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ABSTRACT

In training of modern large natural language processing (NLP)
models, it has become a common practice to split models using
3D parallelism to multiple GPUs. Such technique, however, suffers
from a high overhead of inter-node communication. Compressing
the communication is one way to mitigate the overhead by reducing
the inter-node traffic volume; however, the existing compression
techniques have critical limitations to be applied for NLP models
with 3D parallelism in that 1) only the data parallelism traffic is
targeted, and 2) the existing compression schemes already harm
the model quality too much.

In this paper, we present Optimus-CC, a fast and scalable dis-
tributed training framework for large NLP models with aggressive
communication compression. Optimus-CC differs from existing
communication compression frameworks in the following ways:
First, we compress pipeline parallel (inter-stage) traffic. In specific,
we compress the inter-stage backpropagation and the embedding
synchronization in addition to the existing data-parallel traffic com-
pression methods. Second, we propose techniques to avoid the
model quality drop that comes from the compression. We further
provide mathematical and empirical analyses to show that our tech-
niques can successfully suppress the compression error. Lastly, we
analyze the pipeline and opt to selectively compress those traffic
lying on the critical path. This further helps reduce the compression
error. We demonstrate our solution on a GPU cluster, and achieve
superior speedup from the baseline state-of-the-art solutions for
distributed training without sacrificing the model quality.
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1 INTRODUCTION

In the era of deep learning (DL), the size of models has been growing
at an exponential rate [29, 50]. Now, utilizing tens to hundreds of
GPU-equipped nodes in a distributed manner to rapidly train a
single model has become a common practice [25, 59, 65]. To achieve
high speedups with multiple GPUs, the early work on distributed
training employs data parallelism [27, 39, 42]. With data parallelism,
a DL model gets duplicated to multiple nodes with identical weight
parameters. Then, a batch of input data is split into the nodes and
each node performs backpropagation on its copy of the DL model.
After every node completes backpropagation on their input data,
inter-node communication is necessary for sharing the parameter
gradients so that each node updates its copy of the DL model to
have exactly identical states. The volume of the communication is
proportional to the size of the weights, which becomes a burden as
the model size becomes larger. Although the method has a problem
with limited scalability of model size, it has been employed in many
environments [2, 25, 48, 84] because it is easy to implement.

To minimize the increase in the communication overhead, prior
studies proposed to compress the parameter gradients of a DL model
caused by data parallelism [11, 44, 81]. The parameter gradients
are known to be especially robust to some errors, so the DL model
can tolerate a certain amount of misdirection. By reducing the
bitwidth of [81], taking the top-k of [12, 41, 44], or performing low-
rank approximation on [75] the gradients, the parameter gradient
compression techniques successfully reduce the inter-node traffic,
making it feasible to perform distributed training on top of low-end
ethernet [44], and improve the speedup with high-speed inter-node
networks [12, 75].
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However, with the rapid growth in the DL model sizes, especially
for large natural language processing (NLP) models [8, 19, 47, 57],
a single GPU can no longer store a complete DL model even with
the smallest batch size (i.e., one). As a workaround, recent dis-
tributed training frameworks [59, 65] suggest splitting the models
into multiple pieces with pipeline parallelism and tensor parallelism.
Pipeline parallelism distributes the layers of a DL model to the
nodes, whereas tensor parallelism partitions a layer into multiple
sub-layers and distributes the sub-layers to the GPUs. The three
types (i.e., data, pipeline, tensor) of parallelism are collectively
known as the 3D parallelism of distributed training.

Unfortunately, we found that existing compression methods tar-
geting only the data-parallel traffic are inefficient for distributed
training of a large DL model, especially for those using 3D par-
allelism [59, 65]. First, data-parallel traffic is no longer the sole
source of inter-node communication. Pipeline parallelism requires
point-to-point communication for passing forward activations and
backward gradients between layers, and tensor parallelism incurs
several all-reduce communications during forward and backward
passes. Second, we find that naively applying the existing compres-
sion techniques on recent larger NLP models causes a significant
drop in the model quality (i.e., downstream task accuracy). More-
over, applying the compression on the newly-introduced pipeline
parallel traffic yields even more quality drops as illustrated in Sec-
tion 3. This states the need for new techniques that can suppress the
compression error, or reduce the communication volume without
loss. Last, existing compression methods [12, 41, 75] overlook the
opportunity coming from the pipelined schedule. When a training
process is pipelined, much of the communication latency is hidden
by the computation (i.e., forward and backward pass) of the follow-
ing micro-batches. Thus, blindly compressing all communication
traffic only yields more compression errors without any throughput
gain.

In such circumstances, we propose Optimus-CC (Compressed
Communication), a fast and scalable distributed training framework
for large NLP models. Our goal is to achieve throughput gain by
exploiting characteristics of inter-node communication in 3D paral-
lelism without sacrificing the model quality. Optimus-CC employs
the following three key ideas: First, compressed backpropagation
targets the inter-stage communication of pipeline parallelism. It
compresses the inter-stage backward traffic which contains acti-
vation gradients. By focusing on the pipeline epilogue and prop-
agating compression errors in a lazy manner within an iteration,
compressed backpropagation can increase speedup without com-
promising the model quality. Second, fused embedding synchroniza-
tion fuses the two all-reduce communications from the embedding
layers into a single all-reduce communication. The embedding syn-
chronization occurs due to an embedding layer being shared at the
beginning and the end of the network. We find that fusing the syn-
chronization reduces the communication volume without changing
the mathematical outcome. Third, selective stage compression tar-
gets data parallel communication, but restricts the compression
target to only a few stages. The data parallel communication begins
as soon as the backward pass of the corresponding stage finishes.
Therefore, the earlier stages are likely to place the data parallel
traffic on the critical path, so selective stage compression chooses
not to compress some stages for less error.
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Figure 1: Example distributed training configuration with
3D parallelism, with 2 data-parallel groups, 4 tensor-parallel
groups, and 4 pipeline stages.

We tested our approach on a cluster of 128 Nvidia A100 GPUs
with 200Gb/s Infiniband HDR interconnect to achieve up to 15.09%
speedup on multi-billion NLP models without compromising ap-
plication performance and up to 44.91% speedup with comparable
model quality.

Overall, our contributions can be summarized as follows:

e We propose Optimus-CC, a fast and scalable distributed train-
ing framework which aggressively compresses inter-node
communication while sustaining the model quality. To the
best of our knowledge, Optimus-CC is the first work to accel-
erate large-scale NLP model training with inter-node com-
munication compression.

e We propose three techniques tailored for reducing the com-
munication volumes of 3D parallelism: compressed back-
propagation, fused embedding synchronization, and selec-
tive stage compression. They significantly improve training
throughput without suffering from the model quality drop.

e We demonstrate the high effectiveness of Optimus-CC by
training two versions of GPT2 [57] models which have 8.3-
and 2.5-billion-parameter respectively. In our large-scale
GPU cluster setting equipped with a high-end interconnect,
we obtain significant speedup on training.
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Figure 2: Layer structure of Megatron-LM. The weight pa-
rameters of each layer are split into multiple GPUs.

2 BACKGROUND
2.1 3D Parallelism

3D parallelism is a strategy of utilizing data parallelism, tensor par-
allelism, and pipeline parallelism commonly adopted to large NLP
model training [59, 65] as depicted in Fig. 1. Data parallelism [2, 17,
84] duplicates the same model weights on several groups. Then,
mini-batches of a dataset are equally split into each data-parallel
group. After a forward and backward pass, each group d has differ-
ent parameter gradients G =v f (@) (W) (where f is aloss func-
tion and W is the weight parameters) of the dedicated mini-batch for
them. To maintain identical model weights in all the data-parallel
groups, averaged parameter gradients (% Zg G(d)) from all the D
groups are updated on weights. e, W «— W — a% Zg Gy 1t
can reduce the training time because the forward and backward
passes are parallelly executed in multiple GPUs. The communica-
tion overhead of the averaged parameter gradient is the main cost
issue for using data parallelism.

Pipeline parallelism and tensor parallelism [10, 13, 36] let us han-
dle large models that do not even fit in device memory by distribut-
ing a part of the model into multiple GPUs. During forward and
backward pass, these parallelisms should communicate activations
and gradients between GPUs. This mechanism accompanies huge
communication volume, so the model should be carefully split to
minimize the overhead.

Pipeline parallelism [29, 49, 83] places a set of layers (i.e., a
stage) to a GPU as depicted in Fig. 1 and overlaps its executions
in a pipelined manner as illustrated in Fig. 4a. A number of prior
work [29, 49, 83] carefully schedule the executions such that the
pipeline bubbles are minimized. Between the stages, activations and
activation gradients Vf(Y) (where Y is the intermediate activations)
have to be communicated in a point-to-point manner for forward
and backward passes. Although the latency of many point-to-point
communications are hidden by overlapping with computations,
some communications are still not hidden, which become the target
of this work.

Tensor parallelism splits a layer into multiple GPUs. By duplicat-
ing the activations to the GPUs in the same tensor-parallel group,
each GPU applies different weight parameters to produce partial
results. Hence, all-reduce communications are required during for-
ward and backward passes for the activations and activation gradi-
ents. [65]

2.2 Large-Scale NLP Model

In the NLP task, a large model [8, 19, 58] based on transformer [74]
is preferred due to its representational capability. Megatron-LM [50,

65] is a framework for training extreme-scale NLP models using 3D
parallelism. Fig. 1 and Fig. 2 show the details of Megatron-LM. It
applies tensor parallelism to split model layers as depicted in Fig. 2.
To reduce the communication time, each tensor parallel group is
placed within a server node such that its communications can utilize
high-bandwidth intra-server interconnects (i.e., NVLink).

Multiple server nodes are utilized for data parallelism and pipeline
parallelism. Megatron-LM also uses interleaved scheduling and
1F1B scheduling to reduce the pipeline bubbles and peak mem-
ory usage. Because the communications from data parallelism and
pipeline parallelism take place in an inter-node network, those two
communications often become bottlenecks in the 3D parallelism
of Megatron-LM. This work targets reducing the volume of such
communications, thereby maximizing the throughput of large NLP
model training.

2.3 Gradient Compression

Gradient compression is commonly used for mitigating the huge
parameter gradient communication cost in data parallelism. Top-
k, quantization, and low-rank approximation are three popular
approaches for gradient compression.

Top-k [44, 64] based approaches take top-k elements of the gradi-
ents per layer to compress. In this case, top-k selection entails sort-
ing overhead which is critical in fast training. Some work [11, 12]
use quasi-sorting to reduce this overhead. One problem with the
top-k method is that as the number of GPUs in data parallelism
increase, the total number of elements to communicate linearly
increase, because each GPU will independently choose its own k
elements. Furthermore, top-k methods require an additional gather
operation for the chosen indices which induces more overhead
than the actual parameter gradient sharing in a multi-worker envi-
ronment. ScaleCom [12] resolves this gradient build-up problem
because of the gather operation by using top-k index similarity
between gradients in each worker. Ok-Topk [41] also successfully
addresses these problems using its efficient top-k threshold estima-
tion algorithm.

Quantization-based approaches quantize gradients to reduce
communications. TernGrad [81] uses ternary (-1, 0, 1) values to
aggressively reduce communications. AdaComp [11] additionally
combines residual addition and quantization to minimize the error
from lossy compression. SignSGD [5] uses the sign of the momen-
tum to significantly quantize gradients. 1-bit Adam [70] reduces
the communication of the Adam optimizer by quantization using
the stability of optimizer variables after warm-up iterations.

On the other hand, the low-rank approximation uses matrix
factorization to reduce the total communication cost of gradients.
Factorization cost is the main bottleneck of matrix factorization.
PowerSGD [75] diminishes this cost by iterating power-iteration,
which is required for classical SVD, only once. It reuses the fac-
torized matrix from the previous gradient compression stage to
minimize the error of compression.

One common drawback of these methods is that all the top-k,
quantization, and low-rank approximation methods are inherently
lossy, and can degrade the accuracy of a model. Many approaches
try to mitigate this problem by considering the momentum [44],
providing feedback on errors [11, 75], or estimating the gradient
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Figure 3: Motivational experiments. The breakdown demon-
strates the overhead of communications, and naive compres-
sion yields severe increases in the validation perplexity.

movements [35, 83]. Optimus-CC is no exception, as it adopts a low-
rank approximation to compress the communications. We propose
several methods to maintain the model quality, while compressing
the communications for the 3D parallelism.

3 MOTIVATIONAL STUDY

Fig. 3 illustrates the breakdown of 125K iterations training in a
large NLP model (GPT-2.5B) using the popular Megatron-LM [65]
framework. Because each GPU runs different stages with heteroge-
neous scheduling, we follow an approach similar to CPI stack [21].
In other words, we turn off each communication/computation and
observe the execution time difference. The experiments have been
done with 128 GPUs over 16 computing nodes connected with
200Gbps Infiniband HDR interconnect. Please refer to Section 9.1
for a detailed setup.

Even with such high-speed interconnect, a significant portion
is spent on the inter-node communication part (‘DP Comm. for
data-parallel communication, ‘Inter-stage Comm. for communi-
cation between pipeline stages, and ‘EMB Comm.” for embedding
synchronization). One exception is tensor-parallel all-reduce that
happens intra-node, which we included in the FWD, and BWD bars.
In Megatron-LM, the tensor parallel GPUs are always placed in a
single computing node, and connected via relatively fast NVLink
with 600GBps bandwidth per GPU, which result in an almost negli-
gible communication time.

Perplexity (PPL) is a representative validation metric in NLP,
which measures how confidently the model predicts the next word
after given sentences (the lower is the better). The ‘naive DP’ bar
depicts the training time and the validation PPL when a low-rank
gradient compression method [75] is applied to the data-parallel
communication to reduce its time. It shortens the training time by
reducing the volume of communication. However, contrary to the
common wisdom on smaller models, even the modest amount of
compression rate worsens the model quality as indicated by the
increase in validation perplexity. Considering that model quality
is a key metric for DNN models, this much deterioration is not
acceptable. A similar observation can be made from the ‘naive CB’
bar representing the compression of inter-stage communication.
We naively applied the same low-rank compression ratio to see
the potential, even though no attempt has been made on the com-
pression of inter-stage communication. Similar to the observation

in the data-parallel gradient compression, the compression yields
an unacceptable rise in perplexity, and the phenomenon worsens
when both communication types are compressed.

Optimus-CC targets applying compression to those inter-node
communications, without sacrificing the quality of the model, as
shown in the ‘Opt-CC’ bar. Optimus-CC compresses the communi-
cations until they only consume a negligible amount of execution
time to achieve its speedup, and most importantly, maintains the
perplexity and zero-shot task quality of the baseline method. As
a result, Optimus-CC reduces the training time taken for 125K
iterations from 8.00 days into 6.97 days, while maintaining the
perplexity equal to that of the baseline. Note that Opt-CC uses low-
rank approximation for compression. We also depicted the result
of top-k-based compression on the inter-stage communications in
the ‘Opt-CC (TopK)’ bar, but it brings worse perplexity because it
is unsuitable for compressing point-to-point communications.

4 OVERVIEW OF OPTIMUS-CC

In this section, we describe three main components of Optimus-
CC. Fig. 4a illustrates the baseline 1F1B scheduling [49] of each
pipeline stage, considering the communications. The blue boxes
represent the forward passes, and the blue arrows represent the
inter-stage forward communication. The green boxes represent
backward passes where each pass takes approximately twice that
of the forward passes, with the green arrows representing the
inter-stage backward communications. After the backward pass
is complete, data-parallel communication takes place (DP). The
communication is made with the GPUs of the same stage in other
data-parallel ranks (yellow boxes in Fig. 4). Note that this also in-
cludes the communication for the parameters of embedding layers
(EMB DP), but it is depicted separately. Then, the embedding syn-
chronization (EMB Sync) happens, between the first stage and the
last stage of the pipeline to sync weights because the first stage and
the last stage share the same embedding weights.

The main goal of our proposed framework is to reduce the latest
finish time or the whole execution, especially that of the first stage,
because the next iteration starts from the forward pass of the first
stage. Our method pursues the goal by reducing the volume of
communication in three sections shaded with green, yellow, and
purple depicted in Fig. 4b.

In the first technique, compressed backpropagation (Section 5),
we compress the inter-stage communication. In the timing diagram,
this technique has the effect of shaping the parallelogram-shaped
green area closer to a rectangle, contributing to the shorter execu-
tion time. We provide two enabler techniques, lazy error propagation
and epilogue-only compression, which help avoid the model qual-
ity drop. The second technique, fused embedding synchronization
(Section 6) targets shared embedding layers, which generate two
all-reduce communications. We fuse these two all-reduce commu-
nications into a single all-reduce communication for traffic volume
reduction. Lastly, selective stage compression (Section 7) targets
data-parallel traffic, but only compresses those lying on the critical
path. This provides a better trade-off between model quality and
execution speed than traditional data-parallel traffic compression.
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5 COMPRESSED BACKPROPAGATION

o Compression target: Pipeline parallelism — inter-
stage backpropagation.

e Method: Compress the inter-stage activation gradients,
with the help of lazy error propagation and epilogue-
only compression.

With compressed backpropagation, we target the inter-stage
backpropagation traffic (activation gradients, green arrows in Fig. 4a
and 4b) using low-rank approximation. Because the communica-
tion appears between computations of each stage, its performance
impact becomes large, especially when there are many pipeline
stages. In principle, compressing the forward traffic could provide
a similar speedup, but it would severely break the convergence of
the model. While naively compressing the backward traffic also
breaks the convergence as demonstrated in Fig. 3, we provide two
techniques for preserving the convergence, lazy error propagation
and epilogue-only compression.

5.1 Lazy Error Propagation

Lazy error propagation is a novel technique that enables compressed
backpropagation without a model quality drop. As shown in Sec-
tion 3, naively applying compression to inter-stage backpropagation
communication causes a severe model quality drop, due to errors
from the lossy nature of the compression algorithm.

Fig. 5 illustrates the inter-stage backpropagation with lazy error
propagation. When lazy error propagation is used, after compressed
data are sent to the earlier stage for backpropagation, the error is
preserved in the memory. This preserved error is added to the
backward traffic in the next micro-batch. For example, (D in the
third micro-batch, the device 2 generates Vf16723(Y;): gradients
from samples 16-23. ) the gradient is compressed and sent to device

Device 1 (3 @( 4 ) (5 )
@ 16~23 E;‘ﬁ~23 24~31 €Zf~32 32~39 E:¥~39
Vi) Vi) Vi)
Device 2 m (T]
16~23 ‘¥ 224~31 “¥ 32~39
Vi(Y2) Vi{2)
Device3 [ 4 ) (5 ) (6 |

Figure 5: Lazy error propagation, with micro-batch size of 8.

1, while the compression error €10723 is preserved in memory. 3

in the next micro-batch, when V f24-31(Y;) is generated, the 6%6_23
is added. The sum is compressed before being sent, and the new
error 6%4_31 is preserved.

Even though the error is slightly delayed to the next micro-batch,
the impact on the model quality is almost negligible because the
model update only happens after all micro-batches are processed.
In other words, lazy error propagation does not suffer from the
weight staleness effect because all micro-batches are still executed
based on the same version of the weights. (See Section 9.3 for the
detailed model quality results.)

Lazy error propagation delays the error from a specific micro-
batch to later micro-batches’ errors. For lazy error propagation to
work, the resulting average gradient should correctly approximate
the average that would have resulted when compression is not
used. An intuition is that the gradients are being accumulated over
the entire mini-batch, unlike the activations that directly affect
the result of the model. Because of this, we posit that the errors
propagated in later micro-batch does not greatly affect the total
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sum. We found that this is true when the distribution of the errors
are independent to that of the activations. In the following, we
provide a mathematical analysis of this condition.

Consider a K-layer MLP! as a toy example:

E=f(Wk - Wg_1--- Wi - X1, 1)
where E is the error from some error function f(-), Wy is the weights
for layer k and X(?) s the i* sample from a mini-batch. In addition,
we define Yk(l) as the intermediate activation values at the output
of layer k from the i* h sample of the mini-batch as below.

& _ (@) () _ y(
Yoo =W Y o= X(l)’ @
Applying the common backpropagation,

VFD ) = Wiear - VY i), 3)

Vi W = 5O (04 ¥, *)
Taking k = K —1 (the penultimate layer) for example, the parameter
gradient for update becomes:

VIO W) = Wi - VFO (1) - v, )
Since the update occurs after the completion of the entire mini-
batch, assuming there are N samples in a mini-batch, the update
with SGD becomes:

Wi« W —n -Gy, (6)

N
G = < D VF D (Wi, )

where 7 is a learning rate and G represents the average gradient.
Now, consider each Wy becomes an individual pipeline stage. Then,
the communicated backpropagation values between stage k and
k+1lare Vf @ (Yx). When we apply compression, we essentially add
an error vector elk to it (i.e., Vf(i) (Yx) becomes Vf(i) (V) + elgl)),
With lazy error propagation, the errors are kept to be subtracted
from the next micro-batch that has n samples:

VA (Yi) = Wit - (VO i) =) 460D, @®
VO W) = (VD () -7 e - v, ©)
where V() (W) is the approximate parameter gradient with

compressed backpropagation.
Setting k = K — 1 again,
V1O W) = (D Oeo) = 407 + 60 -1,

= (Wg - (Vf(i)(YK) - e[((i—n) +eI(<i)) _elm )

(i)
K-1 k-1 Ykl

Aggregating them over N samples to obtain Gy _, yields,

Gy, = !
K—I_N

N -
va*(l)(WK—l),
i
1< ; i i i i i
= 7 oWk (U0 + e - ™)+l 7)1,
1

(10)

Substituting Eq. (5) results in the below equation.
1 N - . - . s
=G+ g 2 Wi () =l ™) vl — T v, ()
1

IFor brevity, we omit the bias terms and activation functions

Restructuring the sums,

N-n
_ ! @, () (i) _ y(i+n)
=Gro1+ Z (W e +e) ) - (D, - )
n-1

2wl L -l )

i

1
+—
N

(N-i)  y(N-i) (i-n) (i)
tep Y Tek 'kaz}

When N > n, the last term amortizes to yield
1 N-n . . . .
~Graty DL Wk +el ), — v ()
1

For Gy_, to correctly approximate Gk 1, the second term should be
close to zero. It is possible when one of the following two conditions
suffices. First,

e xel™ ki (13)
is derived from Eq. (11), which indicates the compression errors are
always similar. Second,

e (! -y vk,
Avg(el”) = 0, Aog(v\? —Y*M) =0 ki, (14)

is derived from Eq. (12).

The first condition (Eq. (13)) is intuitively difficult to be true,
because it requires all errors to be almost equivalent to each other
in their values. Moreover, if it is true, compressing the forward
activations with lazy error propagation should also work. However,
in our experiments, compressing the forward inter-stage activation
yielded divergence in the model, even with a very low compression
rate.

On the other hand, the second condition (Eq. (14)) can be easily
true, especially in the existence of batch/input normalization, which
makes the average zero. In Section 9.3, we will show that the second
condition (Eq. (14)) is empirically true. In practice, the error from
the last micro-batch is lazily propagated in the first micro-batch of
the last minibatch which further reduces the discrepancy. Finally,
please note that different k values can be chosen to derive the same
conditions, which we omit for brevity.

5.2 Epilogue-Only Compression

Epilogue-only compression is an additional technique in compressed
backpropagation that provides better model quality without sacrific-
ing the training speed. While compression techniques dramatically
reduce the communication time, too much compression always has
a risk of a drop in the model quality, which essentially becomes a
trade-off between training speed and model quality.

Surprisingly, with pipeline parallelism, we can choose to com-
press the data that lie on the critical path. Under the baseline sched-
uling shown in Fig. 4a, many communications from inter-stage
backpropagation are almost well-overlapped (hidden) with the com-
putations. However, the communications from stages that lie on the
critical path (called epilogue) are not hidden by the computations,
as depicted in Fig. 6a.

With the above observation, epilogue-only compression only
compresses the communication in the epilogue part, as illustrated
in Fig. 6b. This causes less error in the training, and provides better
quality to the model training. As shown in Fig. 6b, epilogue-only
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Figure 6: Illustration of epilogue-only compression.

compression does not reduce the speedup from the inter-stage com-
munication compression when the inter-stage communication time
is less than that of the corresponding stage’s backward pass pro-
cessing time. We found that this is true for high-end interconnects
(i-e., > 100Gbps), and find the epilogue-only compression method
useful.

6 FUSED EMBEDDING SYNCHRONIZATION

o Compression target: Pipeline parallelism — embed-
ding synchronization.

e Interacts with: Data parallelism.

o Method: Fuse two all-reduce communications of the
shared embedding layer into a single all-reduce.

When any of the weight parameters in the model are used multi-
ple times in the network, the parameters aggregate gradients from
multiple paths. If the multiple paths lie within a single GPU, this
does not incur any issue. However, if they are executed on differ-
ent GPUs (either with tensor parallelism or pipeline parallelism),
they require synchronization of the parameter gradients, which is
another type of communication.

In large NLP models that we primarily target, such a structure
commonly appears with the embedding layers as depicted with pur-
ple boxes in Fig. 7. If the output of the network takes a text format
(as in the pretraining phase), the embedding layer is used twice:
Once at the input for converting words into embedding values, and
once more for converting the output vector into words. Because
they are at the beginning and at the end of the model, they always
generate an inter-node communication if pipeline parallelism is
used. In existing solutions shown in Fig. 7a, the embedding layer
is duplicated in both the first and last stages. After the layer-wise
gradients are collected from data parallel communication, the dupli-
cated embedding layers share the gradients in an all-reduce pattern
in a separate communication phase.

Effectively, the functionality of the embedding synchronization
is to share the gradients, identical to that of the data-parallel com-
munication (i.e., all-reduce). Thus, we can fuse the two all-reduce

2-way all-reduce

Embedding Synchronization

+

4-way all-reduce
4-way all-reduce

DP4 DP3_DP2 DP1

Data-parallel communication

(a) Baseline. Two all-reduce communications.
8-way all-reduce

(b) Fused embedding synchronization.

DP4 DP3 DP2 DP1
Emb} [Emb] [Emb]

4
Emb} [Emb] [Emb)

-wa

Figure 7: Illustration of fused embedding synchronization.

communications associated with the embedding layers (one from
the data-parallel ways and the other from embedding synchroniza-
tion) into a single all-reduce as illustrated in Fig. 7b. It is known
that, for R ranks participating in an all-reduce communication for
communication volume V, the cost is 2V - (R-1)/R [72]. Because the
number of ranks for embedding synchronization is always two, the
conventional cost for the embedding layer Cg,,,;, becomes
D-1 3D -2

D
where D is the number of data-parallel groups. With fused embed-
ding synchronization, the number of ranks for the fused synchro-
nization becomes 2 - D, and the cost becomes

CEmb_fused =V 2DD 1~ (16)
Thus, as D becomes large, the improvement approaches 50% over
the baseline embedding synchronization time. For D = 4 used in
our settings, the theoretical benefit already reaches 42.9%.

Cemp =2V -

1

7 SELECTIVE STAGE COMPRESSION

o Compression target: Data parallelism.

o Interacts with: Pipeline parallelism.

e Method: Compress the current bottleneck stages for the
trade-off between speed and the model quality.

In Optimus-CC, we provide selective stage compression as an
optional technique to obtain a trade-off between model quality and
speed when compressing data-parallel traffic. As shown in Fig. 3,
compression of data-parallel traffic results in a big drop in the model
quality, making the technique unacceptable despite its large benefit
in the execution time. Even with a low compression rate, the drop is
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Figure 8: Illustration of selective stage compression.

still severe. We believe the reason comes from the weight staleness
issue [29]. While the error from compression can be sent to the next
iteration [12, 75], unlike compressed backpropagation, the error is
applied after the weight update, and has a stale effect on the weight.

Instead of relying on the compression rate, selective stage com-
pression provides a better knob by considering the pipeline sched-
ules into account for the stage selection. In conventional data
parallel-only distributed training, the gradient exchange communi-
cation for data parallelism happens after the backward propagation,
and lies on the critical path. However, because of pipeline paral-
lelism, the later stages finish early from the backpropagation and
they can start the communication before others. Then, selectively
compressing the stages, starting from the earlier stages, can adjust
how much data we compress and therefore how much quality we
lose. For example, in Fig. 8, the rightmost edge of the light-yellow
box on stage 1 represents the finishing time for uncompressed data-
parallel communication. When the first stage is compressed, the
new bottleneck becomes stage 2, and further compressing the traffic
from stage 2 yields the new bottleneck to stage 3. This scheme pro-
vides a much better trade-off, as we will demonstrate in Section 9.4.

8 IMPLEMENTATION

Optimus-CC has been implemented over the publicly available
Megatron-LM code [9]. The interleaved pipeline scheduling [65]
has been applied to reduce the scheduling bubbles. For the low-
rank approximation, we adopted PowerSGD [75] implementation.
We used the low-rank approximation for both compressed back-
propagation and data-parallel gradient compression, because top-k
methods are not suitable for point-to-point communications as
shown in Section 3, and [75] shows good performance compared to
other compression methods [1]. All of our additional implementa-
tions have been made using native PyTorch [53] 1.8 APIs, such that
it does not require external libraries or recompilation of PyTorch.
For the compressed backpropagation, we wrote a custom low-
rank compression code to support point-to-point communication,
and integrated it into the methods of Megatron-LM’s p2p_commu-
nications.py. To realize lazy error propagation, private variables
were declared in the PowerSVD class to store the errors between
micro-batches. For epilogue-only compression, schedule.py was
modified to apply compression on the epilogue part of the com-
munications. For the selective stage compression, we inherited the
DistributedDataParallel class and overrode the allreduce_-
gradients() method. For the fused embedding synchronization,

Table 1: Experimental Environment

#Nodes 16
Server CPU 2XEPYC 7543, 32 cores
HW Node Memory 1TB DDR4 ECC
GPU 8% Nvidia A100
Int " Intra-node NVLink (600GBps / GPU)
nterconnec Inter-node Infiniband HDR (200Gbps)
Micro-batch 8
Common Total mini-batch 512
#iterations 230K
#layers 72
Model  Gprgsp Hidden dim. 3072
Ways TP8 / DP4 / PP4
#layers 52
GPT-2.5B Hidden dim. 1920
Ways TP8 / DP4 / PP4

we again modified the allreduce_gradients() function. We de-
tected the embedding layer by searching for the word word_em-
beddings in the name of the layer, and replaced the communication
with the custom method.

9 EVALUATION
9.1 Experimental Environment and Method

We conducted our experiments based on the environments listed
in Table 1. All experiments have been performed under a fixed
set of nodes, such that unexpected variations could be minimized.
Following [65], we pretrained GPT with 8.3B parameters (GPT-8.3B)
and GPT with 2.5B parameters (GPT-2.5B) model to figure out the
convergence of the model when using the proposed methods. The
GPT-8.3B has 72 layers and a hidden dimension size of 3072, while
the GPT-2.5B model has 52 layers, with a hidden dimension size of
1920. To utilize 128 GPUs, both models had eight tensor parallel
groups that match the number of GPUs within a node, four data-
parallel groups, and four pipeline stages unless otherwise stated.
We pretrained models for 230K iterations, where the baseline model
reaches the LAMBADA [52] task accuracy reported in [65]. All
perplexity data are the result of training for 230K iterations unless
otherwise stated.

Following [65], we executed pretraining of chosen NLP models
with RealNews [86], Wikipedia [19], CC-stories [73] and Open-
Webtext [56] datasets. We concatenated all these datasets and
created a corpus. The datasets were preprocessed using the orig-
inal Megatron-LM code [9], including the elimination of short
documents and deduplication. For validation metrics, we also fol-
lowed [65] (using 5% of the dataset as a validation set) including
the holdout, splitting documents into training and validation at the
beginning.

For the number of ranks in low-rank approximation-based com-
pression, we used 128 for data-parallel gradient compression and 16
for compressed backpropagation unless otherwise stated, following
the settings of the transformer-based model (around 10X compres-
sion) in [75]. We followed [75] because compression algorithms are
well-studied research areas. We empirically chose 75% stage com-
pression for selective stage compression. We ran 30K of warm-up
iterations for all models, also following the practice from [75].
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Table 2: Pretraining (230K iterations) training time speedup and validation set perplexity using 128 GPUs.

Baseline CB (Speedup) CB+FE (Speedup) CB+FE+SC (Speedup)
GPT-8.3B Training Time 37.27 days 34.83 days (+7.01%) 32.84 days (+13.49%) 25.72 days (+44.91%)
) Val. Perplexity 8.10 8.10 8.10 8.20
GPT-2.5B Training Time 14.72 days 13.63 days (+8.00%) 12.79 days (+15.09%) 12.55 days (+17.29%)
% Val Perplexity ~ 9.31 9.31 9.31 9.55
GPT-8.3B [ FWD [ EMB Comm. [ Comp/Decomp.
m ! Bas;,linle [ BWD [ Inter-stage Comm. [ DP Comm.
= 1051 CB o4 GPT-8.3B 163 GPT-2.5B
& 1001 CB+FE _1s 6
T 951 T CBAFESSC £ 0] ol
> 90 I E
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Figure 9: Pretraining validation LM perplexity of the pro-
posed methods and the baseline.

9.2 Training Performance

Table 2 show the training speed, and the validation perplexity of
Optimus-CC, on the chosen models. In the table, ‘Baseline’ refers
to the original Megatron-LM without any communication com-
pression. In addition, ‘CB’ refers to compressed backpropagation
where the lazy error propagation and epilogue-only compression
are used together, ‘FE’ refers to fused embedding synchronization,
and ‘SC’ refers to selective stage compression. On an 8.3B parame-
ter model, Optimus-CC achieves 44.91% speedup over the baseline
(no compression) with marginal perplexity increase on CB+FE+SC,
or 13.49% speedup without compromising perplexity on CB+FE.
A similar trend can be seen from the 2.5B model, with a 17.29%
speedup with a small perplexity increase on CB+FE+SC or a 15.09%
speedup without a perplexity increase on CB+FE.

One interesting trend is the relatively larger speedup of SC in
the 8.3B model than in the 2.5B model. Because the same number
of GPUs are used, so the number of parameters per GPU, which
affects the data-parallel gradient communication volume, becomes
larger in the 8.3B model. It increases the portion of the communi-
cation over the inter-stage communication. Therefore, the speedup
from compressing the data parallel communication in 8.3B becomes
relatively larger than the 2.5B case.

Fig. 9 shows the curves of validation perplexity over the training
of the 8.3B model. With the use of compressed backpropagation
(CB) and fused embedding synchronization (FE), the perplexity re-
mains mostly the same compared to the baseline, and sometimes
even performs better depending on which iteration the perplex-
ity is measured. This is because compressed backpropagation suc-
cessfully restricts the impact of compression errors to be resolved
within the same iteration, especially using lazy error propagation.
Fused embedding synchronization does not induce any mathemat-
ical changes to the baseline, and thus it is guaranteed to have no

+SC +SC

Figure 10: Breakdown of the execution times using 128
GPUgs, in ablation of the proposed techniques.

perplexity increase. Selective stage compression provides a large
amount of speedup at the cost of some perplexity trade-off. Even
with the error feedback techniques [75], it is inevitable that the
error is applied after the update, which causes the staleness effect.
Nonetheless, selective stage compression controls the perplexity to
have a marginal increase, while providing the most speedup.

We also conducted a language model validation of five zero-shot
downstream tasks to validate our work based on [24], as shown
in Table 3. Zero-shot tasks directly evaluate the pretrained model
on some tasks (e.g., QnA) without fine-tuning and we used them
to represent the expressibility of a model. For both the 8.3B and
2.5B models, CB and CB+FE show comparable accuracy on the
baseline (no compression) model. CB+FE+SC shows marginal ac-
curacy degradation compared to baseline, which aligns with the
trend of Table 2 and Fig. 9.

Fig. 10 shows the breakdown measured in the same way as in Sec-
tion 3. As depicted in the purple bars, compressed backpropagation
(CB) reduces most of the backward inter-stage communications, by
78.57% compared to the baseline. Much of the inter-stage communi-
cation is left uncompressed because of epilogue-only compression,
but they are overlapped by the other computational stages and do
not affect the training time. Some portion of inter-stage communi-
cation that still remains in the stack accounts for the forward traffic
which is not the target of compressed backpropagation. The red
bars represent the embedding synchronization part. The reduction
is about 40%, which is almost identical to the analytic cost model
provided in Section 6 of 42.9%. When all the proposed methods have
been applied (CB+FE+SC), the total communication time overhead
has been reduced by 63.29% in the 8.3B model, showing the effective-
ness of Optimus-CC. Note that the compression and decompression
overhead is negligible due to the extremely high throughput of the
compression algorithm, which we will demonstrate in Section 9.6.
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Table 3: Accuracies on zero-shot tasks which indicates the expressibility of pretrained models.

GPT-8.3B GPT-2.5B
Tasks
Baseline CB CB+FE CB+FE+SC Baseline CB CB+FE CB+FE+SC
LAMBADA [52] 66.82% 66.35%  66.35% 65.79% 62.00% 61.93% 61.93% 61.15%
PIQA [7] 75.52% 74.05% 74.05% 74.27% 71.76% 72.63% 72.63% 71.93%
MathQA [3] 24.36% 23.55%  23.55% 23.52% 24.15% 24.25% 24.25% 23.42%
WinoGrande [63] 63.22% 63.30% 63.30% 63.22% 62.19% 60.62%  60.62% 61.33%
RACE [37] 37.89% 37.89% 37.89% 37.32% 33.88% 35.12% 35.12% 34.64%
Table 4: Effect of lazy error propagation on accuracies of Cosine Sim. Error Avg.
zero-shot tasks in GPT-2.5B. Cosine Avg. Acti. Delta Avg.
. 001 0.1
Tasks Baseline CB (Non-LEP) CB (LEP) 5
£ o0
LAMBADA  62.00% 61.79% 61.93% 2 0.00 100z
PIQA 71.76% 71.87% 72.63% L@)
MathQA 24.15% 23.69% 24.25% —0.01 ‘ : . . - -0.1
; 0 25 50 75 100 125 150
WinoGrande  62.19% 59.75% 60.62% Micro-batch Index
RACE 33.88% 33.59% 35.12%

9.3 Analysis of Compressed Backpropagation

Table 4 shows the effect of lazy error propagation on the model qual-
ity. ‘CB (Non-LEP)’ refers to compressed backpropagation without
lazy error propagation, and ‘CB (LEP)’ refers to compressed back-
propagation with lazy error propagation. Epilogue-only compres-
sion was applied to all the cases because CB without epilogue-only
compression diverged. Bold accuracy is the highest, and underlined
accuracy is the lowest. While applying compression to the back-
propagation without lazy error propagation severely damages the
model quality, which brings out the lowest accuracies, applying
lazy error propagation makes the model quality comparable to the
baseline non-compressed model.

Fig. 11 depicts how the conditions from Eq. (14) hold during
training. The green curves represent the average values for ¢ () over
150 micro-batches during training. In addition, the purple curves
show that the average of the difference between activations (y® -
Y (1)) is also near zero. Finally, the cosine similarity between el
and YD) —y (i+n) mostly stays around zero, which indicates that the
two terms are independent. This suffices that the conditions from
Eq. (14) are true, leading G* in Eq. (10) to correctly approximate
Eq. (7).

Fig. 12 shows the memory overhead of compressed backpropa-
gation by plotting peak memory consumption reported by PyTorch.
To apply compression [75], a separate memory region has to be allo-
cated for low-rank matrices. This accounts for the 5-10% overhead
to the baseline. In addition, lazy error propagation requires small
additional memory for storing the error between micro-batches, but
the overhead is marginal, which adds only 1% additional overhead.

9.4 Analysis of Selective Stage Compression

One might wonder if the compression ratio (i.e., ranks) of the low-
rank approximation can be adjusted instead of applying selective
stage compression. One important aspect is that the critical path
cannot be considered by merely adjusting the compression ratio.

Figure 11: Cosine similarity of errors and activation differ-
ences.

[ Baseline [ CB [ CB+LEP
— 1e3 GPT-8.3B . 1e3 GPT-2.5B
g g
Z 104 Z 61
S S
2 59 =<
Z 221
g g
20 . T T T 20 T . T T

Stage 1 Stage 2 Stage 3 Stage 4 Stage 1 Stage 2 Stage 3 Stage 4

Figure 12: Maximum memory allocation per GPU of base
compressed backpropagation and with lazy error propaga-
tion.

In this section, we show that selective stage compression provides
a much better trade-off between the training speed and the model
quality (measured with validation perplexity) on GPT-2.5B.

Fig. 13 plots the training time and the perplexity of the two
methods. In the left figure, we apply selective stage compression
and vary the percentage of stages being compressed. With selective
stage compression, we achieve a reasonable trade-off between the
speedup and validation perplexity. On the other hand, in the middle
figure, we plot how the speedup and validation change by merely
adjusting the rank used in the compression (compression ratio).
Surprisingly, the relation between rank and perplexity is non-linear,
which makes the traditional rank-adjusting infeasible as a tuning
method. At rank 512 which translates to about 10X compression rate,
both the perplexity and speedup significantly worsen. The reason
for the speed degradation comes from the compression algorithm,
where a too-high-valued rank will increase the time overhead for
compression and decompression, as illustrated in Section 9.6. Thus,
relying on the compression ratio for the speed-accuracy trade-off
would not be a rational choice.
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Figure 13: Effect of applying selective stage compression
(left) and adjusting ranks (middle) to data-parallel commu-
nication on the speedup and the validation perplexity in
GPT-2.5B.
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Figure 14: Tensor/pipeline-parallel configuration sensitivity
of training time with the fixed data-parallel setting on GPT-
9.2B.

Fig. 13 (right) shows a direct comparison between selective stage
compression and adjusting ranks by plotting the validation per-
plexity and the speedup together. Considering that the upper-left
(higher speedup and lower PPL) is the optimal direction, selective
stage compression always provides a better trade-off than adjusting
ranks. We believe an even better trade-off can be achieved by auto-
matically choosing the right combination of the compression rank
and the number of stages for selective stage compression, which
we leave as future work.

9.5 Analysis on Configuration Sensitivity

Finding the best tensor/pipeline parallel configuration for training
is an active research area [71]. Fig. 14 shows the training time of
models on various parallel configurations. We fixed the number
of data-parallel ways to four for a fair comparison and conducted
experiments on possible configuration settings. We tested the con-
figurations up to eight tensor-parallel ways because tensor-parallel
ways are generally limited to the number of GPUs in a node. With
128 GPUs, this results in the number of pipeline ways from 16 to
4. To evenly divide the layers up to 16 stages for a fair compari-
son, we increased the number of layers to 80, which corresponds
to 9.2B parameters. For selective stage compression, we used the
same 75% compression for all settings. Optimus-CC provides at
least 19.2% speedup for all parallel configurations. The trend is that
CB has more advantage when the number of pipeline-parallel ways
increases because this incurs more inter-stage communication from
deeper stages in the pipeline. On the other hand, SC takes advantage
as the number of pipeline-parallel ways decreases. This is because,
with less number of stages, the number of parameters per GPU
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Figure 15: Throughput of inter-stage compression and de-
compression on GPT-8.3B (left) and GPT-175B (right).
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Figure 16: Scalability of our mechanisms.

increases, and thus the portion of data-parallel communication
becomes larger.

9.6 Analysis on Compression/Decompression
Throughput

Optimus-CC uses a compression algorithm as its key component,
and thus analyzing the compression and decompression throughput
is critical. In Fig. 15, we show that the compression and decompres-
sion throughput are much higher than that of the interconnect band-
width. In CB rank 16 of the 8.3B model, the compression throughput
is 786.96Gbps (98.37GB/s), and the decompression throughput is
68.2Tbps (8.32TB/s), which has enough gap with the interconnec-
tion throughput of 200Gbps (25GB/s) depicted in red lines.

The compression throughput becomes higher in larger model
sizes because constant setup overheads for the compression ker-
nels become amortized with larger data. An interesting and rather
counter-intuitive trend is that the throughput decreases with higher
CB ranks (less compression). This is because the orthogonalization
phase is the main bottleneck (about 80%) for the compression algo-
rithm, which takes longer with a larger output size.

9.7 Analysis on Scalability

Fig. 16 shows the scalability of the proposed work with four Megatron-
LM [65] based models. We fixed tensor-parallel-ways to 8 and in-
creased the number of GPUs in larger models for a fair comparison.
Optimus-CC scales well on larger model sizes even when the model
grows up to 175B (GPT-3) [8].

The scalability comes from two factors. First, it is well-known
that larger models suffer more from communication overheads [66];
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there is more potential for the proposed work. Second, as shown in
Section 9.6, the compression itself becomes more efficient when the
model size becomes larger. The compression overhead was already
small for 2.5B and 8.3B models, but becomes even smaller with
extremely larger models.

10 DISCUSSION
10.1 Application on Other Accelerators

Aside from GPUs, we can use other DL accelerators for training
large-scale models, such as TPU [34] and IPU [26]. They gener-
ally have higher computational throughputs and intra-node band-
width than GPUs, and their inter-node speed (400Gbps for TPU
and 100Gbps for IPU) is similar to that of GPUs. They also use
3D parallelism for large-scale training, which requires inter-node
communication.

Optimus-CC will have more potential on these accelerators be-
cause computational throughput over inter-node bandwidth is
larger than our setting. For an example of IPU-POD128, it pro-
vides 8 PFLOPS per node, while our setting provides 5 PFLOPS per
node. However, its inter-node communication is 100Gbps, which is
half the bandwidth of our setting. In such a case, Optimus-CC will
provide more advantages.

10.2 Application on Other Models

While 3D Parallelism is widely used to train NLP models, it can
also be applied to other domains (e.g., CNN). Optimus-CC can be
adopted to these models, because the mechanisms of the proposed
techniques are independent to a model structure.

For example, training of AmoebaNet [61] is often done with 3D
Parallelism [29] to mitigate the problem of increased model size
and training time. However, the parallelism makes the inter-stage
and data-parallel gradient communication overhead significant.
Gradient compression methods can reduce the overhead of the
data-parallel gradient communication, but suffer from an accu-
racy degradation problem. In this circumstance, Optimus-CC can
minimize the accuracy degradation by selective stage compression
and further accelerate the training by compressing the inter-stage
communication through compressed backpropagation.

In fact, we believe Optimus-CC can be applied to any DNN
domain that requires a model larger than a single device. For ex-
ample, modern graph neural networks started adopting data paral-
lelism [32, 80] and pipeline parallelism [76]. Optimus-CC could be
applied to such cases to bring a speedup.

11 RELATED WORK

11.1 Data Parallelism

To cope with the growing size of the large-scale models [19, 69],
plenty of methods were proposed to accelerate the training proce-
dure. Data parallelism [16, 18, 25, 88] has been commonly used to
accelerate model training in a distributed manner. Data parallelism
is to copy the entire model to every worker and train with a dif-
ferent mini-batch while keeping an identical weight among all the
workers. In order to keep exactly the same state after every step,
data parallelism necessitates the synchronization of gradients. Its
communication overhead grows linearly proportional to the model

size which makes all-reduce [25, 72] be the main bottleneck of train-
ing. To mitigate this problem, many researchers tried to optimize
communication itself [14, 38, 46, 77, 87, 89] while maximizing the
overlap between communication and computation [27, 30, 31, 54].

Another effective approach to reducing communication over-
head in data parallelism is gradient compression. By using a low-rank
approximation of gradient matrices [15, 75, 78], sparse gradient up-
date methods [6, 12, 44, 45, 64] and gradient quantization [4, 22, 85],
communication volume can be effectively reduced without signifi-
cant loss in accuracy. To prevent further performance degradation
caused by gradient compression, most works adopt error-feedback
which is to compensate for the difference between the compressed
gradient and the original one. Recently, statistical ways [28, 55, 82]
can be alternatively used to avoid additional computation overhead
when conducting compression methods.

11.2 Tensor and Pipeline Parallelism

The size of transformer-based language models [8, 19, 58, 74] has
been grown at an exponential rate [50]. This trend hits on limited
accelerator memory capacity in addition to proportional growth
of training time [8]. However, the aforementioned data parallelism
cannot handle both issues by scaling larger batch size [43]. Tensor
and pipeline parallelism has tried to handle both issues in their own
ways.

Tensor parallelism [20, 33, 71, 79] is to hand out parameters (ten-
sor) in the same layer to multiple workers. Tensor parallelism is
mainly focused on reducing the number of synchronization points
among workers sharing the same layer. On the other hand, pipeline
parallelism [29] schedules the execution of micro-batches which
are sampled from a mini-batch. A primary constraint of pipelined
schedule is synchronous execution which is essential regulation in
the model training process. The activation calculated in the forward
pass has to be used in the corresponding backward pass. In such
regard, recent works on pipeline parallelism have mainly focused
on reducing memory overhead [59, 60, 62] for handling staleness
problem [35, 83] while reducing pipeline bubble [23, 40, 49] by opti-
mizing pipelined schedule.

Many transformer-based models can be successfully trained by
using a combination of three distributed training methods which
is called 3D parallelism [50, 51, 65, 68]. However, to the extent of
our knowledge, no attempt has been made to apply 3D parallelism-
aware communication compression to a large language model. Be-
fore Optimus-CC, the effect of compressed communication in 3D
parallelism has been unknown space.

12 CONCLUSION

In this work, we proposed Optimus-CC, which compresses the
communications of large, distributed NLP models that utilize 3D
parallelism. Because the conventional communication compression
algorithms fail to exploit pipeline-related opportunities and result in
a model quality drop, we proposed multiple techniques that reduce
the amount of communications while maintaining the model quality.
We believe the impact of Optimus-CC will be more significant with
even larger models, adding value to the work in the upcoming
future.
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