
Multi-Model Specifications and their Application to Classification
Systems

Alan Burns

The University of York

UK

alan.burns@york.ac.uk

Sanjoy Baruah

Washington University in St. Louis

USA

baruah@wustl.edu

ABSTRACT
Many safety-critical systems are required to have their correctness

validated prior to deployment. Such validation is typically per-

formed using models of the run-time behaviour that the system is

expected to exhibit and experience during run-time. However, these

systems may be subject to different requirements under different

circumstances; also, there may be multiple stakeholders involved,

each with a somewhat different perspective on correctness. We

examine the use of a multi-model framework based on assump-

tions (Pre and Rely conditions) and obligations (Post and Guarantee

conditions) to represent the workload and resource related needs

of complex AI system components such as DNN classifiers. We

identify three kinds of multi-models that are of particular interest:

Independent, Integrated and Hierarchical. All the individual mod-

els comprising an independent multi-model must remain valid at

all times during run-time; at least one of the models comprising

an integrated multi-model must always be valid. With hierarchical
multi-models all models are initially valid but the component’s

behaviour may gracefully degrade through a series of models with

successively weaker assumptions and commitments (we show that

Mixed-Criticality Systems, widely studied in the real-time comput-

ing community, are particularly well-suited for representation via

hierarchical multi-models). We explain how this modelling frame-

work is intended to be used, and present algorithms for determining

the worst-case timing behaviour of systems that are specified using

multi-models.

ACM Reference Format:
Alan Burns and Sanjoy Baruah. 2023. Multi-Model Specifications and their

Application to Classification Systems. In The 31st International Conference
on Real-Time Networks and Systems (RTNS 2023), June 7–8, 2023, Dortmund,
Germany. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/

3575757.3575760

1 INTRODUCTION
The safety properties of many safety-critical systems must be veri-

fied before they may be deployed out in the field. Since such ver-

ification occurs prior to run-time, it is typically performed upon

This work is licensed under a Creative Commons Attribution International

4.0 License.

RTNS 2023, June 7–8, 2023, Dortmund, Germany
© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9983-8/23/06.

https://doi.org/10.1145/3575757.3575760

carefully-constructedmodels of the run-time behaviour that the sys-

tem is expected to exhibit. Such models are designed to emphasize

the salient features of interest from the perspective of verification.

The verification of timing correctness properties (e.g., that dead-

lines are met) is usually done by the application of results from

real-time scheduling theory. The models used in real-time schedul-

ing theory make assumptions regarding the form of the workload

that will need to be accommodated and the characteristics of the

platform upon which such executions will occur. The validity of

the verification depends upon the actual workload and platform

being compliant with these model assumptions. For instance, the

widely used Liu & Layland task model [20] assumes that the real-

time workload comprises an a priori known number of recurrent

processes that are called tasks, each of which generates pieces of

work (“jobs”) a specified minimum duration (called the task pe-
riod) apart, with each job needing to execute for no more than a

specified duration of time (called the worst-case execution time or
simplyWCET ); for such a workload executing upon a single fully

preemptive processor, results in [20] a guarantee that any workload

for which the sum of the ratios of the WCET-to-period parameters

of all the tasks does not exceed ln 2 (≈ 0.69) is scheduled by the

Rate-Monotonic scheduling algorithm such that each job completes

execution prior to the arrival of the next job of the same task. How-

ever, this guarantee need not hold if any of the assumptions are

violated – if either the workload or the processing platform is not

compliant with the model, or if the WCET-to-period ratios sum to

more than the specified bound.

In this paper we model such workload and resource-usage speci-

fications as a contract between assumptions (A) and obligations (O)
(or commitments) [10, 17, 18, 23]: if the system behaves according to

the assumptions then the obligations (including meeting deadlines)

shall be delivered
1
.

At runtime a system that has been verified according to the

appropriate schedulability test may depend upon the validity of the

assumptions regarding the characterisation of the work that must

be performed and the resources required for this work. And if these

assumptions hold then a verified implementation guarantees to

meet its obligations. (Note that the system does not need to check

during run-time that its assumptions are being met, although a

more resilient/robust implementation may choose to do so.)

And if the assumptions do turn out to be invalid at some time dur-

ing operation then the system is allowed to undertake any action,

1
Assumptions are often described [8] as a combination of Pre-conditions (P) and
Rely conditions (R), while Obligations are a combination of Postconditions (Q) and
Guarantee conditions (G).

155

https://doi.org/10.1145/3575757.3575760
https://doi.org/10.1145/3575757.3575760
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3575757.3575760
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3575757.3575760&domain=pdf&date_stamp=2023-06-07


RTNS 2023, June 7–8, 2023, Dortmund, Germany Alan Burns and Sanjoy Baruah

including shut-down (although again a more resilient or robust im-

plementation maymake an effort towards meeting its commitments

at least partially, invalid assumptions notwithstanding).

In 2007, Vestal [29] proposed a generalization to the Liu & Lay-

land task model [20], the distinctive feature of which is that the

WCET parameter of each task is no longer a single value. Instead,

each task is characterized by multiple WCET parameter values

representing different estimates, that may be trusted to different

levels of assurance, of the actual (unknown) maximum duration

for which each job of the task may actually execute. Each task is

assigned a “criticality” level, informally denoting its importance to

some stakeholder in the system. The correctness criterion is that all

tasks at or above a particular criticality level commit to meet their

deadlines assuming that the actual execution durations of all jobs

do not exceed the WCET estimates made at the level of assurance

corresponding to that criticality level. MCS’s have been very widely

studied in the real-time scheduling literature (see, e.g., [6] for a sur-

vey); we will see, in Section 2.1, that this Vestal model for MCS’s is

essentially what we are terming here a hierarchical multi-model.

For relatively simple components a single model, such as the

Liu & Layland characterization [20] of each task by a single period

parameter and a single WCET estimate, is adequate. In general,

however, it is the case that the work that each task in a component

has to undertake may vary according to ambient operating con-

ditions (for example, the number of planes in a radar image, the

number of faces in a recognition system, or the number of cars in

a traffic control system), and as a consequence the expectations

upon the system –the obligations that can reasonably be expected

from it– may vary. It may also be the case that different stakehold-

ers have somewhat different expectations of the system. We will

show how both these cases may be modelled by specifyingmultiple
assumption-obligation pairs for a single component. It is not al-

ways the case that the worst-case load on the system is when these

parameters are at their maximum. What may maximise the load on

one task may reduce the load on other tasks; these relations must

be taken into account if overly pessimistic scheduling analysis is to

be avoided.

The first contribution of this paper is therefore an extension of

the properties of a mixed-criticality system to a more general notion

of a multi-model specification. And rather than linking assumptions

only to execution times (the resources needed), in this paper we

allow them to also incorporate assumptions about the number of

relevant entities in the input space (the work that has to be done).

We believe that this framework is widely applicable to a range

of systems, in particularly those that incorporate AI algorithms

and other forms of Learning-Enabled components [21] such as

classifiers.

The second contribution is to consider how the worst-case exe-

cution time of software components that are based on deep learning

and related AI technologies can be computed. Such components are

increasingly being deployed for classification problems in complex

autonomous resource-constrained cyber-physical systems. Many

of these systems are employed (or are being considered for employ-

ment) in safety-critical applications and require accurate predic-

tions to be delivered in real time using limited computing resources

(this is sometimes called “edge AI” where the efficient execution

of machine intelligence algorithms on embedded edge devices is

required [9, 31]).

A number of schemes have been produced that aim to determine

the worst-case path through a sequence (or cascade) of classifiers.

For example Razavi et al. [24] note “Deep learning (DL) inference has
become an essential building block in modern intelligent applications.
Due to the high computational intensity of DL it is crucial to scale
DL inference serving systems in response to fluctuating workloads to
achieve resource efficiency.” They provide a heuristic to reduce the

typical execution time of an object recognition system that is made

up of a set of different classifier (including face recognition, optical

character recognition, and natural language understanding). In this

paper we demonstrate that a relative straightforward approach

(compared with more general forms of WCET analysis) based on

Dynamic Programming can be used to derive worst-case execution

times for systems of classifiers whose temporal behaviours are

bounded by workload assumptions.

Having derived this modelling and analysis technique for classi-

fication systems we use it to illustrate the multi-model framework.

The remainder of the paper is therefore organised as follows. In the

next section we introduce the notion of a multi-model and define

three different forms: independent, integrated and hierarchical. In

Section 3 we then define a single-model specification scheme based

on Assumptions and Obligation for a SIMO-based classification

system, and illustrate how timing analysis can be performed upon

systems that are specified in this manner. Section 4 then describes

a Multi-Model classification system, building upon the modelling

framework for a single classification system from Section 3. Con-

clusions are drawn, and directions for future work suggested, in

Section 5.

In this initial paper on Multi-Models and their application to

classification systems we will keep the discussion informal and

focus more upon communicating insight and intuition rather than

formally defining our approach and providing rigorous correctness

proofs. In this spirit we introduce the salient aspects of our proposed

approach via a number of examples.

2 MULTI-MODEL SYSTEMS
Here we consider systems having more than one model to specify

their expected runtime behaviour. Such multi-models
2
are particu-

larly relevant if (i) there are different modes of operation that give

rise to different models; or (ii) there are different stakeholders that
define different assumptions and obligations for the system.

We noted in the introduction that Mixed-Criticality Systems

(MCS’s) are a specific example of the Multi-Model approach. We

therefore start with a review of MCS. Although the use of contracts

(mappings from assumptions to obligations) are used extensively

in component engineering, they have not been widely applied to

the temporal properties of real-time systems. Notable exceptions

are works by Benveniste et al. [3] and Stoimenov et al. [28].

2
The term “multi-model” is used in a number of different contexts, in particular with

regard to multi-model databases; there are also similar notions such as compositional

analysis – here we use the term to simply express that a single system is being specified

using more than one workload/resource model.

156



Multi-Model Specifications and their Application to Classification Systems RTNS 2023, June 7–8, 2023, Dortmund, Germany

2.1 Related Work: Mixed-Criticality Systems
Mixed-criticality systems (MCS), widely studied in the real-time

scheduling literature, provide an illustrative example of the use of

multi-models for representing complex components. As stated in

Section 1, each task in the task model proposed by Vestal [29] is

characterized by multiple WCET parameter values representing

different estimates, that may be trusted to different levels of assur-

ance, of the actual (unknown) maximum duration for which each

job of the task may actually execute. Each task is also assigned a

criticality level, which is, informally speaking, an indicator of the

importance of that task to overall system correctness. As stated in

Section 1, the Vestal [29] notion of correct system behavior is this:

assuming that the actual execution durations of all jobs of all tasks

do not exceed the WCET estimates made at the level of assurance

corresponding to a particular criticality level, the system commits
to meet their deadlines (i.e., complete execution prior to the arrival

of the next job of the same task) of all tasks with criticality level at

or above that criticality level.

From an analysis standpoint the important property of the Vestal

model is not the use of criticality but the fact that the task-set un-

der inspection has more than one model [4]. Vestal suggests that
different stakeholders would want to assign different values to one

of the parameters (the WCET) characterising each task: in effect

there is not one but a collection of models that are being applied to

the task-set, each modelling the system from a somewhat different

perspective. Since the 2007 publication of Vestal’s paper [29] there

have been over 500 papers produced that have extended and utilised

this notion of MCS [6, 7]. However, there have also been a number

of papers that have criticised the Vestal approach [13–16, 22]; much

of this criticism is based on different views as to the meaning of

“criticality.” But we point out that the rich body of results that have

appeared under the umbrella of MCS do not require or assign any

particular meaning to the term “criticality;” what they utilise and

exploit is the idea that there is more than one interpretation of the

temporal properties (i.e. parameters) of the tasks under considera-

tion. Testament to the usefulness of this multi-model extension is

the volume of applicable results that have been generated in under

15 years.

Burns et al. have illustrated [5, 8, 19] how the run-time behaviour

of a simple MCS may be specified by using Rely Conditions (As-

sumptions) and Guarantee Conditions (Obligations). In the Mixed-

Criticality framework there is a “degraded” mode with weaker Rely

and Guarantee conditions into which the system may transition. In

this degraded mode only the higher-criticality jobs are guaranteed

to meet their deadlines. This is therefore an example of a hierarchical
multi-model. In the following section we will argue that this is one

of three possible kinds of multi-model.

2.2 Types of Multi-Model
It is sometimes convenient to interpret assumption-obligation spec-

ifications in terms of mappings. Under such an interpretation, the

assumptions specify the set of all behaviors of the environment for

which the system is expected to behave correctly; the obligations

specify the corresponding correct system behaviors. Then correct
system execution maps each assumed behavior of the environment to
some correct system behavior – see the top diagram of Figure 1. The

Figure 1: The top diagram depicts system execution as a map-
ping from a set A of assumed behaviors of its environment
to a set O of system behaviors that fulfils its obligations.
The middle diagram depicts a mixed-criticality system in
which the sets of assumptions and obligations satisfy a sub-
set/ superset relationship. And the bottom diagram depicts
the execution of multi-model systems with overlapping inte-
grated assumptions and obligations.

middle diagram in this Figure depicts a MCS with a hierarchical

relationship between the assumptions and obligations. The bottom

diagram generalises this relationship; there are overlapping sets of

assumptions leading to overlapping obligations. In both of these

situations, correct behaviour of the system requires at least one of

the set of assumptions to remain true.

As stated above, our objective is to develop efficient algorithms

that satisfy multiple models – multiple assumption-obligation spec-

ifications. We consider such a multi-model framework to be very

general, and applicable to modelling a variety of different situations,

with the different models accorded different interpretations. For

example:

Different Environmental Conditions (“Modes”) A system that

is intended to operate in several different environmental conditions

may be expected to behave very differently under these different

conditions. For such systems, the expected behaviors under the

different environmental conditions may be represented as different

models. (For instance, the expected number and type of objects in

an image may vary significant depending upon the time of day.)

157



RTNS 2023, June 7–8, 2023, Dortmund, Germany Alan Burns and Sanjoy Baruah

Different Stakeholders It may sometimes be the case that rather

than developing individual bespoke systems for several different

stakeholders, it is more efficient to develop a single system that is

capable of meeting all their needs.

Generalising from the representation of MCS’s as multi-models we

identify three forms of relationship between the individual models

within a Multi-Model framework:

(1) independent multi-models,

(2) integrated multi-models, and

(3) hierarchical multi-models.

We shall look at each of these relationships assuming, for ease of

presentation, that there are just two individual models, 𝑎 and 𝑏,

in each case. Recall that each model (e.g., 𝑎) is defined by a set of

assumptions (A𝑎
).

Independent Multi-Models. For independent multi-models, an imple-

mentation must assume that both sets of assumptions remain true

at all times. It follows that all obligations are met. The multi-model

is violated if, for example, A𝑎
or A𝑏

fails at run-time. It follows

that there is just one mode of behaviour: (i) A𝑎 ∧ A𝑏
.

Integrated multi-models. Here an implementation may assume that

one, or both, sets of assumptions hold. It follows that one set of

assumptions may fail as long as the other set remain valid. Hence

there are three modes of behaviour that are determined by these

assumptions: (i) A𝑎 ∧ A𝑏
, (ii) ¬A𝑎 ∧ A𝑏

and (iii) A𝑎 ∧ ¬A𝑏
.

Hierarchical Multi-Models. This is a special case of integrated multi-

models that additionally satisfy a hierarchical relationship (mixed

criticality systems are examples). Where a system degrades, from

a model with A𝑎
to one with A𝑏

satisfying A𝑎 ⇒ A𝑏
(and

O𝑎 ⇒ O𝑏 ) the assumptions and obligations are said to beweakened.
Consequently one of the modes of behaviour (A𝑎 ∧ ¬A𝑏

) cannot

arise, and hence we just have: (i) A𝑎 ∧ A𝑏
and (ii) ¬A𝑎 ∧ A𝑏

.

Indeed as A𝑎 ⇒ A𝑏
, (i) can be written simply as A𝑎

.

Figure 2 illustrates the constraints associated with these three dif-

ferent model types.

Note that independent multi-models, in which all assumptions

must always be satisfied, are really just a partitioning of the system’s

behavior and hence do not add to the expressive power of the

modelling approach. It is the integrated and hierarchical multi-

models that are novel constructs. Note also that it is possible for an

integrated multi-model to include hierarchical elements, and this is

discussed further in Section 4.4.

The use of integrated multi-models will be illustrated in Section 4

by applying it to models of a typical classification system. The single

model version of which is introduced in the next section.

3 A SINGLE-MODEL CLASSIFICATION SYSTEM
In this section we present a single-model specification scheme based

upon Assumptions and Obligations for a classification system, and

illustrate how timing analysis can be performed upon systems so

specified. We will use the example of Single Input, Multiple Output

(SIMO) classifiers to provide an application context for the purposes

of illustrating our ideas. In systems such as Faster R-CNN [27],

SIMO classifiers break down a complex image into a number of

“boxes” (RoIs – Regions of Interest) and then the content of each

Figure 2: “Mode” changes in Multi-Models. Independent: no guar-
antees upon any transition out of the initial (blue) mode. Integrated:
guarantees as shown. (Hierarchical: 𝐴𝑎 ⇒ 𝐴𝑏 , and hence the right-
most path is impossible.)

RoI is classified. (Note, the approach described in this paper is also

applicable to YOLO (You Only Look Once) classifiers [25, 26].) To

make things concrete, in Sec. 3.1 we introduce a toy example of the

use of such a specification.

For software components such as classifiers it is necessary to

define a workload and resource-usage model that will allow the

worst-case input sequence to be derived and the worst-case exe-

cution time for this sequence to be computed. We assume that a

single execution of the classifier involves analysing a sequence of

RoIs that are required to be placed into one of a finite set of classes.

There must be a bound on the number of RoIs and there may also

be bounds on the number of entries in each class. In addition, there

may be further (arbitrary) constraints over the mix of classes in the

input sequence.

The proposed workload model uses Assumptions to capture the

above constraints. We allow the cost (required execution time on

the available computing resource) for each RoI to be class specific.

Moreover, we allow these costs to be sensitive to knowledge that

the classifier may have obtained from the input sequence that it

has already processed. For example, if the applicable Assumptions

imply that there can be at most one RoI of class𝐶𝑥 in any sequence

of RoI’s, then once such a RoI has been identified in a sequence the

classifier may be able to reduce its execution time by simplifying

the processing of subsequent RoI’s – the Assumptions can be relied
upon.

Below (Sec. 3.1) we first illustrate this modelling approach via a

simple contrived example. We then show (Sec. 3.2) how the maxi-

mum execution duration for our example can be derived for a se-

quence of RoI’s satisfying a given set of assumptions; this maximum

execution duration immediately yields an obligation (guarantee)
on whether the processing of the sequence of RoI’s can meet a

specified deadline or a predefined bound on the total execution

time. In Section 4 this single model approach will be generalised

so that a classifier can be subject to the requirements of more than

one model.

158



Multi-Model Specifications and their Application to Classification Systems RTNS 2023, June 7–8, 2023, Dortmund, Germany

3.1 An Example Classifier - CADIS
Our illustrative toy example

3
concerns a CADIS (for Cat And Dog

Identification System), a software component that is tasked with

identifying the breeds of all the cats and dogs that appear in an input

image – see Fig. 3. Given such an image, an Initial component first

breaks it down into a number of “boxes” (RoIs – Regions of Interest),

each of which contains an image of interest (i.e., an image of either

a cat or a dog) – we assume this takes an execution duration of one

time unit per identified RoI. Each RoI is then passed on to a Cat

Breed Classifier (CBC).

Figure 3: CADIS – A Cat And Dog Identification System

(1) The CBC first determines whether the image contained in

this RoI is of a cat – we assume this operation takes at most

two time units. If the answer is “no” (hence it must be a

“dog”) then this RoI is immediately passed on to the Dog

Breed Classifier (DBC). If however the answer is “yes,” the
CBC processes the RoI further (taking up to an additional

six time units to do so) to identify the actual breed of the cat.

(2) However if it is known (because it follows from the current

state of the system and its assumptions) that the RoI passed

on to the CBC cannot possibly contain the image of a dog,

it follows that it must contain the image of a cat. In this

event, the CBC can skip the first step and immediately begin

processing the RoI to identify the cat breed (with at most six

time units of processing).

(3) In a similar vein, if it is known that the RoI passed on to the

CBC cannot possibly contain the image of a cat, the CBC

immediately passes this RoI through to the DBC.

The DBC processes any RoI passed on to it to identify the breed of

the dog in the RoI; we assume that such processing takes up to five

time units.

To summarise the execution durations (or worst-case execution

times – WCET’s) of the three classifiers in Figure 3:

• Initial: The WCET is 1 on any RoI determined to contain an

image of interest.

• CBC: If a RoI passed to it is known to contain a cat image,

then its WCET is 6. If it is known to contain a dog image,

then its WCET is 0 (since it can directly pass this RoI through

to the DBC). If it is a priori unknown whether it contains a

dog or a cat image, then its WCET is 8 (2+6) if it contains a

cat image and 2 (2+0) if it contains a dog image.

3
This toy example is very loosely based on an Identify Friend or Foe (IFF) application
system that uses DNN-based image processing to distinguish between friendly and

hostile aircraft, and may further classify each kind.

• DBC: Any RoI passed on to it must contain a dog image;

processing such a RoI has WCET of 5.

In the remainder of this section, we will seek to determine the

tightest guarantees that can be made on the maximum duration

taken to complete the processing of an unknown sequence of RoI’s.

We emphasize that the above description of both the functional

behavior and the WCET numbers of the three components – Initial,

CBC, and DBC – comprise a part of the assume conditions: they are

part of the assumptions upon which our analysis may rely.

In the absence of any further assumptions, it is evident that the

“worst” sequence (the one that requires the maximum duration to

process) is one in which each RoI contains the image of a cat: for

such a sequence, each RoI would experience a WCET of 1 in the

Initial classifier, and 2 + 6 = 8 in the CBC, for a total bound of 9𝑁

for 𝑁 RoIs. So if 𝑁 is bounded to be, for example, no greater than 4:

A def

= 𝑁 ≤ 4

(i.e. no input image will contain more than 4 RoI’s) then the maxi-

mum duration cannot exceed (9 × 4) = 36.
In this Assumption, which can be looked upon as a predicate that

holds true throughout the execution of the classifiers, 𝑁 denotes

the number of RoIs that have been passed from Initial to CBC. The

Assumption predicate A is assumed to be true whenever CBC or

DBC undertakes an action (i.e. executes an operation). So 𝑁 can be

thought of as a state variable that counts the number of RoIs seen

thus far. Similar state variables, 𝑁𝑐 and 𝑁𝑑 , may denote the number

of cat images and dog images that have been forwarded from Initial.

Bounds on these values may also form part of the specification.

The role of the Assumption predicate is to bound the work that the

classifiers may be required to do. The simplest way of doing this is

to bound 𝑁 as the above example illustrates.

For a more interesting example, let us suppose that our assump-

tions additionally asserts that there will be at most two dogs and at

most two cats in the sequence:

A def

= 𝑁 ≤ 4 ∧ 𝑁𝑐 ≤ 2 ∧ 𝑁𝑑 ≤ 2

Each RoI will have a WCET=1 in the Initial classifier (for a total

WCET of 4 for this classifier); let us compute the execution duration

upon the other two classifiers for particular sequences.

• If the four animal images were to appear in the order ⟨D, D,
C, C⟩ within the sequence, each would have a WCET of 1 in

Initial. The first two would each have a WCET of 2 in the

CBC followed by 5 in the DBC; hence, each would have a

WCET of 1 + 2 + 5 = 8. However, it will subsequently follow

(fromA) that there are no more dog images in the sequence,

and hence the remaining animal images do not need to be

pre-processed in the CBC; each would consequently only

experience a WCET of (1 + 6). Summing over all four RoI’s

we have a duration equal to 8 + 8 + 7 + 7 = 30.
• If, however, they were to appear in the order ⟨C, D, C, D⟩
within the sequence, it may be verified that only the last

pet-image RoI (the last “D”) would skip the first step in the

CBC, for a total duration bound of (1 + 2 + 6) + (1 + 2 + 5) +
(1 + 2 + 6) + (1 + 5), or 32.

It may be verified by exhaustive enumeration (in Sec. 3.2 below,

we obtain a more efficient means of doing so) over all possible

159



RTNS 2023, June 7–8, 2023, Dortmund, Germany Alan Burns and Sanjoy Baruah

orderings of the two dogs and the two cats in the RoI sequence that

⟨C, D, C, D⟩ represents the worst case and that 32 is consequently
the duration bound under the assumption that there are at most

two cat images and at most two dog images in the sequence of 4

RoI’s.

Another, less intuitive, example is where the Assumption predi-

cate asserts that there may be a maximum of 2 dogs and 3 cats in

our 4-RoI sequence:

A def

= 𝑁 ≤ 4 ∧ 𝑁𝑐 ≤ 3 ∧ 𝑁𝑑 ≤ 2

The above cases all still apply but there are additional sequences

where there are 3 cats and 1 dog. For example, ⟨C, C, D, C⟩ gives
9+9+8+9 (=35). The same result occurs wherever the single dog

appears in the first three RoIs.

The specification of the classifier is completed by asserting that

the Obligation on the classifier, expressed as a Postcondition, Q, is
that all pets have their species (type) and breed identified:

Q def

= ∀𝑖 • Species(𝑅𝑜𝐼𝑖 ) ∧ Breed(𝑅𝑜𝐼𝑖 )

The index 𝑖 is bounded by A (in effect 𝑖 ≤ 4 in the example). The

predicates Species and Breed simply return true when that attribute

has been identified. This Postcondition is required to be true when

the classifier completes. The other aspect of the component’s obli-

gations is that the execution time (𝑒) of the classification system

(Initial, CBC and DBC) is bounded to a known acceptable value, 𝑉 .

This is best expressed as a Guarantee condition (G) [8]:

G def

= 𝑒 ≤ 𝑉

In the above example if 𝑉 is equal or greater than 35 then this

obligation can be satisfied.

3.2 Determining the Maximum Execution
Duration

We now generalize from the examples above, and devise a general

procedure for determining the maximum duration needed to pro-

cess an image, given an assumption asserting that there are at most

𝑁max
RoI’s in the input image of pets (cats or dogs), of which at

most 𝑁max

𝑐 will be of cats and 𝑁max

𝑑
of dogs. We will show below

that we can guarantee to process this entire sequence of RoI’s in an

interval of duration not exceeding the value 𝐹 (𝑁max, 𝑁max

𝑐 , 𝑁max

𝑑
)

obtained by solving the recurrence defined in Fig 4 for 𝐹 (𝑁, 𝑁𝑐 , 𝑁𝑑 ).
This recurrence may be understood as follows:

(1) If 𝑁 equals zero or if 𝑁𝑐 and 𝑁𝑑 both equal zero, then there

can be no RoI of a pet; hence no RoI will be passed on from

the Initial classifier to CBC (and subsequently to DBC). This

is the base case. The cost of processing zero pets is of course

0.

(2) Else, if (𝑁𝑑 == 0) the CBC may assume that each RoI passed

on to it must be of a cat, and hence skip the pre-processing

and immediately move on to identifying the cat’s breed,

at a WCET of 6. Furthermore, it is evident that at most

min(𝑁, 𝑁𝑐 ) RoI’s will be passed on from the Initial classifier

to CBC.

(3) Analogously to the above case, if (𝑁𝑐 == 0) the CBC may

assume that each RoI passed on to it cannot be of a cat and

must hence be of a dog. It therefore immediately passes it

on to the DBC, which will process it with a WCET of 5.

(4) It remains to consider when both 𝑁𝑐 ≥ 1 and 𝑁𝑑 ≥ 1. Ob-

serve that the maximum time required to process the entire

sequence is the larger of the maximum processing time if

(i) the first RoI in the sequence is of a cat, or (ii) it is of a dog:

(i) In the former case, the CBC would take a total of up to 8

time units to process the first pet-containing RoI, (since

the pre-processing WCET on the CBC is 2, followed by

a further WCET of 6 for the actual breed identification),

after which the remainder of the sequence has at most

(𝑁 − 1) pet-containing RoI’s of which at most 𝑁𝑐 − 1 are
of cats and at most 𝑁𝑑 of dogs.

(ii) In the latter case, the CBC would pre-process the RoI

(WCET of 2) and pass it on to the DBC (WCET of 5 for

identifying the dog-breed), after which the remainder of

the sequence has at most (𝑁 − 1) pet-containing RoI’s of

which at most 𝑁𝑐 are of cats and at most 𝑁𝑑 − 1 of dogs.

A Dynamic Program. The recurrence in Figure 4 clearly demon-

strates that the problem of computing 𝐹 (𝑁, 𝑁𝑐 , 𝑁𝑑 ) possesses the
optimal substructure property (see, e.g., [11, p. 379]), and is hence

amenable to solution as a Dynamic Program [2]. Notice that the

recursive calls made in computing 𝐹 (𝑁, 𝑁𝑐 , 𝑁𝑑 ) are to 𝐹 (𝑁 −1, 𝑁𝑐−
1, 𝑁𝑑 ) and 𝐹 (𝑁 − 1, 𝑁𝑐 , 𝑁𝑑 − 1) – in both cases, two of the three ar-

guments are strictly smaller integers. Hence computing the values

𝐹 (𝑥,𝑦, 𝑧) in order and storing them in a table:

for 𝑥 ← 1 to 𝑁max do
for 𝑧 ← 1 to min(𝑥, 𝑁max

𝑑
) do

Compute and store 𝐹 (𝑥,𝑦, 𝑧)
// Using previously computed-and-stored 𝐹 values

clearly has running time no worse that 𝑂 (𝑁max × 𝑁max

𝑐 × 𝑁max

𝑑
),

implying an asymptotic complexity no worse than 𝑶 ((𝑵max)3),
for computing 𝑓 (𝑁max, 𝑁max

𝑐 , 𝑁max

𝑑
).

This straightforward derivation of a dynamic program contrasts

with more complex optimal solutions such as model checking, con-

troller synthesis, or two-player strategies. Moreover, the use of

simple assumption predicates contrasts favourable with more com-

prehensive specification approaches such as guarded command

languages, state diagrams etc. Nevertheless, the expressive power

of the approach does seem to be sufficient to allow a wide range

of constraints to be managed without recall to the use of these

methods or heuristic (non-optimal) solutions.

3.3 A Bottom-up Implementation

Although it may seem more natural to solve the dynamic program

obtained in Section 3.2 above in a top-downmanner, here we apply a

bottom-up approach since that more easily generalises to the multi-

model case we will discuss in Section 4. Accordingly, let us first

reformulate the recurrence to facilitate bottom-up implementation:

let 𝐹𝑐 (𝑇,𝑇𝐶,𝑇𝐷) denote the maximum cost of processing an image

with 𝑇 pets (RoIs), 𝑇𝐶 cats and 𝑇𝐷 dogs. It is readily seen that the

bottom-up recurrence is

160



Multi-Model Specifications and their Application to Classification Systems RTNS 2023, June 7–8, 2023, Dortmund, Germany

𝐹 (𝑁, 𝑁𝑐 , 𝑁𝑑 ) =


0, if (𝑁 == 0) or ((𝑁𝑐 == 0) ∧ (𝑁𝑑 == 0))
6 ×min(𝑁, 𝑁𝑐 ), if (𝑁𝑑 == 0)
5 ×min(𝑁, 𝑁𝑑 ), if (𝑁𝑐 == 0)

max

(
8 + 𝐹 (𝑁 − 1, 𝑁𝑐 − 1, 𝑁𝑑 )
7 + 𝐹 (𝑁 − 1, 𝑁𝑐 , 𝑁𝑑 − 1)

)
otherwise

Figure 4: Computing the worst-case cost of processing 𝑁 RoI’s, under the assumption that there are ≤ 𝑁𝑐 cat images and ≤ 𝑁𝑑 dog images.

𝐹𝑐 (𝑇,𝑇𝐶,𝑇𝐷) = max

(
𝐶𝑐 + 𝐹𝑐

(
𝑇 + 1,𝑇𝐶 + 1,𝑇𝐷

)
,

𝐷𝑐 + 𝐹𝑐
(
𝑇 + 1,𝑇𝐶,𝑇𝐷 + 1

) )
where 𝐶𝑐 is the cost of processing an extra cat (i.e. 𝑇𝐶 + 1), and 𝐷𝑐
is the processing cost of a further dog (i.e. 𝑇𝐷 + 1). The iteration
stops when 𝐹𝑐 (𝑇 + 1,𝑇𝐶 + 1,𝑇𝐷) and 𝐹𝑐 (𝑇 + 1,𝑇𝐶,𝑇𝐷 + 1) are both
invalid; i.e. not sanctioned by the model. If both are valid then the

maximum must be taken, with the cat costing 𝐶𝑐 (8 in our running

example) and the dog 𝐷𝑐 ((2+5)=7). If only the cat possibility is

valid then

𝐹𝑐 (𝑇,𝑇𝐶,𝑇𝐷) = 𝐶𝑐𝑘 + 𝐹𝑐 (𝑇 + 1,𝑇𝐶 + 1,𝑇𝐷)

where 𝐶𝑐𝑘 is the cost of a cat when the type of the input is known

(so 6 in this example). And if only a dog is possible then

𝐹𝑐 (𝑇,𝑇𝐶,𝑇𝐷) = 𝐷𝑐𝑘 + 𝐹𝑐 (𝑇 + 1,𝑇𝐶,𝑇𝐷 + 1)

with 𝐷𝑐𝑘 = 5.

In the above description, three parameter (𝑇 , 𝑇𝐶 and 𝑇𝐷) are

employed to illustrate the recurrence property. However, on in-

spective, it is clear that 𝑇 (the number of pets) is always equal

to 𝑇𝐶 +𝑇𝐷 (number of cats plus the number of dogs). Hence the

implementation drops the 𝑇 parameter.

An outline of the pseudo (Ada) code for the algorithm is given in

Figure 5. The function returns one of four values: (i) the maximum

of the two allowed paths, or else (ii) the value of taking a cat when

only a cat is valid, or else (iii) the value of taking a dog when only

a dog is valid, or else (iv) the value 0 as neither a cat nor a dog can

be taken.

The array S holds previously computed values – that can be used

to reduce the computational load. A simple two dimensional array

is used in the pseudo code, with all elements in this array being

initialised to −1.
Since the recurrence is bottom up, the initial call of the function

is:

Cost := Fc(0, 0)

The call terminates and returns when a recursive call is made that

has no valid successor (and hence returns 0).

The code implementing the function Valid is written according

to the assumptions, and is therefore model-specific. For example,

if there is a maximum of 6 pets, 3 cats and 4 dogs then the Valid
function is simply:

function Valid(TC, TD : integer) is
begin

return TC+TD <= 6 and TC <= 3 and TD <= 4
end

type SoFar is array(0..MaxN, 0..MaxN) of integer
with Default_Component_Value => -1

S : Sofar

function Fc(TC, TD : integer) return integer is
X,Y : integer := 0
VD, VC : boolean

begin
if S(TC,TD) > -1 then return S(TC,TD); end if
VD := Valid(TC, TD+1)
VC := Valid(TC+1, TD)
if VD and VC then
X := Cc + Fc(TC, TD+1)
Y := Dc + Fc(TC+1, TD)
X := max(X,Y)
S(TC,TD) := X
return X

end if
if VC then return Cck + Fc(TC+1, TD); end if
if VD then return Dck + Fc(TC, TD+1); end if
return 0

end Fc

Figure 5: Bottom-up implementation of the recurrence: Ada pseudo-
code.

This gives a result of 51 which is delivered by the sequence ⟨C, C,
D, D, D, C⟩.

The algorithm was coded in Ada and when executed on a normal

laptop returns “instantaneously” from relatively large models such

as 𝑇 = 400, 𝑇𝐶 = 200, and 𝑇𝐷 = 250; i.e., 400 RoIs, ≤ 200 cats

and ≤ 250 dogs. For this particular example, the computed worst-

case execution time for the classifier is 3400, and happens when

a sequence of 199 cats is followed by 200 dogs and then a final

cat. In this example the function 𝐹𝑐 was called 128,976 times with

the 𝑆 array providing the (previously computed) answer on 48,326

occasions.

3.4 Extending the model – arbitrary constraints
The above example shows a model defined by the costs of each

operation and a function that checks for a valid operation. The costs

reflect assumptions made about the RoI. Typically, if something

about the type of the RoI is known then the cost of the operation

can be reduced. In the simple example above if the RoI is known to

not be a cat then it may be passed directly to the dog classifier and

its execution time reflects the fact that the input is definitely a dog.

We re-emphesize that the assumptions are, in effect, axioms – they

are true if the system behaves correctly, while if the system does

not behave correctly then nothing need be guaranteed.

In addition to constraints concerning the number of RoIs and the

maximum number of each type of RoI, it is possible to add further

constraints that can help reduce the solution space for the algorithm.

161



RTNS 2023, June 7–8, 2023, Dortmund, Germany Alan Burns and Sanjoy Baruah

So, for example, if it is known (i.e. it is a valid assumption) that

there are always more dogs than cats then Valid can reflect this:

function Valid(TC, TD : integer) is
begin

return TC+TD <= N and
TD + min(N-T, Nd-TD) > TC

end

The function returns true if TC+TD is not too large and if the number

of dogs so far identified (TD) plus the minimum that could still be in

the input image is greater than the number of cats so far identified

(TC). If this is true then there is a possible future that will satisfy

the constraint and hence this is a Valid step.

This example demonstrates the expressive power of the mod-

elling technique being proposed. A wide range of constraints can be

utilised. Some, for example incorporating cache effects that reduce

the execution time of repeating steps (e.g. a cat after a cat), may

require modifications to the recurrence formulation so that the

history of identified RoI processed so far is available at each step;

but this is not a fundamental change to the scheme and is easily

incorporated.

Depending upon the kinds of assumptions that it is permitted

to specify for a given application, determining satisfiability of as-

sumptions may turn out to be considerably more complex than

was the case in the earlier examples. Indeed, one could envision as-

sumptions that are of arbitrary computational complexity to check

– e.g., if one of our CADIS stakeholders were to specify an assump-

tion that the number of cats is the index, in some given standard
encoding, of a Turing Machine that halts on all inputs, then deter-

mining satisfiability of this assumption requires the solving of the

Halting Problem and is thus undecidable. Although this example is

admittedly very contrived and rather extreme, one could envision

more plausible assumptions that similarly encode, say, some NP-

complete problem. If checking the satisfiability of assumptions is

computationally non-trivial, then efficiency considerations must

take the computational complexity of doing so into account; it may

be computationally more efficient to simply assume that some or

all of the assumptions hold and thereby take on the responsibility

of satisfying more obligations than may be strictly necessary.

As part of future work we plan to give further consideration to

the properties of the constraints that are amenable to inclusion in

the proposed modelling framework. In this paper we now focus

on extending this classification example to illustrate Multi-Model

specifications.

4 USE OF THE CADIS EXAMPLE TO
ILLUSTRATE MULTI-MODEL
SPECIFICATIONS AND ANALYSIS

We now extend the CADIS example to illustrate the use of a Multi-

Model for classification. Suppose that the nature of the environment

in which the classifier is to be deployed gives rise to two types of

input image. As cats and dogs do not naturally share the same

space, the image will either contain mainly dogs or mainly cats,

but not significant numbers of both. Each of the two image types

will have different assumptions. Alternatively, the CADIS may be

used simultaneously by two stakeholders, one that is interested in

determining the breeds of all the dogs in an image and the other,

in determining the breeds of all the cats in the (same) image. Each

stakeholder may again make different assumptions.

As before let 𝑁 be a counter of the number of RoI’s, 𝑁𝑐 the

number of these RoI’s containing images of cats, and 𝑁𝑑 the num-

ber of those containing images of dogs. The assumptions bound

all of these counters. The image type that is predominantly popu-

lated with dogs is defined by the model, 𝐷𝑀 . A second model, 𝐶𝑀 ,

captures the properties of images that contain mostly cats.

Let the assumption predicate for the 𝐷𝑀 model be given by:

A𝐷𝑀 def

= 𝑁 ≤ 8 ∧ 𝑁𝑐 ≤ 1 ∧ 𝑁𝑑 ≤ 7

and for 𝐶𝑀 :

A𝐶𝑀 def

= 𝑁 ≤ 7 ∧ 𝑁𝑐 ≤ 6 ∧ 𝑁𝑑 ≤ 1

Both have the same Postcondition:

Q𝐷𝑀 ,Q𝐶𝑀 def

= ∀𝑖 • Species(𝑅𝑜𝐼𝑖 ) ∧ Breed(𝑅𝑜𝐼𝑖 )
and Guarantee condition:

G𝐷𝑀 ,G𝐶𝑀 def

= 𝑒 ≤ 𝑉
Hence model 𝐷𝑀 allows up to 8 Pets with a maximum of 1 Cat and

7 Dogs; whereas𝐶𝑀 allows up to 7 Pets, with a maximum of 6 Cats

and 1 Dog. If both scenarios are to be catered for by a single model

𝑆 then the assumption predicate must incorporate both extremes:

A𝑆 def

= 𝑁 ≤ 8 ∧ 𝑁𝑐 ≤ 6 ∧ 𝑁𝑑 ≤ 7

The algorithm of Section 3.3 reveals that the worst-case execution

duration of just 𝐷𝑀 is 63, just 𝐶𝑀 is 60 and of 𝑆 is 70.

However it is clear that the single model 𝑆 covers combinations

that are not possible; for example there cannot be 4 Dogs and 3 Cats

in the same image. An integrated Multi-Model of 𝐷𝑀 and 𝐶𝑀 will

more accurately specify how the classifier can behave, for example:

(1) The first RoI received from Initial will be pre-processed in

CBC (WCET = 2) to determine whether it is of a cat or a dog.

If the former, its breed is determined at an additional WCET

of 6; if the latter, it is passed on to DBC which determines

the dog-breed at an additional WCET of 5.

Suppose the outcome here were “cat” – from the perspective

of 𝐷𝑀 , its assumption predicate implies that all following

RoI’s are of dogs. (Analogously if the outcomewere “dog” the

𝐶𝑀 model will determine, based on its assumption predicate,

that all following RoI’s are of cats.)

(2) Our system seeks to satisfy the integration of both require-

ments. Hence regardless of the outcome above, neither as-

sumption is invalidated and consequently the second RoI of

interest must also be pre-processed.

Let us suppose that the outcome for this RoI is the opposite

of the outcome for the first (i.e., the first two RoI’s are either

⟨Cat, Dog⟩ or ⟨Dog, Cat⟩). The reader may verify that the

maximum duration required in Initial, CBC and DBC for

processing these two RoI’s is 2 + 8 + 7 = 17.
(3) The third RoI must also be preprocessed. Note that this pre-

processing necessarily invalidates one of the two assumptions
– if the outcome is “dog” then the assumption of the 𝐶𝑀

model no longer holds (analogously if the outcome is “cat”

then the assumption predicate for the𝐷𝑀 model is no longer

valid).

162



Multi-Model Specifications and their Application to Classification Systems RTNS 2023, June 7–8, 2023, Dortmund, Germany

Let us separately consider the possibilities when the prepro-

cessing (WCET=2) reveals that this third RoI is of a) a dog or

of b) a cat.

a) If this turns out to be a dog image then the assumption of

the𝐶𝑀 model is not valid and henceforth our system need

only seek to satisfy the requirement of the 𝐷𝑀 model. It

may therefore assume that every subsequent RoI is of a

dog, and consequently no pre-processing in CBC is needed;

rather, the RoI is immediately passed through to the DBC

which identifies the dog breed at a WCET cost of 5. Since

there may be at most six such RoI’s (including the current

–third– one), the total processing duration does not exceed

6 + 6 × 5 = 36.
b) If, on the other hand, the third RoI turns out to be of a

cat then the assumption defining the 𝐷𝑀 model is inval-

idated; henceforth our system need only seek to satisfy

the requirement of the𝐶𝑀 model. It will therefore assume

that every subsequent RoI is of a cat, and consequently

no pre-processing in CBC is needed; rather, the RoI is im-

mediately processed to identify the cat breed (at a WCET

6). Since there may be at most 5 such RoI’s (including the

current one), the total processing duration does not exceed

5 + 5 × 6 = 35.
Summarising the discussion above, (i) worst-case duration

for processing the first two RoI’s is 17; (ii) pre-processing the

third RoI takes a maximum duration of 2; and (iii) processing

the remaining RoI’s takes a maximum duration of either 36

(if of a dog) or 35 (if of a cat). Hence, the worst-case duration

for a system to satisfy the requirements of this sequence is

17 + 2 +max(36, 35) = 55

However, this sequence of images which has the property of sat-

isfying both models for as long as possible is not the worst-case.

Consider the sequence ⟨𝐷, 𝐷, 𝐷, 𝐷, 𝐷, 𝐷,𝐶, 𝐷⟩. After two RoIs the

assumption of the 𝐶𝑀 model is broken and hence only the 𝐷𝑀

model applies, but because the allowed single cat does not appear

until almost the end the preprocessing of all but the last RoI is

required. This means that the worst case is

8 + (6 × 7) + 8 + 5 = 63

We continue with the issue of using the Multi-Model to estimate

the worst-case cost (𝑐𝑜𝑠𝑡 (𝑀𝑀)) of the classification. As it is neces-
sary to ensure that either (or both) of the assumptions remains true,

the Multi-Model caters for each of the single models and hence:

𝑐𝑜𝑠𝑡 (𝑀𝑀) ≥ max(𝑐𝑜𝑠𝑡 (𝐷𝑀), 𝑐𝑜𝑠𝑡 (𝐶𝑀))
With this example the computed cost is as low as possible as

𝑐𝑜𝑠𝑡 (𝑀𝑀) = 63. This compares favourable with 𝑐𝑜𝑠𝑡 (𝑆) = 70.

4.1 Necessary Properties for Integrated
Multi-Models

To integrate 𝐷𝑀 and 𝐶𝑀 to form an effective single Multi-Model

there are some necessary prerequisites:

• The twomodel assumptions are not inherently contradictory:

it is possible for both to be true.

• If both assumptions are true then the obligations are com-

plementary.

In the example

A𝐷𝑀 ∧ A𝐶𝑀 = 𝑁 ≤ 7 ∧ 𝑁𝑐 ≤ 1 ∧ 𝑁𝑑 ≤ 1

but as 𝑁 ≤ 𝑁𝑐 + 𝑁𝑑 then

A𝐷𝑀 ∧ A𝐶𝑀 = 𝑁 ≤ 2 ∧ 𝑁𝑐 ≤ 1 ∧ 𝑁𝑑 ≤ 1

Hence a maximum of two pets, one cat and one dog; both of which

will have their breeds identified.

A system that adheres to the integration of models 𝐷𝑀 and 𝐶𝑀

may experience various Modes of behaviour:

• Mode 1: A𝐷𝑀
and A𝐶𝑀

are true. Both sets of obligations

are delivered

• Mode 2a:A𝐷𝑀
remains true,A𝐶𝑀

is false. Only obligations

of 𝐷𝑀 are satisfied.

• Mode 2b:A𝐷𝑀
is false,A𝐶𝑀

remains true. Only obligations

of 𝐶𝑀 are satisfied.

• Mode 3: A𝐷𝑀
and A𝐶𝑀

are false. No obligations are satis-

fied.

In Fig. 2, the top-most mode corresponds to Mode 1, the two modes

depicted one layer down represent Modes 2a and 2b, and the mode

depicted at the bottom represents Mode 3. A system that enters

Mode 3 (from either 2a or 2b) has failed. A transition from Mode

2a to 2b, or vice versa, cannot be taken. Modes 1, 2a and 2b are all

valid and legal.

We note, as illustrated earlier, that the worst-case cost does not

necessarily occur when the system stays in Mode 1 for the longest

time.

A final example illustrates that the estimate of the Multi-Model

can lie between that of the combined model and the individual

models. Let

A𝐷𝑀 def

= 𝑁 ≤ 3 ∧ 𝑁𝑐 ≤ 0 ∧ 𝑁𝑑 ≤ 3

and for 𝐶𝑀 :

A𝐶𝑀 def

= 𝑁 ≤ 3 ∧ 𝑁𝑐 ≤ 3 ∧ 𝑁𝑑 ≤ 0

then the combined single model is :

A𝑆 def

= 𝑁 ≤ 3 ∧ 𝑁𝑐 ≤ 3 ∧ 𝑁𝑑 ≤ 3

These give rise to the following computations: the cost of DM is 18,

CM is 21 and S is 27. However the Multi-Model results in a cost of

23, which is higher than either of the individual models but lower

that the combined single model.

4.2 How to compute the cost of the worst-case
load

To compute the worst-case duration any input adhering to a Multi-

Model specification requires only a trivial change to the algorithm

given earlier. For the single model case a Valid function was re-

quired that checked that the next step in the recurrence was allowed

(was sanctioned by the model). For the Multi-Model case this is

simply extended:

function Valid(TC, TD : integer) is
begin

return Valid_CM(TC, TD) or Valid_DM(TC, TD)
end

163



RTNS 2023, June 7–8, 2023, Dortmund, Germany Alan Burns and Sanjoy Baruah

where Valid_CM and Valid_DM are the checks for each specific

model.

When applied to the earlier example this dynamic program does

return with the worst-case estimate of 63.

We note, for completeness, that for independent Multi-Models

(where both models must be true at all times) then the following

code is appropriate.

function Valid(TC, TD : integer) is
begin

return Valid_CM(TC, TD) and Valid_DM(TC, TD)
end

Both models must sanction the step.

4.3 Discussion – Extending the Scope of the
Approach

The CADIS example discussed above has the property that the

temporal parameters of the models (𝐶𝑐 𝐷𝑐 , 𝐶𝑐𝑘 , 𝐷𝑐𝑘) as illustrated

in Figure 5 are constant; they are not a function of the model that

is being applied (e.g. not a function of which of the single models

is valid when the parameter is employed). But this constraint is not

necessarily always true.

If we return to the example given in Section 4 then the worst-case

sequence of RoIs was obtained from the 𝐷𝑀 model: ⟨𝐷, 𝐷, 𝐷, 𝐷, 𝐷,
𝐷,𝐶, 𝐷⟩. One interpretation of the 𝐷𝑀 model is that it applies to

stakeholders that are only interested in determining the breeds of

all the dogs in any input image. By the time a RoI is processed that

has the sole cat the 𝐶𝑀 model has become invalidated. Hence only

𝐷𝑀 applies. Arguably the 𝐷𝑀 stakeholder is not interested in the

breed of the solitary cat. And hence the cost associated with the

cat should be only 2 not 2 + 6. Giving an overall cost of 57 (not 63).
To illustrate how this can be taken into account consider the

parameter𝐶𝑐 which is the cost of determining the breed of an iden-

tified cat. In the examples discussed so far it has the constant value

of 6. Tomake its value model-specific requires a simple modification

to the code outlined in Figure 5, i.e. to include:

if Valid_CM then Cc := 6 else Cc := 0

Similar changes are needed to the other WCET parameters.

4.4 Integrated and Hierarchical Multi-Models
It was noted earlier that with a pure hierarchical model the as-

sumptions are weakened as the system moves from one mode of

operation to another, degraded, mode. This means, with two models

with predicates Valid1 and Valid2, then if Valid1 is true then so

is Valid2. The normal mode of operation is governed by the first

model, the degraded mode by the second. In the degraded mode less

will be achieved — i.e., the obligations are reduced. And it follows

that the resources required will also be reduced.

So in the CADIS example rather than the classifier failing if there

are more than 𝑁𝑚𝑎𝑥
RoIs in the input image, we could define a

degraded mode in which the type of the Pet within the RoI, but

not the breed, is computed. So in the normal mode we had the

assumptions and obligations as before:

A def

= 𝑁 ≤ 4

Q def

= ∀𝑖 • Species(𝑅𝑜𝐼𝑖 ) ∧ Breed(𝑅𝑜𝐼𝑖 )

but in degraded mode (X):

A𝑋 def

= 𝑁 ≤ 10

Q𝑋 def

= ∀𝑖∈1..4 • Species(𝑅𝑜𝐼𝑖 ) ∧ Breed(𝑅𝑜𝐼𝑖 ) ∧
∀𝑗>4 • Species(𝑅𝑜𝐼 𝑗 )

So if the number of RoIs is bounded by the initial aassumption then

all Pets will have their type and breed identified. But if there is a 5th

RoI then rather than fail, the system degrades to a mode in which

only the species of the RoI is identified. To make this commitment it

is still necessary to bound the load on the system. And if the number

of RoIs now raises above 10 then even the degraded mode will fail.

Note in this simple example the two models have the appropriate

hierarchical relationship as A ⇒ A𝑋
.

It is of course acceptable to combine Integrated and Hierarchical

Multi-Models. So again with the CADIS use case ifA𝐷𝑀
andA𝐶𝑀

both fail then there could be a degraded model similar to the one

given above that delivers only a partial classification.

5 CONCLUSIONS AND FUTUREWORK
We have proposed a framework for modelling and evaluating the

worst-case execution times of complex software components such

as classifiers. We have used a combination of assumptions and

obligations to define a workload model and a resource (CPU time)

requirements model. The assumptions are used to constrain po-

tential paths through the software and hence deliver effective esti-

mates of overall end-to-end timing behaviour. These estimates are

obtained by utilising a bottom-up recurrence algorithm that only

considers steps that are compliant with the defined assumptions.

These assumptions are also used to identify input elements and

sequences that are easier to process and hence lead to a reduction

in the worst-case execution time.

Although single models are potentially useful, a strong motiva-

tion for the modelling approach adopted is to facilitate the combi-

nation of models into, what has been termed here, Multi-Models.

The extensive literature on Mixed-Criticality systems has revealed

a large number of applications where one model is used to describe

the required behaviour in a “normal” mode of operation, and an-

other the acceptable reduced behaviour in a “degraded”mode. These

Multi-Model descriptions are mostly hierarchical – the degraded

behaviour is a restricted form of the normal behaviour. In this paper

we have generalised this relationship to also include independent

and integrated Multi-Models. The integrated Multi-Model seems

to be particularly effective at describing and analysing complex

systems with multiple stakeholders or modes of operation.

In this first paper on these execution time Models and Multi-

Models we used an artificial simple example to motivate and illus-

trate the main ideas. Readers will hopefully be able to appreciate

that functionally similar applications (such as real-time classifiers

and other AI inspired autonomous components) within future Cy-

ber Physical Systems are likely to become increasingly common.

For example, a road-side monitoring unit could take periodic pho-

tographs and be tasked with (a) estimating the real-time volume of

traffic, (b) classifying the traffic into cars, vans, lorries, bikes, motor

bikes etc, (c) estimate the total number of drivers/passengers for

various combinations of these vehicle classes, taking into account

the fact that a single photograph cannot simultaneously have a

164



Multi-Model Specifications and their Application to Classification Systems RTNS 2023, June 7–8, 2023, Dortmund, Germany

maximum number of each vehicle class, (d) identify the number of

self-driving cars, (e) identify the number of cyclists not wearing

helmets, etc. A combination of these requirements could be ex-

pected to lead to realistic independent, integrated and hierarchical

Multi-Models.

There are a number of extensions that follow naturally from the

work presented in this paper:

• For classifiers that havemultiple components, such as IDKs [1,

12, 30], the order inwhich components are arranged can have

a significant influence on the worst-case execution time of

the classification. In future work we will use the framework

developed to investigate this optimisation.

• In future work we will also give further consideration to the

properties of the constraints that are amenable to inclusion

in the proposed modelling framework.

• A required extension to the framework is to consider mul-

tiple concurrent components, their deadlines and system

scheduling; for Mixed-Criticality Systems this has been ad-

dressed [8] within an assumptions/obligations formulation.

In future work we will integrate this approach with the more

general Multi-Model notion present in this paper.

• In the models presented in this paper the only failures con-

sidered are those caused by the input sequence failing to

comply with the defined assumptions. It is also possible to

introduce classification failures; e.g. a dog being wrongly

identified as being a cat, and hence its breed not being as-

certained unless it passes through both the CBC and DBC

components. With such failures the Assumptions must be

extended to include a Fault Model that bounds the number

of such mis-classification. This addition will be described in

detail in an extended version of this paper.

REFERENCES
[1] S.K. Baruah, A. Burns, and Y. Wu. 2021. Optimal Synthesis of IDK-Cascades. In

Proc. 29th International Conference on Real Time Networks and Systems, RTNS.
ACM.

[2] R. Bellman. 1957. Dynamic Programming (1 ed.). Princeton University Press,

Princeton, NJ, USA.

[3] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J-B. Raclet, P. Reinkemeier,

A. Sangiovanni-Vincentelli, W. Damm, T. Henzinger, and K.G. Larsen. 2018. Con-

tracts for System Design. Foundations and Trends in Electronic Design Automation
12 (2018), 124–400.

[4] A. Burns. 2019. Multi-Model Systems – an MCS by any other name. In Proc. 7th
Int. RTSS Workshop On Mixed Criticality Systems (WMC). 5–8.

[5] A. Burns, S. Baruah, C.B. Jones, and I. Bate. 2019. Reasoning about the Relationship

Between the Scheduler and Mixed-Criticality Jobs. In Proc. 7th Int. RTSS Workshop
On Mixed Criticality Systems (WMC). 17–22.

[6] A. Burns and R.I. Davis. 2017. A Survey of Research into Mixed Criticality

Systems. ACM Computer Surveys 50, 6 (2017), 1–37.
[7] A. Burns and R.I. Davis. 2022. Mixed Criticality Systems: A Review (13th Edition).

https://www-users.cs.york.ac.uk/burns/review.pdf and White Rose Repository:

https://eprints.whiterose.ac.uk/183619/.

[8] A. Burns and C.B. Jones. 2022. An Approach to Formally Specifying the Be-

haviour of Mixed-Criticality Systems. In Proc. 34th Euromicro Conference on Real-
Time Systems (ECRTS) (Leibniz International Proceedings in Informatics (LIPIcs),
Vol. 231), Martina Maggio (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für Infor-

matik, Dagstuhl, Germany, 14:1–14:23.

[9] J. Chen and X. Ran. 2019. Deep Learning With Edge Computing: A Review. Proc.
IEEE 107, 8 (2019), 1655–1674.

[10] Y.F. Chen, E.M. Clarke, A. Farzan, M.H. Tsai, Y.K. Tsay, and B-Y Wang. 2010.

Automated Assume-Guarantee Reasoning through Implicit Learning. InComputer
Aided Verification, Tayssir Touili, Byron Cook, and Paul Jackson (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 511–526.

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. 2009. Introduction to
Algorithms. (third ed.). MIT Press.

[12] R. Davis, S. Baruah, A. Burns, and Y. Wu. 2022. Optimally ordering IDK classifiers

subject to deadlines. Real-Time Systems online (2022).
[13] R. Ernst and M. Di Natale. 2016. Mixed Criticality Systems?A History of Miscon-

ceptions? IEEE Design & Test 33, 5 (2016), 65–74.
[14] A. Esper, G. Neilissen, V. Neils, and E. Tovar. 2015. How Realistic is the mixed-

criticality real-time system model. In 23rd International Conference on Real-Time
Networks and Systems (RTNS 2015). 139–148.

[15] A. Esper, G. Nelissen, V. Nélis, and E. Tovar. 2018. An industrial view on the

common academic understanding of mixed-criticality systems. Real-Time Systems
54, 3 (2018), 745–795.

[16] P. Graydon and I. Bate. 2013. Safety Assurance Driven Problem Formulation for

Mixed-Criticality Scheduling. In Proc. WMC, RTSS. 19–24.
[17] T.A. Henzinger, S. Qadeer, and S.K. Rajamani. 1998. You assume, we guarantee:

methodology and case studies. In International Conference on Computer Aided
Verification. Springer Berlin Heidelberg, 440–451.

[18] C.B. Jones. 1981. Development Methods for Computer Programs including a Notion
of Interference. Ph. D. Dissertation. Oxford University. Printed as: Programming

Research Group, Technical Monograph 25.

[19] C.B. Jones and A. Burns. 2020. A Rely-Guarantee Specification of Mixed-

Criticality Scheduling. arXiv. 2012.01493.

[20] C. Liu and J. Layland. 1973. Scheduling Algorithms for Multiprogramming in a

Hard Real-Time Environment. J. ACM 20, 1 (1973), 46–61.

[21] S. Neema. 2019. Assurance for Autonomous Systems is Hard. https://www.

darpa.mil/attachments/AssuredAutonomyProposersDay_ProgramBrief.pdf. Last

Accessed: 2022-21-01.

[22] M. Paulitsch, O.M. Duarte, H. Karray, K. Mueller, D. Muench, and J. Nowotsch.

2015. Mixed-Criticality Embedded Systems–A Balance Ensuring Partitioning

and Performance. In Proc. Euromicro Conference on Digital System Design (DSD).
IEEE, 453–461.

[23] D. Powell. 1992. Failure Mode Assumptions and Assumption Coverage. In Proc.
22nd Int. Symp. on Fault-Tolerant Computing (FTCS-22). IEEE Computer Society

Press, 386–95.

[24] K. Razavi, M. Luthra, B. Koldehofe, Max M. Muhlhauser, and L. Wang. 2022.

FA2: Fast, Accurate Autoscaling for Serving Deep Learning Inference with SLA

Guarantees. In Proc. IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS).

[25] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. 2016. You Only Look Once:

Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

[26] J. Redmon and A. Farhadi. 2018. YOLOv3 Incremental Improvement. CoRR
abs/1804.02767 (2018).

[27] S. Ren, K. He, R. Girshick, and J. Sun. 2016. Faster R-CNN: Towards Real-Time

Object Detection with Region Proposal Networks. arXiv, cs.CV, 1506.01497.

[28] N. Stoimenov, S. Chakraborty, and L. Thiele. 2012. Interface-Based Design of
Real-Time Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, 83–101.

[29] S. Vestal. 2007. Preemptive Scheduling of Multi-criticality Systems with Varying

Degrees of Execution Time Assurance. In Proc. Real-Time Systems Symposium
(RTSS). 239–243.

[30] X. Wang, Y. Luo, D. Crankshaw, A. Tumanov, F. Yu, and J.E. Gonzalez. 2018. IDK

Cascades: Fast Deep Learning by Learning not to Overthink. arXiv, cs.CV, arXiv,

1706.00885.

[31] S. Yao, S. Hu, Y. Zhao, A. Zhang, and T. Abdelzaher. 2017. DeepSense: A Unified

Deep Learning Framework for Time-Series Mobile Sensing Data Processing. In

Proc. of the 26th International Conference on World Wide Web. 351–360.

165

https://www-users.cs.york.ac.uk/burns/review.pdf
https://eprints.whiterose.ac.uk/183619/
https://www.darpa.mil/attachments/AssuredAutonomyProposersDay_Program Brief.pdf
https://www.darpa.mil/attachments/AssuredAutonomyProposersDay_Program Brief.pdf

	Abstract
	1 Introduction
	2 Multi-Model Systems
	2.1 Related Work: Mixed-Criticality Systems
	2.2 Types of Multi-Model

	3 A Single-Model Classification System
	3.1 An Example Classifier - CADIS
	3.2 Determining the Maximum Execution Duration
	3.3 A Bottom-up Implementation
	3.4 Extending the model – arbitrary constraints

	4 Use of the CADIS Example to Illustrate Multi-Model Specifications and Analysis
	4.1 Necessary Properties for Integrated Multi-Models
	4.2 How to compute the cost of the worst-case load
	4.3 Discussion – Extending the Scope of the Approach
	4.4 Integrated and Hierarchical Multi-Models

	5 Conclusions and Future Work
	References

