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Abstract
The overheads of classical decoding for quantum error

correction grow rapidly with the number of logical qubits and
their correction code distance. Decoding at room temperature
is bottle-necked by refrigerator I/0O bandwidth while cryogenic
on-chip decoding is limited by area/power/thermal budget.

To overcome these overheads, we are motivated by the obser-
vation that in the common case (over 90% of the time), error
signatures are fairly trivial with high redundancy / sparsity,
since the error correction codes are over-provisioned to be
able to correct for uncommon worst-case complex scenarios
(to ensure substantially low logical error rates). If suitably ex-
ploited, these trivial signatures can be decoded and corrected
with insignificant overhead, thereby alleviating the bottlenecks
described above, while still handling the worst-case complex
signatures by state-of-the-art means.

Our proposal, targeting Surface Codes, consists of:

D A lightweight decoder for decoding and correcting trivial
common-case errors, designed for the cryogenic domain. The
decoder is implemented for SFQ logic.

() A statistical confidence-based technique for off-chip de-
coding bandwidth allocation, to efficiently handle rare com-
plex decodes that are not covered by the on-chip decoder.

(@ A method for stalling circuit execution, for the worst-
case scenarios in which the provisioned off-chip bandwidth is
insufficient to complete all requested off-chip decodes.

In all, our proposal enables 70-99+ % off-chip bandwidth
elimination across a range of logical and physical error rates,
without significantly sacrificing the accuracy of state-of-the-
art off-chip decoding. By doing so, it achieves 10-10000x
bandwidth reduction over prior off-chip bandwidth reduction
techniques. Furthermore, it achieves a 15-37x resource over-
head reduction compared to prior on-chip-only decoding.

1. Introduction

Quantum computation is a revolutionary information process-
ing model that takes advantage of quantum mechanical phe-
nomena. Quantum computers leverage superposition, inter-
ference, and entanglement, and this potentially gives them a
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Figure 1: Off-chip QEC decoding requires high I/O band-
width, whereas On-chip QEC can suffer from high ther-
mal, power and area overheads. By adopting a Better
Than Worst-Case design, our proposal achieves > 90%
bandwidth reduction while performing on-chip decoding
at > 90% reduction in on-chip overheads.

significant computing advantage in solving intractable prob-
lems in domains of critical interest.

In today’s Noisy Intermediate-Scale Quantum (NISQ) [40]
era of quantum computing, machines suffer from high error
rates in the form of state preparation and measurement (SPAM)
errors, gate errors, qubit decoherence, crosstalk, etc. While in
the near-term we will continue to target NISQ-favorable appli-
cations such as variational quantum algorithms [23, 38], the
long-term goal is to achieve quantum advantage on large-scale
quantum algorithms like Shor’s Factoring [43] and Grover
Search [26]. While quantum devices will continue to improve,
qubit error rates, even in the farther future, will be insufficient
to directly run these large scale applications which demand
high accuracy. Therefore, they will require fault-tolerant sys-
tems [34] via quantum error correction (QEC), in which logical
qubits are constructed from a collection of physical qubits in a
way that the former performs many orders of magnitude better
than the latter [24].

The crux of QEC lies in qubit redundancy and classical
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Figure 2: Illustrative overview of the proposal. 5 logical qubits with a code distance of 3 are shown. Every logical qubit
generates error signatures (s0-s8) every cycle which need to be decoded and followed by the appropriate correction.
We design a lightweight cryogenic on-chip Clique decoder which is able to accurately decode the common-case error
signatures which are trivial to decipher. The rare complex scenarios are passed on to the complex decoder at room-
temperature. Off-chip bandwidth is allocated appropriately so that there is sufficient bandwidth to handle all the
off-chip decodes in most scenarios — in this example, 99% of the cycles requiring off-chip decodes have only 1 (out
of a max 5) signatures to be decoded and bandwidth therefore provisioned as such. In the worst-case, if the number of
off-chip decodes exceeds the provisioned bandwidth (when greater than 1 in this example), the quantum execution is
stalled. Though new errors can occur in the stall cycle, the provisioned off-chip bandwidth is sufficient for all decodes

to be resolved with minimal stall cycles.

support via error detection, decoding and correction. Qubit
redundancy, via mapping a large number of physical qubits
to a single logical qubit, means that for physical qubits with
reasonable error rates, the qubits with physical errors are fairly
sparse in space and time. When errors are sparse, the cor-
responding error signatures for each logical qubit are often
trivial (i.e., low Hamming weight) and can be accurately de-
ciphered by a classical decoder with relative ease, far from
utilizing its full decoding capabilities, and the appropriate cor-
rections can be added to the erring qubits. On the rare occasion
when physical errors inopportunely congregate, the resulting
complex error signatures can be more difficult to decode (and
sometimes impossible for a given error code specification),
thus requiring the decoder to use its decoding capabilities to
the fullest. Accounting for these rare cases is still critical
because incorrect error signature handling will result in logi-
cal errors that condemn the quantum computation, and likely
the entire application. Thus, to avoid the costly worst-case
ramifications of failed application executions, it is expected
that a) qubit redundancy will be set as high as possible so
that complicated errors are rare, and b) decoders will be de-
signed for highest accuracy, at correspondingly high resource
cost, to near-perfectly decipher the even the rare complicated
error signatures. But designing for the extremely scarce worst-
case, while clearly important (as discussed above), means that
there is significant under-utilization of QEC resources and

their capabilities in the more common trivial scenarios, thus
presenting opportunity for optimizations and improvements.
Inspired by Better Than Worst-Case (BTWC)' designs in the
classical computing world [5, 14], this work utilizes BTWC
for quantum error correction to leverage the aforementioned
opportunity.

Now, we dive deeper into the resource constraints of QEC
decoding, which is traditionally pursued via two alternate
approaches. The first, and more thoroughly studied, approach
is off-chip decoding, in which the decoding is performed at
room temperature via software [19], FPGAs [16] or custom
hardware [17]. Off-chip decoding, shown in blue in Fig.1, can
require multiple Gbps of off-chip error data transmission per
logical qubit [17], due to high coded qubit redundancy coupled
with execution latency constraints [27]. Provisioning for such
considerable bandwidth at the quantum-classical interface (i.e.,
between the cryogenic refrigerator and room temperature) is
a serious scalability challenge due to limited I/O wiring. The
second approach, which has been more recently proposed, is
on-chip decoding [27,52] at cryogenic temperatures. While
this alleviates the I/O bandwidth constraint, cryogenic classical
controllers located inside the refrigerator are subject to area,
power and thermal dissipation constraints. To meet these
constraints, on-chip decoding is limited in its accuracy — thus,
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achieving the target logical error rates for long-term quantum
goals, via on-chip decoding alone, will be challenging.

Both these approaches suffer from the bottlenecks discussed
above because they are provisioned to handle the rarely oc-
curring / worst-case complex error signatures (albeit with
different accuracy). The fundamental insight in our proposal,
inspired by BTWC philosophy, is to decouple the handling
of the common trivial error signatures from the handling of
the rare complex error signatures. We propose a low over-
head on-chip ‘Clique’ decoder tailored to Surface Codes [9]
that will identify and handle trivial errors, which are a high
fraction of the total error signatures (over 90% in most sce-
narios). Surface Codes, which are among the most promising
QEC codes due to their high error thresholds, are particularly
amenable to trivial-case lightweight decoding due to their high
locality [24]. In addition to the Clique decoder, we propose
optimizations that gracefully hand over the rare complex error
signatures to any highly accurate state-of-the-art off-chip de-
coder (we use Minimum Weight Perfect Matching [19]), in a
manner such that the provisioned off-chip transfer bandwidth
is minimized while accounting for other execution constraints.
As shown in Fig.1, our proposal is uniquely positioned to mit-
igate both the I/O bandwidth bottleneck as well as the chip
power/area/thermal bottleneck, and is thus a critical step to-
wards a practical scalable future for quantum error correction.

In summary, we propose Better Than Worst-Case (BTWC)
Decoding for Quantum Error Correction, targeting Surface
Codes, consisting of three components that are described be-
low and illustratively summarized in Fig. 2:

(D On-chip Clique Decoder: An extremely lightweight de-
coder to detect, decode and correct the common-case isolated
errors, designed for the cryogenic domain. We implement and
evaluate the decoder for SFQ logic.

) Statistical Off-chip Bandwidth Allocation: A statisti-
cal confidence-based technique for off-chip decoding band-
width allocation, to efficiently handle the rare complex de-
codes that are not covered by the Clique Decoder.

(3 Decode-Overflow Execution Stalling: A method for
stalling circuit execution, by means of idle gate insertion, for
the worst-case scenarios in which the provisioned off-chip
bandwidth is insufficient to complete all requested off-chip
decodes.

Key results and insights:

(D In all, BTWC Decoding enables 70-99+% off-chip band-
width elimination across a range of logical and physical error
rates, without significantly sacrificing the accuracy of state-of-
the-art off-chip decoding.

2 By doing so, it achieves 10-10000x bandwidth reduction
over prior off-chip bandwidth reduction technique AFS [17].

@ Furthermore, it achieves a 15-37x resource overhead re-
duction compared to prior on-chip-only decoding NISQ+ [27].

(4 Most importantly, we showcase that BTWC design is a
critical step towards a practical scalable future for quantum
error correction. While we focus on decoding for surface

d=3

Figure 3: Distance 3 rotated surface code detecting a Z
error on the central data qubit D (highlighted in red) by
flipping the neighboring X ancillas (highlighted in yellow).

codes, this work opens new directions of research to design
new decoders, handle different coding schemes, managing
on-chip vs. off-chip trade-offs, and so forth.

2. Background

2.1. QEC Overview

We refer the reader to prior resources on general quantum com-
puting background [20, 33], and limit ourselves to Quantum
Error Correction (QEC) overview here. QEC uses redundancy
along with fast and accurate classical processing capability to
improve the observed error rates of qubits, thereby improving
the fidelity of quantum applications which execute on them.
QEC encodes each logical qubit into a block of physical data
qubits. Further, ancilla qubits are appropriately entangled with
each block of data qubits to obtain information about the errors
on the data qubits. The ancilla qubits are repeatedly measured
to produce classical error signature bits (called ‘syndromes’),
without destroying the quantum state of the corresponding
data qubits. In fact, the act of ancilla measurement discretizes
the data qubit errors into a set of Pauli errors — i.e., the errors
on the data qubits will be an X (bit-flip), Z (phase-flip), Y
(both bit and phase flips), or I (no change). A decoder is then
used to try to decipher the error signature and identify the
location and types of errors occurring on the data qubits. This
information is then used to add the appropriate corrections to
the data qubits. If the decoding is performed accurately, then
the quantum execution will continue error-free, potentially al-
lowing large-scale quantum problems to be effectively tackled.
If the physical qubit error rates are lower than some threshold
(which depends on the error code and the decoder), then in-
creasing the size of the physical data qubit block, which maps
to a logical qubit, will monotonically decrease the logical error
rates [4].



2.2. Surface Codes

Surface codes are among the most promising QEC codes, at
least for the immediate future, since they have high thresholds
allowing for nearly 1% physical qubit error [24]. Further,
they require only nearest neighbor physical connectivity —
they encode each logical qubit into a 2-dimensional lattice
of alternating physical data and parity (ancilla) qubits, and
are therefore amenable to the practical quantum topologies
of today [16]. The number of physical data and parity qubits
per logical qubit grows quadratically with the code distance
‘d’. The code distance is instrumental in setting logical error
rates, since the shortest physical error chain that fundamentally
cannot be corrected in surface codes is a sequence of ‘d’ errors.
Note that chains shorter than length ‘d’ could also lead to
errors if the decoding is performed incorrectly which motivates
the use of highly accurate heavy-weight decoders.

An example of surface code for a code distance of ‘d=3" is
shown in Fig.3. The white circles ‘D’ represent the data qubits,
while the green ‘X’s and blue ‘Z’s are parity/ancilla qubits.
An error which discretizes to a ‘Z’ error on the highlighted
red qubit D would be detected by the diagonally adjacent ‘X’
parity qubits, which are highlighted in yellow. Similarly, ‘X’
errors will be detected on the ‘Z’ parity qubits, and ‘Y’ errors
will be detected on both. These errors are detected through
stabilizer circuits, which entangle the parity qubits with the
data qubits - more details can be found in previous work [24].

Some points to note: First, the surface code shown in the
figure is known as the rotated surface code, which is a more
compact representation and reduces the total physical qubit
and gate overheads and is thus preferred. Second, the corner
data qubits and some edge parity qubits have fewer connec-
tions compared to other data / parity qubits respectively, which
leads to some minimal differences in how they are processed.
Third, the parity qubits can produce incorrect error signatures
if other errors such as temporally transient measurement flips
occur. Additional redundancy over time (by combining multi-
ple rounds of measurement) is required for robustness against
these measurement error scenarios.

2.3. Scalability Constraints for Off-chip QEC decoding

Decoding and error correction should be performed in real-
time primarily for two reasons. First, even though errors
can be commuted through many gates (refer Fig. 12 in [24]
for examples), meaning that those corrections can be applied
after the fact, errors cannot commute through T-gates without
some conditional S-gate corrections. And these corrections
are dependent on the history of error signatures before the T
gate (Fig. 30 in [24]). Second, even in the absence of T gates,
the logging of syndrome bits and their frequent updates is an
arduous task with high memory overheads for larger circuits.
Thus, error decoding is expected to be performed in real time
and corrections are to be applied every cycle or at least on
every cycle prior to T gates.

It is worth pointing out that quantum computations can
technically be stalled prior to T gate execution but unless
decoding bandwidth is provisioned to be sufficiently greater
than the average rate of syndrome generation, the decoding
backlog [27] will continue to accumulate every cycle. We dive
deeper into this in Section 5.

Thus, on the one hand, online decoding has tight latency
constraints. On the other hand, the amount of error signature
data which needs to be processed per-qubit, every cycle, can
grow cubically with the code distance (d> with qubits, and an
additional d with measurement rounds). Thus, there is clearly
a scalability challenge. Not only does the error signature data
grow considerably for more qubits and lower logical error
rates, but the decoder complexity to accurately decipher these
signatures also has high resource cost.

Off-chip decoding, in which the decoding is performed at
room temperature will suffer a bandwidth bottleneck due to the
multiple Gbps of syndrome transmission bandwidth required
per logical qubit [17]. Provisioning for such considerable
bandwidth is a serious scalability challenge due to limited
I/O wiring for superconducting quantum devices. Today, we
utilize per-qubit coaxial cables to communicate from the room-
temperature QC interface to qubits located within the dilution
refrigerator [12]. Unfortunately, as the number of qubits in-
creases, and as we begin to support online QEC decoding
as described above, this approach significantly suffers from
space limitations and huge thermal loads on the cryogenic
stage [29]. The cross-temperature data transfer through the
co-axial cables, dissipates larger heat to the cryogenic side,
which is very sensitive to thermal variations and has limited
cooling capacity [12]. Over-clustering of I/O wires can also
lead to leakage issues which can further worsen error rates.
Alternatives to off-chip decoding are discussed in Section 2.5.

2.4. Cryogenic Classical Hardware

Quantum devices within dilution refrigerators require cryo-
genic classical control to perform numerous functions. The
controllers handle signal generation to run pulses on each
qubit as well as qubit measurement readout and their propaga-
tion out of the fridge. One technology suited to the cryogenic
environment is Single Flux Quantum (SFQ), which (despite its
name) is classical logic implemented in superconducting hard-
ware. SFQ is a magnetic pulse-based fabric with switching
delay of only around 1ps and switching energy consumption of
10~1°J. The switching action consumes 2-3 orders of magni-
tude lower energy than cryo-CMOS devices. They are made of
Josephson Junctions, which are superconducting devices that
exhibit the Josephson effect—indefinitely long current with-
out any applied voltage. Further, superconducting microstrip
transmission in SFQ allow it to transmit at half the speed of
light and without dispersion or attenuation. The combination
of these properties allows for for high speed processing of
digital information. SFQ logic has been touted as a good can-
didate for achieving energy efficient and high performance



circuits [36]. More recent versions of SFQ logic family in-
clude (Energy-efficient Rapid) ERSFQ [28]. Synthesizing
for SFQ has different challenges and constraints compared to
CMOS and therefore requires its own family of EDA tools [36].
These tools are designed to reduce the complexity of the final
synthesized and mapped circuits, in terms of total area and
Josephson junction count. This is achieved by reducing the
required path balancing logic count for realizing these circuits
(these circuits are required to be fully path balanced). More
details in prior work [27,28,36].

2.5. Cryogenic support for decoding

2.5.1. NISQ+ The NISQ+ [27] is entirely an on-chip decoder,
i.e., all decodes are handled in the cryogenic domain. Hence
it has no off-chip decoding bandwidth and thus entirely alle-
viates the bandwidth bottleneck. However, it tries to correct
even the worst-case errors and thus its design is fairly complex,
meaning that it suffers from a resource bottleneck in terms
of area, power and thermal constraints. Given the tight re-
source constraints in the cryogenic domain, it is challenging to
scale to large code distances and/or a large number of logical
qubits. Further, to alleviate some of the resource bottleneck,
the decoder is designed in approximate fashion and does not
support the correction of measurement errors. The above dis-
cussion on cryogenic decoding suffering a resource bottleneck
is broadly applicable to recent/concurrent proposals as well,
such as QECOOL [52], QULATIS [53] and XQSim [12]. We
show detailed cost comparisons to NISQ+ in Section 7.4.

2.5.2. AFS Prior work, AFS [17] primarily proposes an off-
chip decoder that reduces hardware cost through resource
sharing. Additionally, AFS incorporates syndrome compres-
sion to reduce the off-chip decoding bandwidth. We show
quantitative comparisons to Clique in Section 7.2 but provide
brief discussion here. While compression is attractive when
there are no errors (i.e., when the error signatures are all ze-
ros), it is less effective when non-zero elements are present
in the error signature, since the bits required to encode these
non-zero bits grow quickly. We show that Clique is able to
reduce bandwidth more than 1000x compared to AFS. This
is because the Clique decoder is able to handle all error sig-
natures that have disconnected non-zero elements and only
has to go off-chip otherwise. Further, the AFS compressor
has to be implemented on-chip in the cryogenic domain. The
hardware implementation of this compressor (not discussed in
the paper) can be rather complex and can itself have a high re-
source overhead. Its power/thermal/area consumption is likely
to be a limiter for scalability, constraining the number of logi-
cal qubits in the system. Finally, our proposals for statistical
off-chip bandwidth allocation and decoding overflow based
execution stalling are also applicable to AFS since its off-chip
bandwidth is dependent on the compression effectiveness in
each cycle.
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Figure 4: QEC error signature distributions for various
physical and logical error rates (for one logical qubit).
When physical error rates are low and/or when code dis-
tance is low, the All-0s error signature fraction is generally
high. The trivial Local-1s error signatures are fairly sig-
nificant except in scenarios when physical error rates are
low but target logical error rates are very high. The Com-
plex error signatures are fairly rare except when physical
error rates are very high and target logical error rates
very low.

3. Motivation: BTWC for QEC Decoding

Better Than Worst-Case design is a design philosophy that de-
couples design for correctness and design for performance and
is often pursued in both research and industry, especially in the
context of handling classical errors such as those stemming
from process variation, timing guard bands and thermal fluctu-
ations [5]. Traditional worst-case design constructs systems
with guarantees of correctness and robust operation, which
often results in other limitations, such as performance or high
resource overhead. Better Than Worst-Case designs, on the
other hand, achieve high performance and/or low resource
cost in the common / average-case and can be designed to
gracefully fall back onto the robust worst-case design for the
uncommon / worst-case.

We find this philosophy directly applicable to quantum er-
ror correction, simply because the quantum error codes and
decoders are provisioned to be robust against very rarely oc-
curring errors so that the target logical error rate is achieved
(which is often many orders of magnitude lower than the phys-
ical error rate). In these designs, failure is expected to occur
only in scenarios which are beyond the capability of the code
or the decoder, such as when a chain of errors occurs with
length longer than code distance ‘d’ (as discussed in Section
2). It is intuitive that if the physical error rate per qubit is
‘p’, then the probability of a chain of ‘k’ errors occurring is
proportional to p* which is clearly p(! %) times less likely than
a single error.

This is reflected in Fig.4 which shows QEC error signature
distributions obtained over a billion trials for various target
physical and logical error rates for one logical qubit (the noise
model and simulation methodology are discussed later in Sec-
tion 6). The columns in the figure show a particular combina-
tion of a physical qubit error rate, a target logical error rate,
and the code distance required to achieve this. We show two



logical error rates: 1E-5 and 1E-12. The former is suited to
near-term advantage in applications like variational algorithms
for molecular chemistry, while the latter is suited to long-term
targets like search and factorization. The physical error rates
chosen are: SE-3, 1E-3 and 5E-4. The first is just below the
error threshold for surface codes while the others are improve-
ments we would expect to see over the next decade. Clearly
the code distance needed at the higher physical error rates are
high and vice-versa. Each column shows a breakdown of the
error signature distributions, which are described below:

@ The green portions are the error signatures which are
all zeroes, i.e. no error was detected in those cycles. When
physical error rates are low and/or when code distance is low,
the All-Os fraction is higher since errors are less likely to occur
and/or there are a lesser number of physical qubits in the qubit
block and thus lower errors in the block.

(b The blue portions (Local-1s) are the error signatures in
which errors occur, but there are no error chains with length
> 2 — all errors are isolated, making decoding fairly trivial
(more on this in Section 4). The blue portions are fairly sig-
nificant, except in Columns 3 and 5, which are scenarios in
which physical error rates are low but target logical error rates
are rather high (which is not very likely to be the case as we
try to push the quantum frontiers). The relative ratios between
the different instances can be inferred similar to the All-Os
scenario.

© The red portions (Complex) are the syndromes in which
chains of errors occur — these are more complicated to decode
and can require the full capabilities / resources of complex
decoders. Note that the red fraction is fairly low (almost
negligible in 4 out of 6 scenarios) except in Column 2, which
showcases a rather impractical physical-logical error ratio
conversion and code distance.

The takeaway from the above is that, in most practical
scenarios, a high fraction of the syndromes (> 90%) have
error signatures that are trivial to decode and do not exercise
the (full) capabilities of the decoder (i.e., the green and blue
portions). This clearly motivates a BTWC system design to
handle these trivial QEC decodes.

From a practical standpoint, in the context of superconduct-
ing transmon qubits (which are most suited to surface codes),
[2] discusses physical 2-qubit gate error rates touching 1E-3
on IBMQ Prague and a future envisioning 2E-4. Further, [1]
discusses scaling to 10K qubits over the next decade. A logical
error rate of 1E-12 is achievable from a physical error rate of
SE-4 with a code distance of 15, which corresponds to roughly
500 physical qubits per logical qubits. Thus, running 10+ logi-
cal qubits at a logical error rate nearing 1E-12 is a target which
could be within reach in the next decade. Other technologies
such as atoms and ions have shown consistent physical error
rates of 1E-3, so they are also equally promising.

4. Clique Decoder

An overview of the Clique Decoder, as part of the overall
BTWC QEC architecture, was shown in Fig.2. In this section,
we dive into its functionality and design, and illustrate some
decoding scenarios.

4.1. Functionality

The Clique decoder achieves the following functionality:

@ It identifies All-Os signatures and handles them on-chip.
No corrections will be applied in these scenarios.

() It identifies trivial Local-1s signatures and handles them
on-chip. Correcting these only involves the manipulation of
the data qubits which are nearest neighbors to the erring parity
qubits.

© It identifies Complex signatures and raises a flag to allow
them to flow off-chip to a traditional high-cost robust decoder.

(@ It neutralizes a high percentage of measurement errors
by combining syndrome data from adjacent rounds of mea-
surement (any number of rounds can be incorporated into the
design, though more rounds implies greater cost).

4.2, Design for Detections, Decisions and Decodes

To achieve this functionality, the Clique decoder simply ana-
lyzes the syndromes from every local clique of ancilla qubits,
as shown in Fig.5. The figure shows a d = 7 physical mapping
for a single logical qubit. Observe the ancilla qubits high-
lighted in yellow and labeled ‘a’, ‘p’, ‘q’, ‘r’, ‘s’. For every
such ancilla qubit ‘a’ that detects an error (creating an ‘active’
clique), the clique decoder checks the parity of errors on the
surrounding neighbor ancilla qubits of the same type (i.e., ‘p’-
‘s”). If the parity of the neighbors is even (i.e., none of them
are set or two of them are set) for any active clique, then the
decoder deems this to be a complex decode that should be sent
off-chip. If the parity of the neighbors set is odd (i.e., one or
three of them are set) for all active cliques, then the decoder
deems this to be a trivial decode which can be handled on-
chip. For example, in the event that only the ancillas ‘a’ and
‘p’ are set and ‘q’-‘s’ are not, then the data qubit ‘w’, which
is their neighbor, has to be corrected. The logic performed is
described in the pseudocode at the bottom of Fig.5.

A couple of points to note. First, the discussion above fo-
cuses on blue ‘Z’ type ancillas, but the same applies for green
‘X’ type ancillas as well. Second, the corner and edge qubits
are treated a bit differently depending on their neighborhoods.
Two examples of this are shown in the figure. The respective
‘a’ parity qubits in these examples have a thicker outline. For
the example at the top right, the clique has only one neighbor
(i.e., 1+1). This clique is a special case and is always trivial
to decode, even if the neighborhood parity is even. An even
parity here (i.e., neighbor is unset, indicated by hatch) will
simply mean that the data qubit in pink, adjacent to the active
syndrome, has to be corrected and complex decode is not re-
quired. For the example at the center right, the clique has two



[if(a == TRUE && !parity(p,q,r,s))] <any a>:
COMPLEX DECODE
else: #CLIQUE DECODE

if(a & p == TRUE): correct w
if(a & q == TRUE): correct x
if(a & r == TRUE): correct y
if(a & s == TRUE): correct z

Figure 5: The Clique decoder is designed to analyze the
syndromes in every local clique and decide if the error sig-
nature is trivial and can be locally handled or is complex
and needs to be passed to the off-chip complex decoder.
Triviality is decided by calculating the parity of erring an-
cilla in the surrounding neighborhood of another erring
ancilla. If trivial, the appropriate correction is applied to
the data qubit which neighbors the erring ancilla. Pseudo-
code is shown to the bottom of the figure.

neighbors (i.e., 1+2). This clique is also a special case and is
trivial to decode if both neighbors are unset (even though it
would mean even parity), apart from the usual odd parity case.
If both neighbors are unset (indicated by hatch), then one of
the two data qubits in pink, adjacent to the active syndrome,
has to be corrected and complex decode is not required. In-
terestingly, flipping either of the two data qubits in pink is
equivalent and sufficient to correct the error! This is because
two corrections are equivalent if they differ by a stabilizer. We
leave interested readers to learn more about such scenarios
from [24] (Fig.3 in the paper and related text). Other instances
such as these are distributed over the corners and edges.

The Clique decoder is especially favorable for on-chip im-
plementation due to its lightweight hardware - it is simply
requires a few combinational logic gates per clique. The gate-
level decision logic to decide whether a syndrome is trivial or
complex is shown in Fig.6. The XOR gates are used to find
the parity of the neighborhood and this is combined with the
check on whether the clique is active or not. This logic is per-

Even # of surrounding
syndromes flipped?

Figure 6: The Clique decoder’s decision logic (to decide
trivial vs. complex) is a small number of logic gates per
clique and is especially suited to on-chip implementation.
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Figure 7: Errors occurring when ancilla qubits are mea-
sured are handled by evaluating multiple rounds of mea-
surements and by only considering errors that stick over
the measurement rounds. The Clique decoder uses only
two measurement rounds, but more rounds can be added
for higher accuracy at additional hardware cost.

formed on each clique. Note that if even a single clique raises
a COMPLEX output, then the syndromes are passed off-chip.
Furthermore, the error correction control logic is simply an
AND gate (of the ancillas), which feeds into a conditional gate
in the quantum circuit and is not shown at the circuit-level but
is described in the pseudocode in Fig.5.

4.3. Handling Measurement Errors

Next, we discuss how measurement errors are handled. In
Fig.6, if we were not concerned about measurement errors,
then ‘a’, ‘p’, °‘q’, ‘r’, ‘s’ in the figure would simply be the syn-
dromes directly measured from the ancilla parity qubits. But
in the presence of measurement errors, particular qubits could
randomly flip on some measurement cycles as briefly noted
in Section 2.2 (and illustrated in Fig. 2 in [24]). To avoid this,
parity qubits are measured over multiple measurement rounds
and those errors which stick across these rounds are consid-
ered data errors, while those which disappear are ignored as
measurement errors (or self-corrected data errors). Clearly, the
more rounds of measurement the better, similar to the spatial
code distance argument. For the Clique decoder, our primary
design uses two rounds of measurement but more rounds can
be added at additional hardware cost. This is illustrated in
Fig.7. In the figure, the subscript ‘i’ indicate the cycles over
which the measurements are captured and logically combined
together. The XOR is indicative of a syndrome flip over a
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Figure 8: Different error scenarios and their decoding. (a) A trivial error signature in which two local data qubit errors
have occurred (red) and are reflected in the nearby ancillas. The Clique decoder detects this and applies the appropriate
correction. This is the same correction that would be applied by a complex decoder (b) It is possible that the same error
signature was caused by a more complicated coordinated sequence of data qubit errors. However, this is extremely
unlikely - this scenario would cause both Clique as well as complex decoders to fail. (c) A complex error signature
caused by a shorted sequence of coordinated data qubit errors. Clique will detect this complex signature and hand it
over to the complex decoder. (d) An error signature caused by a measurement error. If the error persists beyond the
measurement rounds, then Clique will detect this to be a complex error signature and again hand it over to the complex

decoder.

cycle, and the overall logic checks if the initial flipped state
persists across the rounds. If the flip has persisted over the
rounds, then the error is likely to be interpreted as complex —
the intuition for this is discussed in Section 4.4.

4.4. Decoding Intuition and Examples

Before we discuss the decoding decisions made by Clique, we
first provide some decoding intuition that is fundamental to
any decoder. There are usually multiple error configurations
possible (caused by data, measurement, etc.) that could have
produced a particular error signature. Any decoder usually
chooses the error configuration with the minimum number of
errors that could have produced the particular error signature.
The reason for this follows the discussion in Section 3, that
the occurrence of ‘n’ errors is roughly rx* (n —m) orders of
magnitude less likely to occur than ‘m’ errors for n > m, under
the reasonable assumption that all qubits have similar error
rates roughly equal to 107", If ties occur in terms of multiple
error configurations with the same number of errors, then ties
can be broken with more specific information about per-qubit
error rates.

With the above intuition, we now show different error sce-
narios in Fig.8 and justify that the decisions made by Clique
for trivial error signatures are equivalent to those made by a
heavy-weight robust decoder, and for more complex scenarios,
Clique accurately hands over to the robust decoder.

First, Fig.8.a and Fig.8.b show the same error signature
with two sets of paired erring ancillas, which are shown in
yellow. Fig.8.a shows a corresponding error configuration
with two data errors (shown in red), while Fig.8.b shows an
error configuration with six data errors. Any decoder would
be expected to select the error configuration in Fig.8.a which
is 8 orders of magnitude more likely to occur for a physical

error rate of 1072, Clique decides that this error signature is
trivial since the two active cliques (i.e., those with ‘a’ ancilla
set) both have an odd neighbourhood parity. Then, within each
clique, the decoder directs the fix on the data qubit which is
a neighbor to the erring ancilla, as described in Fig.5. Thus,
Clique achieves the same decoding and correction as a high-
cost complex decoder.

Next, Fig.8.c shows a scenario with two stand-alone erring
ancillas in yellow. The most likely error configuration here is
a chain of 4 erring data qubits (assuming that the possibility
of measurement errors have been eliminated over the measure-
ment rounds) as shown in red in the figure. This is the likely
configuration chosen by a complex decoder. Clique is unable
to handle this decode, but correctly detects this and passes it
over to the complex decoder. It is able to do so because it
identifies that there exists at least one active clique with an
even neighborhood parity, as described in Fig.5. Importantly,
note that the Clique decoder is not required to know that there
is more than a single active clique — all its decodes are local
to a clique — this is key to its lightweight design.

Finally, Fig.8.d shows a scenario with a single erring ancilla,
which is likely caused by a long-lasting measurement error
(there is no ancilla pairing that can lead to a chain of data
errors). Clique views this decode exactly as it viewed Fig.8.c.
Clique identifies that there exists at least one active clique
that has an even neighborhood parity, and thus passes to the
complex decoder. Note that, with its myopic local view, Clique
cannot differentiate between Fig.8.c and Fig.8.d (i.e., that one
was caused by a sequence of data errors and the other was
caused by a measurement error). But importantly in both
cases, Clique detects its decoding incapability and allows
more robust handling off-chip.

Note that, while we do not showcase in our previous illus-
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Figure 9: Provisioning off-chip bandwidth for the average
off-chip decoding rate is insufficient because it will likely
lead to a decoding backlog that cannot be overcome. Pro-
visioning more conservatively allows for optimal BTWC
handling with a minimal number of stall cycles.

trations, intersecting cliques can also be handled by the Clique
decoder—all syndromes errors will be covered in one or more
cliques. In such a scenario, if any of the cliques deems that
its errors are complex (i.e., it is an active clique and its neigh-
borhood has even parity) then the clique decoder will pass
over to the off-chip decoder. This will work for any error or
errors that occur anywhere over the entire block of physical
qubits. For example, it is okay if diagonally adjacent cliques
(which will share one of the 4 ‘leaves’ of the clique) cover
the same pair of syndrome errors, because they will both just
indicate that a particular data qubit needs to be fixed at the end
of the decoding cycle. This is just an AND operation of the
syndrome bits, as shown at the bottom of Fig.5—it does not
matter which clique(s) is/are triggering it.

5. Bandwidth Allocation and Overflow Stalling

The Clique Decoder can handle common-case trivial decodes,
and more complex decodes are handed over to the off-chip
decoder. This requires appropriate provisioning of per-logical-
qubit off-chip bandwidth, as well as a fail-safe mechanism
in case the provisioning is exceeded. This was illustrated in
Fig.2 and is discussed in detail next.

5.1. Statistical Off-chip Bandwidth Allocation

Consider a scenario in which the Clique decoder has a decode
coverage of around 95%. This means that only about 5% of
the decodes, per logical-qubit, will have to be transferred off-
chip for complex decoding. For a quantum device with 1000
logical qubits, this means that roughly 50 off-chip decodes are
generated every cycle. However, it is insufficient to provision
the off-chip bandwidth for this average case scenario which
is depicted in the top graph in Fig.9. The graph shows the
1000 logical qubit system over 100 decode cycles. If off-chip
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Figure 10: Idle cycle insertion if a stall signal is received.

decode bandwidth is provisioned for around the 50th percentile
(= 55 decodes per cycle), then there are many cycles in which
the number of newly produced off-chip decodes in that cycle
exceed this provisioning — this is indicated by the height of
the blue bar exceeding the red line which represents off-chip
provisioning. Minimally, this means that the next cycle has
to be stalled so that the corrections can be applied before
subsequent gates are performed on the qubits; a stall cycle is
shown via hatched bars in the graph. However, the stall cycle
itself is not free of errors, since qubits are still free to decohere
etc. Thus, new errors, and potentially new off-chip decodes,
are produced even in the stall cycle. Now the stall cycle has
to perform off-chip decoding for both the carryover decodes
from the previous cycle (since they will again be avoided
by the Clique decoder) as well as the new off-chip decodes,
the sum total of which is bound to be even greater than the
average provisioning. In the graph, the carryover off-chip
decodes are shown in orange. Clearly, the sum of carryovers
and new off-chip decodes constantly tends to exceed the off-
chip bandwidth provisioning, leading to more than 90 cycles
of stalling in a 100 cycle window. Thus, it is evident that
average provisioning leads to a decode backlog problem.

To avoid this, off-chip bandwidth is statistically allocated
such that a fairly high fraction of the off-chip decodes can be
decoded every cycle. The bottom graph in Fig.9 shows the
same system being provisioned for the 99th percentile off-chip
bandwidth, which is 30% greater than the previous scenario.
In this case, the off-chip decodes that are generated in all but
one cycle are able to flow through to the complex decoder in
the same cycle that they are generated. Only a single cycle is
shown to cause a off-chip decode overflow, leading to a stall
in the subsequent cycle. Further, the bandwidth is comfort-
ably provisioned such that the new off-chip decodes plus the
carryovers can be handled in the stall cycle’s decoding, thus
avoiding an accumulating decode backlog problem.

In evaluation, we explore the stalling vs bandwidth provi-
sioning trade-off in a more fine-grained manner for different
physical error rates and code distances. Finally, it should be
noted that lower bandwidth provisioning does not mean under-
utilization of the available I/O, it would instead be used to
execute more logical qubits in parallel.

5.2. Decode-Overflow Execution Stalling

Off-chip decode overflow is detected in a particular cycle if the
number of logical qubits that need off-chip complex decoding
exceeds the provisioned off-chip bandwidth. In this scenario,



a stall cycle has to be generated. To do so, a control signal
is sent to the Waveform Generator (which sends gate pulses
to the qubits every cycle). On a stall cycle, no operations are
performed on the qubits. This is illustrated in Fig.10 for an
example 4-qubit circuit. The stall cycle is indicated by the
Identity gate being performed over all the qubits and is a fairly
trivial operation.

6. Methodology

6.1. Simulation Infrastructure and Noise Model

To benchmark the performance of the Clique decoder, we sim-
ulate its action over a billion random cycles of execution. This
is called lifetime simulation or Monte Carlo benchmarking.
Our simulation infrastructure and noise model are similar to
that used in prior work [17,22,27].

We construct a simulation environment in which errors are
stochastically injected onto the qubits. The effect of data and
measurement errors is then reflected in the per-cycle syndrome
measurements from the ancilla qubits. The error signatures
are then sent to the Clique decoder simulator, which decides
if it can decode the syndrome or not and, if so, returns the
appropriate correction. If not, corrections are obtained from
an implementation of the state-of-the-art Maximum Weight
Perfect Matching (MWPM) decoder [19]. The correction is
then applied, and the surface is checked for logical errors. The
effectiveness of the decoder is evaluated on the basis of its
coverage and error rates. The above simulation is performed
for one logical qubit, with varying code distances and physical
error rates.

To evaluate the bandwidth allocation and stalling optimiza-
tions, simulation similar to the above is performed for 1000
logical qubits, over a million random execution cycles, again
for varying code distances and physical error rates. In this
scenario, the fraction of decodes which are avoided by Clique
is captured per logical qubit, per cycle. This is then used to
evaluate the trade-off between different statistical provisioning
of off-chip bandwidth and the number of stalls required for the
off-chip decoding to keep up with the rate of error generation.

Noise is introduced in the simulation framework described
above based on the phenomenological noise model for both
data qubit errors and measurement errors [17]. X-type and Z-
type errors are corrected independently, so focusing on either
one is sufficient for modeling purposes. Our noise model is
parameterized by ‘p —each cycle introduces errors on the data
qubits with a probability of ‘p’ and errors on the syndrome
measurement with the same ‘p’ probability.

While actual applications running on real devices will not
mimic this noise model on a cycle to cycle basis, the average
effects are expected to be similar and thus the evaluated de-
coder benefits will also be similar. Evaluation can only be
performed with probabilistic simulated error models, and not
on actual applications on real hardware, because we (mean-
ing the totality of quantum industry and research) do not have
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Gate | Delay (ps) | Area (um?) | JJ Count
XOR2 | 6.2 7000 18

AND2 | 8.2 7000 16

OR2 5.4 7000 14

NOT 12.8 7000 12

DFF 8.6 5600 10

SPLIT | 7.0 3500 4

Table 1: ERSFQ cell library used for decoder synthesis
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Figure 11: Fraction of decodes that can be handled by
Clique without having to go off-chip.

large enough devices to run fault tolerant quantum applications
on them.

6.2. Cryogenic Hardware Implementation

The lightweight resource requirements of the Clique decoder
make it well suited to cryogenic implementation. The Clique
decoder is written in verilog and synthesized for SFQ hard-
ware. The synthesis is performed via a framework incorporat-
ing methodologies from SFQMap [36] which is a technology
mapping tool for SFQ circuits. While there are no fundamental
constraints that limit Clique implementation to a specific cryo-
genic technology, we implement with ERSFQ technology [28]
in this work. The ERSFQ cell library used is shown in Table
1. Logic in SFQ is built from Josephson Junctions (JJ), which
are superconducting devices that exhibit the Josephson effect.
This JJ count is shown in the Table for different logic gates.
More details on how SFQ logic synthesis is performed can be
found in previous work [27,36].

7. Evaluation

7.1. Clique On-Chip Coverage

First, we evaluate the coverage of the Clique decoder, in terms
of the fraction of decodes that can be handled by Clique with-
out having to go off-chip. This is evaluated for different physi-
cal error rates and code distances and is shown in Fig.11. The
first takeaway is that the Clique coverage is high ( 70%) even
at high physical error rates and high code distances. This is the
scenario that is relatively more challenging for Clique. For ex-
ample, at a code distance of 21, there are roughly 1000 sources
of error (X / Z data errors and measurement errors) per logical
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Figure 12: Fraction of decodes which are actually errors
but trivially handled by Clique.

qubit. At a physical error rate of 1%, this would mean that an
average of 10 errors would occur every cycle. But many of
these errors are still trivial since a coordinated chain of errors
is still very unlikely to occur, thus the coverage is still nearly
70%. As physical error rate decreases and/or as code distance
decreases then the Clique coverage increases further to nearly
(but still under) 100% . This is intuitive because errors, in
general, and complicated coordinated errors, in particular, be-
come increasingly more rare in these scenarios. But note that
complicated errors do exist and must be corrected to achieve
the target logical error rates.

Next, we evaluate the fraction of decodes that are actually
errors, but are trivially handled by Clique. This is important
because, if the error signatures were (nearly) all zeros, then
on-chip handling could potentially be simpler than Clique.
Fig.12 shows this evaluation for the same physical error rates
and code distances as before. Clearly the fraction of non All-
0Os decodes that are handled on-chip is nearly 100% near the
surface code error threshold (i.e., highest physical error rates),
especially at high code distances. Thus, going off-chip for all
errors that are not all-Os is not sufficient for significant decod-
ing bandwidth reduction, and a better decoder like Clique is
required. Note that most of the decodes can be All-Os for very
low physical error rates, but it is debatable whether surface
codes would actually be the code of choice at physical error
rates lower than, say, 0.01%—other schemes such as Steane
codes and Bacon-Shor codes could be better options [24]. But
in the foreseeable future of error rates, the benefits of Clique
are abundantly clear. For any QEC code of choice, there will
always be separation between common trivial error signatures
and rare complex ones, because this stems from the innate
redundancy in encoding schemes. In fact, the common cases
will only become more common as technology improves and
error rates decrease, since the likelihood of complex error
chains become even smaller.

7.2. Comparison against AFS Syndrome Compression

The decoding bandwidth from error signatures with sparse
errors (i.e., less number of 1s) can also be reduced through syn-
drome compression which has been pursued in prior work [17].
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Figure 13: Comparison against Syndrome Compression.

However, we argue that the Clique decoder is a more attractive
solution for multiple reasons.

First, syndrome compression is most attractive when error
signatures are entirely (or almost all) zeroes. This is because
compression techniques usually have high cost to represent
the bits that are not zeroes. For example, AFS adopts a Sparse
Representation technique (their most effective technique) that
uses a Sparse Representation Bit to indicate if all the syndrome
bits are 0s, which achieves O(N) reduction for an All-0 N-bit
syndrome. However, it uses the indices for all non-zero bits,
which grows as 14 O(k xlog(N)) where ‘k’ is the number of
non-zero bits. At low code distances, benefits can be limited
because N is low, whereas at higher error rates, benefits can
again be limited because ‘k’ is high. On the other hand, Clique
obtains 100% bandwidth elimination on all instances of error
signatures with All-Os or Local-1s. Quantitative comparison
of off-chip data reduction between AFS and Clique (on a log
scale) is shown in Fig.13. Observe that Clique provides many
orders of magnitude improvement over AFS (10x-10,000x)
for the reasons discussed. Note that for a given error rate, AFS
benefits will increase with code distance but Clique benefits
decrease but both eventually saturate. The Clique saturation
benefit is at least an order of magnitude higher than that of
AFS. AFS’s benefits grow initially due to its inherent limitation
at lower code distances as discussed prior.

Second, syndrome compression is not a trivial task and still
has to be performed on chip. To our knowledge, AFS [17]
does not provide a hardware implementation of the proposed
compression technique. These techniques, while effective in
theory (and in software), can have high hardware cost. Sparse
Representation hardware cost grows quickly with the number
of bits in the syndrome. AFS, in fact, proposes to implement
three techniques and choose between them dynamically based
on compression ratios. This can be substantially complicated
for on-chip implementation. On the other hand, Clique hard-
ware costs are substantially low and are discussed in Section
7.4 in comparison to other work with on-chip implementation.
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7.3. Logical Error Rates

Next, we compare the accuracy of the Clique decoder to a
traditional MWPM baseline in Fig.14. Note that we assume
that the our proposal uses the baseline decoder in the complex
scenario while Clique is used in the trivial scenarios. The
complex vs. trivial decision is also made by Clique. The
comparison is shown for 5 different code distances, for a range
of physical error rates and corresponding logical error rates.

Clearly, the Clique+Baseline setup performs almost exactly
equivalent to the baseline for code distances d=3/5/7. The ac-
curacy of the Clique+Baseline is marginally worse compared
to the baseline for higher code distances d=9/11. The reason
for the marginal worsening comes from Clique using only two
rounds for measurement to achieve measurement error robust-
ness. Therefore, measurement error which stick for greater
than two cycles and occur in a locally coordinated manner
to look similar to a within-clique data qubit error, cause the
Clique decoder to incorrectly assume this to be a trivial decode.
This is a fairly rare occurrence and thus Clique’s deviation
from the baseline is only evident for large code distances,
since the MWPM baseline is tolerant to measurement errors
that stick for up to ‘d’ cycles. If more rounds are used in
Clique, further measurement error robustness can be achieved,
enabling accuracy even closer to the baseline at high code
distances. Considering that the Clique hardware overheads
are 30x lower than prior on-chip decoders (discussed next),
additional measurement rounds can be added at limited cost,
if required.

7.4. Decoder Overheads

Next, we evaluate power, area, and latency overheads for the
SFQ implementation of Clique, for different code distances
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in Fig.15. SFQ synthesis library details are provided in Table
1. We also compare against prior work NISQ+ with available
data.

The power consumed per logical qubit for Clique varies
from 10uW to S00uW for code distance ranging from 3 to 21.
Typical dilution refrigerators are capable of cooling up to 1
Watt of power at 4K temperature, so Clique should be able to
support up to 2000 logical qubits at a code distance of 21 or
100,000 logical qubits at a code distance of 3. Furthermore,
at a code distance of 9, it is 37x more power efficient than
the SFQ implementation of NISQ+. Even though NISQ+ is
an approximate decoder, it is provisioned to tackle worst case
scenarios and is thus far more complicated than the simple
Clique design.

In terms of area, Clique takes up under 100mm? per logical
qubit even at a high code distance of 21. Similar to power, it
is 25x more area efficient than the NISQ+ design at a code
distance of 9. The Clique decoder only employs a few com-
binational logic gates, local to each clique, whereas NISQ+
requires more complicated communication between the many
physical qubits in each logical qubit block.

Clique has a latency of 0.1 to 0.3 ns, and the latency is fairly
fixed across all Clique decoding scenarios. At a code distance
of 9, the NISQ+ average latency is 15x higher than Clique.
Note that NISQ+ latency can be another 6x (multiplicative)
worse in the worst-case decoding scenarios.

Thus, it is evident that Clique is a substantially more
lightweight implementation compared to prior on-chip decoder
implementations, due to its BTWC philosophy of tackling the
trivial but very common decoding scenarios.

7.5. Bandwidth Allocation vs. Stalling Trade-offs

Finally, we evaluate the trade-off between off-chip bandwidth
provisioning and execution stalling. Fig.16 shows the evalu-
ation for three different combinations of physical error rate /
code distance. In all three instances, it is evident that provi-
sioning for maximum bandwidth reduction (i.e., by setting the
bandwidth strictly as per the average Clique decoding cover-
age) is not practical since this will lead to an infinite amount of
stalling and the application will never complete execution due
to the accumulating decode backlog. This was discussed with
an illustrative example in Section 5. Note that the increased
execution time is not primarily a functional correctness issue
since errors can be corrected, but a practical issue of the appli-



cation execution never going to completion. This is, of course,
not limited to Clique and is true for any optimization that
improves the average case and not the worst case (including
the syndrome compression in AFS [17]).

On the other hand, more conservative bandwidth provision-
ing is practical. For example, in the three instances shown,
bandwidth reductions of 15x, 150x, and 8.5x can be achieved
if the application / user is willing to tolerate an execution
time increase of 10% which is definitely practical, since the
primary goal is fidelity and not performance. These benefits
are 1.5x, 2x, and 1.25x relatively lower than the maximum
benefits(respectively), but can be achieved realistically. It is
also evident that the shape of the curve varies with physical
error rates and code distance, so analyzing for the target sys-
tem is important before making statistical trade-offs. But at
any point along the curve, the overwhelming benefits of the
BTWC design are evident.

8. Discussion

The multi-level BTWC approach for QEC is applicable to
any quantum computer that supports QEC. Today’s quantum
devices do not support QEC (except for a few small demonstra-
tions [3]) since the physical error rates need to be a bit lower
and the device sizes have to be larger. But we expect that QEC
based devices, with a few logical qubits and implemented with
low code distances, are right around the corner. Note that
while the BTWC QEC philosophy is broadly applicable to
all error codes and technologies, the specific Clique design
we propose here targets surface codes, which are the QEC
codes with the highest potential in the near/intermediate term,
especially for superconducting transmon quantum devices.

8.1. Future Work

While the Clique decoder specifically targets on-chip decod-
ing for surface codes, BTWC opportunities can be explored
beyond this scope:

(D The Clique decoder could be designed as an off-chip first-
level decoder to handle the trivial common case decodes. This
allows more flexibility in the implementation of the Clique
decoder. While this is not beneficial from the bandwidth
reduction perspective, it can help reduce decoding latency
and/or improve energy efficiency. The reduced usage of the
complex decoder would trivially reduce the power and energy
requirements. Alternatively, the complex decoder could be run
aggressively under looser power + thermal constraints, which
would reduce decoding latency. Further, due to its reduced
and more specialized usage, the complex decoder could be
specifically designed for non-trivial scenarios.

) Especially in the off-chip scenario (but also for on-chip)
there is opportunity to implement a deeper hierarchy of de-
coders with more specialization. Caching can also be explored
in conjunction.

(3 The Clique decoder is proposed to be implemented on-
chip with classical hardware. Due to its trivial structure, it
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could potentially be implemented as a quantum circuit itself,
using Toffoli gates. While this could have interesting implica-
tions, care should be taken since the decoder itself could then
be prone to quantum errors.

(@ While this work targets surface codes, BTWC decoding
could have suitability to other QEC codes. The Clique decoder
specifically exploits sparsity and locality, both of which are
high for surface codes at reasonable physical error rates. Other
codes from the LDPC (Low-Density Parity-Check [11]) family
often have sparsity but are not necessarily local (but provide
other scalability benefits). However, suitable codes from the
LDPC family for near-term QEC, might, in general, have to be
designed with good locality due to the limited connectivity in
quantum devices. This locality requirement could bode well
in extending the Clique decoder to suit these LDPC codes.
The implementation specifics of the decoder will change with
the structure of the code, but the wiring overheads could be
kept under check if there is reasonable locality. In this re-
gard, it should also be noted that the current Clique design
has extremely low overheads — some additional communi-
cation cost could easily be tolerated, especially as cryogenic
technology continues to improve. Other codes such as Color
codes [7], especially for trapped-ion quantum technologies,
are also worth exploring.

8.2. Related Work

Today’s quantum devices are error-prone and up to around
100 qubits in size [40]. Error mitigation strategies include, but
are not limited to, noise-aware compilation [31,49], schedul-
ing for crosstalk [21, 32], 1Q gate scheduling in idle win-
dows [44], dynamical decoupling [39,46,54], zero-noise ex-
trapolation [25, 30, 50], readout error mitigation [10, 48], ex-
ploiting quantum reversibility [37,44] and many more [6, 8,
15,25,30,41,47,50,55].

State-of-the-art QEC decoding is achieved via Minimum
Weight Perfect Matching (MWPM) [19] which is a graph
pairing algorithm. Recently, on-chip decoders have been pro-
posed [27,52] to perform online decoding but suffer from chal-
lenging trade-offs of accuracy vs area/power budgets. Off-chip
decoders have been implemented via FPGAs [16], LUTs [51],
special hardware designs [17] etc.

Prior work [18] took first steps towards handling trivial
error decodes with a ‘local” decoder that could also be used
in a hierarchical setting. We differ from this work in multi-
ple ways. First, our work specifically proposes an on-chip
hardware decoder which can be trivially implemented in the
cryogenic domain with a simple array of gates. [18] proposes
a (decoding) graph reduction approach which iteratively runs
over all the graph edges. As is, this would be implemented as a
multi-step state machine, which is less suited to the cryogenic
domain due to its state retention / memory requirements (to our
knowledge, they target off-chip implementation). This is an
important distinction because our goal is specifically to reduce
off-chip bandwidth—we do so by adding on-chip classical



hardware, which is extremely lightweight and combinational,
well suited to the cryogenic domain. Second, they do not
handle measurement errors—our design can incorporate any
number of measurement rounds, though we show evaluation
results for two rounds. Third, while they discuss decoding
bandwidth and differentiate between the common-case and
the worst-case, our proposal implements a practical end-to-
end approach to handle the common, rare, and worst-case
scenarios.

Recently [35] proposed an off-chip lightweight pre-
decoding step which re-weights the decoding graph according
to likely correlations, and performs high confidence matching
where possible. Concurrent to our work, [45] propose a local
‘pre-decoder’ based on cellular automata, which makes greedy
corrections to reduce the amount of syndrome data sent to a
standard matching decoder. In addition, [13] propose a neural
network decoder that works as a local decoder that corrects
errors arising from a constant number of faults, with longer
error chains left to be corrected by a global decoder. Although
clearly reducing the workload for the complex decoder in the
off-chip setting, cryogenic on-chip hardware implementations
of these proposals seem unclear but definitely worth abundant
exploration.

While our work has focused on decoding for surface codes,
real time decoding for other codes have been studied. For
example, software decoders have been used to achieve real-
time decoding for color codes [7] on trapped-ion systems [42]
but have latencies less suited to superconducting devices.

9. Conclusion

The overheads of classical decoding for quantum error correc-
tion grow rapidly with the number of logical qubits and their
correction code distance. Decoding at room temperature is
bottle-necked by refrigerator I/O bandwidth while cryogenic
on-chip decoding is bottle-necked by power/thermal budget.

We proposed Better Than Worst-Case Decoding for Quan-
tum Error Correction, targeting Surface Codes, consisting of
an On-chip Clique Decoder, Statistical Off-chip Bandwidth
Allocation and Decode-Overflow Execution Stalling, which
exploit trivial common QEC decode scenarios and achieve sig-
nificant reduction in off-chip decode bandwidth at extremely
low on-chip resource costs.

Importantly, we showcase that BTWC design is a critical
step towards a practical scalable future for quantum error
correction with tremendous potential beyond the specific scope
of this paper targeting decoding for surface codes.
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