
Analysis of Shared Cache Interference in Multi-Core Systems
using Event-Arrival Curves

Thilo L. Fischer
Hamburg University of Technology

Hamburg, Germany
thilo.leon.fischer@tuhh.de

Heiko Falk
Hamburg University of Technology

Hamburg, Germany
heiko.falk@tuhh.de

ABSTRACT
Caches are used to bridge the gap between main memory and the
significantly faster processor cores. In multi-core architectures, the
last-level cache is often shared between cores. However, sharing a
cache causes inter-core interference to emerge. Concurrently run-
ning tasks will experience additional cache misses as the competing
tasks issue interfering accesses and trigger the eviction of data
contained in the shared cache. Thus, to compute a task’s worst-case
execution time (WCET), a safe bound on the effects of inter-core
cache interference has to be determined. In this paper, we propose
a novel analysis approach for shared caches using the least recently
used (LRU) replacement policy. The presented analysis leverages
timing information to produce tight bounds on the worst-case in-
terference. We describe how inter-core cache interference may be
expressed as a function of time using event-arrival curves. Thus, by
determining the maximal duration between subsequent accesses
to a cache block, it is possible to bound the inter-core interference.
This enables us to classify accesses as cache hits or potential misses.
We implemented the analysis in a WCET analyzer and evaluated
its performance for multi-core systems containing 2, 4, and 8 cores
using shared caches from 4 KB to 32 KB. The analysis achieves sig-
nificant improvements compared to a standard interference analysis
with WCET reductions of up to 60%. The average WCET reduction
is 9% for dual-core, 15% for quad-core, and 11% for octa-core sys-
tems. The analysis runtime overhead ranges from a factor of 4× to
7× compared to the baseline analysis.

CCS CONCEPTS
• Computer systems organization → Real-time systems; •
Software and its engineering→ Formal software verification.

KEYWORDS
shared cache, WCET analysis, multi-core, event-arrival curve

ACM Reference Format:
Thilo L. Fischer and Heiko Falk. 2023. Analysis of Shared Cache Interference
in Multi-Core Systems using Event-Arrival Curves. In The 31st International
Conference on Real-Time Networks and Systems (RTNS 2023), June 7–8, 2023,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RTNS 2023, June 7–8, 2023, Dortmund, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9983-8/23/06. . . $15.00
https://doi.org/10.1145/3575757.3593643

Dortmund, Germany. ACM, New York, NY, USA, 11 pages. https://doi.org/
10.1145/3575757.3593643

1 INTRODUCTION
In multi-core systems, the concurrent execution of multiple tasks
influences the state of shared resources, such as shared busses and
shared caches. A worst-case execution time (WCET) analysis has to
take these effects into account. However, inter-core interference on
shared caches is notoriously difficult to quantify. This unpredictabil-
ity creates the potential for large over-estimation of the worst-case
timing behavior. To avoid this over-estimation, a tight bound on
the effects of inter-core cache interference is required.

To analyze the behavior of a cache, cache-hit-miss-classifications
(CHMC) are used to describe whether an access will be a hit, a miss,
or result in unknown behavior. For private caches, methods [4] [16]
based on the well established framework of abstract interpretation
[1] exist to determine these access classifications. For shared caches
however, the inter-core interference has to be included in the clas-
sification process. An intuitive approach to account for inter-core
interference when deriving the CHMC of an access is to consider
all potentially interfering cache blocks to actually interfere with
the analyzed access. The number of interfering blocks is called the
cache block conflict number (CCN).

This approach was presented by Hardy et al. in [6] and Liang
et al. in [8]. The pessimism in this approach is apparent, as inter-
fering tasks may not access all potentially interfering cache blocks
simultaneously, repeatedly, and at any point in time.

Instead of classifying accesses to the shared cache individually,
the authors of [11] and [17] focused on determining an upper bound
for the additional execution time caused by inter-core interference.
The upper bound for the additional execution time is termed worst-
case-extra-execution-time (WCEET) in [17]. The actual WCET of a
task in a multi-core environment is then given as the sum of the
WCET without interference plus the extra execution time due to
inter-core interference. The problem of classifying each individual
access is more complex than determining the WCEET in the sense
that given a classification of individual accesses, a safe WCEET
value can be determined, but not vice versa.

In this paper, we propose a novel analysis approach to derive
CHMCs for individual accesses while considering inter-core inter-
ference. The approach operates on set-associative shared caches
using the least recently used (LRU) replacement policy. To quantify
inter-core interference, we view cache accesses issued by each core
as an event stream. These event streams can be characterized using
event-arrival curves. Thus, we can examine the inter-arrival time
between multiple cache access events. This perspective essentially
induces a time-to-live (TTL) for information stored in the shared

https://doi.org/10.1145/3575757.3593643
https://doi.org/10.1145/3575757.3593643
https://doi.org/10.1145/3575757.3593643

RTNS 2023, June 7–8, 2023, Dortmund, Germany Thilo L. Fischer and Heiko Falk

cache. The TTL of a cache block corresponds to the time frame in
which interfering tasks can not issue a sufficient number of con-
flicting accesses to cause its eviction. Consequently, if a block is
accessed before its TTL has expired, the access will result in a cache
hit.

The key contributions of this paper are:

• We formulate an ILP model to derive event-arrival curves
expressing inter-core cache interference.

• We provide a cache hit classification criterion for shared
caches.

• We develop a data-flow analysis which leverages timing
information to classify shared cache accesses as cache hits
or potential misses.

• Our evaluation shows that the analysis is scalable and pro-
vides significant improvements upon the standard CCN ap-
proach.

In Section 2, related research is discussed. Section 3 gives an
overview of the analysis workflow. We introduce the event-arrival
perspective on cache interference in Section 4. In Section 5, a cache
hit classification criterion is constructed. A data-flow analysis to
discern definite hits from potential misses is formulated in Section
6. An evaluation using realistic workloads is presented in Section 7,
while Section 8 concludes the paper.

2 RELATEDWORK
The static analysis of worst-case behavior for complex systems is an
active field of research. A survey of multi-core analysis techniques
was published by Maiza et al. in [10], while analyses specifically
focused on caches were surveyed by Lv et al. in [9].

Hardy et al. [6] analyzed shared caches in multi-core systems by
counting the number of potentially interfering cache blocks. This
value is called the cache block conflict number (CCN). To classify an
access to a cache block as a hit, the number of conflicting blocks has
to be less than the associativity minus the block age. In [8], Liang et
al. combine this information with a lifetime analysis. The lifetime
analysis determines which tasks are running concurrently, as tasks
with a disjoint lifetime do not create any mutual interference on
the cache. While this approach yields safe results, it is pessimistic
as an interfering task is assumed to potentially issue all interfering
accesses concurrently, at any point in time.

In a recent paper, Zhang et al. [17] aim to eliminate some of this
pessimism by excluding infeasible interferences. Memory accesses
are grouped based on their location in the control-flow graph. This
creates a happens-before partial order on all accesses contained in
a task. Using this ordering, infeasible combinations of interfering
accesses are excluded from the interference estimation. The addi-
tional execution time caused by cache misses due to interference
is computed using the cumulative execution count of all accesses
to potentially evicted cache blocks. The approach is evaluated for
dual-core systems and compared to the CCN approach. Using the
MRTC benchmark suite [5], an average WCET reduction of 13%
is reported. However, in the median only a 1% improvement is
achieved.

A similar approach was used by the authors of [2] to analyze
multi-threaded programs running on multi-core systems. Synchro-
nization points between threads are used to determine which sec-
tions of the program may run in parallel in different threads. This
information is then used to reduce the number of potentially oc-
curring conflicts.

Nagar et al. [12] [11] attempt to tackle the cache interference
problem from a different perspective. Nagar developed a shared
cache analysis by capturing inter-task interference in an ILP model.
The total amount of possible interfering accesses originating from
competing tasks is statically determined and used to limit the in-
terference experienced by the analysed task. The worst-case distri-
bution of interfering accesses along the control-flow graph (CFG),
which results in the largest increase in execution time, is then de-
termined by solving the ILP. This approach does not depend on the
exact interleaving of memory accesses issued by different tasks and
yielded more preciseWCET estimations than the CCN classification
method.

In this paper, we pursue an orthogonal approach. Instead of
limiting the total number of interfering accesses, we examine how
quickly a sequence of multiple accesses may be issued.

The two techniques presented in [17] and [11] do not produce a
hit or miss classification for any single cache access but only bound
the overall increase in execution time for the complete program.
In this paper, we tackle the harder problem of classifying each
individual access as a cache hit or potential miss.

In [14] [13], Oehlert et al. present a method to quantify memory
accesses issued by a task using event-arrival curves. Memory access
events are derived from the program code at the level of basic blocks.
To compute an upper bound on the number of events arriving in a
given time frame, an IPET ILPmodel is developed. The event-arrival
curves are used to analyze, and subsequently improved, the bus
contention in multi-core systems. Based on this work, we develop
an ILP model to quantify inter-core cache interference. Instead of
quantifying the total number of memory accesses, we analyze how
much time is required for a task to accesses a given number of
interfering cache blocks.

3 ANALYSIS OVERVIEW
The system architecture considered in this paper consists of mul-
tiple cores with private caches, which are connected to a shared
cache via a shared bus. We assume that each core processes a single
task 𝜏 ∈ T. Consequently, inter-core and inter-task interference
are synonymous in this context. The shared bus is managed using
round-robin arbitration.

We analyze set-associative shared caches employing the LRU
replacement policy with associativity A. As cache-sets operate
independently of one another, we may consider them in isolation
during the analysis. While our analysis is general and applies to
both data and instruction caches, we concentrate on instruction
caches in this paper. We focus on instruction caches because the
memory layout of the program code is known at compile time. This
eliminates the need for a value analysis to determine the target
address of data accesses.

Analysis of Shared Cache Interference in Multi-Core Systems using Event-Arrival Curves RTNS 2023, June 7–8, 2023, Dortmund, Germany

In the remainder of this section, we provide an overview of
the proposed shared cache analysis. The analysis consists of the
following steps:

(1) Initial BCET and WCET analysis for each task
(2) Determining cache interference using event-arrival curves
(3) Data-flow analysis to compute cache hit classifications
(4) Final WCET analysis using the new hit classifications

Step 1. In order to perform the shared cache analysis, we require
both worst-case and best-case timing information on a basic block
level. Thus, as the first step an isolated timing analysis is conducted
for each task. To compute WCET estimates, accesses to the shared
cache are considered to be cache misses. Whereas the best-case
execution time (BCET) is computed using a classical age-based
abstract domain [4] without considering the impact of inter-core
interference.

Step 2. Following the timing analysis, the event-arrival curves of
cache access events originating from each task 𝜏 ∈ T are derived.
More precisely, it is determined how many distinct cache blocks
may be accessed during a particular time frame by solving an ILP
model. During this step, the BCET information is utilized to arrive
at a safe upper bound. The total inter-task interference experienced
by a specific task 𝜏 is then given as the sum of interference caused
by all tasks running in parallel to 𝜏 .

Step 3. Based on this information, a backward data-flow analysis
(DFA) is performed. The DFA investigates all accesses which poten-
tially result in a cache hit. An access is considered as a potential-hit,
if it would result in a cache hit without any inter-core interference.
For each potential-hit access, there exist corresponding cache ac-
cesses which initially caused the relevant cache block to be loaded
into the shared cache. The DFA determines the maximal duration
between loading the block into the shared cache and subsequently
accessing it. It also keeps track of any intra-task interference.

By evaluating the event-arrival curves of co-running tasks for
the maximal load-access path duration, the inter-task interference
can be safely bounded. Finally, potential-hits are classified as either
definite cache hits or potential cache misses.

Step 4. The access classifications computed in the previous step
can now be used in a WCET analysis to determine the final WCET
estimate for each task.

4 EVENT-ARRIVAL CURVES FOR SHARED
CACHE INTERFERENCE

In this section the cache access behavior of a task is examined
and quantified. To this end, we introduce the concept of event-
arrival curves for shared cache interference. The notation used in
the following is shown in Table 1.

Under the LRU replacement policy, cache blocks are ordered
based on which block was accessed last. Multiple accesses to the
same cache block do not cause further aging of other data contained
in the cache. Consequently, we define the notion of multiple events
as accesses targeting a set of distinct cache blocks.

We denote the number of accesses to pair-wise different cache
blocks issued from task 𝜏 ∈ T during a time frame of Δ𝑡 cycles by
𝜂𝜏 : N → N. A mapping 𝜂𝜏 (Δ𝑡) = 𝑛 thus means that there exists

Table 1: Variables and Notation

Symbol Meaning

T Set of tasks

A Associativity of the shared cache

𝐴𝑐𝑐 Set of all cache accesses

B Set of all cache blocks

𝑐𝑏 : 𝐴𝑐𝑐 → B Mapping of accesses to the target block

𝑞𝑣 ∈ N Execution count of node 𝑣

𝑧𝑣 ∈ N Execution time contribution from 𝑣

𝑡𝑏 ∈ {0, 1} Indicator whether 𝑏 ∈ B is accessed

0 200 400 600 800 1000 1200

Time Interval (Cycles)

0
1
2
3
4
5
6
7
8

C
on

fl
ic
ti
n
g
B
lo
ck
s

Figure 1: Example for an event-arrival curve expressing
shared cache interference. Derived from the canrdr01 bench-
mark of the EEMBC AutoBench suite [15].

a scenario in which 𝜏 will access 𝑛 different cache blocks during a
time frame of Δ𝑡 cycles.

In Figure 1 an example for such an event-arrival curve is shown.
The time interval is shown on the x-axis, while the y-axis repre-
sents how many different cache blocks may be accessed. In this
example, the interference grows quickly in the beginning. After a
time frame of around 140 cycles, the task may have issued accesses
to 4 different cache blocks. However, the time interval required to
observe a larger amount of interference is significantly higher. To
increase the observed interference from 6 to 8 conflicting blocks
takes around 700 cycles. This clearly demonstrates the pessimism
in the currently available analysis techniques [8] [11] [17]. All these
techniques assume that every conflicting block may be accessed
instantaneously by an interfering task. However, we can see here
that it takes a substantial amount of time for the task to generate
the traffic on the shared cache.

We will now show how such an event-arrival curve can be de-
rived from a task’s control-flow graph. To derive an event arrival
curve from the CFG of a task 𝜏 , we have to associate cache accesses
to the nodes in the CFG (𝑉 , 𝐸), where 𝑉 contains the nodes in the
graph and 𝐸 are the edges connecting the nodes. For data caches,
this relation arises from the memory-accessing instructions con-
tained in the program and their respective target addresses. For

RTNS 2023, June 7–8, 2023, Dortmund, Germany Thilo L. Fischer and Heiko Falk

instruction caches, cache accesses originate from fetching oper-
ations in the processor pipeline. Thus, we have to consider the
pipeline behavior.

We denote the set of all cache blocks by B. Let⇝ ⊂ 𝑉 × B be a
relation that contains the pair (𝑣, 𝑏) iff executing the node 𝑣 ∈ 𝑉
may cause an access to the block 𝑏 ∈ B. A path 𝜋 is a sequence
of nodes 𝜋 = (𝑣1, . . . , 𝑣𝑝) with (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸, 𝑖 ∈ {1, . . . , 𝑝 − 1}.
The execution of a path 𝜋 in the CFG of 𝜏 causes other tasks to
experience 𝑛 interfering cache accesses, as given in (1).

𝑛 =

�����⋃
𝑣∈𝜋

{𝑏 ∈ B | 𝑣 ⇝ 𝑏}
����� (1)

Note that 𝜂𝜏 is a step function and we are only interested in
the arrival of the first A events (as after A events all blocks are
evicted from an LRU cache). Thus, we can capture a task’s cache
access behavior by deriving the minimal time required to access
1, 2, . . . , A distinct cache blocks. These values correspond to the
location of the steps in Figure 1.

To compute the time required for a particular number of accesses,
we utilize an IPET model [7] [14]. As the basic construction of such
a model is out of the scope of this paper, we focus only on the
additional constraints required to model cache interference.

For each cache block, we introduce a binary decision variable
to indicate whether this cache block is accessed on the considered
path. The variables are denoted by 𝑡𝑏 for 𝑏 ∈ B. The indicator
variables 𝑡𝑏 are constrained by (2) and (3), where 𝑞𝑣 is the variable
containing the execution count of 𝑣 .

0 ≤ 𝑡𝑏 ≤ 1 (2)

𝑡𝑏 ≤
∑︁
𝑣⇝𝑏

𝑞𝑣 (3)

Thus, if any node is executed which may access the block 𝑏, the
indicator variable 𝑡𝑏 may take the value 1, otherwise it is set to 0.

To determine theminimal number of cycles duringwhich𝑛 cache
blocks may be accessed, only paths containing accesses to at least
𝑛 cache blocks are considered (4). In the model, 𝑛 is a parameter
which may be set to values 1, . . . , A to determine the time span
required for different levels of interference.

𝑛 ≤
∑︁
𝑏∈B

𝑡𝑏 (4)

Consequently, the objective of the ILP is to minimize the number
of cycles required to cause accesses to 𝑛 distinct cache blocks (5).
The path duration is computed as the sum of the execution time
contributions 𝑧𝑣 of each node 𝑣 ∈ 𝑉 .

min
∑︁
𝑣∈𝑉

𝑧𝑣 (5)

The execution time contribution 𝑧𝑣 depends on the best-case
execution time of the node 𝑣 and the execution count 𝑞𝑣 . However,
as we do not make assumptions about the distribution of events
inside the nodes, the time contributions of the first and last nodes
of the (partial) path is reduced to a single cycle. Solving this ILP
for all parameter values 1 ≤ 𝑛 ≤ A then allows us to construct
the event-arrival curve for each task. As noted before, cache sets

𝑎1
𝑐𝑏 (𝑎1) = 1

𝑣1
𝑎2

𝑐𝑏 (𝑎2) = 2

𝑣2

𝑎3
𝑐𝑏 (𝑎3) = 3

𝑣3

𝑎4
𝑐𝑏 (𝑎4) = 4

𝑣4

Figure 2: Example CFG containing four accesses targeting
different cache blocks. The accesses 𝑎2 and 𝑎3 are mutually
exclusive.

are analyzed independently of each other, thus event-arrival curves
need to be derived for each cache set.

Note that, by determining interference on the basis of paths
in the CFG, we implicitly eliminate any mutually exclusive ac-
cesses from the interference computation. For example, consider
the control-flow graph shown in Figure 2. The nodes 𝑣1, . . . , 𝑣4 each
contain an access targeting a different cache block. The IPET model
will consider the two paths (𝑣1, 𝑣2, 𝑣4) and (𝑣1, 𝑣3, 𝑣4). Hence, the
maximal interference caused by this CFG is 3 blocks, either the
set {1, 2, 4} or {1, 3, 4} is accessed. The blocks 2 and 3 are never
accessed together on the same path. Such mutually exclusive access
behavior is therefore safely excluded from the event-arrival curves,
leading to a tight estimation of the possible interference.

The cumulative interference experienced by the task 𝜏 can be
safely estimated by the addition of the curves 𝜂𝜙 from co-running
tasks 𝜙 ∈ T \ {𝜏}. These considerations yield (6) as a safe approxi-
mation of the inter-task interference depending on the duration 𝑙
between subsequent accesses to a particular cache block.

𝛾𝜏 (𝑙) =
∑︁
𝜙≠𝜏

𝜂𝜙 (𝑙) (6)

Using the cumulative interference function 𝛾𝜏 , the time-to-live
of a cache block 𝑏 ∈ B can then be expressed as a function of its
age. Here, we use the word age to refer to the number of conflicting
blocks which have been accessed by 𝜏 since the last access to 𝑏,
without considering the inter-task interference. We denote this
function as TTL𝜏 : {0, . . . ,A − 1} → N0 ∪ {∞}.

TTL𝜏 (𝑎𝑔𝑒) = sup
0≤𝑙

{𝑙 | 𝛾𝜏 (𝑙) < A − 𝑎𝑔𝑒} (7)

Note that the TTL of a block may be +∞ cycles in case the
interfering tasks never issue enough interfering accesses to trigger
the eviction. We utilize the notion of cumulative interference in the
next section to derive cache hit classifications.

5 CACHE HIT CLASSIFICATION
In this section, we construct a cache hit classification criterion
based on the duration between accesses to the same cache block.
We call the set of cache accesses contained in the programs 𝐴𝑐𝑐 .
The cache-access-classification (CAC) is denoted by the mapping
CAC : 𝐴𝑐𝑐 → {𝐴, 𝑁,𝑈 }. The CAC signifies whether the access

Analysis of Shared Cache Interference in Multi-Core Systems using Event-Arrival Curves RTNS 2023, June 7–8, 2023, Dortmund, Germany

will reach the shared cache always (𝐴), never (𝑁), or whether the
behavior is uncertain (𝑈).

We will now examine the intra-task interference between two
accesses to the same cache block. For this purpose, we can abstract
a path in the CFG to a sequence of accesses (𝑎𝑖)𝑚𝑖=1.

Definition 1. The intra-task interference on a path between two
accesses 𝑎1 and 𝑎𝑚 to the same cache block 𝑐𝑏 (𝑎1) = 𝑐𝑏 (𝑎𝑚) is given
by:

𝑖𝑛𝑡 ((𝑎𝑖)𝑚𝑖=1) =
𝑐𝑏 (𝑎𝑠)

����� 1 ≤ 𝑠 ≤ 𝑚 :
𝑐𝑏 (𝑎𝑠) ≠ 𝑐𝑏 (𝑎𝑚)∧
CAC(𝑎𝑠) ≠ 𝑁

 (8)

The set consists of all cache blocks which may be accessed in the
sequence (𝑎𝑖)𝑚𝑖=1 that conflict with the target cache block 𝑐𝑏 (𝑎𝑚).
Given the associativity A of the shared cache, we can define the
eviction distance along a path.

Definition 2. The eviction distance 𝜉 of a cache block 𝑐𝑏 (𝑎𝑚)
along a path with access sequence (𝑎𝑖)𝑚𝑖=1 is the minimal number of
additional interfering cache accesses which could lead to a cache miss
for 𝑎𝑚 as given in (9).

𝜉 ((𝑎𝑖)𝑚𝑖=1) = A −
���𝑖𝑛𝑡 ((𝑎𝑖)𝑚𝑖=1)��� (9)

As mentioned in Section 3, we want to analyze paths which may
lead to a cache hit on the shared cache. These paths are charac-
terized by a positive eviction distance. To denote such paths we
introduce the notion of a potential-hit path.

Definition 3. Apathwith associated cache access sequence (𝑎𝑖)𝑚𝑖=1
is called a potential-hit path for the access 𝑎𝑚 iff:

CAC(𝑎𝑚) ≠ 𝑁 (10a)

𝑐𝑏 (𝑎1) = 𝑐𝑏 (𝑎𝑚) ∧ CAC(𝑎1) = 𝐴 (10b)

0 < 𝜉 ((𝑎𝑖)𝑚𝑖=1) (10c)

Equation (10) contains the requirements for the access 𝑎𝑚 to
potentially result in a hit on a particular path: (a) the access 𝑎𝑚
may reach the shared cache, (b) the targeted cache block is loaded
into the cache by 𝑎1, (c) intra-task interference will not cause the
eviction of 𝑐𝑏 (𝑎𝑚).

The only missing piece to classify the access 𝑎𝑚 as a cache hit is
to check whether the inter-task interference is less than the eviction
distance. As seen in (6), using event-arrival curves, the inter-task
interference may be quantified as a function of time. By evaluating
𝛾𝜏 for the WCET of the considered path, a safe estimate of the
inter-task interference can be made. We can thus construct a cache
hit classification which depends on the temporal reuse distance
of the cache-block and the interference function derived from the
event-arrival curves discussed in Section 4.

Theorem 1. An access 𝑎 ∈ 𝐴𝑐𝑐 will always result in a cache hit if
it may only be reached by traversing potential-hit paths 𝜋 with access
sequence (𝑎𝑖)𝑚𝑖=1, 𝑎𝑚 = 𝑎 satisfying:

𝛾𝜏 (WCET(𝜋)) < 𝜉 ((𝑎𝑖)𝑚𝑖=1) (11)

Proof. Consider the scenario that the access 𝑎 could result in
a cache miss. This may happen for three different reasons: The

targeted cache block was (a) not loaded into the shared cache pre-
viously, (b) evicted due to intra-task interference, or (c) evicted due
to inter-task interference.

However, all executions containing 𝑎 must load the targeted
cache block into the cache and this block will not be evicted due
to intra-task interference as 𝜋 is a potential-hit path. Furthermore,
𝛾𝜏 (WCET(𝜋)) is a safe upper bound on the number of aging events
due to interfering accesses from competing tasks. As (11) requires
that the eviction distance is strictly greater than the interference, the
cache block 𝑐𝑏 (𝑎) will not be evicted due to inter-task interference.
Thus, the access will always result in a cache hit. □

Note that the condition given in (11) can be written equivalently
using the time-to-live function:

WCET(𝜋) ≤ TTL𝜏 (|𝑖𝑛𝑡 ((𝑎𝑖)𝑚𝑖=1) |) (12)

At this point, we are able to quantify cache interference using
event-arrival curves and have formulated a sufficient condition to
classify an access as a hit. What is missing now is an algorithmic
description on how we can efficiently use these two components
to derive a classification for every access.

6 PATH ANALYSIS
In this section, we utilize Theorem 1 to determine whether accesses
to the shared cache definitively result in a cache hit. To this end,
we perform a data-flow analysis. In the DFA, we examine accesses
which would result in a hit provided no inter-core interference
is present. Checking the condition given in (11) for a particular
access 𝑎 ∈ 𝐴𝑐𝑐 requires knowledge of the WCET of potential hit-
paths leading to the access and their respective eviction distance.
Consequently, we may abstract a path from a concrete sequence
of nodes to a safe upper bound on its execution time and a set of
potentially accessed conflicting blocks.

Thus, path information for access classification can be repre-
sented in an abstract domain using a semi-lattice 𝐷 = (N × 2B) ∪
{⊥,⊤}. Elements (𝑙,𝐶) ∈ N×2B represent a maximal path duration
of 𝑙 cycles and intra-task interference 𝐶 ⊆ B. ⊤ corresponds to a
potential cache miss, while⊥ is used to signal a finished load-access
path. I.e. another access will load 𝑐𝑏 (𝑎) into the shared cache en
route to the access 𝑎, resulting in a cache-hit. The tuples are intu-
itively ordered (𝑙1,𝐶1) ≤ (𝑙2,𝐶2) ⇐⇒ 𝑙1 ≤ 𝑙2 ∧𝐶1 ⊆ 𝐶2, while ⊤
is the greatest element and ⊥ is the least element. Joining of two
elements is performed by the ⊔ operator as defined in (13).

(𝑙1,𝐶1) ⊔ (𝑙2,𝐶2) = (max(𝑙1, 𝑙2),𝐶1 ∪𝐶2) (13a)

𝑑 ⊔ ⊤ = ⊤, 𝑑 ⊔ ⊥ = 𝑑, 𝑑 ∈ 𝐷 (13b)

To compute the data-flow information for all nodes in the control-
flow graph, we conduct a data-flow analysis in the backward direc-
tion. To formalize this DFA, we specify the data-flow information
as the mappings 𝑖𝑛[𝑣] : 𝐴𝑐𝑐 → 𝐷 and 𝑜𝑢𝑡 [𝑣] : 𝐴𝑐𝑐 → 𝐷 for 𝑣 ∈ 𝑉 .
Although the analysis is conducted in the backward direction, we
use the word 𝑖𝑛 (𝑜𝑢𝑡) to denote the data-flow information at the
beginning (end) of a node in the regular sense.

Every node 𝑣 ∈ 𝑉 possesses an associated sequence of cache
accesses, which is denoted using the superscript 𝑣 , (𝑎𝑣

𝑖
)𝑚
𝑖=1. The

RTNS 2023, June 7–8, 2023, Dortmund, Germany Thilo L. Fischer and Heiko Falk

impact of a single cache access 𝑎𝑣
𝑖
issued during the execution of 𝑣

on the analyzed access 𝑎 is determined by the function 𝑓 𝑣
𝑖
(14).

𝑓 𝑣𝑖 (𝑎, (𝑙,𝐶)) =


(𝑎,⊤) if 𝛾𝜏 (𝑙) ≥ A − |𝐶′ |
(𝑎,⊥) else if CAC(𝑎𝑣

𝑖
) = 𝐴 ∧

𝑐𝑏 (𝑎) = 𝑐𝑏 (𝑎𝑣
𝑖
)

(𝑎, (𝑙,𝐶′)) else

(14a)

𝑓 𝑣𝑖 (𝑎,⊤) = (𝑎,⊤), 𝑓 𝑣𝑖 (𝑎,⊥) = (𝑎,⊥) (14b)
where

𝐶′ := 𝐶 ∪
{
𝑐𝑏 (𝑎𝑣𝑖)

��� 𝑐𝑏 (𝑎) ≠ 𝑐𝑏 (𝑎𝑣𝑖) ∧ CAC(𝑎𝑣𝑖) ≠ 𝑁
}

(15)

The first case in (14a) covers the situation in which the interfer-
ence on the shared cache is too high to guarantee a cache hit. Thus,
the value is updated to ⊤, showing that this access is a potential
miss. In the second case, the path duration is acceptable and the
access 𝑎𝑣

𝑖
actually causes the target block 𝑐𝑏 (𝑎) to be loaded into

the cache. The value is updated to ⊥ to show that the load-access
path is terminated at this point. In the final case, the data-flow in-
formation is propagated further with the updated set of conflicting
cache blocks 𝐶′ given in (15). The functions 𝑓 𝑣

𝑖
can be composed

to operate on sequences of accesses 𝑓 𝑣
𝛼,...,𝛽

= 𝑓 𝑣𝛼 ◦ . . . ◦ 𝑓 𝑣
𝛽
.

Data-flow information for accesses contained in 𝑣 is initially
generated by 𝐺 [𝑣] as defined in (16).

𝐺 [𝑣] =
{
𝑓 𝑣1,...,(𝑡−1) (𝑎𝑣𝑡 , (WCET(𝑣), ∅)) | 1 ≤ 𝑡 ≤ 𝑚

}
(16)

The initial path duration is approximated by WCET(𝑣). Start-
ing from the empty set, the blocks conflicting with 𝑎𝑣𝑡 are derived
from the event sequence (𝑎𝑣

𝑖
)𝑡−1
𝑖=1 by using the propagation function

𝑓 𝑣1,...,(𝑡−1) .
Data-flow information arriving at 𝑣 from successor nodes is

contained in 𝑜𝑢𝑡 [𝑣]. This information is propagated backwards
along 𝑣 by 𝑃 [𝑣] as shown in (17).

𝑃 [𝑣] =
{
𝑓 𝑣1,...,𝑚 (𝑎, (𝑙 +WCET(𝑣),𝐶)) | (𝑎, (𝑙,𝐶)) ∈ 𝑜𝑢𝑡 [𝑣]

}
(17)

The propagation function 𝑓 𝑣1,...,𝑚 is applied to the accesses con-
tained in 𝑜𝑢𝑡 [𝑣] which are not mapped to⊤ or⊥. The path duration
𝑙 is increased to 𝑙 +WCET(𝑣) to reflect the fact that it may increase
by up to WCET(𝑣) cycles by extending the path over 𝑣 .

The incoming data-flow information for node 𝑣 is the combina-
tion of 𝐺 [𝑣] and 𝑃 [𝑣] (18), whereas the outgoing data-flow infor-
mation consists of the merged information from all successors𝑤
(19).

𝑖𝑛[𝑣] = 𝐺 [𝑣] ⊔ 𝑃 [𝑣] (18)

𝑜𝑢𝑡 [𝑣] =
⊔

(𝑣,𝑤) ∈𝐸
𝑖𝑛[𝑤] (19)

Here, the join operation ⊔ is extended to data-flow mappings by
pair-wise joining of elements associated to the same access event.
The values of 𝑖𝑛[𝑣] and 𝑜𝑢𝑡 [𝑣] are computed iteratively until they
stabilize. Then, an access 𝑎 can be safely classified as a cache hit if
no node 𝑣 exists with (𝑎,⊤) ∈ 𝑖𝑛[𝑣].

6.1 Ensuring Termination
In its current formulation, the semi-lattice 𝐷 used in the DFA has
infinite height, as the path duration is not limited. Therefore, 𝐷
does not satisfy the ascending chain condition. It is not guaranteed
that the data-flow information converges after a finite number of
iterations.

We know that all feasible paths contained in the analyzed CFG
are of finite duration as we assume that all tasks terminate and thus
have a finite WCET. In practice, however, non-termination of the
analysis can occur when information is propagated along a path
that is infeasible in reality.

To correct this behavior, it is possible to limit the maximal du-
ration value in the abstract domain. Instead of allowing the path
duration to take an arbitrary duration 𝑙 ∈ N, only a limited interval
[1, 𝐿𝜏] ⊂ N can be permitted. A natural choice for 𝐿𝜏 is the smallest
duration to experience the maximal interference as given in (20).

𝐿𝜏 = min
𝑙∈N

{𝑙 | 𝛾𝜏 (𝑙) = 𝛾𝜏 (WCET(𝜏))} (20)

In case a path duration exceeds this value while being propagated
along a node, the duration is instead capped at the upper limit 𝐿𝜏 .
This limit on the path duration is safe, as it never underestimates the
potential inter-task interference due to the choice of 𝐿𝜏 . Using this
upper limit on the path duration, only a finite number of updates
may be applied to an abstracted path until the value necessarily
stabilizes.

While termination is now ensured, in practice, the number of
iterations required for termination may still be prohibitively large.
To solve this problem, we widen an abstracted path (𝑙,𝐶) to ⊤ after
the number of performed propagations over nodes exceeds a certain
threshold value. This procedure is safe as we do not introduce faulty
cache hit classifications here. However, some precision is sacrificed.
We evaluate the impact of different threshold values in Section 7.3.

6.2 Relative Precision
In this section, we make a few notes about the relative precision of
the presented analysis compared to the baseline analysis [8]. We use
the abbreviation CCN to refer to the baseline method which uses
the cache block conflict number to derive cache hit classifications.
For brevity, we denote the method presented in this paper as the
EAC method.

It is clear that the quantification of interference over time using
event-arrival curves can yield more precise results than assuming
that every conflicting block causes interference at all points in time.
However, the EAC classification approach presented in this paper
is not strictly more precise than the CCN method.

Consider the control-flow graph in Figure 3 as an example. The
graph contains three nodes 𝑥,𝑦, 𝑧. They contain accesses 𝑎 and 𝑏 in
the nodes 𝑥 and 𝑧 respectively.

In this scenario, the access 𝑎 causes the block 𝑐𝑏 (𝑎) to be loaded
into the shared cache. The node 𝑦 does not contain any accesses to
the shared cache. Thus, when performing the access 𝑏 to 𝑐𝑏 (𝑏) =
𝑐𝑏 (𝑎), no further blocks were loaded into the cache by the analyzed
task. Thus, the block age from the isolated perspective is 0. The
CCN analysis can now determine whether a hit classification is
appropriate using the maximal number of interfering cache blocks.

Analysis of Shared Cache Interference in Multi-Core Systems using Event-Arrival Curves RTNS 2023, June 7–8, 2023, Dortmund, Germany

𝑎
CAC(𝑎) = 𝐴

𝑥

∅
𝑦

𝑏
𝑐𝑏 (𝑎) = 𝑐𝑏 (𝑏)

𝑧

Figure 3: Example CFG containing two accesses targeting the
same cache block.

The DFA utilized in the EAC approach, however, has to process
the loop which allows the node 𝑦 to be executed multiple times
between 𝑥 and 𝑧. The path information originating from 𝑏 can
potentially be propagated many times along the loop 𝑦. Depending
on the propagation threshold, the DFA may stop and widen the
result of𝑏 to a potential miss. Thus, the EAC technique is not strictly
more precise compared to CCN.

However, it is possible to combine the two techniques to create
a more precise method. To consider a cache access as a hit, it is
sufficient that either the CCN analysis or the EAC analysis produces
a hit classification. To combine the two classifications approaches,
first, the EAC classification is determined. If the result is not conclu-
sive the information of the CCN analysis can be utilized. We refer
to the combination of the EAC and CCN classifications as EAC+.
We evaluate the relative precision of the EAC and CCN analyses in
practice in Section 7.4.

6.3 Iterative Application
The DFA described in this section contains an implicit dependence
between the classification of different accesses. To determine a
safe upper bound for the duration of a path, the WCET of the
contained nodes is accumulated. Initially, these WCET values are
derived under the assumption that no access to the shared cache
will result in a cache hit. However, after classifying some accesses as
definitive cache hits, these WCET values may be reduced. The DFA
can then be performed a second time using the tighterWCET values.
Accesses which were previously classified as potential misses may
now be classified as cache hits due to the shorter duration of the
potential-hit paths. Hence, it is possible to apply the DFA iteratively
to gain more and more precise cache hit information.

7 EVALUATION
To evaluate the performance of the novel classification approach,
we implemented it as a module in the WCC compiler [3]. The target
architecture consisted of multiple ARM7TDMI cores with private
L1 caches connected to a shared L2 cache using a round-robin
arbitrated bus. We considered systems containing 2, 4, and 8 cores.
For all core counts, we analyzed 10 systems. For each system, we
randomly assigned a task to each core. The tasks were taken from
the EEMBCAutoBench 1.1 benchmark suite [15] to create a realistic
workload. Virtual inlining and unrolling was limited at a depth of
3, respectively.

For the private L1 caches, we set the cache size to 256 bytes,
direct-mapping and a cache block size of 16 bytes. Shared cache
sizes of 4 KB to 32 KB were evaluated, with 8-way associativity, and
cache block size of 64 bytes. The caches used the LRU replacement
policy. The instruction access timings were set to 1 cycle for an

Table 2: Worst-case access timing including the bus access
delay using round-robin arbitration.

Cores L2 Hit L2 Miss Hit-Miss Ratio

2 50 80 0.63

4 130 160 0.81

8 290 320 0.91

L1 hit, 10 cycles for an L2 hit and 40 cycles in case of an L2 miss,
excluding potential bus access delays. As we focus on instruction
caches in this evaluation, we assume that each data access takes 3
cycles.

An instruction access may be stalled for up to (|T| −1) · 40 cycles
at the shared bus due to accesses from other cores. The worst-case
access timing thus consists of the sum of the bus access delay and the
L2 access time. Table 2 shows the different timing values including
the worst-case bus stall time. It can be seen, that the difference
between a cache hit and cache miss shrinks for higher core counts,
as the worst-case access delay is predominantly determined by the
delay to access the shared bus. Thus, improvements in the cache
hit classifications may have a smaller than expected impact on the
WCET of a task, as the WCET is also impacted by other factors
such as the bus access delay.

7.1 Evaluation Results
In this subsection, we evaluate the performance of the presented
EAC+ analysis. As the reference point, we also analyze the systems
using the method described in [8]. This baseline is abbreviated as
the CCN analysis.

To evaluate the performance, we utilize two different metrics.
The first metric is the percentage of accesses contained in the CFG
that could be classified as a cache hit. The second metric used in
this evaluation is the relative WCET achieved by the EAC+ analysis
compared to the CCN approach as the reference value.

We use the hit ratio in addition to the relative WCET, as the
WCET value does not capture improved classifications outside the
critical path. Additionally, changes in WCET might be small, even
though a significant number of accesses were newly classified as
cache hits as the WCET is also influenced by other factors such as
the bus access delay.

We use box plots to visualize the results. The line in the middle
of each box represents the median value, while the lower and upper
bounds of a box show the 25th and 75th percentile. The whiskers
are at most 1.5 times as large as the central box. Data points out-
side this range are considered outliers and are marked by a small
dash. The metrics are evaluated for each task and grouped for each
system configuration. The configuration groups are named using
the number of cores (2, 4, or 8) and the size of the shared cache (4,
8, 16, or 32 KB).

7.1.1 Dual-Core Systems. Figure 4 shows the hit ratio for dual-
core systems. For the 4 KB cache, the median hit ratio is 0% for the
baseline CCN analysis. Here, the EAC+ analysis achieves significant
improvements with amedian hit ratio of 76%. For the 8 KB cache, the

RTNS 2023, June 7–8, 2023, Dortmund, Germany Thilo L. Fischer and Heiko Falk

CCN analysis is able to achieve a hit ratio of 74%. Again, the EAC+
analysis is able to outperform the CCN method and yields a median
hit ratio of 88%. In the largest cache configuration for dual-core
systems, the EAC+ approach achieves only a small improvement
over the CCN approach. Both classification methods achieve a hit
ratio of around 90%. This result indicates that a 16 KB cache is
large enough for the considered dual-cores systems relative to the
contained code size so that inter-core interference does not lead to
a substantial degradation of the worst-case timing behavior.

In Figure 5, the WCET of the EAC+ analysis is compared to the
CCN analysis. The first three box-plots show the results for dual-
core systems. For the smallest cache size of 4 KB, the EAC+ analysis
yields an average WCET improvement of 14.4% (11.2% median).
Using a larger cache, this gap shrinks as the CCN analysis is able to
classify more accesses as cache hits. For an 8 KB shared cache, the
average WCET reduction is 9.8% (2.8% median). In the largest cache
configuration of 16 KB, no median WCET reduction is achieved.
Again, this is due to the fact that the 16 KB cache is large enough
to completely contain the code for most dual-core systems.

However, there is still an outlier which experienced a WCET
reduction of 60%. This outlier occurred in a system containing the
tasks aiifft01 and bitmnp01. The code size of bitmnp01 is around
27 KB. Thus, the CCN approach is unable to classify any accesses
belonging to aiifft01 as a cache hit. However, the EAC analysis
was able to classify 95% of accesses contained in aiifft01 as cache
hits. This discrepancy leads to the large reduction in WCET.

7.1.2 Quad-Core Systems. A different landscape unfolds for sys-
tems containing four cores. As can be seen in Figure 6, the cumula-
tive code size of the tasks contained in the systems is so large that
it prohibits the CCN analysis from making any useful conclusions
about cache hits. The median hit ratio is 0% even for the largest
16 KB cache. In contrast to this, the EAC+ analysis presented in
this paper is still able to classify many accesses as cache hits. The
median hit ratio values for 4 KB caches is 41%; for 8 KB it is 71%;
and for 16 KB it is 78%. This substantial improvement in access
classification is also reflected in the relativeWCET values, shown in
Figure 5. The three box plots on the right show theWCET reduction
for quad-core systems. The EAC+ analysis reduces the WCET by
10.2% on average (4.0% median) for 4 KB caches. The performance
gap increases to an average 17.5% (11.5% median) for 8 KB caches.
For 16 KB caches, the average relative WCET reduction is 16.7%
(12.2% median).

These results demonstrate the necessity of a precise analysis of
the inter-task cache interference. Without precise information on
the potential cache interference, the cache becomes useless in the
worst-case as almost no access can be classified as a cache hit using
the standard classification method.

7.1.3 Scalability to Octa-Core Systems. To explore the scalability of
the analysis, we also performed an evaluation of octa-core systems.
The size of the shared cache was increased to 32 KB for this evalua-
tion. All other parameters remained unchanged. We evaluated 10
task sets. The results are shown in Figure 7.

As was the case for quad-core systems, the CCN analysis was
not able to classify any significant amount of accesses as cache hits.
The hit ratio for almost all tasks is 0%. Again, the EAC+ analysis is
able to perform substantially better with a median hit ratio of 49.6%.

4 KB
EA

C+

8 KB
EA

C+

16
KB

EA
C+

4 KB
CC

N

8 KB
CC

N

16
KB

CC
N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

H
it
R
a
ti
o

Figure 4: Dual-core cache hit ratio of the EAC+ (blue) and
CCN (orange) analyses for different cache configurations.

2C
4K

B
2C

8K
B

2C
16K

B
4C

4K
B

4C
8K

B

4C
16K

B

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
el
at
iv
e
W
C
E
T

Figure 5: Relative WCET values derived using the EAC+ anal-
ysis in relation to the CCN analysis.

4 KB
EA

C+

8 KB
EA

C+

16
KB

EA
C+

4 KB
CC

N

8 KB
CC

N

16
KB

CC
N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

H
it
R
at
io

Figure 6: Quad-core cache hit ratio of the EAC+ (blue) and
CCN (orange) analyses for different cache configurations.

Analysis of Shared Cache Interference in Multi-Core Systems using Event-Arrival Curves RTNS 2023, June 7–8, 2023, Dortmund, Germany

32
KB

EA
C+

32
KB

CC
N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

H
it
R
at
io

(a) Hit ratio

8C
32K

B

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
el
at
iv
e
W
C
E
T

(b) Relative WCET

Figure 7: Hit ratio of the EAC+ (blue) and CCN (orange) anal-
ysis, as well as the relative WCET for octa-core systems.

This increase in hit classifications resulted in an average relative
WCET reduction of 11.3% (5.1% median), while the maximal WCET
reduction for a task was 43%.

Hence, we conclude that the proposed analysis is also applicable
to multi-core systems with a high core count and yields notable
improvements over the baseline analysis.

7.2 Runtime Evaluation
In this subsection, we take a look at the runtime overhead that is
required by the proposed analysis. The evaluations were conducted
on an Intel Xeon Server containing 46 cores running at 3.2GHz. All
analyses were configured to use only a single processor core.

The runtime of the EAC+ analysis consists of (a) the BCET/WCET
analysis used to derive the event-arrival curves and required to
perform the DFA, (b) the derivation of the event-arrival curves,
(c) the DFA to classify accesses, (d) the final WCET analysis. The
runtime of the CCN method includes determining the cache block
conflict number for every cache set and a WCET analysis. A table
containing the measured runtimes is shown in Table 3.

As the analysis is based upon an isolated per-coreWCET analysis
it is expected that the runtime scales linearly in the number of
cores. Additionally, the size of the shared cache also has a linear
impact on the number of ILPs that potentially need to be solved to
determine the event-arrival curves. These expectations are matched
in the measured runtimes. The time required on average for an
analysis of a dual-core system ranges from 3.5 to 4.9 minutes. We
observed a small decrease in the runtime of the 16 KB configuration
compared to the 8 KB configuration. This runtime decrease occurred
during the derivation of the event-arrival curves. As the cache size
increased, the traffic on each individual cache set decreased. This
resulted in a more efficient event-arrival curve derivation process
and caused a small drop in the required analysis time. For quad-core
systems the runtime increased to 7.9 to 11.9 minutes. The average
runtime of an 8-core system was 24.7 minutes. Note that the 8-core
systems were also equipped with a larger 32 KB shared cache.

Table 3: Average analysis runtime in minutes.

Cores Cache Size EAC+ CCN

2
4 KB 3.5 0.5

8 KB 4.9 0.8

16 KB 4.4 0.9

4
4 KB 7.9 1.2

8 KB 11.8 1.9

16 KB 11.9 2.2

8 32 KB 24.7 6.1

In the EAC+ analysis, a large proportion of the time was spent
to solve the ILPs formulated in Section 4 to derive the event-arrival
curves. As the ILPs are independent of each other, this step could be
parallelized to reduce the time requirement. The data-flow analysis
presented in Section 6 was very quick, with an average runtime of
less than one second per system.

The average EAC+ analysis runtime is larger than the time re-
quired by the CCN method by a factor of 4× to 7×. This increase in
runtime is however justifiable, as the CCN method did not produce
any useful cache hit classifications for 5 out of the 7 system config-
urations. Using the CCN Classifications, the median hit ratio was
higher than 0% only for dual-core systems with a cache size of 8 KB
and 16 KB. The presented analysis technique, however, achieved
significant improvements in the number of hit classifications and
the WCET estimate.

7.3 Propagation Limit Sensitivity
To ensure that the data-flow analysis presented in Section 6 con-
verges quickly, the propagation of abstracted path information over
nodes in the CFG is limited by a threshold value as described in
Section 6.1. When the number of nodes a path is propagated over
exceeds the threshold value, the path is considered to potentially
cause a cache miss. In this subsection, we explore whether this cut
off threshold is necessary and how it affects the analysis precision.

To achieve the results shown in the previous sections, we utilized
a threshold value of 30. This means, that potential-hit paths con-
taining up to 30 nodes may be recognized by the DFA as resulting in
a cache-hit. Paths were not investigated beyond this threshold and
were considered a potential miss instead. To explore the sensitivity
of the analysis to this parameter, we also performed the analysis of
dual-core and quad-core systems with different threshold values.

We first decreased the propagation limit to 5 nodes. As only
short hit paths may be recognized with this setting, a decrease in
the number of successful cache hit classifications is expected. For
quad-core systems with a 16 KB shared cache, the largest average
hit ratio reduction occurred. The average hit ratio reduced by 1.5%
from 78.3% to 76.8%. Thus, a lower threshold only has a minor
impact on the precision.

To check whether a higher propagation limit is useful, we tried
increasing the limit to 150. The biggest increase in the average
hit ratio was observed for dual-core systems with a 4 KB cache.

RTNS 2023, June 7–8, 2023, Dortmund, Germany Thilo L. Fischer and Heiko Falk

The hit ratio increased by 0.5% from 74.9% to 75.4%. These results
suggest that accesses to the shared cache exhibited highly localized
behavior.

The average runtime of the data-flow analysis for quad-core
systems was 1.2 seconds with the propagation limit set to 30. De-
creasing the limit to 5 reduced the runtime to 0.24 seconds. While
increasing the limit to 150 caused the analysis to require 9.6 seconds
on average. Removing the propagation limit altogether caused 8 of
the 30 analyzed quad-core systems to not terminate after 2 hours.
Thus, we conclude that the propagation limit is necessary, but the
analysis precision itself is not very sensitive to the choice of the
parameter value.

7.4 Relative Precision Evaluation
In Section 6.2, we note that the precision of the EAC and the CCN
analysis techniques are not comparable as there are situations in
which either of the two analyses is more precise than the other
one. To evaluate whether this theoretical consideration manifests
itself in practice, we also performed the evaluation of dual-core and
quad-core system using only the classifications derived by the DFA
without using the CCN classification as the fallback.

For dual-core systems, we observed a difference in the analysis
precision between the different classification strategies. The median
hit ratio of the EAC classification for 4 KB caches was 73%. This is
similar to the 76% which were achieved by EAC+. The median hit
ratio of CCN for this configuration was 0%. For 8 KB caches, the
median hit ratio using EAC was 77%. Recall that the CCN approach
yielded a 74% median hit ratio, while the combination of the two
classification methods yielded a median hit ratio of 88%. The combi-
nation of the two hit classification methods thus performed better
than each method did when applied separately.

For the largest cache configuration of 16 KB, the CCN analysis
classified more accesses as cache hits than EAC. The median hit
ratio for EAC was 82%, while both EAC+ and CCN achieved around
90%. Thus, EAC performed notably better than CCN for the smallest
cache size, while CCN had higher performance than EAC for the
16 KB cache.

For quad-core systems, however, we observed that there was
no significant difference between the performance of the EAC and
EAC+ classifications. The reason for this is that while the CCN
analysis may be more precise in some situations in theory, for the
evaluation setup shown in this paper, the CCN analysis was unable
to generate hit classifications in almost all situations (see Figure 6).
Thus, for quad-core systems, solely using the EAC classifications
instead of the EAC+ combination, which also makes use of the CCN
classifications, did not result in decreased analysis precision.

These results demonstrate that there are situations in which
either the EAC or CCN technique performs better, while the com-
bination of both classification approaches EAC+ performs the best.

8 CONCLUSION
In this paper, we presented a novel analysis perspective for shared
caches accessed via a round-robin arbitrated bus. In the analysis,
the inter-task interference between tasks running on different cores
is expressed using event-arrival curves. These curves quantify how
much time will pass between accesses to multiple conflicting cache

blocks. This perspective enables us to view inter-task cache interfer-
ence as a function of time. Furthermore, we presented a data-flow
analysis with which the temporal reuse distance of a cache block
can be determined. These two components, the event-arrival curves
and the temporal reuse distance, allow the analysis to derive safe
cache hit classifications for individual accesses to the shared cache.

We evaluated the performance of the analysis using realistic
workloads from the EEMBC AutoBench 1.1 benchmark suite. We
evaluated systems containing 2, 4, and 8 cores and shared caches
ranging from 4KB to 32 KB. The presented analysis significantly out-
performs the baseline analysis [8] in most situations. The baseline
analysis collects all potentially accessed cache blocks and assumes
that these blocks may be accessed at any time. This pessimistic
assumption caused the analysis to not produce any substantial
amount of hit classifications in 5 out of the 7 considered system
configurations. Compared to this standard analysis, the presented
analysis performed particularly well in systems with a small cache
size relative to the total program size.

Further research could expand the work presented in this paper
by analyzing systems containing more than one task per core. An-
other avenue for future research is the applicability of event-arrival
curves to replacement policies other than LRU. To reduce the re-
quired runtime of the analysis, it is conceivable to compute safe
approximations of the event-arrival curves instead of precise curves.
This trade off between runtime and precision could be explored in
future work.

REFERENCES
[1] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified

Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL 1977). 238–252. https://doi.org/10.
1145/512950.512973

[2] P. Padma Priya Dharishini and P. V. R. Murthy. 2021. Precise Shared Instruction
Cache Analysis to Estimate WCET of Multi-threaded Programs. In 2021 IEEE 18th
India Council International Conference (INDICON). 1–7. https://doi.org/10.1109/
INDICON52576.2021.9691620

[3] Heiko Falk and Paul Lokuciejewski. 2010. A Compiler Framework for the Reduc-
tion of Worst-Case Execution Times. Real-Time Systems 46, 2 (2010), 251–300.
https://doi.org/10.1007/s11241-010-9101-x

[4] Christian Ferdinand and Reinhard Wilhelm. 1999. Efficient and Precise Cache
Behavior Prediction for Real-Time Systems. Real-Time Systems 17, 2 (1999),
131–181. https://doi.org/10.1023/A:1008186323068

[5] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. 2010. The
Mälardalen WCET Benchmarks – Past, Present and Future. In 10th International
Workshop on Worst-Case Execution Time Analysis (WCET 2010), Björn Lisper (Ed.).
OCG, Brussels, Belgium, 136–146. https://doi.org/10.4230/OASIcs.WCET.2010.
136

[6] Damien Hardy, Thomas Piquet, and Isabelle Puaut. 2009. Using Bypass to Tighten
WCET Estimates for Multi-Core Processors with Shared Instruction Caches. In
30th IEEE Real-Time Systems Symposium (RTSS). 68–77. https://doi.org/10.1109/
RTSS.2009.34

[7] Yau-Tsun Steven Li and Sharad Malik. 1997. Performance Analysis of Embedded
Software Using Implicit Path Enumeration. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD) 16, 12 (1997), 1477–1487.
https://doi.org/10.1109/43.664229

[8] Yun Liang, Huping Ding, Tulika Mitra, Abhik Roychoudhury, Yan Li, and Vivy
Suhendra. 2012. Timing Analysis of Concurrent Programs Running on Shared
Cache Multi-Cores. Real-Time Systems 48, 6 (2012), 638–680. https://doi.org/10.
1007/s11241-012-9160-2

[9] Mingsong Lv, Nan Guan, Jan Reineke, Reinhard Wilhelm, and Wang Yi. 2016. A
Survey on Static Cache Analysis for Real-Time Systems. Leibniz Transactions on
Embedded Systems (LITES) 3, 1 (2016), 05:1–05:48. https://doi.org/10.4230/LITES-
v003-i001-a005

[10] Claire Maiza, Hamza Rihani, Juan M. Rivas, Joël Goossens, Sebastian Altmeyer,
and Robert I. Davis. 2019. A Survey of Timing Verification Techniques for Multi-
Core Real-Time Systems. ACM Computing Surveys (CSUR) 52, 3 (2019), 1–38.

https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1109/INDICON52576.2021.9691620
https://doi.org/10.1109/INDICON52576.2021.9691620
https://doi.org/10.1007/s11241-010-9101-x
https://doi.org/10.1023/A:1008186323068
https://doi.org/10.4230/OASIcs.WCET.2010.136
https://doi.org/10.4230/OASIcs.WCET.2010.136
https://doi.org/10.1109/RTSS.2009.34
https://doi.org/10.1109/RTSS.2009.34
https://doi.org/10.1109/43.664229
https://doi.org/10.1007/s11241-012-9160-2
https://doi.org/10.1007/s11241-012-9160-2
https://doi.org/10.4230/LITES-v003-i001-a005
https://doi.org/10.4230/LITES-v003-i001-a005

Analysis of Shared Cache Interference in Multi-Core Systems using Event-Arrival Curves RTNS 2023, June 7–8, 2023, Dortmund, Germany

https://doi.org/10.1145/3323212
[11] Kartik Nagar. 2016. Precise analysis of Private and Shared Caches for tight WCET

Estimates. Ph. D. Dissertation. Indian Institute of Science Bangalore.
[12] Kartik Nagar and Y. N. Srikant. 2014. Precise Shared CacheAnalysis usingOptimal

Interference Placement. In IEEE 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS). 125–134. https://doi.org/10.1109/RTAS.2014.
6925996

[13] Dominic Oehlert. 2021. Worst Case Execution Time Oriented Code Optimization
of Hard Real-Time Multicore Systems. Ph. D. Dissertation. Technische Universität
Hamburg.

[14] Dominic Oehlert, Selma Saidi, and Heiko Falk. 2018. Compiler-Based Extraction
of Event Arrival Functions for Real-Time Systems Analysis. In 30th Euromicro

Conference on Real-Time Systems (ECRTS). 4:1–4:22. https://doi.org/10.4230/
LIPIcs.ECRTS.2018.4

[15] The Embedded Microprocessor Benchmark Consortium. 2023. About the EEMBC
AutoBench™ Performance Benchmark Suite. EEMBC. Retrieved 2023-01-20 from
https://www.eembc.org/autobench/

[16] Valentin Touzeau, Claire Maïza, David Monniaux, and Jan Reineke. 2019. Fast
and Exact Analysis for LRU Caches. Proceedings of the ACM on Programming
Languages (POPL) 3 (2019), 54:1–54:29. https://doi.org/10.1145/3290367

[17] Wei Zhang, Mingsong Lv, Wanli Chang, and Lei Ju. 2022. Precise and Scalable
Shared Cache Contention Analysis for WCET Estimation. In Proceedings of the
59th ACM/IEEE Design Automation Conference (DAC). 1267–1272. https://doi.
org/10.1145/3489517.3530613

https://doi.org/10.1145/3323212
https://doi.org/10.1109/RTAS.2014.6925996
https://doi.org/10.1109/RTAS.2014.6925996
https://doi.org/10.4230/LIPIcs.ECRTS.2018.4
https://doi.org/10.4230/LIPIcs.ECRTS.2018.4
https://www.eembc.org/autobench/
https://doi.org/10.1145/3290367
https://doi.org/10.1145/3489517.3530613
https://doi.org/10.1145/3489517.3530613

	Abstract
	1 Introduction
	2 Related Work
	3 Analysis Overview
	4 Event-Arrival Curves for Shared Cache Interference
	5 Cache Hit Classification
	6 Path Analysis
	6.1 Ensuring Termination
	6.2 Relative Precision
	6.3 Iterative Application

	7 Evaluation
	7.1 Evaluation Results
	7.2 Runtime Evaluation
	7.3 Propagation Limit Sensitivity
	7.4 Relative Precision Evaluation

	8 Conclusion
	References

