
getting a bill or an anti-bill in the next draw is available, since the content of
the urn is known at any time. In the secretary problem, the rank of the last
value among the previously observed values approximates the rank in the entire
set of values, since the observed values constitute a uniform sample of all values.

As in Early Decision Making problem, Shepp’s urn and the secretary problem
imply a trade-off between early and accurate decisions.

On the one hand, there is a time pressure which pushes to trigger early
decisions. In a Shepp’s urn, the number of objects is finite and if all of them are
drawn, our payoff is bad, i.e. equal to the number of bills minus the number of
anti-bills. In the secretary problem, the number of values is known. The more
values are observed, the less future opportunity remains to select a high value.

On the other hand, there is a gain of information (about what’s left in the
urn) over time which tends to delay the decisions. In the Shepp’s urn problem,
the sample of already drawn objects grows over time, which provides useful
information to be compared to the known quantities of bills and anti-bills. For
the secretary’s problem, the sample of already drawn values grows over time,
and the last observed value can be compared to this sample.

From here on, the decision-making problems presented in the following are
part of supervised learning. A set of labeled examples, which takes different
forms depending on the problem, is assumed to be available.

The ECTS problem can be considered as a particular instance of optimal
stopping, where the decision to be made consists in: (i) stopping receiving new
measurements ; and (ii) predicting the class of the incoming time series. The
hypothesis h ∈ H is assumed to be available, allowing to predict the class y ∈ Y
of the incoming series at any time, such that h(xt) = ŷ. In this case, the reward
function r(xt, t, ŷ, y) depends on the observed measurements xt = 〈x1, . . . , xt〉
; the decision time t ; the predicted class ŷ ; and the true class y. The following
loss function can be defined:

L(h(xt), t, y) = Lprediction (h(xt), y) + Ldelay(t) (1)

where Lprediction(.) is the cost of making a potentially bad prediction which
can be expressed as a cost matrix, and Ldelay(t) is a monotonically increasing
function of t representing the cost of delaying the decision until t3. The best
decision time t∗ is given by the optimal triggering strategy Trigger∗ defined as:

3Note that the delay cost Ldelay(t) could depend on the class y of the time series (see
Section 3). For instance, in the emergency department in a hospital, the cost of delaying a
decision when there is internal bleeding is not the same as the one in case of gastroenteritis,
where the early symptoms could look the same. Here, for reasons of readability, we make
Ldelay depend only on t.

5

Trigger∗ (h(xt)) =
{

1 if t = t∗ = arg mint∈[1,T] L(h(xt), t, y) or t = T

0 otherwise

(2)

where the decision is forced at t = T if it was not taken before.

Here, the trade-off between early and accurate decisions takes the following
form. On the one hand, the delay cost Ldelay(t) incurred in making a decision
urges to make an early decision. On the other hand, the cost of making a bad
prediction Lprediction is assumed to decrease over time, as the description of the
incoming time series becomes richer. This decision making problem is under
uncertainty, since the hypothesis h is capable of estimating the distribution of
the possible outcomes P (y|xt), at any time.

In practice, ECTS approaches trigger decisions at t̂, hopefully the closest
as possible to the optimal time t∗, at least in terms of cost: L(h(xt̂), t̂, y) −
L(h(xt?), t?, y) must be small. Triggering such a decision is an online optimiza-
tion problem, since t̂ must be chosen based on a partial description xt of the
incoming time series xT (with t ≤ T), and the reward function can be defined
as:

r(xt, t, h(xt), y) =

{
−L(h(xt), t, y) if t = t̂ or t = T
0 otherwise

(3)

where the risk equals to 0 when no decision is made, given that the decision is
forced at t = T resulting in an important risk due to the delay cost.

In the rest of this section, and for readability reasons, the deadline T is
still considered as finite and known, as in the ECTS problem. In Section 7,
another setting is studied where T is indeterminate, i.e. where the successive
measurements are observed as a data stream.

Early decisions to be located in time constitute a more challenging prob-
lem, which consists of both making a decision for each incoming time series,
but also predicting a time period associated with the decision. For example,
maintenance operations on hydroelectric dam turbines can only be performed
when the electricity demand is at a low enough level. There are therefore peri-
ods where maintenance is possible and periods where this is not desirable. The
objective here is to determine as early as possible whether and during which
period it will be possible to shut down the turbines, within the day (if [1, T]
corresponds to one day). In this case, the ground truth (y, (s, e)) consists of
a class y ∈ Y, associated with a certain time period [s, e], defined by a start
timestamp s ∈ [1, T] and a end timestamp e ∈ [s, T].

At testing time, the objective is twofold: triggering the decision as early as
possible, while also predicting the associated time period [s, e]. Let us consider
a decision denoted by (h(xt̂), (ŝ, ê)), where h(xt̂) is the class predicted at t̂ (the

6

triggering time), and [ŝ, ê] is the associated predicted time period. The loss
function L has to be redefined as a function of the following parameters:

L

(h(xt̂), (ŝ, ê))︸ ︷︷ ︸

predictions

, t̂︸︷︷︸
triggering time

, (y, (s, e))︸ ︷︷ ︸
ground truth

 (4)

The loss function L needs to be specified further, depending on the consid-
ered application. In general, this loss function should account for two aspects:
(i) the quality of the predictions ; (ii) the time overlap between the decisions
made and the true decisions. For example, Figure 1 shows a situation where the
decision made is correct, since the predicted class (see the second line) matches
the ground truth (see the first line). But these two decisions do not coincide
exactly in time, as the predicted time period is earlier than the ground truth.

Figure 1: Example of a time-lagged decision.

By extension, ML-EDM considers multiple early decisions to be located in
time (i.e. in the time period [1, T]). , which is necessary in numerous applica-
tions. For example, consider a set of servers used to trade on a stock exchange
platform (where [1, T] corresponds to the platform’s hours of operation during
the day). For each server, key performance indices (e.g., CPU, RAM, network)
are recorded over time. The ground truth consists of a sequence of states (e.g.,
overload or nominal) associated with the corresponding time periods. In this
application, the task is to detect overload periods as early as possible.

Thus, in this problem, the true decisions {yi, (si, ei)}kxi=1 consists of a se-
quence of varying length kx, which is specific to each individual x. Each ele-
ment of this sequence is a decision to be located in time, which consists of a
class yi ∈ Y associated with a certain time period [si, ei]. For a given individ-
ual x, the time periods {(si, ei)}kxi=1 constitute a time partition, each interval
[si, ei] being associated with the true class yi (e.g. in predictive monitoring, this
time partition would correspond to the successive states, up or down, of a given
device).

Here, the online optimization problem to be addressed is more complex than
the previous one, since it consists in triggering a sequence of decisions as soon
as possible, without knowing the number of true decisions kx, and also ignoring
the time periods associated with each true decision. Let us consider that a ML-

EDM approach triggers a sequence of decisions {h(xt̂i′), (ŝi
′ , êi′)}k̂xi′=1 ; where

k̂x is the number of decisions made ; where {t̂i′}k̂xi′=1 represents the associated

7

triggering times ; and where {(ŝi′ , êi′)}k̂xi′=1 represents the predicted time periods
associated to the decisions which forms a partition of the time period [1, T]. In
the scenario of multiple early decisions to be located in time, a loss function LL
needs to be defined as a function of the following parameters:

LL

{h(xt̂i′), (ŝi

′ , êi′)}k̂xi′=1︸ ︷︷ ︸
predictions

, {t̂i′}k̂xi′=1︸ ︷︷ ︸
triggering times

, {yi, (si, ei)}kxi=1︸ ︷︷ ︸
ground truth

 (5)

This equation shows the loss function used to evaluate an approach after the
deadline T , when predictions have been taken for all instants in the time period
[1, T]. The loss function LL can be expressed in many different ways, depending
on the application considered. In practice, mapping rules need to be defined to
match the decisions made to the true ones (see appendix in Section 12.1).

Note that the problem of making predictions for all instants in [1, T] points
to the issue as whether decisions made can be revoked, or not, before T . In case
decisions are irrevocable, once a decision has been made, let us say (y, (s, e)),
then it is no longer possible to change the prediction of the class for all times
t ∈ (s, e). This renders the optimization problem dependent upon previous
decisions, and it becomes more constraining for application cases. Revocable
decision are studied in Section 7.

The deadline T after which decisions are forced is an important component,
that takes different forms depending on the problem. In the simple case of
ECTS, only one decision needs to be made before the incoming time series is
complete. Thus, the deadline T is defined as the maximum size of the input
series, which is known in advance during training. By contrast, in the more
complex case of ML-EDM where multiple decisions to be located in time must
be taken, the deadline T is defined as a maximum delay allowed to detect the
start of a true decision (i.e. a bound on negative decision horizons). In practice,
two situations can be distinguished:

• Some applications do not support the absence of decision, and the entire
considered time period must be partitioned by the successive decisions.
This is the case for instance when moderating content on social networks,
where discussions are continuously going on between users and where each
part of these discussions must be classified as appropriate or not (see
Section 10.3). In this case, no decision is not allowed, and all decisions
are subject to the cost Ldelay and thus constrained by the deadline T .

• By contrast, in some applications, a nominal operating state exists which
is almost permanent, and for which there is no decision deadline. This is
for instance the case in predictive maintenance applications, where there
is no urgency or even a deadline to detect the absence of failure. In this
case, the delay cost Ldelay and also the deadline T apply only to the other
decisions (e.g. failures categorized by severity level) excluding the nominal
state.

8

At the end, ML-EDM aims to develop approaches which allow for easy adap-
tation to all cases, whether the deadline T is applicable to all decisions, or
whether there exists a nominal operation state which bypasses this deadline.

Question B - How to learn a triggering strategy from data?

As a summary, this section shows that learning a triggering strategy follows
the usual general principles of Machine Learning approach, with the particular-
ity to consider time-sensitive loss functions (i.e. which depend on when decisions
are triggered, as in Equations 1, 4 and 5).

In practice, the optimal triggering strategy is not available and it must be
approximated by a learned function, such as Triggerγ ≈ Trigger∗, where γ ∈ Γ
is a set of parameters to be optimized within the space of parameters Γ of a
chosen family of triggering strategies.

In addition, the hypothesis h is supposed to be learned previously during the
training phase, making the system capable of predicting y at any time t ∈ [1, T].
This hypothesis is defined by a set of parameters θ ∈ Θ.

To illustrate what a triggering strategy is, let us consider an example from
the ECTS literature. The SR approach, described in [10], involves 3 parameters
(γ1, γ2, γ3) to decide if the current prediction h(xt) must be chosen (output 1)
or if it is preferable to wait for more data (output 0):

Triggerγ (h(xt)) =

{
0 if γ1p1 + γ2p2 + γ3

t
T ≤ 0

1 otherwise
(6)

where p1 is the largest posterior probability estimated by h, p2 is the difference
between the two largest posterior probabilities, and the last term t

T represents
the proportion of the incoming time series that is visible at time t. The pa-
rameters γ1, γ2, γ3 are real values in [−1, 1] to be optimized, as described more
generally in the following.

In the simple case of ECTS, a single decision has to be made for each time
series x ∈ X (see Equation 1). Thus, the risk associated with any triggering
strategy Triggerγ belonging to any family Γ, is defined as follows, given the
previously learned hypothesis hθ within the family Θ:

R(Triggerγ |hθ) = E
X,Y

[
L(hθ(xt̂), t̂, y)

]
(7)

where t̂ is determined by γ, the parameters of the triggering strategy.

Similarly, the risk can be defined in the more complex case of multiple
early decisions to be located in time . Let Tpart be the set of all possible
partitions of the time domain [1, T], having a varying number of time intervals
k. The risk can be defined as:

9

R(Triggerγ |hθ) =

E
X,Tpart,Yk

[
LL({hθ(xt̂i′), (ŝi′ , êi′)}, {t̂i′}, {yi, (si, ei)})

] (8)

where {t̂i′} and {(ŝi′ , êi′)} are determined by γ, and given hθ. In Equation
8, the risk is an expectancy on three random variables, drawing triplets from
the join distribution P (x, {(si, ei)}, {yi}). The first element corresponds to the
input data4, which is an individual x ∈ X. The two other consist of the ground
truth, which is composed of: (i) a partition of the time domain {(si, ei)} ∈ Tpart
with a particular number of time intervals, denoted by k ∈ [1, T] ; (ii) and a set
of class labels {yi} ∈ Yk for each time interval.

Now, the objective is to approximate the optimal triggering strategy Trigger∗

by finding γ∗ ∈ Γ which minimizes the risk, such that:

γ∗ = arg min
γ∈Γ

R(Triggerγ |hθ) (9)

The joint distribution P (x, {(si, ei)}, {yi}) is unknown, thus Equation 8 can
not be calculated ; however a training set S which samples this distribution is
supposed to be available. The risk can be approximated by the empirical risk
calculated on the training set S = {xj , {yji , (sji , eji)}}j∈[1,n],i∈kxj

, as follows:

Remp(Trigger
γ |hθ) =

1

n

n∑

j=1

LL
(
{h(xj

t̂i′
), (ŝji′ , ê

j
i′)}, {t̂i′j}, {yji , (sji , eji)}

) (10)

where t̂i′j is the triggering time of the i-th made decision of the j-th individual.

At the end, training a ML-EDM approach can be viewed as a two-step Ma-
chine Learning problem: (i) first, the hypothesis hθ must be learned in order to
predict the most appropriate decision hθ(xt), at any time t ∈ [1, T] ; (ii) second,
the best triggering strategy defined by γ∗ must be learned, given the hypothesis
hθ and given the family Γ, such that:

γ∗ = arg min
γ∈Γ

Remp(Trigger
γ |hθ) (11)

Question C - Can a triggering strategy be learned by Reinforcement Learning?

4Notice that the notation x ∈ X in Equations 7 and 8 is an abuse that we use use to simplify
our purpose. In all mathematical rigor, the measurements observed successively constitute
a family of time-indexed random variables x = (xt)t∈[1,T]. This stochastic process x is not
generated as commonly by a distribution, but by a filtration F = (Ft)t∈[1,T] which is defined
as a collection of nested σ-algebras [15] allowing to consider time dependencies. Therefore,
the distribution P (x, {(si, ei)}, {yi}) should also be re-written as a filtration.

10

To sum up, this section shows that learning a triggering strategy of a ECTS
approach can be cast as a Reinforcement Learning (RL) problem, with rewards
well chosen, and it might be expected that provided with sufficient training, RL
learning may end up with a good approximation of an efficient decision function.

Reinforcement learning [16] aims at learning a function, called a policy π,
from states to actions: π : S → A. Rewards can be associated with transitions
from states st ∈ S to states st+1 ∈ S under an action a ∈ A. Rewards are
classically denoted r(st, a, st+1) ∈ R. In all generality, the result of an action a
in state st may be non deterministic and one among a set (or space) of states.
The optimal policy π? is the one that maximizes the expected gain from any
state st ∈ S. This gain, denoted Rt starting from the sate st, is defined as a
function of the rewards from that state (e.g. a discounted sum of the rewards
received). In order to learn a policy, value functions can be considered, such as
the state-value function vπ(s) classically defined as:

vπ(st)
.
= Eπ[Rt | st] =

∑

a∈A
π(a|st)

∑

st+1,r

p(st+1, r | st, a)
[
r(st, a, st+1) + γ vπ(st+1)

] (12)

where Eπ[·] denotes the expected value of a random variable given that the agent
follows the policy π and t is any time step. In the case of a non determinis-
tic policy, π(a|st) denotes the probability of choosing action a in state st and
p(st+1, r | st, a) the probability of reaching state st+1 and receiving the reward
r given that the action a has been chosen in state st. And γ is a discounting
factor: γ < 1.

In our case, the agent aims to learn a triggering strategy given the previously
learned classifier hθ, and the state st = (t,xt) is the current time t and the
observed data at current time. The instantaneous reward r(st, a) only depends
on the current state st and the action taken a (i.e. prediction now, or postponed
to a later time). Finally, the discounted factor γ, usually present in RL for
reasons of convergence over infinite episodes, is equal to 1 in our case, since we
always deal with finite episodes with forced decisions after a maximum delay.
So that the equation (12) simplifies to:

vπ(st) =
∑

a∈A
π(a|st) r(st, a) + vπ(st+1)

when, during learning, the agent takes a decision, it updates the value of the
state st using:

vπ(st) = r(st, a) + vπ(st+1)

where st+1 is the state after having taken the action a in state st.
As the equation above shows, the core observation in RL is that the value

function for a state st (i.e. an estimation of the expected gain from that state) is
related to the value function of states st+1 that may be reached from st. In that
way, information gathered further down a followed path can be back-propagated

11

prediction h(xt) no prediction

rt = 0

st+1 = (t + 1, h(xtk
),xt+1)

st = (t, h(xtk
),xt)

rt = �L(h(xt), t, y)

End

Forced decision
at time T if not taken before

rt+1 = �L(h(xt+1), t + 1, y)

rt+2 = �L(h(xt+2), y + 2, y)

rT = �L(h(xT), T, y) = �
�
Lprediction (h(xT), y) + Ldelay(T)

�

Figure 2: A part of a ECTS “game” when learning an optimal policy while
“playing” a training time series. When a prediction is made, the game stops,
otherwise it continues until a prediction is made or the term of the episode is
reached.

to previous states thus allowing increasingly better decisions from those states
to be made.

For instance, in game playing, rewards may happen both during play (e.g.
the player just lost a pawn) and at the end of the game (e.g. the player is chess
mate). Similarly, one could cast the ECTS problem as a RL problem where, at
each time step, the “player” is in state st = (t, h(xtk),xt) and should choose
between making a prediction (e.g. h(xt)) with an associated reward: rt =
−L(h(xt), t, y) = −Lprediction (h(xt), y) − Ldelay(t) or postpone the decision,
with no immediate associated reward, that is rt = 0. If no decision has been
made before the term of the episode (e.g. when t = T) a decision is forced (see
Figure 2). Provided with enough time series to train on, and sufficient training
in the form of “playing” these time series, a reinforcement learning agent may
end up with a policy π̂ that approximates a good early triggering strategy, one
that would converge over time, after a very large number of “plays” on the
training time series, to the optimal decision function π? (See Equations 2 and
11).

The RL framework is very general. It uses immediate and delayed rewards.
As shown in this section, there is in principle no obstacle to apply RL to the
learning of a good triggering strategy. However, if used directly, the generality
of RL is paid for by a need for a large number of “experiments”. In addition, the
state space is continuous in the case of the ECTS problem, thus an interpolating
functions must be used in order to represent the values such as vπ(s) and this

12

entails the choice of a family of functions and setting their associated parameters.
Another approach, the one favored in the current literature for ECTS [3], is to
choose functions for representing the expected values of decision times, and thus
providing a ground for the triggering strategy.

This has the merit of incorporating prior knowledge of the trade-off between
earliness and accuracy, at the cost of making modelling choices that may bias
the method of estimating the expected future cost.

The respective performances, merits and limits of both approaches should
be studied empirically by a comparison of RL based ECTS approaches, such
as [17], with approaches that explicitly exploit the form of the optimization
criterion designed for ECTS as in [3].

3 Origin of the delay cost

ML-EDM approaches aim to trigger decisions at the right time, by reaching a
good trade-off between the earliness and the accuracy of their decisions. To
achieve this, a balance must be found between penalizing late decisions and
penalizing prediction errors. Decision costs are key to make this antagonistic
trade-off choice, as they allow us to evaluate the cost of waiting for new measures
vs. the cost of making a decision now. In Section 2, decision costs are involved
starting from Equation 2 in the loss function L and they have an important
impact on the entire path of the description of the ML-EDM problem. The
objective of this section is to understand the deep origin of the delay cost.

The delay cost represents the cost of postponing a decision (see the function
Ldelay in Equation 1). In the particular case of ECTS problems, the delay
cost is present in all the works described in scientific literature. But it can
be explicitly defined as in [3, 18], or implicitly as in most approaches. For
instance, the authors in [7] trigger all the decisions at the minimum prediction
length, which correspond to the early moment such that no prediction differs
from those applied to the full-length training time series (based on a KNN
classifier). This approach thus implicitly assumes that the delay cost is very
low, by favoring the accuracy of decisions at the expense of their earliness. In
[9], the authors propose to model the trade-off between earliness and accuracy
as a multi-objective criterion and explore the Pareto front of multiple dominant
solutions. This approach is useful in applications where earliness and accuracy
can not be evaluated in a commensurable way, and it provides a collection of
optimal solutions each corresponding to a particular value of the delay cost.

For a better understanding, let us examine what happens once a decision
is triggered in the simple ECTS problem. Figure 3 represents a classifier and
a triggering strategy. At each time step t ∈ [0, T], the classifier predicts the
conditional distribution P (y|xt) based on the input incomplete time series xt =
〈x0, x1, . . . , xt〉. Then, the triggering strategy either decides to postpone the
decision until a new measurement xt+1 is available, or to trigger the decision by

13

predicting the class value. In this first scenario, let us consider that triggering
a decision at time t implies performing a given task (namely α or β) which
depends on the predicted class (respectively A or B).

Figure 3: Tasks to be performed after the triggering of a decision.

Given that this task (α or β) must be completed before the deadline T , the
problem is to determine how the cost of performing this task evolves depending
on the trigger time t. In practice, the delay cost Ldelay takes the form of a
parametric function (e.g., a constant [7], linear [3] or exponential [19] function),
whose form characterizes the additional cost to delay the execution of the tasks.

A constant cost, one where there is no penalty associated with delaying the
decision, would mean that these tasks are achievable in an arbitrarily short time
T − t < ε. In practice, an irreducible amount of time is needed to perform the
tasks using a single worker. To reduce this time, the tasks need to be parallelized
using several workers, incurring an extra-cost when building the global result
from sub-tasks. Formally, a constant delay cost would mean that the tasks are
infinitely parallelizable, i.e. they can be divided into independent and arbitrarily
small sub-tasks, and that there is no extra-cost in building the global result.

More generally in ML-EDM problems, the delay cost Ldelay is necessarily an
increasing function (monotonic or piecewise) depending on the time remaining
before the decision deadline, and it may depend on the decision made (i.e. the
predicted label). In addition, it should tend to +∞ when the time remaining
to perform these tasks T − t tends to zero [19]. For example, this delay cost
may be modeled by Ldelay(t) = 1/(T − t)α, with a single parameter α which
influences the increase in cost when (T − t)→ 0.

4 Learning tasks

The formal definition of ML-EDM provided in Section 2 involves the ground
truth. However, in many applications, it is extremely hard or costly to obtain,
especially in the case of anomaly detection (e.g. fraud, cyber-attacks, predictive

14

maintenance). In these application domains, there are several issues: (i) labels
can be extremely expensive to obtain as they each require an examination from
an expert ; (ii) the labels provided by experts can be uncertain ; and (iii)
the class of anomalous observations is often poorly represented and drifts over
time. For example, cyber-attack techniques are very diverse and change with
time. Faced with these difficulties, anomaly detection is often addressed using
unsupervised approaches, by assuming that the anomalies are outliers. In this
case, the problem comes down to modeling the normal behavior of the system, if
possible using historical data that are cleaned of anomalies. Then, it is necessary
to define the notion of outlier to be able to assign an eccentricity score to the
new observations. Note that this type of modeling can be considered as a first
step to manage non-stationarity, since in this case the stationarity assumption
only concerns the normal behavior of the system (this assumption could be
removed in future work).

Challenge #1:
extending non-myopia to unsupervised approaches
An unsupervised ML-EDM problem could be to decide, as soon as possible,
whether a partially observed time series 〈x1, x2, . . . , xt〉 will be an outlier (or
not) when fully observed at time T . In this case, the accuracy vs. earliness
trade-off still exists. On the one hand, an early detection is inaccurate by
nature because the outlier series is unreliably detected, based on few observed
measurements. On the other hand, delaying the detection of anomalies can be
very costly. For instance, a cyber-attack which is not detected immediately
gives time to the hakers to exploit the security hole found. Designing ML-
EDM approaches to tackle unsupervised learning tasks is challenging in several
respects: (i) learning a triggering strategy with the goal of achieving a good
trade-off between earliness and accuracy of its decisions cannot be achieved in
the Machine Learning framework as described in the section 2 and should be
formalized in another way ; (ii) developing unsupervised non-myopic approaches
is very difficult, as the training set does not contain anomalous series, thus the
triggering strategy cannot learn from their continuations.

The extension of ML-EDM both to online scenarios (see Section 6) and to
unsupervised tasks is of particular interest, because combined they would enable
a new generation of monitoring systems [20] to be developed. In this case, the
learning task would consist in detecting online the start and end of the outlier
chunks: (i) without requiring labels to learn the model ; (ii) by considering the
trade-off between accuracy and earliness to trigger the decisions at the right
time.

Challenge #2: addressing other supervised learning tasks
The formal description of ML-EDM proposed in Section 2 is generic, in the sense
that the type of the target variable y can easily be changed. By definition, the
ECTS approaches in the literature are limited to classification problems, but

15

they could naturally be extended to other supervised learning tasks. For in-
stance, predicting a numerical target variable from a time series is a problem
known as Time Series Extrinsic Regression (TSER)[21]. In some domains,
TSER approaches are very useful and allow applications such as the prediction
of the daily energy consumption of a house, based on the last week’s consump-
tion, temperature and humidity measurements. Early TSER would consist of
predicting the value of the numerical target variable as soon as possible, while
ensuring proper reliability. Another example of a supervised task for which ML-
EDM approaches could be developed is time series forecasting [22]. Basically,
a forecasting model aims to predict the next measurements of a time series up
to an horizon ν, Y = 〈xt+1, xt+2, . . . , xt+ν〉 from the recent past measurements
X = 〈xt−w, . . . , xt−1, xt〉. Using a forecasting model, in a an online and early
way, would consist of adapting the forecast horizon t + ν according to the ob-
served values in X, by modeling the trade-off between the accuracy and the
earliness of these predicted values.

The ML-EDM problem described in Section 2 should also be adapted to
semi-supervised learning, which is of great help when the ground truth is only
partially available. More generally, the collected ground truth may be imper-
fect for various practical reasons, such as the labeling cost, the availability of
experts, the difficulty of defining each label with certainty, etc. This problem
has recently gained attention in the literature through the field of Weakly Su-
pervised Learning (WSL) [23] which aims to list these problems and provide
solutions.

Challenge #3: early weakly-supervised learning
The extension of ML-EDM to weakly-supervised learning is an interesting chal-
lenge, as it would allow to better address applications where the ground truth
has corruptions or is incomplete (which includes semi-supervised learning). How-
ever, the weakly-supervised learning is a very large domain with many types of
supervision deficiencies to be studied. From a practical point of view, the pri-
ority is probably to extend ML-EDM to label noise, and more specifically to
bi-quality learning [24], where the model is trained from two training sets: (i)
one trusted with few labels ; (ii) the other, untrusted, with a large number of po-
tentially corrupted labels. This would allow interesting applications, such as in
cyber security where few labels are investigated by an expert, and the majority
of labels are provided by rule-based systems. The major difficulty in designing
bi-quality learning ML-EDM approaches is to learn a triggering strategy from
these two training sets, which models the compromise between accuracy and
earliness in a robust way to label noise. Another interesting avenue would be
to adapt Active Learning [25] approaches to ML-EDM, with the goal of labeling
examples which improve both accuracy and earliness of the decisions. Such
approaches would be particularly helpful when early decisions have to be made,
and when labeling examples is very costly as, again, it is the case in cyber
security applications.

16

5 Types of data

The ML-EDM definition proposed in Section 2 involves measurements (i.e.
scalar values) acquired over time. However, this is only for reasons of simplicity
of exposition. Ideally, ML-EDM approaches should be data type agnostic, i.e.
they should operate for any data type as long as measurements are made over
time and decisions are online.

Below, we outline data types that are present in applications where ML-
EDM could be used.

i) Multivariate time series consist of successive measurements each contain-
ing more than one numerical value.

ii) More complex signals exist, such as video streams which involve higher
dimension.

iii) Data streams is another type of data which can contain both numeric
and categorical variables [26]. Successive measurements are received in an
uncontrolled order and speed. .

iv) Another type of data is evolving graphs which consist of graphs whose
structure changes over time [27]. Several types of learning tasks can be
considered, such as predicting the next changes in the graph structure, or
the classification of parts of the graph (e.g. nodes, arcs, sub-graphs).

v) Successive snapshots of relational data [28] should be consider to design
new ML-EDM approaches. More precisely, relational data consists of a
collection of tables having logical connections between them. Like other
types, relational data can evolve over time: (i) the connections between
tables can change; (ii) as well as the structure of the tables; (iii) or even
the values of the information stored in the tables.

vi) Text is another widespread type of data. An application example is the
moderation of social networking platforms, with early deletion of inappro-
priate contents and automatic closure of fraudulent accounts (see Section
10.3).

Challenge #4: data type agnostic ML-EDM
Ideally, the new developed ML-EDM approaches should be data type agnostic,
i.e. they should operate for any data type presented above. To do so, a pivotal
format needs to be defined in order to learn the triggering strategies in a generic
way. For instance, each learning example could be characterized by a series
of T predictions indexed by time (corresponding to the output of the learned
hypothesis h(xt) for each time step t ∈ [1, T]), as well as by {yi, (si, ei)}kxi=1

the ground truth composed of the true decisions to be made over time for this
individual. In the particular case of ECTS, some approaches can easily be
adapted to become agnostic to data type [3, 8, 9]. In contrast, others have

17

been designed to be very specific to time series [7, 29, 30, 31], especially with
the search of features (e.g. shapelets) occurring early in the time series and
helping to discriminate between classes. More generally, future work in ML-
EDM should definitely promote data type agnostic approaches, to allow the use
of these techniques in a wide range of application conditions.

6 Online Early Decision Making

In the specific case of Early Classification of Time Series (ECTS), an important
limitation is that the training time series: (i) have the same length T ; (ii)
correspond to different i.i.d individuals ; (iii) have a label which characterizes
the whole time period of length T . There are obviously applications where this
formulation of the problem is relevant [2, 32, 33, 34, 35, 36, 37, 38], especially
in cases where the start and end of the time series are naturally defined (e.g.
a day of trading takes place from 9:30am to 4pm, during the opening hours of
the stock exchange).

The development of online ML-EDM approaches could overcome these limi-
tations and enable a new range of applications. For this purpose, let us consider
that the input measurements are observed without interruption, in the form of
a data stream [39]. In the case of a classification problem, an online ML-EDM
approach would consist in identifying chunks in the input data stream (i.e. fixed
time-windows defined by their start and end timestamps) and categorizing them
according to a predefined set of classes. For example, in a predictive mainte-
nance scenario [40] such an approach would operate on a continuous basis to
detect periods of system malfunction as soon as possible.

Figure 4: Example of a data stream labeled by chunks over a time period

Challenge #5:
online and early predictions to be located in time
In the case of a classification problem, the training data consist of the mea-
surements observed from the stream during the training period, denoted by
x = 〈x1, x2, . . . , x|x|〉, associated with their labels y = 〈y1, y2, . . . , y|x|〉. A
labeled chunk is formed by the consecutive measurements, between the times-
tamps ta and tb, if their labels share the same value (i.e. if {yi}i∈[ta,tb] is a
singleton). As shown in Figure 4, the data stream defined over the training

18

period is labeled by chunks of variable size. For example, these chunks could
represent the periods of failure and nominal operation in a predictive mainte-
nance scenario. During the deployment phase, the model is applied online on
a data stream whose measurements are observed progressively over time. This
model is expected to provide predictions located in time, since it needs to predict
the beginning and the end of each chunk, associated with the predicted class
which characterizes the state of the system during this chunk.

Challenge #6: online accuracy vs. earliness trade-off
Designing online ML-EDM approaches requires redefining the accuracy vs. ear-
liness trade-off for online decisions. The main issue is that a data stream is
of indeterminate length: (i) its beginning may be too old to be considered ex-
plicitly, or can even be indeterminate ; (ii) its end is never reached, since it is
constantly postponed by the new measurements which arrive. In the particu-
lar case of ECTS, it is precisely the fact that the input series has a maximum
length T , known in advance, that leads to force triggering the decision when the
current time t becomes close to the deadline T .

Challenge #7:
management of non-stationarity in ML-EDM
It is not always realistic to assume stationarity of the data. In practice, data
collected from a stream may suffer from several types of drifts: (i) the distribu-
tion of the measurements within the sliding window xt can vary over time, this
is called covariate-shift [41]; (ii) the prior distribution of the classes P (y) can
be subject to such drifts; (iii) and the concept to be learned P (y|x) can also
change when concept drift occurs [42].

To manage these non-stationarities, a first family of approaches maintains
a decision model trained using a sliding window of most recent examples. This
is a blind approach, in the sense that there is no explicit drift detection. The
main problem is deciding the appropriate window size.

A second family of approaches, explicitly detects the drifts [43, 44] and trig-
gers actions when necessary, such as re-training the model from scratch, or using
a collection of models in the case of ensembles. In this case, detecting concept
drift can be considered as similar to the anomaly detection problem, and ML-
EDM approaches could be used to tackle it in future work. A popular idea is
to train the decision model using a growing window while data is stationary,
and shrink the window when a drift is detected. These kinds of approaches can
easily be adapted to online ML-EDM, since they decouple model training and
non-stationarity management.

In the case of incremental concept drift, a third family of approaches con-
sists in continuously adapting the model by training it online from recent data.
This kind of adaptive approach is much more challenging to adapt to online
ML-EDM. Indeed, as in ML-EDM problems (see Figure 3), two kinds of mod-
els are used: (i) the predictive model(s), which can categorize the input data
stream at any time ; (ii) the triggering strategy which makes the decisions at

19

the appropriate time. The main challenge in developing adaptive drift manage-
ment methods for the online ML-EDM problem is that the parameters of the
predictive models and of the triggering strategy must be updated jointly. These
two kinds of models are highly dependent: updating the parameters of one has
an impact on the optimal parameters of the other.

By contrast, in standard ML-EDM approaches which operate in batch mode,
the parameters of the predictive models are first optimized, and then the pa-
rameters of the triggering strategy are optimized in turn given the parameters
of the classifiers (see paragraph B in Section 2). This two-step Machine Learn-
ing scheme is definitely not valid for managing drift online [45]. Adaptive drift
management for the online ML-EDM problem has not yet been addressed in
the literature and constitutes an interesting research direction. In drift detec-
tion systems, there is a trade-off between fast detection and the number of false
alarms. Moreover, in problems where the target (e.g. the labels) is not always
available or available with a delay requires unsupervised or semi-supervised drift
detection mechanisms. The ML-EDM framework, improving the compromise
between earliness and accuracy, can provide new approaches for drift detection.

7 Revocable decisions

In many situations, one can take a decision and then decide to change it after
some new pieces of information become available. The change may be bur-
densome but nevertheless justified because it seems likely to lead to a much
better outcome. This can be the case when a doctor revises what now seems a
misdiagnosis.

Similarly, ML-EDM should be extended to consider such a revocation mech-
anism. In the classical ML-EDM problem as described in Section 2, a prediction
h(xt̂) cannot be changed once the decision is triggered at time t̂ ≤ T . The cost
of such an irrevocable decision is given by the loss function described by Equa-
tion 5. Whereas, the extension of ML-EDM to revocable decisions [46] allows a
prediction to be modified several times before the deadline T . On the one hand,
the revocation of a decision generates a higher delay cost Ldelay, as well as a
cost of changing the decision Lrevoke. On the other hand, new data observed in
the meantime provide information that makes the prediction more reliable, thus
tending to decrease the misclassification cost Lprediction. Ultimately, the main
issue is to identify the appropriate decisions to revoke, in order to minimize the
global cost, given by Equation 13.

Such an extension to revocable decisions could be of great interest: (i) in
applications where the cost of changing decisions is low, i.e. the DAGs asso-
ciated with each possible decision share reusable tasks (see Section 3) ; (ii) in
applications involving online early decision making (see Section 6). There are
many use cases where the need to revoke decisions appears clearly. For instance,
the emergency stop system of an autonomous car brakes as soon as an obstacle
is suspected on the highway, and releases the brake when it realizes, as it gets
closer, that the suspected obstacle is a false positive (e.g. a dark spot on the

20

road).

Developing ML-EDM approaches capable of appropriately revoking its de-
cisions involves solving the two following challenges:

Challenge #8:
reactivity vs. stability dilemma for revocable decisions
The first issue is to ensure that a decision change is driven by the information
provided by the recently acquired measurements, and not caused by the inability
of the system to produce a stable decision over time. This problem is not trivial.
On the one hand, the system needs to be reactive by changing its decision
promptly when necessary. On the other hand, the system is required to provide
stable decisions over time by avoiding excessively frequent and undue changes.
Thus, a trade-off exists between the reactivity of the system and its stability
over time. One way to formalize this trade-off is to associate a cost to decision
changes, as it is proposed in part (iii) of Equation 13. To our knowledge, only one
approach uses such a cost of decision change [46], in order to penalize revocation
of too many decisions. The reactivity vs. stability dilemma of revocable decisions
is understudied in the literature, and it would be interesting for the scientific
community to work on this question.

Challenge #9: extending non-myopia to revocation risk
Non-myopic ML-EDM approaches are capable of estimating the information
gain that will be provided by future measurements, based on the currently vis-
ible ones. In other words, these approaches are able to predict the reliability
improvement of a decision in the future. Thus, a decision is triggered when the
expected gain in miss-classification cost at the next time steps does not com-
pensate the cost of delaying the decision [3]. In the case of revocable decisions,
an important challenge is to estimate the future information gain by taking into
account the risk of revocation itself. Specifically, a decision that will probably
be revoked afterward should be delayed due to this risk. Conversely, a decision
which promises to be sustainable should be anticipated. Designing non-myopic
to revocation risk approaches could be an important step forward to (i) opti-
mize the first trigger moment, and (ii) reduce the number of undue decision
changes. The approach proposed in [46] constitutes a first step in this direction,
by assigning a cost to decision changes and considering it in the expectation
of future costs. To the best of our knowledge, this is the only approach which
provides this interesting property. It is not clear whether alternative methods
are possible. This is an interesting topic for further studies by the scientific
community.

8 Origin of the decision costs

The origin of the delay cost is studied in Section ??, however it is necessary to
further specify the operating scenario in order to understand the other decision

21

costs involved in ML-EDM. Figure 5 describes a binary ECTS problem, where
the actions to be performed depend on the predicted class and are described
by two Directed Acyclic Graphs (DAG). These DAGs characterize the sequence
and the relationships between the unit tasks which compose them (e.g. task 1
must be completed before starting task 2). Here, the DAGs of tasks are fixed,
they do not depend on the decision time.

Figure 5: DAGs of tasks to be performed after the triggering of a decision.

The total cost of a decision can be decomposed by:

(i) the delay cost, denoted by Ldelay, which reflects the need to execute the
DAG of actions corresponding to the new decision in a constrained time,
and in a parallel way (already detailed in Section ??);

(ii) the decision cost, which corresponds to the consequences of a bad decision,
or the gains of a good decision (denoted by Lprediction).

(iii) the revocation cost, which is the cumulative cost of the mistakenly per-
formed tasks belonging to the DAG of previously made bad decisions, and
which are not reusable for the new decision (denoted by Lrevoke) ;

When expressed in the same unit, these different types of costs can be
summed up in order to reflect the quality of the decisions made, and their
timing. Thus, Equation 1 becomes:

22

L(h(xt), t, y) =

(i)︷ ︸︸ ︷
Ldelay(t) +

(ii)︷ ︸︸ ︷
Lprediction (h(xt), y)

+ Lrevoke
(
h(xt)|{(h(xt̂i), t̂i)}i∈[1,Dx

t]

)
︸ ︷︷ ︸

(iii)

(13)

where {(h(xt̂i), t̂i)}i∈[1,Dx
t] represents the sequence of the previously made de-

cisions and their associated triggering time, with t̂i < t,∀i ∈ [1, Dx
t].

Term (ii): Taking into account the decision cost is a very common feature
in the literature, particularly in the field of cost-sensitve learning [47]. These
techniques take as input a function Lprediction(ŷ|y) : Y × Y → R which defines
the cost of predicting ŷ when the true class is y. The aim is to learn a classifier
which minimizes these costs on new data.

Term (iii): By contrast, the study of the revocation cost is very limited in the
literature. To our knowledge, [46] is the only one article article that considers
this problem, and this work shows that assigning a cost to decision changes
is a first lead to manage the reactivity vs. stability dilemma, and to design
non-myopic to revocation risk approaches (i.e. discussed later in challenges #8
and #9). The origin of this cost can be explained in the light of the tasks
to be performed once a decision is triggered (see Figure 5). For instance, let
us consider the first decision noted by (A, t̂1), in which the system predicts at
time t̂1 that the input time series belongs to the class A. This decision is then
revoked in favor of a new decision (B, t̂2). The cost of changing this decision,
denoted by Lrevoke((B, t̂2)|(A, t̂1)), can be defined as the cost of the actions
already performed between t̂1 and t̂2 which turn out to be useless for the new
decision, i.e. which cannot be reused in the DAG of tasks corresponding to
the new predicted class B. In order to define the costs of decision changes, it
is necessary to identify the common tasks between the DAGs of the different
classes and to evaluate their execution time. In addition, the entire sequence of
the past decisions must be taken into account to identify the already completed
tasks which are now useful for the achievement of the current DAG of tasks. For
instance, the cost Lrevoke((A, t̂3)|{(A, t̂1), (B, t̂2)}) can be reduced by the tasks
executed between t̂1 and t̂2, if these tasks are not perishable, i.e. the results are
identical to those that would be obtained by re-executing these tasks at t̂3.

Challenge #10:
scheduling strategy and time-dependent decision costs
In this paper, the DAGs of tasks are supposed to be fixed, i.e. not depending
on the decision time. However, a more general problem could be considered
(see Figure 6) where the DAGs of tasks are generated by a scheduling strategy
depending on: (i) the decision made ; (ii) and the decision time. Such a
scheduling strategy is useful in applications where the actions to be performed

23

after a decision can be adapted to a time budget available to perform them. Two
situations may occur: (i) ideally, a decision is triggered early enough to allow
the scheduling strategy to generate a complete DAG of tasks which is optimal
given the decision made (as in Figure 5) ; (ii) on the contrary, in the case of a
too late decision, the scheduling strategy needs to build the DAG so that it can
be achieved in the remaining time (e.g. by parallelizing some tasks, by changing
or removing some of them). For instance, when flying an airplane, the tasks
to be performed for an emergency landing are not the same as for a normal
landing, and there is a range of situations with different emergency level, and
therefore corresponding to different time budgets.

Figure 6: DAG of tasks to be performed after the triggering of a decision,
generated by a scheduling strategy.

Such a time-dependent scheduling strategy radically transforms the ML-
EDM problem and the way it can be formulated. In particular, the triggering
and scheduling strategies become mutually dependent:

1. Decision costs depend on the generated DAG of tasks: all the previously
discussed costs result from the structure of the DAG to be performed
conditionally to the decision made: (i) the relationships between the tasks
; (ii) their execution time ; (iii) the conditions of their reuse when they
are common to several DAGs. Since the structure of the DAG to be
performed now depends on the decision time, the decision costs can no
longer be considered as fixed, and they are available only after scheduling.

2. The optimal decision time depends on the cost values: on the other hand,
the triggering strategy aims to optimize the decision time based on the
cost values. As described in Equation 11, the triggering strategy is learned
by minimizing the empirical risk, which is itself estimated using a loss
function based on the costs.

This mutual dependency between the triggering and the scheduling strategies
has strong impacts on the ML-EDM problem. In particular, the optimal decision

24

time t∗ described in Equation 2 must be redefined as a fixed point, i.e. the
function to be optimized takes the optimal solution as an input parameter, such
that t∗ = arg mint∗∈[1,T] L(h(xt∗), t

∗, y). This leads to a much more difficult
class of optimization problems, for which the simple existence of a solution is
difficult to ensure.

Finding an optimal triggering strategy when the scheduling strategy is itself
time-dependent makes ML-EDM a quite difficult challenge as the scheduling
strategy is only known through its interactions with the triggering strategy.
In this case, Reinforcement Learning seems to be a possible option to address
the problem. The scheduling strategy could then be considered as part of the
environment, and a contributor to the reward signal by determining the decision
costs for each decision taken at a particular time. However, this line of attack
remains to be investigated in order to assess its merit.

In many applications, fortunately, the implementation of a scheduling strat-
egy is much simpler, especially when the variation of decision costs over time
is known in advance (or modeled, and thus are partially known). We will place
ourselves under this assumption in the rest of this paper. The preceding re-
marks are reminders that if considered in all its complexity, ML-EDM becomes
a very difficult problem. As we will see below, addressing the case where the
costs are assumed to be time dependent but with a known form, already offers
interesting challenges and corresponds to a variety of applications.

9 Overview on challenges

This section provides an overview of the previously presented challenges, indi-
cating references which address part of these challenges (see the second column
of Table 1), and summarizing the main prospects for applications in the short
and long term (see the last column of Table 1). Table 1 organizes the proposed
challenges by category, using colors to identify: (i) those related to changing
the learning task ; (ii) those related to online ML-EDM ; (iii) and those related
to revocable decisions.

10 Usecases

ML-EDM approaches can be applied to a wide range of applications, such as
cyber security [49], medicine [50], surgery [51]. This section develops some
key use cases and identifies possible advances in near future, if the proposed
challenges are met.

10.1 Early classification of fetal heart rates

There are no precise figures on the number of deaths in childbirth due to poor
oxygenation. According to the Portuguese Directorate-General for Health, the
number of children who died due to hypoxia in 2013 was 192 fetuses. This

25

is a critical example where making informed early decisions is critical. Car-
diotocography techniques are used to assess fetal well-being through continuous
monitoring of fetal heart rate and uterine contractions [52]. Labor is a po-
tentially threatening situation to fetal well-being, as strong uterine contractions
stop the flow of maternal blood to the placenta, compromising fetal oxygenation
[53].

In this field, ML-EDM techniques could be of great help to detect the early
warning signs of complications during childbirth. This application can be ad-
dressed as a ECTS problem, as a fetal heart rate signal constitutes a time series.
The extension of ECTS techniques to revocable decisions would be very relevant
(see challenges #8 and #9) allowing for active monitoring of the children’s well-
being on a continuous basis, until delivery. In addition, two particular aspects
need to be taken into account in developing an efficient approach: (i) the pre-
diction cost Lprediction is highly asymmetrical since a false negative can mean
the death of the baby or the mother; (ii) the deadline T which represents the
moment of delivery is uncertain and varying. Thus, the deadline T corresponds
to the occurrence of an event (i.e. the birth) which can be modeled as random
variable as in [54, 55].

10.2 Digital twin in production systems

Digital Twin (DT) is an important active concept in the area of Industry 4.0.
With the development of low cost sensors and efficient IoT communication fa-
cilities, almost all production systems are now equipped with several sensors
enabling real time monitoring and helping in decisions about maintenance, or
when failures occur. In this section, we consider digital twins (DT) of cyber-
physical systems (CBS) which are in operation.

The main digital twin applications [56] are related to smart cities, manu-
facturing, healthcare and industry. The role of the DT is thus to use the data
streams coming from the sensors of the CBS in order to constantly calibrate
simulation models of different components of the system. Indeed, this offers
several opportunities, namely (1) detection of anomalies when the system devi-
ates from the simulation model ; (2) diagnostic of dysfunctions when they occur
; (3) exploration of different scenarios for system evolution in case of dysfunction
; (4) recommendation for repair actions.

Effective maintenance management methods are vital, and industries seek
to minimize the number of operational failures. The availability of large vol-
ume of data coming from sensors of a CBS makes the use of Machine Learning
techniques, supervised or unsupervised, very appealing. Typical unsupervised
ML approaches are related to anomaly detection [57] where an alarm should be
triggered when the behavior of the CBS differs from normal running. Typical
supervised ML approaches in the context of manufacturing and industry are
related to predictive maintenance [40, 58]. Predictive Maintenance (PdM) is
a data-driven approach that emerged in Industry 4.0. It uses statistical anal-
ysis, Machine Learning (ML) models for modeling complex systems behavior,
identifying trends and predicting failures.

26

We review below some challenges of the paper in light of this domain. Chal-
lenge #1 (extending non-myopia to unsupervised approaches) is relevant, since
an efficient anomaly detection system requires unsupervised approaches which
can be combined with physics-based simulations of the different components.
Challenge #2 (other supervised tasks) is also appropriate since both classifica-
tion and regression problems appear (e.g. breakdown occurrence, prediction of
energy consumption). Challenge #4 (data type agnostic) is especially relevant
for DT’s, since a system is always composed of several heterogeneous compo-
nents. In this situation, the update of one component or one or several sensors
would be much easier and cheaper if ML-EDM were data type agnostic. DT’s
operating at a system level leads to complex prediction models and complex
decisions since the different components operate differently but in interaction
(cf. challenge #5). The ability to manage non-stationarity (cf. challenge #7)
is obviously central in DT’s: aging and wearing of equipment lead to covariate
and concept drifts which must be taken into account.

10.3 Social networks: societal and psychological risks

Online social networking platforms are more popular than ever. They radically
transform the way we communicate with each other. However, this transforma-
tion comes with many problems on both sides, for users and platforms.

For example, Fake news spread widely during the covid pandemic. [59]
tackled this problem as a binary classification problem where classes are “fake”
and “real” news. Fake accounts are also considered a major problem , as they
are among the main culprits in spreading false information. For instance, [60,
61, 62, 63] use Machine Learning techniques to detect these fake account based
on interactions between users. Fake accounts can also be used for harassment
and can induce major psychological risks [64]. The detection of depression and
risk of suicide has been addressed using Machine Learning techniques in [65, 66].

Decisions taken by Machine Learning models to prevent such risks on social
networks are clearly time-sensitive:

• Fake news must be detected as early as possible to limit its spread. [67]
focuses on early detection of fake news from the press before it is expressed
on social media.

• The early detection of fake users has also been studied in recent work.
[68] proposes a graph-based approach which uses network connectivity to
detect fake users.

• Detecting as early as possible depressed is very critical for prevention.
This problem has also been addressed under the perspective of early clas-
sification in [69].

The development of the ML-EDM domain is an opportunity to go further in
these applications. In particular, it would be very useful to develop unsupervised
and weakly supervised ML-EDM approaches (see challenges #1 and #3). In

27

this application area, ground truth is often unavailable or corrupted. Training
data is very complex and consists of multiple sources: streams of texts, a large
graph evolving over time etc. Therefore, it would be particularly beneficial to
develop ML-EDM approaches which are agnostic to data types (see challenge
#4).

10.4 Autonomous vehicle

An autonomous vehicle is defined in [70] as capable of sensing its environment
and navigating safely without human input. Five levels of vehicle automa-
tion have been defined [71] as intermediate goals toward full automation. The
development of a fully autonomous vehicle (levels 4 or 5) requires a complex soft-
ware architecture, which operates numerous functional components [72]. More
precisely, three classes of components have been identified, corresponding to
different levels of control:

i) Operational components, which implement basic vehicle control such that
lateral and longitudinal vehicle motion, monitoring of the driving environ-
ment ;

ii) Tactical components, which plan and execute vehicle maneuvers and pre-
pare appropriate responses to incoming events, e.g. trajectory control,
lane change;

iii) Strategic components, which determine the general itinerary according to
the driver’s preferences.

Given the high complexity of the tasks to be automated, Machine Learning
approaches have become an essential element in the design of autonomous ve-
hicles [73]. Machine learning is therefore used in the development of different
classes of components:

i) Operational components are the most developed in the literature, and can
be classified as follows: (1) mediated perception approaches [74, 75] aim
to detect a wide variety of objects, such as obstacles, road signs ; (2) di-
rect perception [76, 77] aim to directly manage vehicle controls without
explicitly dealing with location and mapping ; (3) localization approaches
[78, 79] characterize similarities and discrepancies between the environ-
ment and a priori maps, to locate the vehicle and obstacles.

ii) Tactical components are mostly developed to automate vehicle maneu-
vers using Machine Learning techniques, such as : (1) advanced scenarios
of automated parking [80] ; (2) car-following improvement by predicting
the trajectories of other human-drivers [81] [82] ; (3) trajectory planning
including obstacle avoidance [27], self-driving in urban environment [83] .

Considering the earliness vs. accuracy compromise is an emerging and im-
portant issue in research for autonomous vehicles. In particular, cooperative per-
ception [84] has been developed to extend the perceptual range of a connected

28

autonomous vehicle, by sharing real-time information with other surrounding
vehicles. In some ways, cooperative perception improves both the earliness
and accuracy of decisions by extending the vehicles’ perceptual capability.

The development of the ML-EDM field could make it easier to design fully
autonomous vehicles. Indeed, the ability of these approaches to make non-
myopic decisions is an advantage to make self-driving more fluid and safe. A
non-myopic ML-EDM approach would be able to identify probable continuations
of an observed situation on the road, based on related situations encountered in
the training data and their continuations.

Most of the challenges presented in this article are relevant for the au-
tonomous vehicle. Indeed, training data consists of multiple sources: video,
radar etc. In addition, training data may change over time, for example with
the arrival of a new types of sensors on a next generation of car. It is therefore
important to develop ML-EDM approaches which are agnostic to data types
(see challenge #4). Ground truth contained in the training data includes both
the actions to be performed and the timing of these actions . It would be
very useful to develop ML-EDM methods which learn the evolution of decision
costs over time (see challenge #10). In autonomous vehicles, sensor data is
continuously observed, so it is essential to design online ML-EDM approaches
(see challenges #5 and #6), and driving actions must definitely be revocable
(see challenges #8 and #9).

11 Conclusion and perspectives

More and more applications require to make time-constrained decisions. On the
one hand, an early decision is based on partially observed data, leaving time
before the deadline which allows for a proper response by performing the right
actions. On the other hand, a late decision based on nearly complete data tends
to be more accurate, but leaves insufficient time to take appropriate action be-
fore the deadline. This compromise between the earliness and the accuracy of
decisions has been particularly studied in the field of Early Time Series Clas-
sification (ECTS). In this paper a more general problem is introduced, called
Machine Learning based Early Decision Making (ML-EDM), which consists in
optimizing the decision times of models in a wide range of settings where data
is collected over time.

This position paper aims to define the field of ML-EDM, and proposes ten
challenges to the scientific community to further research in this area. In partic-
ular, ML-EDM has been defined and positioned with respect to related fields,
such as machine learning and reinforcement learning. Three challenges have
been presented in relation to the learning task at hand: extending ML-EDM
to unsupervised learning (challenge #1), to regression tasks (challenge #2) and
to weakly-supervised learning (challenge #3). The development of data type
agnostic ML-EDM approaches has been singled out as an important direction
of research to extend the domains of application, yielding challenge #4. Ex-
tending ML-EDM to the online scenario has also been recognized as important

29

too which raises three challenges (challenge #5, #6 and #7). Being able to
revoke decisions properly is significant as well in many applications and raises
two challenges (#8 and #9). The origin of the different costs involved in the
optimization of decision times has been discussed, leading to a last challenge
(challenge #10) to extend the ML-EDM problem to cases where these costs
vary over time. Finally, a range of application areas for which ML-EMD could
lead to significant progress in the near future have been described.

The overall objective of this position paper is to define a new field of inves-
tigation, and to propose research avenues in order to generate interest from the
scientific community.

References

[1] C. Mathukia, W. Fan, K. Vadyak, C. Biege, and M. Krishnamurthy, “Mod-
ified early warning system improves patient safety and clinical outcomes in
an academic community hospital,” Journal of community hospital internal
medicine perspectives, vol. 5, no. 2, p. 26716, 2015.

[2] A. Gupta, H. P. Gupta, B. Biswas, and T. Dutta, “Approaches and appli-
cations of early classification of time series: A review,” IEEE Transactions
on Artificial Intelligence, vol. 1, no. 1, pp. 47–61, 2020.

[3] Y. Achenchabe, A. Bondu, and A. Cornuéjols, “Early classification of time
series. cost-based optimization criterion and algorithms,” Machine Learn-
ing, 2021.

[4] N. Parrish, H. S. Anderson, M. R. Gupta, and D. Y. Hsiao, “Classify-
ing with confidence from incomplete information,” J. of Mach. Learning
Research, vol. 14, no. 1, pp. 3561–3589, 2013.

[5] N. Hatami and C. Chira, “Classifiers with a reject option for early time-
series classification,” in Computational Intelligence and Ensemble Learning
(CIEL), 2013 IEEE Symposium on. IEEE, 2013, pp. 9–16.

[6] M. F. Ghalwash, D. Ramljak, and Z. Obradović, “Early classification of
multivariate time series using a hybrid hmm/svm model,” in 2012 IEEE
International Conference on Bioinformatics and Biomedicine. IEEE, 2012,
pp. 1–6.

[7] Z. Xing, J. Pei, and S. Y. Philip, “Early prediction on time series: A nearest
neighbor approach.” in IJCAI. Citeseer, 2009, pp. 1297–1302.

[8] U. Mori, A. Mendiburu, E. Keogh, and J. A. Lozano, “Reliable early classi-
fication of time series based on discriminating the classes over time,” Data
mining and knowledge discovery, vol. 31, no. 1, pp. 233–263, 2017.

[9] U. Mori, A. Mendiburu, I. M. Miranda, and J. A. Lozano, “Early classifi-
cation of time series using multi-objective optimization techniques,” Infor-
mation Sciences, vol. 492, pp. 204–218, 2019.

30

[10] U. Mori, A. Mendiburu, S. Dasgupta, and J. A. Lozano, “Early classifica-
tion of time series by simultaneously optimizing the accuracy and earliness,”
IEEE transactions on neural networks and learning systems, vol. 29, no. 10,
pp. 4569–4578, 2017.

[11] A. Dachraoui, A. Bondu, and A. Cornuéjols, “Early classification of time
series as a non myopic sequential decision making problem,” in Joint
European Conference on Machine Learning and Knowledge Discovery in
Databases. Springer, 2015, pp. 433–447.

[12] S. O. Hansson, “Decision theory–a brief introduction,” 1994.

[13] L. A. Shepp, “Explicit solutions to some problems of optimal stopping,”
The Annals of Mathematical Statistics, vol. 40, no. 3, p. 993, 1969.

[14] T. S. Ferguson, “Who solved the secretary problem?” Statistical science,
vol. 4, no. 3, pp. 282–289, 1989.

[15] A. Klenke, Probability theory: a comprehensive course. Springer Science
& Business Media, 2013.

[16] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[17] C. Martinez, E. Ramasso, G. Perrin, and M. Rombaut, “Adaptive early
classification of temporal sequences using deep reinforcement learning,”
Knowledge-Based Systems, vol. 190, p. 105290, 2020.

[18] U. Mori, A. Mendiburu, S. Dasgupta, and J. Lozano, “Early classification
of time series from a cost minimization point of view,” in Proceedings of
the NIPS Time Series Workshop, 2015.

[19] M. Beibel, “A note on sequential detection with exponential penalty for
the delay,” Annals of Statistics, pp. 1696–1701, 2000.

[20] J. V. Abellan-Nebot and F. R. Subirón, “A review of machining monitoring
systems based on artificial intelligence process models,” The International
Journal of Advanced Manufacturing Technology, vol. 47, no. 1, pp. 237–257,
2010.

[21] C. W. Tan, C. Bergmeir, F. Petitjean, and G. I. Webb, “Time series ex-
trinsic regression,” Data Mining and Knowledge Discovery, vol. 35, no. 3,
pp. 1032–1060, 2021.

[22] C. Chatfield, Time-series forecasting. CRC press, 2000.

[23] Z.-H. Zhou, “A brief introduction to weakly supervised learning,” National
science review, vol. 5, no. 1, pp. 44–53, 2018.

[24] P. Nodet, V. Lemaire, A. Bondu, and A. Cornuéjols, “Importance reweight-
ing for biquality learning,” arXiv preprint arXiv:2010.09621, 2020.

31

[25] B. Settles, “Active learning literature survey,” 2009.

[26] A. Bifet, R. Gavaldà, G. Holmes, and B. Pfahringer, Machine learning for
data streams: with practical examples in MOA. MIT press, 2018.

[27] P. Latouche and F. Rossi, “Graphs in machine learning: an introduction,”
in European Symposium on Artificial Neural Networks, Computational In-
telligence and Machine Learning (ESANN), Proceedings of the 23-th Euro-
pean Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning (ESANN 2015), 2015, pp. 207–218.

[28] S. Džeroski, “Relational data mining,” in Data Mining and Knowledge Dis-
covery Handbook. Springer, 2009, pp. 887–911.

[29] Z. Xing, J. Pei, S. Y. Philip, and K. Wang, “Extracting interpretable fea-
tures for early classification on time series.” in SDM, vol. 11. SIAM, 2011,
pp. 247–258.

[30] M. F. Ghalwash, V. Radosavljevic, and Z. Obradovic, “Utilizing temporal
patterns for estimating uncertainty in interpretable early decision mak-
ing,” in Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 2014, pp. 402–411.

[31] G. He, Y. Duan, R. Peng, X. Jing, T. Qian, and L. Wang, “Early classifi-
cation on multivariate time series,” Neurocomputing, vol. 149, pp. 777–787,
2015.

[32] I. Teinemaa, N. Tax, M. de Leoni, M. Dumas, and F. M. Maggi, “Alarm-
based prescriptive process monitoring,” in International Conference on
Business Process Management. Springer, 2018, pp. 91–107.

[33] A. Alipour-Fanid, M. Dabaghchian, N. Wang, P. Wang, L. Zhao, and
K. Zeng, “Machine learning-based delay-aware uav detection over en-
crypted wi-fi traffic,” in 2019 IEEE Conference on Communications and
Network Security (CNS). IEEE, 2019, pp. 1–7.

[34] M. Rußwurm, R. Tavenard, S. Lefèvre, and M. Körner, “Early classifica-
tion for agricultural monitoring from satellite time series,” arXiv preprint
arXiv:1908.10283, 2019.

[35] S. A. Fahrenkrog-Petersen, N. Tax, I. Teinemaa, M. Dumas, M. de Leoni,
F. M. Maggi, and M. Weidlich, “Fire now, fire later: alarm-based systems
for prescriptive process monitoring,” arXiv preprint arXiv:1905.09568,
2019.

[36] A. Sharma and S. Kumar Singh, “A novel approach for early malware
detection,” Transactions on Emerging Telecommunications Technologies,
p. e3968, 2020.

32

[37] J. M. Loyola, M. L. Errecalde, H. J. Escalante, and M. M. y Gomez, “Learn-
ing when to classify for early text classification,” in Argentine Congress of
Computer Science. Springer, 2017, pp. 24–34.

[38] A. Dachraoui, A. Bondu, and A. Cornuejols, “Early classification of in-
dividual electricity consumptions,” RealStream2013 (ECML), pp. 18–21,
2013.

[39] J. Gama, “A survey on learning from data streams: current and future
trends,” Progress in Artificial Intelligence, vol. 1, no. 1, pp. 45–55, 2012.

[40] Y. Ran, X. Zhou, P. Lin, Y. Wen, and R. Deng, “A survey of predic-
tive maintenance: Systems, purposes and approaches,” arXiv preprint
arXiv:1912.07383, 2019.

[41] J. Quiñonero-Candela, M. Sugiyama, N. D. Lawrence, and A. Schwaighofer,
Dataset shift in machine learning. Mit Press, 2009.

[42] J. Gama, Knowledge discovery from data streams. CRC Press, 2010.

[43] J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM Comput. Surv., vol. 46, no. 4,
pp. 44:1–44:37, 2014. [Online]. Available: https://doi.org/10.1145/2523813

[44] V. Lemaire, C. Salperwyck, and A. Bondu, “A survey on supervised classifi-
cation on data streams,” in European Business Intelligence Summer School.
Springer, 2014, pp. 88–125.

[45] G. Krempl, I. Žliobaite, D. Brzeziński, E. Hüllermeier, M. Last,
V. Lemaire, T. Noack, A. Shaker, S. Sievi, M. Spiliopoulou, and
J. Stefanowski, “Open challenges for data stream mining research,”
SIGKDD Explor. Newsl., vol. 16, no. 1, pp. 1–10, Sep. 2014. [Online].
Available: http://doi.acm.org/10.1145/2674026.2674028

[46] Y. Achenchabe, A. Bondu, A. Cornuéjols, and V. Lemaire, “Early and
revocable time series classification,” in In Proceedings of the International
Joint Conference on Neural Networks (IJCNN), 2022.

[47] C. Elkan, “The foundations of cost-sensitive learning,” in International
joint conference on artificial intelligence, vol. 17, no. 1. Lawrence Erlbaum
Associates Ltd, 2001, pp. 973–978.

[48] Y. Achenchabe, A. Bondu, A. Cornuéjols, and V. Lemaire, “Ecots: Early
classification in open time series,” arXiv preprint arXiv:2204.00392, 2022.

[49] T. Zoppi, A. Ceccarelli, T. Capecchi, and A. Bondavalli, “Unsupervised
anomaly detectors to detect intrusions in the current threat landscape,”
ACM/IMS Trans. Data Sci., vol. 2, no. 2, apr 2021. [Online]. Available:
https://doi.org/10.1145/3441140

33

https://doi.org/10.1145/2523813
http://doi.acm.org/10.1145/2674026.2674028
https://doi.org/10.1145/3441140

[50] F. Khoshnevisan and M. Chi, “Unifying domain adaptation and domain
generalization for robust prediction across minority racial groups,” in Joint
European Conference on Machine Learning and Knowledge Discovery in
Databases. Springer, 2021, pp. 521–537.

[51] D. J. Samuel and F. Cuzzolin, “Unsupervised anomaly detection for a smart
autonomous robotic assistant surgeon (saras) using a deep residual autoen-
coder,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 7256–
7261, 2021.

[52] R. Luzietti, R. Erkkola, U. Hasbargen, L. A. Mattsson, J. M. Thoulon,
and K. G. Rosén, “European community multi-center trial “fetal ecg
analysis during labor”: St plus ctg analysis,” vol. 27, no. 6, pp. 431–440,
1999. [Online]. Available: https://doi.org/10.1515/JPM.1999.058

[53] N. J. P., “Fetal electrocardiogram (ecg) for fetal monitoring during labour,”
The Cochrane database of systematic reviews, no. 12, 2015.

[54] M. J. Kochenderfer, Decision making under uncertainty: theory and appli-
cation. MIT press, 2015.

[55] P. I. Frazier and J. Y. Angela, “Sequential hypothesis testing under stochas-
tic deadlines.” in NIPS, 2007, pp. 465–472.

[56] A. Fuller, Z. Fan, C. Day, and C. Barlow, “Digital twin: Enabling tech-
nologies, challenges and open research,” IEEE Access, vol. 8, pp. 108 952–
108 971, 2020.

[57] L. Ruff, J. R. Kauffmann, R. A. Vandermeulen, G. Montavon, W. Samek,
M. Kloft, T. G. Dietterich, and K. Müller, “A unifying review of deep
and shallow anomaly detection,” Proc. IEEE, vol. 109, no. 5, pp. 756–795,
2021. [Online]. Available: https://doi.org/10.1109/JPROC.2021.3052449

[58] T. P. Carvalho, F. A. A. M. N. Soares, R. Vita, R. da P. Francisco,
J. P. Basto, and S. G. S. Alcalá, “A systematic literature review of
machine learning methods applied to predictive maintenance,” Computers
& Industrial Engineering, vol. 137, p. 106024, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0360835219304838

[59] O. Ajao, D. Bhowmik, and S. Zargari, “Sentiment aware fake news detec-
tion on online social networks,” in ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2019, pp. 2507–2511.

[60] Y. Elyusufi, Z. Elyusufi et al., “Social networks fake profiles detection using
machine learning algorithms,” in The Proceedings of the Third International
Conference on Smart City Applications. Springer, 2019, pp. 30–40.

34

https://doi.org/10.1515/JPM.1999.058
https://doi.org/10.1109/JPROC.2021.3052449
https://www.sciencedirect.com/science/article/pii/S0360835219304838

[61] M. Fire, D. Kagan, A. Elyashar, and Y. Elovici, “Friend or foe? fake
profile identification in online social networks,” Social Network Analysis
and Mining, vol. 4, no. 1, p. 194, 2014.

[62] N. Singh, T. Sharma, A. Thakral, and T. Choudhury, “Detection of fake
profile in online social networks using machine learning,” in 2018 Interna-
tional Conference on Advances in Computing and Communication Engi-
neering (ICACCE). IEEE, 2018, pp. 231–234.

[63] I. Aydin, S. Mehmet, and M. U. Salur, “Detection of fake twitter accounts
with machine learning algorithms,” in 2018 International Conference on
Artificial Intelligence and Data Processing (IDAP). IEEE, 2018, pp. 1–4.

[64] H. Watanabe, M. Bouazizi, and T. Ohtsuki, “Hate speech on twitter: A
pragmatic approach to collect hateful and offensive expressions and perform
hate speech detection,” IEEE access, vol. 6, pp. 13 825–13 835, 2018.

[65] G. Castillo-Sánchez, G. Marques, E. Dorronzoro, O. Rivera-Romero,
M. Franco-Mart́ın, and I. De la Torre-Dı́ez, “Suicide risk assessment us-
ing machine learning and social networks: A scoping review,” Journal of
medical systems, vol. 44, no. 12, pp. 1–15, 2020.

[66] M. R. Islam, M. A. Kabir, A. Ahmed, A. R. M. Kamal, H. Wang, and
A. Ulhaq, “Depression detection from social network data using machine
learning techniques,” Health information science and systems, vol. 6, no. 1,
pp. 1–12, 2018.

[67] X. Zhou, A. Jain, V. V. Phoha, and R. Zafarani, “Fake news early detection:
A theory-driven model,” Digital Threats: Research and Practice, vol. 1,
no. 2, pp. 1–25, 2020.

[68] A. Breuer, R. Eilat, and U. Weinsberg, “Friend or faux: Graph-based early
detection of fake accounts on social networks,” in Proceedings of The Web
Conference 2020, 2020, pp. 1287–1297.

[69] V. Leiva and A. Freire, “Towards suicide prevention: early detection of de-
pression on social media,” in International Conference on Internet Science.
Springer, 2017, pp. 428–436.

[70] S. Thrun, “Toward robotic cars,” Communications of the ACM, vol. 53,
no. 4, pp. 99–106, 2010.

[71] D. Milakis, B. Van Arem, and B. Van Wee, “Policy and society related
implications of automated driving: A review of literature and directions
for future research,” Journal of Intelligent Transportation Systems, vol. 21,
no. 4, pp. 324–348, 2017.

[72] A. C. Serban, E. Poll, and J. Visser, “A standard driven software architec-
ture for fully autonomous vehicles,” in 2018 IEEE International Conference
on Software Architecture Companion (ICSA-C). IEEE, 2018, pp. 120–127.

35

[73] Y. Ma, Z. Wang, H. Yang, and L. Yang, “Artificial intelligence applications
in the development of autonomous vehicles: a survey,” IEEE/CAA Journal
of Automatica Sinica, vol. 7, no. 2, pp. 315–329, 2020.

[74] D. J. Fagnant and K. Kockelman, “Preparing a nation for autonomous vehi-
cles: opportunities, barriers and policy recommendations,” Transportation
Research Part A: Policy and Practice, vol. 77, pp. 167–181, 2015.

[75] V. John, K. Yoneda, Z. Liu, and S. Mita, “Saliency map generation by
the convolutional neural network for real-time traffic light detection using
template matching,” IEEE Transactions on Computational Imaging, vol. 1,
no. 3, pp. 159–173, 2015.

[76] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,
L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End to end learning
for self-driving cars,” arXiv preprint arXiv:1604.07316, 2016.

[77] M. Bojarski, P. Yeres, A. Choromanska, K. Choromanski, B. Firner,
L. Jackel, and U. Muller, “Explaining how a deep neural network trained
with end-to-end learning steers a car,” arXiv preprint arXiv:1704.07911,
2017.

[78] P. F. Alcantarilla, S. Stent, G. Ros, R. Arroyo, and R. Gherardi, “Street-
view change detection with deconvolutional networks,” Autonomous
Robots, vol. 42, no. 7, pp. 1301–1322, 2018.

[79] H. J. Vishnukumar, B. Butting, C. Müller, and E. Sax, “Machine learning
and deep neural network—artificial intelligence core for lab and real-world
test and validation for adas and autonomous vehicles: Ai for efficient and
quality test and validation,” in 2017 Intelligent Systems Conference (Intel-
liSys). IEEE, 2017, pp. 714–721.

[80] M. Heimberger, J. Horgan, C. Hughes, J. McDonald, and S. Yogamani,
“Computer vision in automated parking systems: Design, implementation
and challenges,” Image and Vision Computing, vol. 68, pp. 88–101, 2017.

[81] S. Gong and L. Du, “Cooperative platoon control for a mixed traffic flow
including human drive vehicles and connected and autonomous vehicles,”
Transportation research part B: methodological, vol. 116, pp. 25–61, 2018.

[82] L. Li, K. Ota, and M. Dong, “Humanlike driving: Empirical decision-
making system for autonomous vehicles,” IEEE Transactions on Vehicular
Technology, vol. 67, no. 8, pp. 6814–6823, 2018.

[83] D. O. Sales, D. O. Correa, L. C. Fernandes, D. F. Wolf, and F. S. Osório,
“Adaptive finite state machine based visual autonomous navigation sys-
tem,” Engineering Applications of Artificial Intelligence, vol. 29, pp. 152–
162, 2014.

36

[84] S.-W. Kim, W. Liu, M. H. Ang, E. Frazzoli, and D. Rus, “The impact
of cooperative perception on decision making and planning of autonomous
vehicles,” IEEE Intelligent Transportation Systems Magazine, vol. 7, no. 3,
pp. 39–50, 2015.

[85] N. Tatbul, T. J. Lee, S. Zdonik, M. Alam, and J. Gottschlich, “Precision
and recall for time series,” in Advances in Neural Information Processing
Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, Eds., vol. 31. Curran Associates, Inc., 2018.

12 Appendix

12.1 In practice, how to define the loss function ?

The loss function LL in Equation 5 can be expressed in many different ways,
depending on the application considered. In practice, mapping rules need to
be defined to match the decisions made to the true ones. In Equation 5, the
purpose is to map the indices i′ to i, considering that the number of decisions
made may be different than it should be (k̂x 6= kx). In particular, these rules
address the following questions: (i) how long should we wait before considering
that a true decision has been missed? (see a rule example in Figure 7) (ii) when
the number of decisions made is too large, how to identify the undue decisions?
(e.g. Figure 8) (iii) what is the minimum time overlap between a decision made
and the corresponding true one? (e.g. Figure 9) And of course, these mapping
rules are specific to each application.

Figure 7: Maximum delay after which a decision is considered as missed.

Figure 8: A decision is undue if no true decision exists in the time interval.

In its general form, the loss function LL should involve several decision costs
mentioned below. Their origin is further detailed in Section 3. For the moment,
let us consider that the following costs are fixed, deterministic, and given as
input to an ML-EDM approach:

37

Figure 9: Minimum overlap to consider that a decision is not missed.

• a prediction cost Lprediction,

• a delay cost Ldelay,

• a time overlap cost Loverlap,
• a cost of missing the decision Lmissing,
• a cost of an extra and undue decision Ldelete.

As in the ECTS problem, the prediction cost Lprediction accounts for a poten-
tially bad prediction and it can be expressed as a cost matrix. The delay cost
Ldelay depends on the trigger time t̂i′ and the time period associated to the i-th
true decision [si, ei]. Figure 10 gives an example where a delay cost is paid since
the triggering time (see the green vertical line) is located after the beginning of
the period associated with the decision. The overlap cost Loverlap accounts that

the predicted periods {(ŝi′ , êi′)}k̂xi′=1 might not coincide temporally with the pe-

riods of the true decisions {(si, ei)}kxi=1. For instance in Figure 11, the decisions
made (shown in the second line) are out of sync with the truth decisions (see
the first line), which results in four overlapping periods. The interested reader
may refer to [85] which addresses the evaluation of models by considering such
temporal overlap. Finally, the costs of missing a decision Lmissing and making
an additional undue one Ldelete account that the number of decisions made can
be different than it should be (k̂x 6= kx). Figure 12 shows a situation where the
first anomaly (represented by the class 1) is not detected, incurring a missing
cost, and where a false detection occurs at the end leading to a delete cost.

Figure 10: Example of paid delay cost.

12.2 In practice, how to evaluate a ML-EDM approaches?

In some applications, decision costs are available as prior knowledge. It is the
case for instance in [50], where the objective is to detect as early as possible

38

Figure 11: Example of paid overlap cost.

Figure 12: Example of a missing decision and an extra undue one.

patients suffering from septic shock, and where the cost of delaying decisions is
perfectly known. When available, decision costs are of great help in evaluating
ML-EDM approaches. Indeed, each decision made can be evaluated by the
amount of costs actually incurred, considering: (i) the triggering moment ;
(ii) the ground truth ; (iii) and the value of the decision costs (i.e. Ldelay,
Lprediction, and Lrevoke).

In the particular case of ECTS problem, a cost-based evaluation criterion is
proposed in [3] which simply corresponds to the empirical risk calculated on a
set of test individuals (see Equation 10). In cases where decision costs are un-
available, a multi-criteria evaluation can be considered to take into account the
different costs. For instance, in [9], the earliness and accuracy of decisions are
evaluated separately, and the Pareto optimal front is made up of the dominant
approaches considering both criteria.

In the more general case of ML-EDM where multiple early decisions have
to be made, a cost-based evaluation requires more prior knowledge. Indeed,
mapping rules would have to be defined in order to match the triggered decisions
with the true ones, the cost of overlap Loverlap between predicted and true time
periods, as well as the costs of missing a decision Lmissing and triggering an
undue one Ldelete (see Equation 5 in Section 2 and Figures 7 to 12).

39

ML-EDM challenges SOTA Main application perspectives

#1 (Section 4)

Extending non-myopia to
unsupervised approaches

In anomaly detection applications, antici-
pate the deviation of an observed individ-
ual from a normal behavior.

#2 (Section 4)

Addressing other supervised
learning tasks

Adapt ECTS approaches to extrinsic re-
gression problems.

Develop forecasting methods whose predic-
tion horizon can adapt.

#3 (Section 4)

Early weakly supervised
learning (WSL)

Adapt ECTS approaches to the different
WSL classification scenarios.

#4 (Section 5)

Data type agnostic ML-EDM
[3, 10,
11, 18]

Identify agnostic approaches in the litera-
ture and promote this feature.

Define a pivotal format allowing to develop
an ML-EDM library.

#5 (Section 6)

Online predictions to be
located in time

Applications where the arrival of an event
(e.g. a failure) must be predicted in ad-
vance, as well as its duration.

#6 (Section 6)

Online accuracy vs. earliness
trade-off

[48] Optimize decision time in online predictive
maintenance applications.

#7 (Section 6)

Management of
non-stationarity in ML-EDM

Properly manage the potentially long life of
ML-EDM models.

#8 (Section 7)

Reactivity vs. stability dilemma
for revocable decisions

[46] Applications where undue and excessive
decision changes must be avoided.

#9 (Section 7)

Non-myopia to revocation risk
[46] Applications where it is necessary to delay

decisions which are likely to be changed
later.

#10 (Section 3)

scheduling strategy and time-
dependent decision costs

Applications where the variation of the
decision costs over time is known or can be
modeled.

Applications where the scheduling strategy
is only known through its interactions with
the triggering strategy.

Table 1: Overview of the proposed challenges by category: in blue those
related to the learning task, in green those related to online ML-EDM, in
purple those related to revoking decisions, and in white the others.

40

	1 Introduction
	2 Definition of ML-EDM
	3 Origin of the delay cost
	4 Learning tasks
	5 Types of data
	6 Online Early Decision Making
	7 Revocable decisions
	8 Origin of the decision costs
	9 Overview on challenges
	10 Usecases
	10.1 Early classification of fetal heart rates
	10.2 Digital twin in production systems
	10.3 Social networks: societal and psychological risks
	10.4 Autonomous vehicle

	11 Conclusion and perspectives
	12 Appendix
	12.1 In practice, how to define the loss function ?
	12.2 In practice, how to evaluate a ML-EDM approaches?

