'.)

Check for
Updates

Protecting Data Integrity of Web Applications with Database
Constraints Inferred from Application Code

Haochen Huang
hhuang@ucsd.edu
University of California, San Diego
USA

Li Zhong
lizhong@ucsd.edu
University of California, San Diego
USA

ABSTRACT

Database-backed web applications persist a large amount of produc-
tion data and have high requirements for integrity. To protect data
integrity against application code bugs and operator mistakes, most
RDBMSes allow application developers to specify various types of
integrity constraints. Unfortunately, applications (e.g., e-commerce
web apps) often do not take full advantage of this capability and
miss specifying many database constraints, resulting in many se-
vere consequences, such as crashing the order placement page and
corrupting the store inventory data.

In this paper, we focus on the problem of missing database con-
straints in web applications. We first study several widely used
open-source e-commerce and communication applications, and ob-
serve that all these applications have missed integrity constraints
and many were added later as afterthoughts after issues occurred.

Motivated by our observations, we build a tool called CFINDER
to automatically infer missing database constraints from applica-
tion source code by cleverly leveraging the observation that many
source code patterns usually imply certain data integrity constraints.
By analyzing application source code automatically, CFINDER can
extract such constraints and check against their database schemas
to detect missing ones. We evaluate CFINDER with eight widely-
deployed web applications, including one commercial company
with millions of users. Overall, our tool identifies 210 previously
unknown missing constraints. We have reported 92 of them to the
developers of these applications, so far 75 are confirmed. Our tool
achieves a precision of 78% and a recall of 79%.

CCS CONCEPTS

« Software and its engineering — Software verification and
validation; Software reliability.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASPLOS °23, March 25-29, 2023, Vancouver, BC, Canada

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9916-6/23/03.

https://doi.org/10.1145/3575693.3575699

632

Bingyu Shen
byshen@eng.ucsd.edu
University of California, San Diego
USA

Yuanyuan Zhou
yyzhou@eng.ucsd.edu
University of California, San Diego
USA

KEYWORDS

Data integrity, Database constraints, Web applications, Static anal-
ysis

ACM Reference Format:

Haochen Huang, Bingyu Shen, Li Zhong, and Yuanyuan Zhou. 2023. Pro-
tecting Data Integrity of Web Applications with Database Constraints
Inferred from Application Code. In Proceedings of the 28th ACM Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2 (ASPLOS ’23), March 25-29, 2023, Vancouver,
BC, Canada. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3575693.3575699

1 INTRODUCTION
1.1 Problem: Missing Database Constraints

Data integrity is critical for database-backed web applications used
in e-commerce, banking, and many aspects of our daily life [27].
As various data redundancy techniques have been used in com-
puter storage and network subsystems, integrity issues caused by
hardware errors [6, 36, 61] or crash failures 8, 31] have been reason-
ably well addressed in today’s data centers. In contrast, application
bugs or operator errors are significantly understudied and remain
as increasingly pervasive root causes for data integrity issues in
databases [27].

Fortunately, most of today’s relational database management
systems (RDBMS) provide integrity constraints that help applica-
tions to guarantee desired data integrity [9, 52]. Specifically, ap-
plication developers specify database constraints based on their
own business logic and enforce them in the database schema, such
as a not-null constraint for order.total, or a unique constraint for
user.email. Such database constraints would detect and refuse any
incorrect data manipulation caused by either bugs in application
code, or operator mistakes when directly manipulating data via the
database administrator (DBA) console. Common constraints sup-
ported in popular RDBMSes include Not-null, Unique, and Foreign
key constraints [38, 40, 43, 48].

The necessity of specifying database constraints to protect data
integrity has received increasing attention. For example, central
players in modern web frameworks, such as Rails (Ruby), Django
(Python), and Hibernate (Java), have supported the migration helpers
for all three common database constraints in recent years [10, 50,
62], enabling applications to easily specify and enforce constraints
in databases.

https://doi.org/10.1145/3575693.3575699
https://doi.org/10.1145/3575693.3575699
https://doi.org/10.1145/3575693.3575699
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3575693.3575699&domain=pdf&date_stamp=2023-01-30

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Haochen Huang, Bingyu Shen, Li Zhong, and Yuanyuan Zhou

Violated constraint: /*Saleor*/

One Order total field has null value.
Consequence:

[Page crash] Shop admin cannot operate on the
dashboard page as it crashes.

Consequence:

logging in.
Resolution taken: Resolution taken:

Add Not-null constraint to database.

Violated constraint:
Two UserProfile.email are the same, not unique.

[Block business logic] Block either user from

Add Unique constraint to database.

/*Zulip*/| Violated constraint: /*Django-oscar*/
Order.basket_id is an integer-field rather than a
foreign key to Basket.

Consequence:

[Data corruption] Potential data corruption and
performance hits for user requests.

Resolution taken:
Add Foreign key constraint to database.

(a)

(b)

(©)

Figure 1: Three real-world issues [18, 54, 74] that violated three types of DB constraints and led to severe consequences. These issues are from
popular open-source web applications. To fix the issues, the developers added the constraints to the database [16, 55, 73].

However, despite these initiatives, many app developers still do
not take full advantage of database constraints to protect their ap-
plication data integrity against application bugs or operator errors.
We observe in our study (§ 2) that many constraints (10-72) for each
studied app were added as afterthoughts, i.e., they were missed first
when columns were created and added much later, often because a
data integrity issue was detected and resulted in damages.

There are many reasons for such negligence. As the industry
demands more engineers to build various applications, many of
them do not have solid database training and may not be aware of
data integrity or constraints at all [59, 60]; Additionally, to err is hu-
man, even experienced developers can easily forget some required
constraints due to deadline pressure.

1.2 Consequences of Missing Constraints

Missing DB constraints can result in severe consequences. Figure 1
shows three real-world examples [18, 54, 74] from three widely-used
e-commerce and team chat applications. These issues were caused
by inconsistent data stored in databases that violate the not-null,
unique, or foreign key constraint. As a result, the applications suffer
from severe consequences, such as page crashes and failed login
attempts. For e-commerce, any such issue can lead to significant
business loss [54].

To fix the problem, and more importantly to avoid similar issues
in the future, developers added the missing data constraints into
their corresponding databases [16, 55, 73]. Had these constraints
been specified earlier, such issues would have been detected and
reported before invalid data being inserted into databases in the
first place and avoid the impact on users.

Missing DB constraints has two primary consequences:

e Without database constraints to guard data integrity, data cor-
ruption caused by application bugs can easily stay dormant for
a long time before being exposed, impacting users and leading
to business loss. Without early detection, the culprit application
bug can cause many corruptions, making database repairing a
more challenging task.

e Missing database constraints also introduces challenges in di-
agnosing such issues because it is difficult to trace back and
identify when and how such inconsistent or erroneous data were
added into the databases.

We can look into one of the examples [54] in Figure 1(a) from the
popular e-commerce Saleor [56]. The app developers noticed a page
crash caused by “an invalid order in database with a null total price””

633

App Path 1 Path2 | (DB console| |App Path I Path2 [|DB console

—_— v v
Constraints checker

DB v Valid data only

v v
Potential to insert
invalid data

DB
(a) Without DB constraints

(b) With DB constraints

Figure 2: In (a) when the constraints are not enforced in DB, missing
validation in any code path or DB console could potentially cause
invalid data to be inserted. Contrarily, in (b), when DB constraints
are enforced, even if validations are missed in some paths, DB always
conducts integrity checks and blocks invalid data as the final guard.

However, they got stuck in identifying the root cause of the null
record. After rounds of investigations in nine days, three developers
finally found the application bug. To detect future similar applica-
tion bugs earlier before they corrupt databases, developers added
the not-null constraints into the database to “prevent reported weird
and hard to reproduce bugs”, according to their commit comment.

1.3 Why DB Constraints Are Better Guards?

Interestingly, many developers think that their own application
code can check against data integrity violations, and thereby there
is no need to add DB constraints [7, 28]. Such assumptions often
fail to protect data integrity in practice because there are multiple
places that can change the database data and result in data integrity
violations if not checked properly.

Specifically, as depicted in Figure 2, database data can be added
or altered in various places throughout the application’s code, and
some of them may not even be in the same piece of software (e.g.
some batch job scripts to insert or change data in bulk). To make
things even worse, software may implement some code logic in
a different language [37], or by different teams. The fast turnover
rates of today’s software engineers in IT companies further make
it difficult to ensure that every single code location has proper
integrity checks.

Figure 3 shows one such real-world example [17] from Oscar [44].
In this e-commerce application, each user’s email field needs to
be unique as it is used for authentication. To ensure this, when a
new user signed up, the application code checked whether that
email already existed in DB. Unfortunately, on another code path
that performed email updating for registered users, there was no
check at all. As a result, this application bug allowed the same

Protecting Data Integrity of Web Applications with Database Constraints Inferred from Application Code

/* django-oscar/apps/customer/forms.py */

class EmailUserCreationForm(Form):
def save(self, email):
if User.objects.filter(email=email).exists():
raise forms.ValidationError("A user with
that email already exists.")

user.save() \> Valiga?e uniqueness
efore save

Code path 1

class UserAndProfileForm(Form):

Code path 2
def save(self, email):

Save
invalid data

Miss
user.save() validation
Figure 3: A real-world issue [17] from Oscar caused by missing code
validations. The user’s email should be unique. Developers specified
the check in one code path (when new users registered) but forgot
to check in another code path (when a registered user updated his
email). To fix it, they enforced the unique constraint in DB.

email addresses to be used for two or more user accounts, causing
many login issues. It took developers quite some time to diagnose,
and even much longer to repair the database (since they needed to
inform the affected users to change to another email address).

Moreover, application code checks for data integrity often fail
during concurrent executions because of data races [66]. For ex-
ample, two concurrently handled requests can both receive non-
existent results from the data integrity check in the first query,
and then both insert the same values in the second query, which
violates the unique constraint.

A study on Rails applications [4] reveals that 13% of code val-
idations for uniqueness and foreign key are error-prone during
concurrent executions, as is also warned in web frameworks’ doc-
umentations [14, 51]. Our study in §2 also confirmed such obser-
vation. Even encapsulating validation logic within a transaction
may not work because most production databases default to non-
serializable isolation [4, 66].

Furthermore, DB admins can also manipulate data using the
“backdoor”, i.e., the DB console, which bypasses all checks in the
code. In comparison, in Figure 2(b), when constraints are enforced
by the DB, even if validations are missed in some paths, the DB
always acts as the final guard to perform integrity checks and detect
violations against specified constraints.

As such, we believe that web applications should take full advan-
tage of database constraints to ensure data integrity when possible.

1.4 Our Contributions

This paper focuses on the problem of missing database constraints
in widely-used web applications that leads to data integrity issues
and results in system downtime and business loss.

First, we make one of the first attempts in understanding and
evaluating the reality of the adoption of database constraints in
today’s web applications. We study five popular web apps in Ta-
ble 1 ranging from e-commerce to communication tools. Our study
reveals several interesting findings: (1) Many (10-72) database con-
straints were missed in the beginning and were added much later
as afterthoughts after some issues occurred. (2) Most (82%) of these
cases could result in consequences, including page crash and data
corruption of order-related or payment-related records. (3) Most
(87%) issues that missed DB constraints also missed code checks

634

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

if not Table.get(col=val).exist():
Table(...).save()

(a) Table (col) Unique

Table.col.method()

(b) Table (col) Not null

Figure 4: Code snippets with implicit assumptions on database con-
straints. (a) Unique constraint: Save record only when no record
filtered by the column exists. (b) Not-null constraint: Invoke meth-
ods on the column which should not be nullable.

in application code, indicating that solely relying on application
code checks instead of leveraging database constraints is not a safe
approach to guarantee data integrity (More details in §2).

Second, we leverage a unique observation that application code
usually contains “hints” that imply certain data constraint assump-
tions made by developers. Figure 4 shows two examples of such
code snippets. In (a), the code uses the column col as an identifier
to check its existence, and only creates a new record if it does not
already exist, indicating that the col is a unique identifier. In (b),
the code invokes a method on col, indicating that col cannot be
null. §3.3 shows all our discovered code patterns that imply data
constraints.

By leveraging this observation, we build CFINDER which employs
program analysis to analyze application source code to automati-
cally infer and detect any missing database constraints to improve
database integrity (against application bugs and operator mistakes).

We evaluate CFINDER with eight widely deployed web applica-
tions, including an industry-strength software from a commercial
company with millions of users. CFINDER has detected 210 miss-
ing DB constraints from these applications. We have reported 92 of
them to the developers of these applications, so far 75 have
been confirmed by these software. The tool effectively detects
the missing constraints with a precision of 78% for newly detected
constraints and a recall of 79% for an existing dataset.

2 UNDERSTANDING MISSING DATABASE
CONSTRAINTS IN WEB APPLICATIONS

Before we build a tool to infer the missing constraints, we first aim
to understand more about the current status of DB constraints in
web applications. Specifically, we aim to answer: (1) Is it common for
developers to miss specifying some DB constraints? We define “miss-
ing” constraints as those that are not specified when the columns
are created, and added later in another pull request. Missing con-
straints indicate the potential vulnerabilities which allow invalid
data to get stored in the database. (2) Do these missing DB constraints
lead to issues with severe consequences? Finally, (3) Do these miss-
ing constraints have validation checks in the code and whether the
validations can protect the data integrity effectively?

As a lens to answer these questions, we conduct the study on
five widely-deployed real-world web applications listed in Table 1,
representing app domains including e-commerce, team chat, etc.
The apps are built on top of Django [12], a popular framework
powering more than 94K web apps, including large commercial
companies like Instagram [23].

To collect the history of adding DB constraints, we leverage
the database migration files [15], which maintain the historical
modifications to the database schema. From them, we collect the

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Table 1: The web applications used in our study. Stars: Number of
stars on Github. LoC: Lines of code.

App. ‘ Category ‘ Stars ‘ LoC ‘#Table ‘ #Column
Oscar [44] E-commerce 5.2K | 74K 77 773
Saleor [56] E-commerce 15.3K | 298K | 98 1013
Shuup [58] E-commerce 1.8K | 196K | 227 2236
Zulip [79] Team chat 153K | 361K | 97 826

Wagtail [63] | Content management | 11.7K | 181K | 60 841

Table 2: The number of database constraints that are missed first

and added in later pull requests in each application.

App. ‘ Oscar ‘ Saleor ‘ Shuup ‘ Zulip ‘ Wagtail ‘ Total
Unique 22 10 5 16 6 59
Not-null 48 9 6 9 4 76
Foreign key | 2 2 0 4 0 8
Total |72 |21 | 11 |29 |10 | 143

SQLs that add the new database constraints. To get the “missing”
constraints, we further filter out the constraints that are added
together with the creation of columns. To collect the related issues,
we search the issue tickets that reference the commit of migration
files. We then manually examine the issues to understand the root
causes and severity based on developer comments and issue labels.

Threats to Validity The five apps in our study are specific to
Python-based web applications using Django, which may not repre-
sent all web applications; Other web frameworks, like Rails (Ruby)
and Hibernate (Java), let developers specify and use database con-
straints with similar primitives.

Observation 1: Many constraints were added as afterthoughts, with
10-72 constraints missed first and added in later pull requests for
each application (Table 2). Such an overlook makes the studied
applications vulnerable to invalid data, as it can potentially be
stored in the database before the constraints are enforced correctly.

Observation 2: A majority (82%) of these missing constraints were
noticed and added by developers after data integrity issues were de-
tected (Table 3). These issues could lead to severe consequences. More-
over, they took a long time (on average 19 months) to get exposed.
We classify how developers find such missing constraints into four
categories: (1) Developers were notified from 30 issue tickets for 31
(22%) missing constraints. Users were likely to have experienced
some real-world issues with consequences. (2) After fixing the re-
ported issues, developers sometimes realized that more data fields
had similar issues. Thus, they added 59 (41%) such missing con-
straints. (3) The other 27 missing constraints belong to “Fixed by
dev”, meaning that developers mentioned "fix", "prevent issue”, etc.
in comments, which indicates their purpose to fix an issue. (4) 22
(15%) were added due to new features or code refactoring.

We find that 30 different issues with detailed user reports have
led to various severe consequences. Among them, 18 issues caused
crashes, with 7 of them blocking critical business logic (order or
payment-related for e-commerce), causing poor user experience
and revenue loss. The other 8 caused data corruption, including
order data and other users’ account data.

635

Haochen Huang, Bingyu Shen, Li Zhong, and Yuanyuan Zhou

Table 3: Reasons why developers add the missing constraints. The
majority (82%) originates from issues, either from user reports or
developers’ findings.

Tvpe Related to issue Feature / | Unk-

P Fromrep- Learnfrom Fixed Refactor | nown
orted issue similar issue by dev

Unique 17 16 15 8 3

Not-null 11 40 12 12 1

FK 3 3 0 2 0

31 (22%) 59 (41%) 27 (19%)

Total 22 (15% 4 (3%

ota 117 (82%) (15%) (3%)

To make things worse, these missing constraints took a long
time (on average 19 months) to be noticed and fixed, opening up
a long vulnerable time window that allowed constraint-violating
data to be inserted into the database.

Observation 3: Most (87%) issues that missed database constraints
also missed some required checks in the application code. For the
rest (13%), even with code checks, the constraint-violating data was
still stored during concurrent requests. It indicates that the code
checks are incomplete and insufficient. The 30 issues belong to
three categories. (1) 22 (73%) have no checks at all in the application
code. (2) Four (13%) issues have checks in some code paths but miss
checks in other paths that manipulate the same data. It indicates
that developers usually fail to ensure multiple places adhere to the
same constraints. (3) Interestingly, for the rest four (13%) issues that
have full code checks, constraint-violating data still makes its way
into the database. Developers suspected the reason was that code
checks failed to handle concurrent requests [72]. They commented,
“This is clearly the result of a race, since we have this check in the view
code”, after careful diagnosis.

Implication In summary, even for these widely deployed web
applications, database constraints are not fully leveraged by devel-
opers to protect their application data. A large number of database
constraints are missing, causing issues with severe consequences.
Moreover, the validations in the application code are ad-hoc and
generally error-prone to concurrent requests, which makes the
situation even worse.

3 DESIGN AND IMPLEMENTATION

3.1 Design Choices: Possible Ways to Find
Missing Constraints

Given the consequences brought by missing database constraints,
the current practice of adding them after issues have been exposed
is far from satisfaction. There are three possible approaches to
identify the missing constraints:

Manual inspection Letting developers inspect the whole data-
base schema manually requires their expertise in both database
and business logic. It is tedious and error-prone even for domain
experts, considering the large number of tables (up to thousands)
and columns (up to hundreds per table).

Infer from production data Another approach is to discover from
the production data. For example, if a column has a predominant

Protecting Data Integrity of Web Applications with Database Constraints Inferred from Application Code

Q) Pattern Detection in Code

DB Constraints (Final output)

D
<>

Source code

N
(ontrol & data-flow analysis |

|
| R, Y e |

Pattern Matched Code snippets o » —————————————
Recognition | |if len(lines)==0: W 1ne Use-def cham|
Patterns in Fig. 6 wishlist.lines.save(.. } 5 FK reference]

Figure 5: The overview of CFINDER. CFINDER contains three steps to
infer the missing database constraints from the application source
code. The green boxes are the output of the steps.

percentage of records that satisfy a certain constraint (e.g., 99.99%
are not-null), a potential constraint is indicated.

Though the idea is intuitive, it has three main limitations. (1)
Approaches based on statistics are usually biased and limited by
insufficient datasets. E.g., some rare cases may allow the insertions
of null data, but the cases have not been triggered yet. As a result,
the wrong conclusion of a not-null constraint can be drawn from
the data. Similarly, due to a lack of data, the idea does not apply
to newly created tables or added columns, from which most of the
missing constraints originate. (2) It is cumbersome for developers
to gain access to the production data, especially with access control
and privacy concerns. (3) This approach has unacceptably high
false positive rates [1, 2]. In previous work [5], 95% of discovered
statistically-valid unique constraints are false positives (see more
details in §5).

Infer from application code Inferring constraints from the code
logic has several advantages. Compared to data, the source code
(1) is not limited by data, and (2) contains the business logic of
what constraints the data should follow in semantics. Moreover,
developers can always cross-check the inferred constraints with the
production data. The major concern is, given the code complexity
and diversity, how many data constraints can possibly be inferred
from the source code?

After looking into several real-world web applications, to our
surprise, we observe many code patterns that have implicit as-
sumptions on database constraints for all three constraint types.
Developers have the assumptions about data constraints in mind,
thus their code implementation that retrieves or manipulates the
data will follow certain patterns. We list the observed patterns for
each constraint type in Figure 6 (§3.3).

Based on the above trade-offs and observations, we choose to
extract missing database constraints from the application code.

3.2 CFINDER Overview

Figure 5 illustrates the three steps of our approach. In step (1),
we recognize the code patterns that imply certain DB constraint
assumptions (§3.3). In step (2) , with observed patterns and applica-
tion code as input, CFINDER applies control and data flow analysis
to find code snippets that match each pattern’s conditions (§3.4);
In step (3 , from the found snippets, CFINDER extracts and infers
the formal DB constraints (§3.5); The output of CFINDER is the set
of missing DB constraints.

636

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

The static analysis is flow-sensitive. It is also field-sensitive be-
cause CFINDER treats the fields of a model class differently. Cur-
rently, it does not consider alias. In our evaluation, we didn’t catch
any false positives caused by aliasing.

3.3 Code Patterns with Assumptions on DB
Constraints

3.3.1 Code Patterns. From many web applications, we have ob-
served that many code patterns with assumptions on each con-
straint type widely exist, but have not been studied before. Figure 6
lists the patterns we discovered, along with real-world examples
from e-commerce apps. We name each pattern as PA (type) (idx)»
where type stands for constraint types and idx is the index.

Check existence before save/error handling (PA,1 unique): The
code explicitly checks if the data constraints hold. As Figure 6a
shows, it first retrieves records filtered by product, then only saves
a new record if no existing record returns. It reflects developers’
intention on uniqueness: only one record with the value of product
can exist in DB. Similarly, the pattern can be extended to do error-
handling after the check, i.e., throwing exceptions when the record
already exists.

APIs with assumptions (PA,; unique): Web frameworks provide
developers with QuerySet APIs [13] to encapsulate data manipu-
lations. Some APIs are implemented with similar assumptions as
Check existence before error handling. For example, get uses col-
umn(s) as the unique identifier to retrieve the record and throws an
exception when multiple records are returned [11]. Thus, when de-
velopers use this AP, they expect the column(s) to be unique. Such
APIs include {get,get_or_create, get_obj_or_404} in Django.

Method/field invocation on column without NULL check (PAq;
not-null): When invoking a method or accessing a field on a col-
umn, the column should be not-null. Otherwise, invocation on
NULL will throw an exception. We further exclude cases that have
explicit NULL checks before the invocation, as the check avoids
the exception, making them false positives.

Check NULL before assignment/error-handling (PAn; not-null):
Similar assumptions as PA,1 can be applied to not-null with some
tweaking. For example, when order.creator is null, the app raises
an error “Anonymous orders not allowed”. One variant is, when
the field is NULL, the code explicitly assigns a value to the field
before saving, making it not-null.

Field with default value (PA,3 not-null): Some fields have a
default value, which works similarly as PA», i.e., assigns the default
value to the field if it has not been set before saving. If nowhere in
the code would explicitly assign the field a null value, we assume it
is not-null.

Column referring primary key (PAg,PAs, foreign key): Patterns
in Figure 6c reflect the referential assumption between tables: the
column in the dependent table refers to the primary key (PK) value
in the referenced table (PA¢), or vice versa (PAf,). For example,
in PAg¢y, the value from Voucher (referenced table)’s PK is saved
to Discount (dependant table)’s column named voucher_id, in-
dicating that Discount.voucher_id should be a foreign key to
Voucher.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Haochen Huang, Bingyu Shen, Li Zhong, and Yuanyuan Zhou

Pattern with
Assumptions

Control flow graph

Real-world Code Example

Explanation on assumption

PA,; for Unique:

Check existence
before save/error-
handling

[if Table(col=val).exist():]

~F

Table.save()

/* Oscar: wishlists/models.py */

lines = wishlist.lines.
filter(product=product)

if len(lines) ==
wishlist.lines.save(...)

Implies: WishlistLine Unique (product,wishlist)

Only save record when no
record filtered by the
column(s) exist.

[if Table(col=val).exist(): |
T /

/* Oscar: wishlists/views.py */
if to_wishlist.lines.
filter(product=product).count() > 0:
raise Error("WishList already
containing product™)

Implies: WishlistLine Unique (product,wishlist)

If one record filtered by the
column(s) already exist in
database, throws an exception.

PA,,, for Unique:

APIs implemented
with assumptions

API 'get'
|Tab1e.get(col=va1) | implcmcr%tcd as:

[if len(matched_record)>1: |

LV raise Exception

/* Oscar: dashboard/orders/views.py*/
order = Order.objects.get(
number=request.GET['order_number'])

Implies: Order Unique (number)

Use column(s) as the unique
identifier to retrieve data:

if more than one results exist,
throws an exception.

(a) Patterns with assumptions on Unique Constraint.

PA,,; for Not-null:

Method/field
invocation without
NULL check

|Tab1e.col.meth0d()| \/

|if Table.col is not None:l

L>|Tab1e.col.method()| X

/* Saleor: mutations/draft_orders.py*/
for line in order.lines.all():
if line.variant.track_inventory

or line.variant.is_preorder_active():...

Implies: OrderLine Not NULL (variant)

Invocation on a column is only
valid when the column is not-
null. Having NULL check
before makes it a false positive.

PA,, for Not-null:

Check NULL
before assignment
/error-handling

|if Table.col is None: |
T A

raise Exception

Table.col=...

/* Shuup: models/_orders.pyx*/
class Order(Model):
if not self.creator:
raise Error("Anonymous orders not
allowed.")

Implies: Order Not NULL (creator)

If the column value is NULL,
throws an exception or
explicitly assign it a value.

PA,; for Not-null:

Field with
default value

| Table.col.default = |

& |Table.col = None | not exist

/* Oscar: order/models.py */
class OrderLine(Model):

quantity = IntegerField(default=1)
Implies: OrderLine Not NULL (quantity)

The column has a default value
assigned and no place sets the
column to be null.

(b) Patterns with assumptions on Not-null Constraint.

PA¢; for FK:

Column referring

| DepTable(col=RefTable.pk).save() |

/* Oscar: apps/order/utils.py */

def create_discount_model(self):
order_discount.voucher_id = voucher.id
order_discount.save()

Dependent table’s column is
assigned the value of

primary key | DepTable.filter(col=RefTable.pk) | Referenced table’s primary key.
Implies: Discount FK (voucher _id) ref Voucher(id)
/* Saleor: mutations/products.py */
PAy, for FK: class ProductVariantDelete(): Use Dependent table’s column
Primary key | RefTable.get(pk=DepTable.col) | product = Product.get(value when filter by

referring column

id=instance.product_id)

Implies: Variant FK (product_id) ref Product(id)

Referenced table’s primary key.

(c) Patterns with assumptions on Foreign Key Constraint

Figure 6: Code patterns with implicit assumptions on three DB constraint types, together with real-world examples and explanations.

predefined regular expressions and match the code with them. This
may work for simple cases with well-defined APIs, such as get. But
it cannot detect most other cases. Take PA, “check NULL before
assignment” as an example, matching any assignment after any
NULL check would introduce too many false positives, since the
two operations could come from unrelated code blocks and operate
on unrelated data. Such complex control and data logic can hardly
be defined and matched with regular expressions. Moreover, it can-
not infer the table of the constraints as that requires the data flow
information (§3.5).

Our evaluation in §4.2 and §4.3 shows that these code patterns are
effective for detecting missing DB constraints (found 210 previously
unknown constraints) and have good coverage (79% recall on a
collected dataset). We also discuss potential improvements and
extensions to the patterns there. Besides, since these patterns reflect
semantic code logic, they are general and applicable to applications
in other frameworks or languages.

3.3.2 Conditions of Code Patterns. After observing these code pat-
terns, a natural question would be how to detect them in the ap-
plication code. A naive way is to represent the patterns with some

637

Protecting Data Integrity of Web Applications with Database Constraints Inferred from Application Code

Instead, CFINDER represents patterns as the conjunction of three
types of conditions, which involve control and data dependencies
built on top of the abstract syntax tree (AST) [49]. Based on it, our
detection algorithm (§3.4) traverses the AST and finds snippets that
match all conditions of a pattern.

To introduce the three types of conditions, we use the first pat-
tern PA,1 for unique constraint in Figure 6 as the example, which
checks existence before save/error handling.

Control dependencies (C-D) Each pattern consists of several sub-
components (subtrees in AST), and each subtree has its specific
semantic meaning. These subtrees follow certain control depen-
dencies. For example, PA,1 requires two sub-components, check
existence and save. They represent two subtrees that satisfy the
control flow of the IF block, i.e., condition for check existence, and
body or else for save.

Other types of control dependencies include one syntax tree
T; being the parent of another tree T}, etc. Using another pattern
PAn1 as the example, we require that for all parent trees of the field
invocation, no one T has a condition branch Ty ,4 that has the NULL
check.

Syntax pattern matching (P-M) As we mentioned, each subtree
needs to represent a specific semantic meaning. To bridge their
gap, we pre-define a set of syntax-based patterns P, where each P
consists of a category of simple syntax tree patterns with the same
semantic meaning S.. Therefore, whether a subtree T represents
a semantic meaning S« can be evaluated by T matching with one
syntax pattern of P,.

For example, we define Pgyjst to represent the category of patterns
indicating a check on the existence of a record. One such syntax
tree could be a Call block with a Attribute subtree with name
exist (Check more in Figure 7). These syntax patterns are general
to the framework and easy to customize.

Back to PA,1, it requires: (1) the if-condition checks whether the
record exist or not exist, i.e., Trond matches with Peyjst Or —Peyist- (2)
Respectively, the two subtrees Thody and Tese in two branches match
with Psave (save record when not exist) or Perror (error-handling
when a record exists). The results (R.) of these syntax pattern match-
ing are connected with AND and OR, to form the final evaluation
of this condition.

Data dependencies (D-D) This condition requires the data in
subtrees to follow certain data dependencies, i.e., the two subtrees
operate on the same tables and columns.

In PA,1, we require the match of the table and column that (1)
get saved in Thoqy and (2) perform the NULL check in Teong. We
evaluate the data dependencies by first inferring those tables and
columns from each subtree using data-flow analysis (§3.5) and then
matching them.

To sum up, we list the formal representation of PA1:

(C = D) [Teonds Thodys Telse] = IF_block_subtrees()
(P = M) Reond A (Rpody V Relse), Where
[Reonds Rbodys Relse] =
MATCH([Tcond> Tbody» Telsel [Pexists Perror, Psavel) V
MATCH([Tconds Tbodya Tetsel> [Pexists Psaves Perror])
(D - D) DataDepend(Tcond, Thody V Telse)

638

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

fune omparator fun value value
Attribute Num Attyibute Name Name
exists o1 error/critical Jogger
Pyt Check for existence P, Error handling

Figure 7: Example of pre-defined syntax tree patterns. We use them
to match with the candidate syntax trees. Each category of P, can
have several patterns representing the same semantic meaning.

3.4 Code Patterns Detection Algorithm

In step (2), CFINDER detects code snippets that can match the
conditions of one code pattern from the application code. Taking
the first code snippet for PA,1 in Figure 6a as the example, we show
how it can be detected from the code.

3.4.1 Overall Algorithm. The steps are as follows.

o CFINDER walks the module’s AST in a breadth-first fashion to
identify the candidate code snippets whose root types match
the pattern’s root type (IF node in PA;1).

e For each code snippet, CFINDER then extracts their subtrees
following the control dependency of the pattern, i.e., extracts
subtrees Tond, ThodysTelse from the root IF node.

e CFINDER then performs the syntax pattern matching on each
subtree. E.g., match subtree To4y (Wishlist.lines .save)with
predefined Psyye (details in next paragraph).

e CFInNDER further checks the data dependencies using the use-
definition graph to see if variables in two subtrees refer to the
same table and columns (details in §3.5).

e If all pattern conditions evaluate to True, then we find a candi-
date snippet with assumptions on DB constraint.

3.4.2 Match Subtree with Syntax Pattern. Figure 8 shows the syn-
tax tree of the example snippet on the left, with some subtrees
collapsed. The MATCH function matches its subtree Tpoqy (left) with
the predefined syntax pattern Ps,ye (right).

Here, Psave represents the category of syntax patterns that have
the meaning of “saving a record”. In the AST form, one example
of the syntax pattern is a Call node calling an Attribute node
named save or create.

To implement MATCH, CFINDER performs a breath-first traver-
sal in Thody and finds the node which matches the root of Psaye,
i.e., the Call node. Then for each child node of Call in Pgye (the
Attribute node), CFINDER checks if there is a corresponding sub-
tree node in Tjoqy- CFINDER recursively repeats this process until
the leaf nodes of P. If all children have a match, CFINDER concludes
that T4y matches Psaye.

Figure 7 shows more examples: two categories of pre-defined
syntax patterns for Peyjst and Perror. Note that these patterns are as
simple as a syntax tree with a depth of only one or two, and they
have no control or data dependencies. We collect them heuristically
by studying the application code. They are general to applications,
and more importantly, they can be easily customized and extended.

3.5 Database Constraints Extraction

In step (3) , CFINDER automatically converts the snippets into for-
mal DB constraints. After detecting the second code snippet in

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Attribute
save/create

Attribute
value Pg,ye: Save record

create

Thody

Figure 8: Matching syntax tree T (left) with pre-defined syntax pat-
tern P (right). The subtree with bold red borders on the left is the
match. T (left) is constructed from the example in Figure 6a.

Figure 6a that matches PA1, in Figure 9, this step infers the ta-
ble WishListLine and columns (wishlist,product) from it. To
achieve it, CFINDER traces the definitions in code using use-definition
analysis [29] and table metadata.

3.5.1 Identify the Table. The MATCH step identifies the variable list
(to_wishlist.lines) that represents the table object. However,
identifying which table it represents (WishListLine) is often non-
trivial due to two challenges:

e Python’s language feature, dynamic typing, i.e., a variable’s type
is defined at runtime. Therefore, static analysis doesn’t know
to_wishlist’s type (class of WishList table).

e The “variable” may involve a chain of field accesses, which
transfers from one table to another following the foreign key ref-
erence. For a real example in Oscar, self.attribute. option
_group. options involves the reference between three tables.
It is hard to sort out the relationship with such complex code
even with human inspection.

To handle the first challenge, CFINDER infers the definition using
use-def chain analysis. Starting from the first variable, CFINDER
traces its definitions in the use-definition chain and identifies one
of the definitions being table class. In the example, to_wishlist
gets the definition from WishList .objects.get, which returns
an instance of WishList class. To be scalable to large applications,
CFINDER does not perform the inter-procedure analysis.

Second, CFINDER follows the list of field accesses and tracks
the corresponding tables using the table’s metadata. Starting from
to_wishlist, which is an instance of WishList class, .1lines re-
trieves the instance of a WishListLine class through the foreign
key reference. CFINDER repeats this process until the end of the
field list.

3.5.2 Identify the Column. The columns of the not-null and foreign
key constraints are usually obvious and CFINDER gets them directly
from the specified patterns. Here we discuss two special cases, i.e.,
composite and conditional unique constraints:

e When retrieving referenced objects through the foreign key
field, it contains the implicit join on table ID. In the example,
to_wishlist.linesretrieves the lines related to the to_wishlist
instance. Consequently, besides product, the generated SQL
statement filters on wishlist_id as well. Thus, CFINDER infers
that the final constraint requires columns (wishlist, product)
to be composite unique.

639

Haochen Huang, Bingyu Shen, Li Zhong, and Yuanyuan Zhou

/* Oscar: wishlists/views.py */
class MoveProductToAnotherWishList(View): . .
def get(self, request): @ Use-definition Chain

to wishlist= WishList.objects.get(key=xxx)

@ if to_wishlist..filter(product=xxx) .count()>0:

raise Error("WishList)already containing product")

Class WishList(Model):
lines = ManytoOneRel(WistListlLine)

(DForeign Key Reference

Inferred constraint: WishListlLine Unique (wishList, product)

Figure 9: Infer the constraint table from code: (1) Infer the definition
using data flow analysis (2) Track the tables along the chain of field
accesses. Specifically, to_wishlist represents the WishList class and
to_wishlist.lines refers to the final WishListLine class through the
foreign key.

e When retrieving records by filtering on columns with fixed
values (e.g., filter(col,valid=True)), it indicates a “partial
(conditional) unique constraint” [47], which restricts the unique-
ness of col over a subset of data defined by the condition
(valid=True).

3.5.3 Get Missing DB Constraints. After inferring all DB constraints
from the code, CFINDER filters the existing constraints retrieved
from information_schema tables of databases.

4 EVALUATION

As shown in Table 4, we evaluate CFINDER on eight large web ap-
plications including seven widely-adopted open source web appli-
cations and the main web application of one commercial enterprise
(CompraNy) with millions of end-users. The open-source applica-
tions are top-starred in each category on Github, with three of
them having 10K stars and five having 5K stars. Moreover, Saleor
is adopted by e-commerce companies including one with 50M rev-
enue [57], Edx by 160 institutes and has millions of users [21], Zulip
by large communities and universities [75], etc. These open-source
applications have 74K to 617K LOC, more than 60,000 commits, and
have high demands on data integrity and reliability due to their
wide adoption and millions of users. We use the latest version of
all applications (commit hashes are in the references).

We evaluate the effectiveness of CFINDER based on how many
new missing database constraints can be detected (§4.1). We further
report them to the app developers and get their confirmations
(Table 4).

Moreover, we evaluate the precision of the detected missing
constraints (§4.2) and study the reasons for false positives. We
have two human inspectors independently examine the detected
missing constraints and label a case as true positive only when
consensus was reached. Furthermore, we evaluate the coverage
(recall) of CFINDER (§4.3) on two datasets. The first dataset contains
all the existing (not missing) database constraints already set by
the latest application code. The second dataset contains 117 real-
world missing constraints collected from the past commit history
(Table 3). These missing constraints were noticed because data
integrity issues were detected. We further evaluate CFINDER’s
performance (§4.4) and discuss the developer’s feedback (§4.5).

Protecting Data Integrity of Web Applications with Database Constraints Inferred from Application Code

Table 4: Evaluated applications and detected missing DB constraints
from them. “Detected existing”: Detected constraints that already
exist in DB. “Detected missing”: Detected constraints that miss in
DB. “ACK by dev”: numbers of missing constraints acknowledged by
developers that need to be added. For three apps with zero confirms,
we received no response to our issue reports.

Github Detected Detected ACK
App. Category . ‘oo
stars existing missing by dev

Oscar [44] E-comm 52K 74K 159 24 5
Saleor [56] E-comm 153K 298K 220 15 0
Shuup [58] E-comm 1.8K 196K 290 31 (1]
Zulip [79] Team chat 15.3K 361K 265 21 12
Wagtail [63] CMS 117K 181K 69 10 7
Edx [42] Online course 6K 617K 509 43 0
EdxComm [22] E-comm 122 93K 97 14 6
CoMPANY Enterprise = = = 52 45
Total - - - 1609 210 75

Databases are fully set up and populated with testing data only.
All experiments are done on a single machine with a 2.30GHz CPU
(6 core), 16GB Memory and 256GB SSD running a Ubuntu 18.04
distribution.

4.1 Effectiveness in Detecting Missing DB
Constraints

4.1.1 Overall Results. Table 4 shows the number of detected miss-

ing database constraints from each web application. Overall, CFINDER

detects 210 missing database constraints from eight web applica-
tions, including 10-43 missing constraints for each open-source web
application and 52 missing constraints for a commercial company
with millions of users.

We manually validated the detected constraints and reported
the identified true missing constraints to app developers. When
we contacted the developers, we prioritized these applications that
actively responded to our issue reports. For three apps with zero
confirms, we received no response to our reports.

So far we reported 92 of them and we have got 75 confirmed
by developers as real missing database constraints, including 30 of
them from seven open-source web applications and 45 from the
commercial company. Among the 75 confirmed constraints, there
are 37 unique constraints, 22 not-null constraints, and 16 foreign
key constraints. We provided one example for each constraint type
in Table 5 to demonstrate the potential consequence of not having
the missing constraints.

4.1.2 Breakdown of the Detected Missing Constraints. To under-
stand the effectiveness of CFINDER in detecting each type of missing
database constraints, we present the breakdown for different code
patterns in three constraint types, Unique, Not-null, and Foreign key
in Table 6.

o Unique constraint: CFINDER detects 66 missing unique constraints,
with two code patterns detecting 16 and 56 respectively. More-
over, among them, 13 are “partial unique constraints” (§3.5).
Some app developers are not aware of this type of constraint,
thus not taking advantage of them.

640

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Table 5: Examples of confirmed missing database constraints. The
first two examples are already merged in their main branches.

Confirmed Unique constraints (37 cases)
Example: ProductAttr Unique(code,product_class) [19]
Product attributes with same attribute code for a

Potential
consequence: product class are invalid and invisible to customers.
Confirmed Not null constraints (22 cases)

Example: Attachment Not NULL (realm) [76]

Potential The attachment is not valid when uploaded without a
consequence: realm (organization). Similar as a data loss to users.
Confirmed Foreign Key constraints (16 cases)

Example: OrderDiscount (offer) Ref Offer (id) [20]
Potential The discount on an order is not valid without linking
consequence: to an existing offer.

Table 6: The breakdowns of the number of detected missing database
constraints for each constraint type and code pattern. One constraint
can be detected by multiple code patterns, and we only count them
once in Tot.(Total).

Detected missing constraints

App. Unique Not null Foreign Key
PAui PAu Tot.| PAn; PA,, PAns Tot| PA;; PA; Tot.

Oscar 3 10 12 9 1 0 10 1 1 2
Saleor 2 3 5 7 0 1 8 1 1 2
Shuup 2 4 6 12 5 7 24 1 0 1
Zulip 5 7 10 2 1 4 7 2 2 4
Wagtail 0 4 4 2 0 4 6 0 0 0
Edx 3 22 23 6 3 6 15 1 4 5
EdxComm| 1 6 6 6 1 0 7 0 1 1
Total | 16 56 66| 44 11 22 77| 6 9 15

o Not-null constraint: For total 77 detected constraints, three pat-
terns detect 44, 11, 22, respectively.

e Foreign key constraint: CFINDER detects 15 missing foreign key
constraints in total. The number is relatively small, which is
consistent with our study (§2) on real-world missing constraints
in history. A possible reason is that when developers use the
field to reference another table, the referential relationships are
usually so obvious that developers are unlikely to neglect them.

4.2 False Positives in Detected Missing DB
Constraints

As Table 7 shows, CFINDER’s precision in detected missing con-
straints is reasonably high for all three types of database constraints,
82%, 75%, 80% for unique, not-null, and foreign key constraints, re-
spectively.

In total, 34 false positives (FPs) are introduced. There are two
main reasons. First, 12 (35%) FPs are caused by the static analysis
being unsound. Five have wrongly inferred database tables (§3.5)
and seven have unrecognized or implicit NULL checks before the
field invocation (thus these columns could be NULL without throw-
ing exceptions). These FPs could be mitigated by fine-tuned code
analysis, such as incorporating the inter-procedure information.
Second, 13 (38%) FPs are caused when code matches the pattern
but contains no assumption on constraints. For example, one code

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Table 7: The precision of detected missing constraints by CFINDER.

Tot.: Total number of detected missing DB constraints. Preci-
sion: TruePositive
* TruePositive+FalsePositive *

Unique Not null Foreign Key

App.
Tot. TP Precision Tot. TP Precision Tot. TP Precision

Oscar 12 9 75% 10 8 80% 2 2 100%

Saleor 5 3 60% 8 7 88% 2 2 100%
Shuup 6 5 83% 24 17 71% 1 1 100%
Zulip 10 7 70% 7 5 71% 4 2 50%
Wagtail 4 4 100% 6 4 67% 0o 0 -
Edx 23 20 87% 15 11 73% 5 4 80%
EdxComm 6 6 100% 7 6 86% 1 1 100%

Overall 66 54 82% 77 58 75% 15 12 80%

snippet satisfies the pattern PA,1, but it is only meant for a sanity
check to handle a special case of no valid voucher, which does not
involve uniqueness assumptions. To prune those FPs, CFINDER can
further refine the patterns with finer-grind semantics.

4.2.1 Impacts of False Positives. The reported FPs can be easily
recognized by developers, thus will not cause serious consequences.
(1) Developers won’t be misled after checking the code snippet
(reported by CFINDER) that implies the constraint. For example,
developers who read the error message can easily determine if it
warns about a constraint violation. (2) Developers can run simple
scripts to automatically check if the constraint is consistent with the
production data, i.e., using data-driven approaches as complemen-
tary. (3) Even if they wrongly add a constraint, the DBMS will reject
the schema migration if any existing data violates it. Developers
then decide whether this is a FP or if data cleaning is required. In
either case, if a constraint can be added, existing data must adhere
to the constraint already.

4.2.2 Human Inspection Efforts. (1) It took two graduate students
about 40 hours to manually inspect the FPs from 158 constraints that
CFINDER reported in open source applications. Most time is spent on
understanding how the field is used all over the codebase. (2) Based
on our interactions with app developers, they are familiar with code
and they do thorough inspections including the production data.
The inspection time is acceptable. Half of the missing constraints we
reported to Zulip’s work channel are diagnosed within 20 minutes.

4.3 Coverage of Database Constraints

We then evaluate the percentage of database constraints that CFINDER
can cover in its detection, i.e., the recall of CFINDER, on two different
datasets. We further look into what are missed by CFINDER.

4.3.1 Evaluation with Existing DB Constraints. Even though the
goal of CFINDER is to detect the missing constraints, we can evalu-
ate whether the existing constraints behave consistently with the
code patterns. Specifically, we evaluate how many existing DB
constraints already set in the database can be covered by CFINDER.
It reflects the generalization of the patterns. Note that we exclude
foreign keys, as the existing ones are used differently from the
patterns for missing ones. Specifically, for foreign keys that already
exist in DB, developers mostly retrieve the referenced table through
field invocations, such as order.product when product is a FK.

641

Haochen Huang, Bingyu Shen, Li Zhong, and Yuanyuan Zhou

Table 8: The percentage of existing constraints already set in the
database that CFINDER can cover in the detection.

Existing constraints || What percentage can

App. already set CFINDER cover
Unique Not null Unique Not null

Oscar 49 156 67% 81%
Saleor 70 210 74% 80%
Shuup 89 298 70% 77%
Zulip 47 278 72% 83%
Wagtail 18 79 61% 73%
Edx 133 569 65% 74%
EdxComm 30 110 67% 70%

Table 9: The percentage of missing constraints that CFINDER can
cover in the collected dataset. The dataset from our study (§2) con-
tains constraints that missed first and added by later commits.

Missing constraints What percentage can
in dataset CFINDER cover
Unique Notnull Foreign Key || Unique Notnull Foreign Key
48 63 6 79% 83% 50%

Table 8 shows that CFINDER has a reasonable recall. It can detect
61%-74% of unique constraints and 70%-83% of not-null constraints
for seven web applications.

We randomly sample and study 40 false negatives for each of
the two constraint types. They belong to three categories: (1) 57
(71%) do not exhibit any general patterns with assumptions on
constraints. Among them, 20 are fields used for specific purposes
and they might be improved by incorporating some application-
specific domain knowledge. For example, some fields are used in the
URL as the identifier, which may imply uniqueness. (2) 17 (21%) are
fields not used in the application code logic, just placeholders for
legacy or future use. (3) 6 (8%) have usages with assumptions but are
not detected, mainly because code patterns are hard to recognize
when they span different functions in the call chain. These can be
improved by tracing the inter-procedure information.

4.3.2 Evaluation with Dataset on Missing Constraints. In our study
(§2), we collect a dataset of 117 missing database constraints from
the schema migration history (Table 3). These missing constraints
were noticed after having some data integrity issues that caused
real damage. We evaluate if CFINDER can detect these missing
constraints on old versions of code, which could help prevent the
issues from happening.

Table 9 shows that CFINDER has a good coverage. Out of the 117
real-world missing constraints in the dataset, CFINDER can detect
93 (79.5%) of them. These missing constraints would be caught
if CFINDER had been adopted. We failed to detect 24 constraints
mainly because they are too specific, i.e., do not exhibit general
patterns. Note that we also mark those constraints that “learned
from similar issues” as detected if the original issue is detected.

4.4 Performance of CFINDER

CFINDER is designed to run in the testing environment thus its
performance is not time-critical. Table 10 shows that the analysis

Protecting Data Integrity of Web Applications with Database Constraints Inferred from Application Code

Table 10: Time (seconds) to run CFINDER’s static analysis.

App. ‘ Oscar ‘ Saleor ‘ Shuup ‘ Zulip ‘ Wagtail ‘ Edx ‘ EdxComm

Analysis
time (s)

22‘64‘75‘59‘40

147 ‘ 30

time of CFINDER’s static code analysis is less than 150 seconds for
each application, and is near proportional to the application’s lines
of code (up to 620K LOC for Edx).

4.5 Developers’ Feedback Discussion

We reported 92 of the detected constraints to the application de-
velopers and have got 75 confirmed so far. The others are rejected
or still under investigation. Here we share the experience of the
interactions with developers.

We are encouraged by the positive feedback from many devel-
opers of the evaluated applications. For example, Zulip developers
quickly responded to our reported issues and actively examined
their code base for similar issues with us [76, 78]. The confirmed
missing constraints were either due to a lack of considerations in
the design, or due to missing checks after business requirements
changes. As one developer replied in the report for a not-null con-
straint, “Being after that migration has run, ...,there’s no reason to
keep it nullable”.

In contrast, we find that maintainers hesitated to enforce some
missing constraints we reported. For example, in one issue [45],
the developers worried that the data migration might take too
long a time to process the null values for large tables. In another
issue, the developers assume that the invalid record will not be
generated during normal workloads in current code logic, and thus
are reluctant to add fixes [77].

5 RELATED WORK

Empirical study of data constraints in web applications Pre-
vious studies have investigated the adoption of data constraints in
the application layer [4, 69]. Bailis et al. [4] study the effectiveness
of application-level validations as substitutes for their respective
database constraints counterparts in web frameworks (Rails). Their
quantitative experiment shows that app validations lead to data cor-
ruption due to concurrency errors in 13% of usages. Yang et al. [69]
study the location, expression, and evolution of data constraints.
They find that developers struggle with maintaining consistent data
constraints among the front-end browser, the application (using
framework’s validation APIs), and the database. In contrast, our
study in §2 focuses on the missing constraints neglected by devel-
opers in the database layer, which motivates tooling support to
systematically detect the missing constraints.

Detecting data dependencies from applications Yang et al. [69]
study the constraints specified in framework’s validation APIs and
their inconsistencies with constraints in the database. Liu et al. [35]
detect constraints specified in framework’s validation APIs in model
classes with the motivation to use constraints to optimize query
execution performance.

Our work differs largely in the following ways. (1) These works
require developers to already know and specify these constraints

642

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

using validations. In other words, they cannot help with the missing
database constraints neglected by developers. Thus, our identified
missing constraints cannot be discovered by their works. Besides, in
order to infer from the code logic with implications, CFINDER pro-
poses more advanced code analysis algorithms. (2) Their goal is to
optimize the performance or study inconsistencies, while CFINDER
proposes to enforce the missing DB constraints to protect the data
integrity. (3) Majority (88%) of their detected constraints are defined
only in the framework level and are not DB built-in constraints,
as they stated “defining inclusion and format constraints requires
writing UDFs, which is tedious to implement in most DBMS” [35].
Thus they are orthogonal to CFINDER.

Inferring constraints from data Previous works on data pro-
filing [1, 2] discover the data constraints by collecting statistics
about the data itself. Aside from the limitation of biased and insuf-
ficient datasets we discussed in §3.1, these works still lack effective
techniques to discover missing constraints that apps truly require.
Specifically, as unique or foreign key constraints involve multiple
columns, they traverse the search space of a powerset of column
combinations and validate if the data satisfies the constraint. A ma-
jority of works focus on pruning the search space [3, 5, 30, 46, 70].
However, it is understudied which of the discovered statistically-
valid constraints are truly required by apps in semantics. In fact,
a vast majority (>95%) of them are false positives [2, 5]. Some [26,
53, 70] propose heuristic rules to prune FPs, but their effectiveness
lack evaluations on real-world large datasets.

In contrast, the source code (1) is not limited by data quality,
and (2) reflects what constraints the data really needs to follow in
semantics. The evaluation shows CFINDER introduces reasonable
precision (78%) and recall (79%).

Invariant detection from trace The line of work on invariant
detection tools, like Daikon [24, 25], dynamically traces program
runtime states and infers likely invariants in code. Typically dy-
namic approaches have a challenge of coverage problem. For likely
invariants, the coverage problem of test cases or product runs can
also lead to many false positives and false negatives, particularly
false positives.

Application verification and synthesis using constraints. An-
other line of work focuses on using data constraints for program
verification and synthesis. Li et al. [33] detect the application bugs
that violate the numerical data assertions inferred from the data.
Wang et al. formally verify the equivalence of programs with dif-
ferent DB schemas [64] and synthesize equivalent programs [65].
These works are orthogonal and may help with code evolution
when adding new constraints.

Leveraging constraints to improve performance and security
Various constraints have been used to find better query plans and
optimize query performance [34, 35, 67]. Our work reveals that
there are opportunities to find more required database constraints,
thus could complement their works.

Some works study methods to impose and verify the security
and privacy “policies” [32, 41, 68]. These policies are usually too
complex to be supported by current databases, thus are orthogonal
to our work. Future work can study the automatic detection of these
missing privacy-related policies from code. They are promising to
improve the data quality in the further.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

6 LIMITATION & DISCUSSION

CFINDER targets web applications that are backed by RDBMS and
have a high requirement on data integrity, which widely exist in
our daily life. Some systems shift the responsibility of data quality
to the application layer as a design choice for better scalability
and customization. It includes apps backed by NoSQL databases,
which typically do not support constraints in DB. Though not our
targets, CFINDER can still benefit them by identifying the missing
data constraints and helping them check at the application/frame-
work level. Moreover, NoSQL databases such as MongoDB recently
start to support constraints at the database [39] level, showing its
importance and potential.

CFINDER is currently implemented for Python-based web appli-
cations, as it relies on web frameworks’ APIs to identify database
operations when performing pattern matching in §3.4. For example,
we use Django’s five APIs for record retrieval, three for record cre-
ation or updating, and one for existence check. However, CFINDER’s
code patterns in §3.3 are general as they catch the semantic assump-
tions on data constraints in code logic. We also studied Rails (Ruby),
Flask (Python), and Hibernate (Java), and they all encapsulate sim-
ilar sets of APIs for the four database operations. Thus, CFINDER
can be migrated to other frameworks or languages with reasonable
implementation efforts.

Adding the missing constraints may require extra efforts to clean
the data if application data is already erroneous or incompatible.
The overhead to perform data cleaning and migration sometimes
is not negligible for large tables. However, we consider the effort
essential and beneficial because these corrupted data could lead to
serious business loss in the future.

Like most issue detection tools, CFINDER still has false positives
(§4.2) and false negatives (§4.3), and there is still space for further
improvement. The false negatives could be improved by extending
CFINDER with more application-specific code patterns and fine-
tuning the static analysis. To avoid the false positives, we would
have to rely on developers to manually examine their semantics
in code. CFINDER can perform more refinement steps in the static
analysis to prune those false positives.

7 CONCLUSION

In this paper, we focused on the problem of missing database con-
straints in web applications with resulting data integrity issues and
the feasibility of extracting the missing database constraints from
the application code. Specifically, we first conducted an empirical
study on missing constraints in five popular web applications. Then
we designed and implemented a tool that identified 210 previously
unknown missing constraints with reasonable accuracy from eight
widely-deployed web applications, including one commercial com-
pany with millions of users. We have reported 92 of them to the
developers of these applications, so far 75 of them are confirmed.

ACKNOWLEDGMENTS

We greatly appreciate the anonymous reviewers for their insight-
ful comments and feedback. We thank Andrew Yoo and Tianwei
Sheng from Whova Inc for helping with the evaluation. We thank
Chengcheng Xiang, Tianyi Shan, Eric Mugnier from the Opera

643

Haochen Huang, Bingyu Shen, Li Zhong, and Yuanyuan Zhou

group at UC San Diego for useful discussions and paper proofread-
ing. This work is supported in part by NSF grants (CNS-1814388,
CNS-1526966) and the Qualcomm Chair Endowment.

A ARTIFACT APPENDIX
A.1 Abstract

CFINDER is a static analysis tool that analyzes application source
code to automatically infer and detect any missing database con-
straints to improve the database integrity. Its workflow contains
three steps:

e With the application code as input, CFinder applies the pro-
posed static analysis to find the code snippets that match the
conditions of code patterns with assumptions on database
constraints.

e From the found snippets, CFINDER extracts and infers the
formal DB constraints.

o After comparing them with the existing database schema,
CFINDER outputs the set of missing database constraints.

CFINDER reports the inferred missing database constraints with
detailed code pattern information. We provide an artifact, described
in detail below, to help the easy reproduction of all the key evalua-
tions in section 4 of the paper. The artifact is available on GitHub
at https://github.com/huanghc/cFinder.

A.2 Artifact Check-List (Meta-Information)

e Algorithm: Static code analysis

Program: We release the source code of CFINDER in the artifact

and evaluate CFINDER with seven open-source Python-based web

applications.

Data set: Source code and database schema of seven open-source

web applications.

e Run-time environment: Ubuntu with Python 3.8

e Metrics: The number of detected missing and existing database

constraints.

Output: The script will output the detected database constraints

from the source code, their coverage, and their code pattern infor-

mation.

o How much disk space required (approximately)?: 5 GB disk
should be enough for the experiments. This will include the source
code of our tool, the source code of seven web applications, all
database schema data, and all generated results.

o How much time is needed to prepare workflow (approxi-
mately)?: It takes about 15 minutes. The whole workflow takes
one script to launch. Time will be used to set up the Python run-
time environment and download the source code of the evaluated
applications.

o How much time is needed to complete experiments (approxi-
mately)?: It takes about 10 minutes. The workflow takes one script
to launch. Time will be used to run the static code analysis.

e Publicly available?: Yes [71].

e Code licenses (if publicly available)?: MIT

o Archived (provide DOI)?: https://doi.org/10.5281/zenodo.7425382

A.3 Description

A.3.1 How to Access. The artifact is available on GitHub:
https://github.com/huanghc/cFinder.

https://github.com/huanghc/cFinder
https://doi.org/10.5281/zenodo.7425382
https://github.com/huanghc/cFinder

Protecting Data Integrity of Web Applications with Database Constraints Inferred from Application Code

A.3.2 Hardware Dependencies. Our tool and the experiments should
be run on a Linux machine with at least 8 GB RAM and 4 cores.

A.3.3 Software Dependencies.

e Linux (we tested on Ubuntu 18.04)
e Python >=3.8

A.3.4 Data Sets. The artifact evaluates seven open-source web
applications. Our scripts will automatically download their source
code from GitHub. The artifact includes (1) The files containing
the database constraints and schema of these web applications (in
the directory data/). These data are used in the static analysis
to generate the main results. (2) The similar files containing the
database constraints and the source code for the history issues
(in the directory data/history_issues). These data are used for
Table 9 only.

A.4 Installation

We provide a make install command to automatically finish the
following steps: (1) Pull the application source code from Github;
(2) Set up the Python virtual runtime environment.

A.5 Experiment Workflow

We provide a make run_all command to automatically perform all
the evaluations with the following steps: (1) CFINDER applies static
code analysis to find the code snippets that match the proposed
code patterns. From the code snippets, CFINDER extracts and infers
the formal database constraints. (2) After comparing them with
the existing database schema, CFINDER outputs the set of detected
missing DB constraints and the set of existing constraints that
CFINDER can cover. (3) CFINDER also runs the same static analysis
again on the history issues’ dataset.

A.6 Evaluation and Expected Results

We provide the scripts to automate the evaluation and generate
the Tables and numbers in §4. The output will be in the result/
directory and contain the CSV files with the following key results:
o The total number of detected existing and missing database
constraints from each application. (Table 4)
o The breakdown of the number of detected missing database
constraints for each constraint type. (Table 6)
o The percentage of existing constraints already set in the
database that CFINDER can cover. (Table 8)
o The percentage of missing constraints in the collected dataset
that CFINDER can cover. (Table 9)
o Time (seconds) to run the static analysis. (Table 10)
More detailed results for the detected database constraints of each
application and each constraint type are in the result/APP_NAME/
directory:
e newly_detected.csv contains all the newly detected con-
straints with their code pattern information.
e existing_constraints.csv contains the existing constraints
in the database that CFINDER can cover.
Note that some results involve human inspection (Table 7) and
developers’ confirmation (last column in Table 4), thus not included

644

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

in the artifact. Note that due to the differences in hardware envi-
ronments, the performance results in Table 10 can be different from
the numbers reported in the paper.

REFERENCES

[1] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. 2015. Profiling relational
data: a survey. The VLDB Journal 24, 4 (2015), 557-581.

[2] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. 2016. Data profiling.
In 2016 IEEE 32nd International Conference on Data Engineering (ICDE). IEEE,
1432-1435.

[3] Ziawasch Abedjan and Felix Naumann. 2011. Advancing the discovery of unique
column combinations. In Proceedings of the 20th ACM international conference on
Information and knowledge management. 1565-1570.

[4] Peter Bailis, Alan Fekete, Michael] Franklin, Ali Ghodsi, Joseph M Hellerstein,
and Jon Stoica. 2015. Feral concurrency control: An empirical investigation of
modern application integrity. In Proceedings of the 2015 ACM SIGMOD Interna-
tional Conference on Management of Data. 1327-1342.

[5] Johann Birnick, Thomas Blisius, Tobias Friedrich, Felix Naumann, Thorsten

Papenbrock, and Martin Schirneck. 2020. Hitting set enumeration with partial

information for unique column combination discovery. Proceedings of the VLDB

Endowment 13, 12 (2020), 2270-2283.

Nedyalko Borisov and Shivnath Babu. 2011. Proactive detection and repair of data

corruption: Towards a hassle-free declarative approach with amulet. Proceedings

of the VLDB Endowment 4, 12 (2011), 1403-1406.

Alex Bunardzic. 2021. Should Database Manage The Meaning? Retrieved

Feb 20, 2022 from http://lesscode.org/2005/09/29/should- database-manage-the-

meaning/

[8] Ting Dai, Jingzhu He, Xiaohui Gu, Shan Lu, and Peipei Wang. 2018. Dscope:

Detecting real-world data corruption hang bugs in cloud server systems. In

Proceedings of the ACM Symposium on Cloud Computing. 313-325.

Christopher John Date. 1975. An introduction to database systems. Pearson

Education India.

Django. 2021. Constraints reference. Retrieved Nov 12, 2021 from https:

//docs.djangoproject.com/en/4.0/ref/models/constraints/

Django. 2021. get() in django/db/models/query.py. Re-

trieved Nov 12, 2021 from https://github.com/django/django/blob/

d8b437b1fbe3bf54822833bea5e19d2142cf3e1f/django/db/models/query.py#L499

Django. 2021. The Web framework for perfectionists with deadlines | Django.

https://www.djangoproject.com/

[13] Django. Jan. 2022. QuerySet API reference. https://docs.djangoproject.com/en/

4.0/ref/models/querysets/.

Django. Nov. 2021. QuerySet API reference - get_or_create().

docs.djangoproject.com/en/4.0/ref/models/querysets/#get-or-create.

Django. Nov. 2021. Writing database migrations. https://docs.djangoproject.com/

en/3.2/howto/writing- migrations/.

[16] Django-oscar. 2021. Change type and name of basket field on AbstractOrder.
Retrieved Nov 12, 2021 from https://github.com/django-oscar/django-oscar/
commit/9fa2589b6c70d1f3bff381233eddc41a63aa22e4

[17] Django-oscar. 2021. Check for existing email when updating profile. Retrieved
Nov 12, 2021 from https://github.com/django-oscar/django-oscar/pull/324

[18] Django-oscar. 2021. Why is order.basket_id not a ForeignKey? Retrieved Nov
12, 2021 from https://groups.google.com/g/django- oscar/c/MOFgIB_fotM/m/W-
52L12ZMxA]

[19] Django-oscar. 2022. Make attribute codes unique per product class. Retrieved
Mar. 20, 2022 from https://github.com/django-oscar/django-oscar/pull/3823

[20] Django-oscar. 2022. Should OrderDiscount.offer_id and voucher id be For-

eignKey? Retrieved Mar. 20, 2022 from https://github.com/django-oscar/django-

oscar/issues/3821

Edx. 2022. What Makes the Open edX Platform Unique? See These Cases.

Retrieved Sep 26, 2022 from https://openedx.org/blog/what-makes-open-edx-

platform-unique-see-these-cases/

[22] Edx-ecommerce. 2022. Adding E-Commerce to the Open edX Platform. Retrieved
Feb 12, 2022 from https://github.com/openedx/ecommerce/tree/27e6b06b

[23] Instagram Engineering. 2016. Web Service Efficiency at Instagram with Python

- Instagram Engineering. https://instagram-engineering.com/web-service-

efficiency-at-instagram-with-python-4976d078e366.

Michael D Ernst, Jake Cockrell, William G Griswold, and David Notkin. 1999.

Dynamically discovering likely program invariants to support program evolution.

In Proceedings of the 21st international conference on Software engineering. 213—

224.

Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant, Carlos Pacheco,

Matthew S Tschantz, and Chen Xiao. 2007. The Daikon system for dynamic

detection of likely invariants. Science of computer programming 69, 1-3 (2007),

35-45.

[26] Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan, Samuel
Madden, and Michael Stonebraker. 2018. Aurum: A data discovery system. In 2018
IEEE 34th International Conference on Data Engineering (ICDE). IEEE, 1001-1012.

G

[7

—
o)

=
=

—
jan

=
)

=
et

https://

jpory
&

[
-

&
=)

[25

http://lesscode.org/2005/09/29/should-database-manage-the-meaning/
http://lesscode.org/2005/09/29/should-database-manage-the-meaning/
https://docs.djangoproject.com/en/4.0/ref/models/constraints/
https://docs.djangoproject.com/en/4.0/ref/models/constraints/
https://github.com/django/django/blob/d8b437b1fbe3bf54822833bea5e19d2142cf3e1f/django/db/models/query.py#L499
https://github.com/django/django/blob/d8b437b1fbe3bf54822833bea5e19d2142cf3e1f/django/db/models/query.py#L499
https://www.djangoproject.com/
https://docs.djangoproject.com/en/4.0/ref/models/querysets/
https://docs.djangoproject.com/en/4.0/ref/models/querysets/
https://docs.djangoproject.com/en/4.0/ref/models/querysets/#get-or-create
https://docs.djangoproject.com/en/4.0/ref/models/querysets/#get-or-create
https://docs.djangoproject.com/en/3.2/howto/writing-migrations/
https://docs.djangoproject.com/en/3.2/howto/writing-migrations/
https://github.com/django-oscar/django-oscar/commit/9fa2589b6c70d1f3bff381233eddc41a63aa22e4
https://github.com/django-oscar/django-oscar/commit/9fa2589b6c70d1f3bff381233eddc41a63aa22e4
https://github.com/django-oscar/django-oscar/pull/324
https://groups.google.com/g/django-oscar/c/M0FgIB_f9tM/m/W-52L1zZMxAJ
https://groups.google.com/g/django-oscar/c/M0FgIB_f9tM/m/W-52L1zZMxAJ
https://github.com/django-oscar/django-oscar/pull/3823
https://github.com/django-oscar/django-oscar/issues/3821
https://github.com/django-oscar/django-oscar/issues/3821
https://openedx.org/blog/what-makes-open-edx-platform-unique-see-these-cases/
https://openedx.org/blog/what-makes-open-edx-platform-unique-see-these-cases/
https://github.com/openedx/ecommerce/tree/27e6b06b
https://instagram-engineering.com/web-service-efficiency-at-instagram-with-python-4976d078e366
https://instagram-engineering.com/web-service-efficiency-at-instagram-with-python-4976d078e366

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

[27

[28]

[29

[30

[31]

[32

[33]

(34

[35

[36]

[37

[38

[39]

[40

[41]

[42

[43]

[44

[45]

[46

[47

[48

[49]

[50

[51]

[52]

[53]

o
it

Google. 2022. Google Site Reliability Engineering Book. Retrieved Mar. 25, 2022
from https://sre.google/sre-book/data-integrity/

David Heinemeier Hansson. 2021. Choose a single layer of cleverness. Retrieved
Feb 20, 2022 from https://dhh.dk/arc/2005_09.html

Mary Jean Harrold and Mary Lou Soffa. 1994. Efficient computation of interpro-
cedural definition-use chains. ACM Transactions on Programming Languages and
Systems (TOPLAS) 16, 2 (1994), 175-204.

Arvid Heise, Jorge-Arnulfo Quiané-Ruiz, Ziawasch Abedjan, Anja Jentzsch, and
Felix Naumann. 2013. Scalable discovery of unique column combinations. Pro-
ceedings of the VLDB Endowment 7, 4 (2013), 301-312.

IBM. 2021. Error and crash recovery from data corruption. Retrieved Nov 12,
2021 from https://www.ibm.com/docs/en/ztpf/1.1.0.15?topic=concepts-error-
crash-recovery-from-data-corruption

Nikolaos Karapanos, Alexandros Filios, Raluca Ada Popa, and Srdjan Capkun.
2016. Verena: End-to-end integrity protection for web applications. In 2016 IEEE
Symposium on Security and Privacy (SP). IEEE, 895-913.

Boyang Li, Denys Poshyvanyk, and Mark Grechanik. 2017. Automatically detect-
ing integrity violations in database-centric applications. In 2017 IEEE/ACM 25th
International Conference on Program Comprehension (ICPC). IEEE, 251-262.
Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. 2016. Wander join: Online aggre-
gation via random walks. In Proceedings of the 2016 International Conference on
Management of Data. 615-629.

Xiaoxuan Liu, Shuxian Wang, Mengzhu Sun, Sharon Lee, Sicheng Pan, Joshua
Wu, Cong Yan, Junwen Yang, Shan Lu, and Alvin Cheung. 2022. Leveraging
Application Data Constraints to Optimize Database-Backed Web Applications.
In arXiv. https://doi.org/10.48550/ARXIV.2205.02954

Raymond A Lorie. 1977. Physical integrity in a large segmented database. ACM
Transactions on Database Systems (TODS) 2, 1 (1977), 91-104.

Philip Mayer, Michael Kirsch, and Minh Anh Le. 2017. On multi-language soft-
ware development, cross-language links and accompanying tools: a survey of
professional software developers. Journal of Software Engineering Research and
Development 5, 1 (2017), 1-33.

Jim Melton and Alan R Simon. 2001. SQL: 1999: understanding relational language
components. Elsevier.

Mongodb. 2022. Unique Constraints on Arbitrary Fields. Retrieved Mar. 25, 2022
from https://www.mongodb.com/docs/manual/tutorial/unique- constraints-on-
arbitrary-fields/

MySQL. 2021. How MySQL Deals with Constraints. Retrieved Nov 12, 2021
from https://dev.mysql.com/doc/refman/8.0/en/constraints.html

Joseph P Near and Daniel Jackson. 2014. Derailer: interactive security analysis
for web applications. In Proceedings of the 29th ACM/IEEE international conference
on Automated software engineering. 587-598.

Openedx. 2022. Open edX - Deliver Inspiring Learning Experiences On Any
Scale. Retrieved Feb 12, 2022 from https://github.com/openedx/edx-platform/
tree/97edc47

Oracle. 2021. Oracle Database - Database Concepts - 7 Data Integrity. Retrieved
Nov 12, 2021 from https://docs.oracle.com/en/database/oracle/oracle- database/
21/cncpt/data-integrity. html

Oscar. 2022. Oscar - Domain-driven e-commerce for Django. Retrieved Feb 12,
2022 from https://github.com/django- oscar/django-oscar/tree/18c87e

Oscar. 2022. Unique constraints for several table’s columns. Retrieved Mar. 20,
2022 from https://github.com/django-oscar/django-oscar/pull/3868

Thorsten Papenbrock, Sebastian Kruse, Jorge-Arnulfo Quiané-Ruiz, and Felix
Naumann. 2015. Divide & conquer-based inclusion dependency discovery. Pro-
ceedings of the VLDB Endowment 8, 7 (2015), 774-785.

Postgresql. 2021. 11.8. Partial Indexes. ~ Retrieved Mar 12, 2022 from https:
/Iwww.postgresql.org/docs/current/indexes-partial.html

Postgresql. 2021. 5.4. Constraints Chapter 5. Data Definition. Retrieved Nov 12,
2021 from https://www.postgresql.org/docs/current/ddl-constraints.html
Python. 2022. ast — Abstract Syntax Trees. Retrieved Feb. 12, 2022 from
https://docs.python.org/3/library/ast.html

Rails. 2021. Active Record Migrations. Retrieved Nov 12, 2021 from https:
//edgeguides.rubyonrails.org/active_record_migrations.html

Rails. 2021. Concurrency and integrity for uniqueness in Rails. Retrieved
Nov 12, 2021 from https://github.com/rails/rails/blob/main/activerecord/lib/
active_record/validations/uniqueness.rb#L179

Raghu Ramakrishnan, Johannes Gehrke, and Johannes Gehrke. 2003. Database
management systems. Vol. 3. McGraw-Hill New York.

Alexandra Rostin, Oliver Albrecht, Jana Bauckmann, Felix Naumann, and Ulf
Leser. 2009. A machine learning approach to foreign key discovery.. In WebDB.
Saleor. 2021. Error in the dashboard. Retrieved Nov 12, 2021 from https:
//github.com/saleor/saleor/issues/1670

645

[55

[56

[57

[58

[59

[60

e
N

[62

[63

[64

[65

[67]

[68

[69

[70

=
[y

(72

[73

3
&,

[79

Haochen Huang, Bingyu Shen, Li Zhong, and Yuanyuan Zhou

Saleor. 2021. Make order.total not nullable.
https://github.com/saleor/saleor/pull/1893
Saleor. 2021. Saleor - A headless, GraphQL-first, open-source e-commerce plat-
form. Retrieved Feb 12, 2022 from https://github.com/saleor/saleor/tree/53e519df
Saleor. 2022. Rebooting Enterprise with Open Source. Retrieved Sep 26, 2022
from https://saleor.io/enterprise-open-source/

Shuup. 2022. Multivendor Marketplace Platform - Enterprise Commerce Software.
Retrieved Feb 12, 2022 from https://github.com/shuup/shuup/tree/25f78¢
Stackexchange. 2021. Why are constraints applied in the database rather than the
code? Retrieved Nov 12, 2021 from https://dba.stackexchange.com/questions/
39833/why-are-constraints-applied- in- the- database-rather- than- the-code
Stackoverflow. 2021. Should you enforce constraints at the data-
base level as well as the application level? Retrieved Nov 12,
2021 from https://stackoverflow.com/questions/464042/should-you-enforce-
constraints-at-the-database-level-as-well-as-the-application

Teradata. 2021. Teradata - Physical Database Integrity. Retrieved
Nov 12, 2021 from https://docs.teradata.com/r/sUbveBFyhttIbZzLz7nJLw/
x~5k~cGbb5CIg7WrWgBNoA

Gerd Wagner. 2021. Chapter 9. Implementing Constraint Validation in a Java
EE Web App. Retrieved Nov 12, 2021 from https://web-engineering.info/book/
WebApp1/ch09.html

Wagtail. 2022. Wagtail CMS: Django Content Management System. Retrieved
Feb 12, 2022 from https://github.com/wagtail/wagtail/tree/317f10

Yuepeng Wang, Isil Dillig, Shuvendu K Lahiri, and William R Cook. 2017. Veri-
fying equivalence of database-driven applications. Proceedings of the ACM on
Programming Languages 2, POPL (2017), 1-29.

Yuepeng Wang, James Dong, Rushi Shah, and Isil Dillig. 2019. Synthesizing data-
base programs for schema refactoring. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 286—300.
Todd Warszawski and Peter Bailis. 2017. Acidrain: Concurrency-related attacks
on database-backed web applications. In Proceedings of the 2017 ACM International
Conference on Management of Data. 5-20.

Cong Yan and Alvin Cheung. 2016. Leveraging lock contention to improve
OLTP application performance. Proceedings of the VLDB Endowment 9, 5 (2016),
444-455.

Jean Yang, Travis Hance, Thomas H Austin, Armando Solar-Lezama, Cormac
Flanagan, and Stephen Chong. 2016. Precise, dynamic information flow for
database-backed applications. ACM SIGPLAN Notices 51, 6 (2016), 631-647.
Junwen Yang, Utsav Sethi, Cong Yan, Alvin Cheung, and Shan Lu. 2020. Managing
data constraints in database-backed web applications. In 2020 IEEE/ACM 42nd
International Conference on Software Engineering (ICSE). IEEE, 1098-1109.
Meihui Zhang, Marios Hadjieleftheriou, Beng Chin Ooi, Cecilia M Procopiuc, and
Divesh Srivastava. 2010. On multi-column foreign key discovery. Proceedings of
the VLDB Endowment 3, 1-2 (2010), 805-814.

Haochen Huang; Bingyu Shen; Li Zhong; Yuanyuan Zhou. 2023. Artifact for
paper ‘Protecting Data Integrity of Web Applications with Database Constraints
Inferred from Application Code’. Retrieved Jan 16, 2023 from https://doi.org/
10.5281/zenodo.7425382

Zulip. 2021. Corrupted Reactions data model state when using multiple aliases
for an emoji code. Retrieved Nov 12, 2021 from https://github.com/zulip/zulip/
issues/15347

Zulip. 2021. migrations: Add case-insensitive unique indexes on realm and
email. Retrieved Nov 12, 2021 from https://github.com/zulip/zulip/commit/
b9b146¢8095648d4ef61650a89bfe6f557308574

Zulip. 2021. psycopg2.errors.UniqueViolation duplicate key value violates unique
constraint. Retrieved Nov 12, 2021 from https://github.com/zulip/zulip/issues/
15772

Zulip. 2022. Case study: Rust programming language community. Retrieved
Sep 26, 2022 from https://zulip.com/case-studies/rust/

Zulip. 2022. Change realm field to be not null in Attachment. Retrieved Mar. 20,
2022 from https://github.com/zulip/zulip/pull/21470

Zulip. 2022. Realm field in the RealmAuditLog table. Retrieved Feb. 25, 2022
from https://chat.zulip.org/#narrow/stream/9-issues/topic/realm.20field.20in%
20table%20RealmAuditLog%20and%20RealmUserDefault/near/1335322

Zulip. 2022. Unique constraints for several table’s columns. Re-
trieved Nov. 20, 2021 from https://chat.zulip.org/#narrow/stream/9-issues/topic/
Several.20generated.20key.20fields.20w.2Fo.20unique%20constraints.2E

Zulip. 2022. Zulip. Retrieved Feb 12, 2022 from https://github.com/zulip/zulip/
tree/f5bb43ab

Retrieved Nov 12, 2021 from

Received 2022-07-07; accepted 2022-09-22

https://sre.google/sre-book/data-integrity/
https://dhh.dk/arc/2005_09.html
https://www.ibm.com/docs/en/ztpf/1.1.0.15?topic=concepts-error-crash-recovery-from-data-corruption
https://www.ibm.com/docs/en/ztpf/1.1.0.15?topic=concepts-error-crash-recovery-from-data-corruption
https://doi.org/10.48550/ARXIV.2205.02954
https://www.mongodb.com/docs/manual/tutorial/unique-constraints-on-arbitrary-fields/
https://www.mongodb.com/docs/manual/tutorial/unique-constraints-on-arbitrary-fields/
https://dev.mysql.com/doc/refman/8.0/en/constraints.html
https://github.com/openedx/edx-platform/tree/97edc47
https://github.com/openedx/edx-platform/tree/97edc47
https://docs.oracle.com/en/database/oracle/oracle-database/21/cncpt/data-integrity.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/cncpt/data-integrity.html
https://github.com/django-oscar/django-oscar/tree/18c87e
https://github.com/django-oscar/django-oscar/pull/3868
https://www.postgresql.org/docs/current/indexes-partial.html
https://www.postgresql.org/docs/current/indexes-partial.html
https://www.postgresql.org/docs/current/ddl-constraints.html
https://docs.python.org/3/library/ast.html
https://edgeguides.rubyonrails.org/active_record_migrations.html
https://edgeguides.rubyonrails.org/active_record_migrations.html
https://github.com/rails/rails/blob/main/activerecord/lib/active_record/validations/uniqueness.rb#L179
https://github.com/rails/rails/blob/main/activerecord/lib/active_record/validations/uniqueness.rb#L179
https://github.com/saleor/saleor/issues/1670
https://github.com/saleor/saleor/issues/1670
https://github.com/saleor/saleor/pull/1893
https://github.com/saleor/saleor/tree/53e519df
https://saleor.io/enterprise-open-source/
https://github.com/shuup/shuup/tree/25f78c
https://dba.stackexchange.com/questions/39833/why-are-constraints-applied-in-the-database-rather-than-the-code
https://dba.stackexchange.com/questions/39833/why-are-constraints-applied-in-the-database-rather-than-the-code
https://stackoverflow.com/questions/464042/should-you-enforce-constraints-at-the-database-level-as-well-as-the-application
https://stackoverflow.com/questions/464042/should-you-enforce-constraints-at-the-database-level-as-well-as-the-application
https://docs.teradata.com/r/sUbveBFyhttIbZzLz7nJLw/x~5k~cGbb5CIg7WrWgBNoA
https://docs.teradata.com/r/sUbveBFyhttIbZzLz7nJLw/x~5k~cGbb5CIg7WrWgBNoA
https://web-engineering.info/book/WebApp1/ch09.html
https://web-engineering.info/book/WebApp1/ch09.html
https://github.com/wagtail/wagtail/tree/317f10
https://doi.org/10.5281/zenodo.7425382
https://doi.org/10.5281/zenodo.7425382
https://github.com/zulip/zulip/issues/15347
https://github.com/zulip/zulip/issues/15347
https://github.com/zulip/zulip/commit/b9b146c8095648d4ef61650a89bfe6f557308574
https://github.com/zulip/zulip/commit/b9b146c8095648d4ef61650a89bfe6f557308574
https://github.com/zulip/zulip/issues/15772
https://github.com/zulip/zulip/issues/15772
https://zulip.com/case-studies/rust/
https://github.com/zulip/zulip/pull/21470
https://chat.zulip.org/#narrow/stream/9-issues/topic/realm.20field.20in%20table%20RealmAuditLog%20and%20RealmUserDefault/near/1335322
https://chat.zulip.org/#narrow/stream/9-issues/topic/realm.20field.20in%20table%20RealmAuditLog%20and%20RealmUserDefault/near/1335322
https://chat.zulip.org/#narrow/stream/9-issues/topic/Several.20generated.20key.20fields.20w.2Fo.20unique%20constraints.2E
https://chat.zulip.org/#narrow/stream/9-issues/topic/Several.20generated.20key.20fields.20w.2Fo.20unique%20constraints.2E
https://github.com/zulip/zulip/tree/f5bb43ab
https://github.com/zulip/zulip/tree/f5bb43ab

	Abstract
	1 Introduction
	1.1 Problem: Missing Database Constraints
	1.2 Consequences of Missing Constraints
	1.3 Why DB Constraints Are Better Guards?
	1.4 Our Contributions

	2 Understanding Missing Database Constraints in Web Applications
	3 Design and implementation
	3.1 Design Choices: Possible Ways to Find Missing Constraints
	3.2 CFinder Overview
	3.3 Code Patterns with Assumptions on DB Constraints
	3.4 Code Patterns Detection Algorithm
	3.5 Database Constraints Extraction

	4 Evaluation
	4.1 Effectiveness in Detecting Missing DB Constraints
	4.2 False Positives in Detected Missing DB Constraints
	4.3 Coverage of Database Constraints
	4.4 Performance of CFinder
	4.5 Developers' Feedback Discussion

	5 Related Work
	6 Limitation & Discussion
	7 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-List (Meta-Information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Results

	References

