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ABSTRACT
This paper addresses the problem of real-time classification-based

machine perception, exemplified by a mobile autonomous system

that must continually check that a designated area ahead is free of

hazards. Such hazards must be identified within a specified time.

In practice, classifiers are imperfect; they exhibit functional un-

certainty. In the majority of cases, a given classifier will correctly

determine whether there is a hazard or the area ahead is clear.
However, in other cases it may produce false positives, i.e. indicate
hazard when the area is clear, or false negatives, i.e. indicate clear
when there is in fact a hazard. The former are undesirable since they

reduce quality of service, whereas the latter are a potential safety

concern. A stringent constraint is therefore placed on the maximum

permitted probability of false negatives. Since this requirement may

not be achievable using a single classifier, one approach is to (log-

ically) OR the outputs of multiple disparate classifiers together,

setting the final output to hazard if any of the classifiers indicates

hazard. This reduces the probability of false negatives; however,

the trade-off is an inevitably increase in the probability of false

positives and an increase in the overall execution time required.

In this paper, we provide optimal algorithms for the scheduling

of classifiers that minimize the probability of false positives, while

meeting both a latency constraint and a constraint on the maximum

acceptable probability of false negatives. The classifiers may have

arbitrary statistical dependences between their functional behav-

iors (probabilities of correct identification of hazards), as well as

variability in their execution times, characterized by typical and

worst-case values.

CCS CONCEPTS
• Computer systems organization→Real-time systems;Real-
time systems; • Software and its engineering → Real-time
schedulability; Real-time schedulability; Software reliability.
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1 INTRODUCTION
The importance of obtaining assurance for safety-critical systems

that incorporate machine learning has been recognized in several

large-scale initiatives including: the Assured Autonomy Program

[24] of the United States Defense Advanced Research Projects

Agency (DARPA); theAssuringAutonomy International Programme

[25], funded by Lloyd’s of London; and the Bounded Behavior As-

surance initiative [20], led by Northrop Grumman Corporation.

The research reported in this paper is motivated by the problem

of real-time classification-based machine perception in a mobile

autonomous system. This system must continually check that a

designated area ahead is free of hazards. Such hazards must be iden-

tified within a specified time. In practice, classifiers are imperfect;

they exhibit functional uncertainty. In the majority of cases, a high

performance classifier will correctly determine whether there is a

hazard or the area is clear. However, in other cases it may produce

false positives, i.e. indicate hazard when the area is clear, or false
negatives, i.e. indicate clear when there is in fact a hazard. The for-

mer are undesirable since they reduce quality of service, whereas

the latter are a potential safety concern. A stringent constraint is

therefore placed on the maximum permitted probability of false

negatives. Since this requirement may not be achievable using a

single classifier, one approach is to (logically) OR the outputs of

multiple disparate classifiers together, setting the final output to

hazard if any of the classifiers indicates hazard. This reduces the

probability of false negatives; however, the trade-off is an inevitable

increase in the probability of false positives and an increase in the

overall execution time required.

Previous research in this area assumes that collections of classi-

fiers designed to solve the same machine perception problem are

independent; however, this is rarely the case in practice. Classifiers
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can exhibit related behaviors for a variety of reasons. Statistical

dependences
1
may be induced by the environment (a hazard that is

difficult for one classifier to identify may also be difficult for another

classifier to identify), by the training process (the same data may

be used to train multiple classifiers), and by common components

and algorithms (the same Deep Neural Network approach may be

applied in a subset of the classifiers). These dependences result in

observable behavior that is to some degree correlated.

In this paper, we provide a methodology for characterizing the

arbitrary statistical dependences between the functional behaviors

of different classifiers. Building on this characterization, we present

a typical-case optimal algorithm for the scheduling of classifiers

that minimizes the probability of false positives, while meeting both

a latency constraint and a constraint on the maximum permitted

probability of false negatives. The algorithm provides the optimal

solution, i.e. the minimum probability of false positives, compliant

with the constraints, assuming that the classifiers execute for their

typical-case execution times, but crucially are not guaranteed to do

so. As is the case in practice, each classifier is assumed to have a vari-

able but bounded execution time, characterized by worst-case and

typical-case values. (Full details of the system model, terminology,

and definitions used are given in Section 2).

To support arbitrary statistical dependences, it is necessary to

capture information relating to each possible combination of 𝑛

classifiers that could be run. Since there are 2
𝑛
such distinct combi-

nations, the methodology presented in this paper has the minimum
space complexity of 𝑂 (2𝑛) needed to support such arbitrary de-

pendences. All further operations used in both the initial profiling

phase, described in Section 3, and in the off-line computations re-

quired by the typical-case optimal algorithm, presented in Section

4, are at most quadratic in the number of combinations and hence

𝑂 (4𝑛) overall2. In practice, we do not expect applications to require

more than approximately 12 distinct classifiers to solve the same

hazard detection problem, while the methodology presented is vi-

able for up to 𝑛 = 20 classifiers, equating to around 20 minutes

of processing time on a single core of an Intel i5-8265U 1.6 GHz

laptop computer. In summary, off-line processing with exponential

time complexity is necessary to support the arbitrary dependences

between classifier behaviors that exist in real systems, but does not

prevent the methodology presented from being effective in practice.

The main contribution of the paper is the derivation of a typical-

case optimal algorithm for the scheduling of classifiers to solve the

hazard detection problem. This algorithm determines a preferred

sequence of classifiers to run, along with a corresponding series of

trigger times, derived from the typical-case execution times of the

classifiers and the latency constraint, and escape sets, i.e. the subsets
of classifiers to run if the preferred classifiers do not complete by

the trigger times. The trigger times and escape sets are determined

such that the constraint on the probability of false negatives and

the constraint on the overall latency are guaranteed to be met. In

other words, if the preferred classifiers complete by the trigger

1
Two events𝑋 and𝑌 are said to be statistically dependent if the probability of𝑋 occur-

ring given that 𝑌 has occurred, i.e. 𝑝 (𝑋 |𝑌 ) , is different from the separate probability

of𝑋 occurring, i.e. 𝑝 (𝑋 ) . Two events are statistically independent if 𝑝 (𝑋 |𝑌 ) = 𝑝 (𝑋 ) .
2
This is achieved by using a binary representation for sets of classifiers, which enables

operations such as set intersection, set union, and set difference to be achieved in

𝑂 (1) time at least up to 𝑛 = 64 on a 64-bit computer.

times, then the preferred sequence executes, otherwise an escape

set is employed; either way the constraint on the probability of

false negatives and the latency constraint will be met. This algo-

rithm requires substantial off-line computation as discussed above,

however, it then permits minimally dynamic run time operation

with 𝑂 (1) overheads at each scheduling point, corresponding to

the completion of a classifier. The performance of the typical-case

optimal algorithm is evaluated, in Section 5, by comparison to that

of a statically optimal algorithm and a hypothetical clairvoyant
optimal algorithm, on a real-world case study. The paper concludes,

in Section 6, with a summary and directions for future work.

1.1 Related Work
System safety is concerned with the identification and subsequent

mitigation of potentially hazardous events [21]. The key point is

that a system is expected to be acceptably, but not necessary com-

pletely, safe. Any event that could lead to a hazard should be miti-

gated, and even if a hazardous event occurs then this should not

necessarily mean that a serious accident will happen. In this context,

two types of hazardous event are: (i) not detecting an object that is

in, or on a trajectory to be in, a potentially dangerous place [11]; or

(ii) erroneously detecting such an object that is not in fact there. In

the Uber accident [11] the pedestrian was repeatedly mis-classified

and was only correctly classified when it was too late. The second

type of hazardous event could lead to unnecessary avoidance ac-

tions creating other hazardous events or reduced trust in the system.

Classical examples of where the wrong actions were taken based on

incorrect information and key information not being readily avail-

able, or routinely ignored due to its unreliability, are the Bhopal

[12] and Kegworth accidents [28]. Any detection of a potentially

hazardous state therefore needs to be both trustworthy and timely.

Machine perception has a fundamental role in intelligent real-

time systems, such as in drones [17], autonomous cars [10, 26],

and medical IoT systems [4, 15]. Perception in such systems is

typically performed using classifiers that are based on Deep Learn-
ing, thus generating interest in understanding and optimizing the

trade-offs between the quality of deep-learning-based perception

and perception latency. Examples of such trade-off optimization

approaches include: (i) adaptive neural network approximations

aimed at meeting latency constraints [9, 14, 19, 31], and (ii) adaptive

model-switching systems that pick one of multiple neural network

versions depending on the time available [16].

Another direction is the use of “I Don’t Know” (IDK) classi-

fiers [18, 27]. Like model-switching, IDK classifier cascades [30] use

an ensemble of different classifiers; however, they assume that the

chosen classifier, when not confident enough, can return an “I Don’t

Know" value, which will then prompt the system to choose another

classifier, thereby executing a situation-dependent sequence simi-

lar to adaptive approximation approaches. Analytical results have

previously been developed [5, 8] for the special cases of IDK clas-

sifiers where the probabilities of successful classification by the

respective classifiers were either independent, or fully dependent of
one another. Further, extensions have also been made considering

arbitrary dependences between IDK classifiers [1], with a focus on

minimizing the expected duration required for successful classi-

fication. The research presented in this paper employs a similar
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methodology for characterizing arbitrary dependences, but solves

a substantially different problem.

In 2020, Agrawal et al. [3] proposed a model whereby Learning

Enabled Components take a fixed time to execute, and return a value
that is not known prior to execution, but for which worst-case and

typical-case bounds are known. The model assumes multi-stage

computations where there is a choice of components for each stage.

The algorithms presented seek to determine a schedule that mini-

mizes the overall latency, while ensuring that the sum of the values

produced by the components that are executed is no less than a

specified target value. By summing the values output by the com-

ponents, this work implicitly assumes that the behaviors of the

components are independent. Building upon the earlier work of

Agrawal et al. [3], in 2022 Baruah et al. [7] considered a model

whereby components take a fixed time to execute and produce an

output indicating hazard or clear along with an associated confi-
dence or probability3 that the output is correct. This probability is

assumed to be no less than a worst-case value under all circum-

stances, and no less than a typical-case value in non-pathological

circumstances. The algorithms presented in [7] seek to schedule the

components in sequence such that a target confidence is reached,

with the overall confidence that is achieved calculated as a mul-

tiplicative function of the probabilities involved. In other words,

assuming that the behaviors of the components are independent.
Both static and semi-adaptive algorithms are presented. With the

former, the sequence of components is predetermined prior to run

time, whereas with the latter the sequence is adapted as informa-

tion becomes available when each component completes. A similar

distinction between such strategies was previously made in the

context of graph routing problems [2, 6].

The problem addressed and the solutions provided in this paper

build upon the work of Baruah et al. [7]. However, a more practical

approach is taken in this paper: (i) Components (classifiers) are

assumed to take a variable amount of time to execute up to some

worst-case bound, rather than a fixed time; (ii) classifiers are not

trusted to output an accurate measure of their own confidence (un-

certainty) for each problem instance, since such measures cannot

in general be relied upon to give a correct indication in individual

cases [13], rather a long run frequency interpretation is used to de-

termine the probabilities of false negatives and false positives based

on a representative data set; and (iii) the methodology presented

supports arbitrary statistical dependences between the behaviors of

different classifiers, rather than implicitly assuming independence.

2 SYSTEM MODEL
We consider a collection of 𝑛 classifiers 𝐾1, 𝐾2, . . . , 𝐾𝑛 that are all

designed to solve the same hazard identification problem. When

invoked on an input, classifier 𝐾𝑖 returns either 1 indicating hazard
or 0 indicating clear. Each classifier is assumed to take a variable

but bounded time to execute. If a classifier returns 1 and the ground

truth is 0, then that is referred to as a false positive, similarly if a

classifier returns 0 and the ground truth is 1, then that is referred to

as a false negative. Whenmore than one classifier is employed on the

same problem, then we assume that the outputs of the classifiers are

3
Baruah et al. [7] use the term uncertainty to mean 1 − 𝑝 , where 𝑝 is the estimated

probability that the output is correct.

(logically) OR-ed together. Hence if any of the classifiers indicates 1,

then the overall output is 1 indicating hazard. Only if all employed

classifiers indicate 0, is the overall output 0 indicating clear.

We use 𝑆 to denote a set or subset of classifiers. Since there are

𝑛 classifiers, there are 2
𝑛
such distinct subsets, including the empty

set ∅. We use the following functions to describe the characteristics

of each set or subset of classifiers. The probability of the classifiers

in 𝑆 returning a false negative is denoted by FN(𝑆). Similarly, the

probability of the classifiers in 𝑆 returning a false positive is denoted

by FP(𝑆). In Section 3, we describe how these probabilities can be

obtained. The fact that the outputs of the employed classifiers are

OR-ed together means that if set 𝑉 is a subset of 𝑆 , i.e. 𝑉 ⊆ 𝑆 ,

then FN(𝑉 ) ≥ FN(𝑆) and FP(𝑉 ) ≤ FP(𝑆). In other words, adding

classifiers cannot increase the probability of false negatives, but

typically decreases it; whereas adding classifiers cannot decrease

the probability of false positives, but typically increases it.

The sum of the worst-case execution times of the classifiers in

𝑆 is denoted by WCET(𝑆). Similarly, TCET(𝑆) denotes the sum of

their typical-case execution times, and ACET(𝑆) denotes the sum
of their actual execution times for a specific run-time instance of

the problem.

An ordered sequence4 of classifiers ⟨𝐾 ′
1
, 𝐾 ′

2
, 𝐾 ′

3
, . . . , 𝐾 ′

𝑘
⟩ can be

represented by a set of the incrementally increasingly larger sets

of classifiers employed, for example {∅, 𝑆1, 𝑆2, . . . 𝑆𝑘 } where 𝑆1 =

{𝐾 ′
1
}, 𝑆2 = {𝐾 ′

1
, 𝐾 ′

2
}, 𝑆3 = {𝐾 ′

1
, 𝐾 ′

2
, 𝐾 ′

3
} and so on. At each stage in

the sequence, the classifier that has been added can be recovered as

{𝐾 ′
𝑗
} = 𝑆 𝑗 − 𝑆 𝑗−1. (While this method of representing sequences is

somewhat cumbersome, it has significant advantages in describing

and understanding the algorithms proposed in Section 4).

The problem that we aim to solve is defined as follows:

Definition 1. Hazard detection classifier sequencing prob-
lem: Given a latency constraint 𝐿, specifying the maximum time
available for classifier execution, and a constraint on false negatives

𝐻 , specifying the maximum permitted probability of false negatives,
select a sequence of classifiers to run that is compliant with the con-
straints and minimizes the probability of false positives.

A subset 𝑆 of classifiers complies with the constraint on false

negatives if 𝐹𝑁 (𝑆) ≤ 𝐻 , otherwise it does not. We use 𝐸𝑆𝐶𝐴𝑃 (𝑆)
to denote the set of classifiers, referred to as the escape set, that
provides the shortest guaranteed time to meet the constraint on

false negatives following the completion of the classifiers in 𝑆 .

If 𝐹𝑁 (𝑆) ≤ 𝐻 , then 𝐸𝑆𝐶𝐴𝑃 (𝑆) = ∅, since 𝑆 already meets the

constraint on false negatives. Otherwise, 𝐸𝑆𝐶𝐴𝑃 (𝑆) equates to the

subset 𝑉 with the smallest value of𝑊𝐶𝐸𝑇 (𝑉 ) such that 𝑆 ∩𝑉 = ∅
and 𝐹𝑁 (𝑆 ∪𝑉 ) ≤ 𝐻 . In other words, there are no classifiers in 𝑉

that are also in 𝑆 , and once the classifiers in both 𝑆 and then𝑉 have

executed then the constraint on false negatives can be guaranteed.

The optimal classifier sequencing problem admits different classes

of solution, from static solutions that are computed off-line to fully-

dynamic solutions that may select a different classifier to run each

time a classifier finishes and its actual execution time for that in-

stance becomes known. In this paper, we are mainly interested in

4
Note, we use 𝐾 ′

1
to represent the 1st classifier in the sequence, 𝐾 ′

2
the 2nd classifier

in the sequence, and so on. This is different from the classifier indexing, and so it may

be the case that, for example, 𝐾 ′
1
= 𝐾3 , 𝐾

′
2
= 𝐾1 etc.
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static and minimally dynamic algorithms that pre-compute a course

of actions that can be followed at run-time with 𝑂 (1) overheads at
each scheduling point, corresponding to the completion of a classi-

fier. For comparison purposes, we also consider the performance of

a hypothetical clairvoyant algorithm that knows, before they are

run, what the actual execution times of the classifiers will be for

each run time instance of the problem, but does not know what

their outputs will be. Note, we do not pursue the characterization

of fully-dynamic solutions further in this paper, since the run-time

overheads are likely prohibitive.

Definition 2. Static optimality: An algorithm is statically op-
timal if the set of classifiers 𝑍 that it selects off-line has the minimum
probability of false positives 𝐹𝑃 (𝑍 ) of any set of classifiers that com-
ply with the constraint on false negatives, 𝐹𝑁 (𝑍 ) ≤ 𝐻 , and has a
combined worst-case execution time that complies with the latency
constraint,𝑊𝐶𝐸𝑇 (𝑍 ) ≤ 𝐿. The classifiers in 𝑍 may run in any order.

Definition 3. Clairvoyant optimality: An algorithm is clair-
voyant optimal if the set of classifiers𝑍 that it selects for each run-time
instance of the problem has the minimum probability of false positives
𝐹𝑃 (𝑍 ) of any set of classifiers that comply with the constraint on
false negatives, 𝐹𝑁 (𝑍 ) ≤ 𝐻 , and has a total actual execution time
for that run-time instance that complies with the latency constraint,
𝐴𝐶𝐸𝑇 (𝑍 ) ≤ 𝐿. The classifiers in 𝑍 may run in any order.

Definition 4. Typical-Case optimality:An algorithm is typical-
case optimal if the sequence of classifiers that it selects, represented
by the set of the incrementally increasingly larger sets of classifiers
employed {𝑆0 = ∅, 𝑆1, 𝑆2, . . . 𝑆𝑘 = 𝑍 }, has the minimum probability
of false positives 𝐹𝑃 (𝑍 ) of any set of classifiers that comply with
the constraint on false negatives, 𝐹𝑁 (𝑍 ) ≤ 𝐻 , have a combined
typical-case execution time that complies with the latency constraint,
𝑇𝐶𝐸𝑇 (𝑍 ) ≤ 𝐿, and each subset of classifiers 𝑆 𝑗 = 𝑆0 to 𝑆𝑘 has a
valid escape set, 𝐸𝑆𝐶𝐴𝑃 (𝑆 𝑗 ), such that if the classifier in 𝑆 𝑗 − 𝑆 𝑗−1
completes in more than its typical-case execution time, but within its
worst-case execution time, then executing the classifiers in 𝐸𝑆𝐶𝐴𝑃 (𝑆 𝑗 )
is sufficient to guarantee that the constraints will still be met.

Note that if there is some slack time available, for example be-

cause a previous classifier in the sequence executed in less than

its typical-case execution time, then it may not be necessary to im-

mediately switch to executing the classifiers in 𝐸𝑆𝐶𝐴𝑃 (𝑆 𝑗 ) when
the classifier in

(
𝑆 𝑗 − 𝑆 𝑗−1

)
exceeds its typical-case execution time.

The typical-case optimal algorithm presented in Section 4 takes

advantage of any available slack time in this way.

3 PROFILING
In this section, we describe the profiling phase, which prepares a

profile table that captures the probabilistic dependences between
the behaviors of the 𝑛 classifiers. Prior to this profiling phase, we

assume that each of the classifiers has been trained and verified

using representative input data. In many applications this data

can be re-used directly in the profiling phase. Where new data is

required, for example because the training and verification data

is proprietary, then it must also be representative of the inputs

expected during deployment.

During the profiling phase, all of the 𝑛 classifiers are tested on

the same 𝑁 input samples. Each input sample is a data structure

that includes information collected from all sensing modalities used

by the respective classifiers. It is assumed that each sample also

provides information relating to the ground truth, i.e hazard or clear.

There are no limitations on the format of the respective modalities,

other than being consistent with the input format expected by the

respective classifiers. For example, in a scenario involving vision,

acoustic, and seismic sensing, a single sample could include a high

definition image, a 1 second acoustic sound clip recorded at 4KHz,

and a 1 second seismic time-series measurement recorded at 100Hz.

Further, the number of classifiers used may be different from the

number of modalities present in the input sample. For example,

a joint acoustic plus seismic classifier would make use of both

the acoustic and the seismic information within the sample. By

contrast, three different image classifiers could be used that all act

on the same image information, but differ in the resolution used

and consequently in their execution time.

For each of the 𝑁 input samples, we store the ground truth and

the output of each of the 𝑛 classifiers for further processing as

described below. We also measure and store the execution time

of each classifier on each input sample. We assume that the ex-

ecution times of the different classifiers are independent of one
another. This is typically the case because the neural networks

used for such processing run on a dedicated GPU. Further, each

neural network typically performs the same computations on each

input, resulting in an execution time that depends primarily on the

neural network architecture, input size, and GPU type, but not on

the actual data values. We explore the correlations between the

behaviors of different classifiers, and also the correlations between

their execution times in Section 3.3. Note, in the case study used as

a proof-of-concept in this paper, the classifiers are run on one core

of a multi-core system, a Raspberry Pi 4.

Once we have considered all𝑁 inputs samples for all𝑛 classifiers,

then we can determine how many times each of the 2
𝑛
binary pat-

terns of possible classifier outputs occurs: (i) when the ground truth

is 1, and (ii) when the ground truth is 0. From this information, we

can then compute the probability of obtaining a false positive, and

also the probability of obtaining a false negative, when employing

each of the 2
𝑛
combinations of the 𝑛 classifiers. Since the input data

used in profiling is assumed to be representative of the input data

when the system is operational, these probabilities are a correct

reflection of the long run frequencies of occurrence of false positive

and false negatives respectively for those sets of classifiers.

The method of computing the probabilities of false positives and

false negatives is best illustrated via an example, as described below.

3.1 Profiling the Multi-Modal Case Study
The data used in this case study was collected previously [22] as

part of a project that seeks to autonomously detect the presence

of a potentially hostile enemy vehicle in a battlefield environment.

Three different kinds of sensors were deployed for this purpose:

acoustic (a microphone array), seismic (a Raspberry Shake, com-

prising a Raspberry Pi plus a vertical-axis geophone), and vision (a

camera). The manner in which the input samples were collected is

described by Liu et al. [22] as follows:

“We deployed our devices on the grounds of the DEVCOM Army Re-
search Laboratory Robotics Research Collaboration Campus [. . . ] and
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collected seismic and acoustic signals, while different ground vehicles
were driven around the site. Data of three different targets: a Polaris
all-terrain vehicle, a Chevrolet Silverado, and Warthog UGV were col-
lected. Each target repeatedly passed by the sensors. The total length
of the experiment was 115 minutes, spread roughly equally across the
three targets. [. . . ] A camera was employed to simultaneously record
video of the target.”

Based on this input data, the aim is for the classifiers to determine

if a vehicle of the designated target type is present in the detection

area. Such functionality is useful in “intelligent tripwire” scenarios,

where the system must generate an alert only when a specific type

of target is present, while ignoring other passing traffic, hence the

task is one of binary (i.e. combined) detection and classification.

There are seven classifiers of interest
5
in the case study:

• 𝐴: deepsense_both: Uses both seismic and acoustic data, and pro-

cesses it using the DeepSense neural network architecture [32].

• 𝐵: deepsense_both_contras: Similar to 𝐴, but was trained using

contrastive learning [23].

• 𝐶 : deepsense_acoustic: Uses only acoustic data, and processes it

using the DeepSense neural network architecture [32].

• 𝐷 : deepsense_seismic: Similar to 𝐶 , but uses only seismic data.

• 𝐸: cnn_both: Uses both seismic and acoustic data, and processes

it using a standard convolutional neural network.

• 𝐹 : cnn_acoustic: Uses only acoustic data, and processes it using

a standard convolutional neural network.

• 𝐺 : cnn_seismic: Similar to 𝐹 , but uses only seismic data.

To illustrate the methodology and provide a sufficiently compact

worked example, we first consider only the five classifiers 𝐴 to 𝐸.

The evaluation in Section 5 later includes all seven classifiers.

The output of classifiers 𝐴 to 𝐸 on 1800 randomly chosen input

data samples
6
is summarized in Table 1. The first column shows

a binary code identifying a subset of the classifiers, which is then

enumerated in the second column. The fourth column, labeled

𝐺𝑇0, indicates the number of times the binary code in the first

column was obtained by running all of the five classifiers when the

ground truth was 0, i.e. clear. Similarly, the third column, labeled

𝐺𝑇 1, indicates the number of times that the binary code in the first

column was obtained by running all of the five classifiers when the

ground truth was 1, i.e. hazard. For example, the first row in the

table shows that there were 1107 input samples where none of the

classifiers indicated hazard, when the ground truth was 0, i.e. clear.

Similarly, there were 36 input samples where none of the classifiers

indicated hazard, even though the ground truth was 1, i.e. hazard.

Further, there was 1 input sample where only classifiers 𝐴 and 𝐸

(10001) indicated 1 and the ground truth was 0, and 3 input samples

where only those classifiers indicated 1 and the ground truth was 1.

Once this summary of the classifier behavior on the input sam-

ples has been obtained, then the next step in profiling is to deter-

mine the probability of false positives and the probability of false

negatives for each of the 2
𝑛
subsets of the 𝑛 classifiers. (Since there

are five classifiers in this initial example, there are 32 combinations

of the classifiers and hence 32 rows in the profiling table). Recall

that when multiple classifiers are employed, the overall output

5
We did not consider the vision based YOLOv5 classifiers, since their execution times

were orders of magnitude greater than those of the other classifiers.

6
An input data sample comprises an image, a 1 second acoustic sound clip recorded at

4KHz, and a 1 second seismic time-series measurement recorded at 100Hz.

is obtained by (logically) OR-ing together the individual outputs.

Hence any classifier indicating hazard results in an overall output

of hazard, whereas all employed classifiers must indicate clear for

the overall output to be clear.

Table 1: Profile table for the Multi-Modal case study

Binary Classifiers 𝑆 𝐺𝑇 1 𝐺𝑇 0 𝐹𝑃 (𝑆) 𝐹𝑁 (𝑆) 𝑊𝐶𝐸𝑇 (𝑆)
00000 ∅ 36 1107 0.0000 1.0000 0

00001 A 3 2 0.0075 0.1183 0.025121

00010 B 1 1 0.0042 0.1383 0.023854

00011 AB 0 0 0.0100 0.0933 0.048975

00100 C 3 18 0.0200 0.3600 0.017554

00101 AC 9 1 0.0250 0.0933 0.042675

00110 BC 2 0 0.0242 0.1067 0.041408

00111 ABC 5 0 0.0275 0.0850 0.066529

01000 D 9 36 0.0358 0.2083 0.01618

01001 AD 4 1 0.0417 0.0883 0.0413

01010 BD 1 1 0.0383 0.1067 0.040033

01011 ABD 22 1 0.0433 0.0750 0.065154

01100 CD 0 2 0.0542 0.0850 0.033734

01101 ACD 1 0 0.0575 0.0700 0.058854

01110 BCD 2 0 0.0567 0.0767 0.057587

01111 ABCD 13 0 0.0592 0.0667 0.082708

10000 E 4 22 0.0250 0.1850 0.0053

10001 AE 3 1 0.0292 0.0900 0.030421

10010 BE 1 1 0.0275 0.1083 0.029154

10011 ABE 3 1 0.0308 0.0800 0.054274

10100 CE 2 1 0.0425 0.1267 0.022854

10101 ACE 4 2 0.0458 0.0783 0.047975

10110 BCE 4 0 0.0450 0.0867 0.046708

10111 ABCE 45 0 0.0475 0.0750 0.071828

11000 DE 2 2 0.0592 0.0983 0.021479

11001 ADE 3 0 0.0617 0.0700 0.0466

11010 BDE 2 0 0.0600 0.0850 0.045333

11011 ABDE 122 0 0.0625 0.0650 0.070454

11100 CDE 0 0 0.0750 0.0667 0.039033

11101 ACDE 0 0 0.0767 0.0617 0.064154

11110 BCDE 2 0 0.0758 0.0650 0.062887

11111 ABCDE 292 0 0.0775 0.0600 0.088008

Sum 600 1200

To compute the probability of false positives for a given subset

𝑆 of classifiers, we sum up the values in the 𝐺𝑇 0 column for all of

the subsets in the table that have a non-empty intersection with 𝑆

and then divide by the sum of all of the values in the 𝐺𝑇 0 column.

This totals up the number of input samples where at least one of

the classifiers in 𝑆 indicates 1 when the ground truth is in fact

0 and divides it by the total number of input samples where the

ground truth is 0. subsets of classifiers in the table. For example,

consider 𝑆 = {𝐴, 𝐸}, the total number of input samples in the 𝐺𝑇 0

column where 𝐴 or 𝐸 appear in the set of classifiers is 35. As there

are 1200 input samples with a ground truth of 0, it follows that

𝐹𝑃 ({𝐴, 𝐸}) = 35/1200 = 0.0292.

To compute the probability of false negatives for a given subset

𝑆 of classifiers, we sum up the values in the 𝐺𝑇 1 column for all of

the subsets in the table that have an empty intersection with 𝑆 and

then divide by the sum of all the values in the 𝐺𝑇1 column. This

totals up the number of input samples where none of the classifiers

in 𝑆 indicate 1 when the ground truth is in fact 1 and divides it
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Figure 1: Multi-Modal case study: Relationships between 𝐹𝑁 (𝑆), 𝐹𝑃 (𝑆), and𝑊𝐶𝐸𝑇 (𝑆).

by the total number of input samples where the ground truth is

1. For example, consider 𝑆 = {𝐴, 𝐸}, the total number of inputs

samples in the 𝐺𝑇1 column where neither 𝐴 nor 𝐸 appear in the

set of classifiers is 54. As there are 600 input samples with a ground

truth of 1, it follows that 𝐹𝑁 ({𝐴, 𝐸}) = 54/600 = 0.09.

Also shown in Table 1 is the total worst-case execution time,

𝑊𝐶𝐸𝑇 (𝑆), measured in seconds for the classifiers in 𝑆 . The worst-

case execution times for each classifier was set to the 99-percentile

of the values obtained via profiling on a Raspberry Pi 4
7
.

The relationships between 𝐹𝑁 (𝑆), 𝐹𝑃 (𝑆), and𝑊𝐶𝐸𝑇 (𝑆) for the
subsets 𝑆 of classifiers listed in the profile table are illustrated in Fig-

ure 1. Observe that lowering the probability of false negatives typi-

cally requires employing more classifiers, which in turn increases

both the worst-case execution time required and the probability of

false positives. For example, employing just one classifier, the lowest

probability of false negatives that can be achieved is 0.1183with clas-

sifier𝐴, with a worst-case execution time of 0.0251 and a probability

of false positives of 0.0075. Using two classifiers, the probability of

false negatives can be reduced to 0.085 with classifiers 𝐶𝐷 , with

𝑊𝐶𝐸𝑇 ({𝐶, 𝐷}) = 0.0337 and 𝐹𝑃 ({𝐶, 𝐷}) = 0.0542. Further, with

three classifiers the probability of false negatives can be reduced to

0.0667 with classifiers 𝐶𝐷𝐸, with𝑊𝐶𝐸𝑇 ({𝐶, 𝐷, 𝐸}) = 0.0390 and

𝐹𝑃 ({𝐶, 𝐷, 𝐸}) = 0.0750. With four classifiers the probability of false

negatives can be reduced to 0.0617 with classifiers 𝐴𝐶𝐷𝐸, with

𝑊𝐶𝐸𝑇 ({𝐴,𝐶, 𝐷, 𝐸}) = 0.0642 and 𝐹𝑃 ({𝐴,𝐶, 𝐷, 𝐸}) = 0.0767. Fi-

nally, with five classifiers𝐴𝐵𝐶𝐷𝐸, the minimum probability of false

negatives of 0.06 is reached, with𝑊𝐶𝐸𝑇 ({𝐴, 𝐵,𝐶, 𝐷, 𝐸}) = 0.088

and 𝐹𝑃 ({𝐴, 𝐵,𝐶, 𝐷, 𝐸}) = 0.0775.

3.2 Static and Clairvoyant algorithms
Once the profiling table has been constructed, and populated with

the probabilities of false positives and false negatives as described

above, then it becomes trivially simple to formulate a statically

optimal algorithm (see Definition 2).

Statically Optimal Algorithm: Select the set of classifiers 𝑆
from the 2

𝑛
entries in the profiling table that has the minimum

value of 𝐹𝑃 (𝑆) such that 𝐹𝑁 (𝑆) ≤ 𝐻 and 𝑊𝐶𝐸𝑇 (𝑆) ≤ 𝐿. The

classifiers in 𝑆 may then be run in any order.

7
If a higher reliability estimate was required, then such values could be obtained via

static or measurement-based timing analysis. Potential overruns could also be dealt

with via budget enforcement and an assumption that hazard is returned in the rare

cases that a classifier exceeds its designated WCET.

Similarly, assuming that a clairvoyant algorithm also has access

to a further column of information indicating the total actual exe-

cution time 𝐴𝐶𝐸𝑇 (𝑆) for each subset of classifiers 𝑆 the next time

that they run, then a clairvoyant optimal algorithm (see Definition

3) is also trivially simple to formulate.

Clairvoyant Optimal Algorithm: Select the set of classifiers 𝑆
from the 2

𝑛
entries in the profiling table that has theminimum value

of 𝐹𝑃 (𝑆) such that 𝐹𝑁 (𝑆) ≤ 𝐻 and 𝐴𝐶𝐸𝑇 (𝑆) ≤ 𝐿. The classifiers

in 𝑆 may then be run in any order.

In Section 4, we present a minimally dynamic algorithm that is

typical-case optimal (see Definition 4). The statically optimal algo-

rithm and the clairvoyant optimal algorithm are used as reference

points for assessing the quality of the typical-case optimal algo-

rithm in Section 5. These algorithms provide, respectively, bounds

on the best possible solutions that can be achieved statically and

dynamically. First, however, we discuss correlations between both

the behaviors and the execution times of the classifiers.

3.3 Correlations
With the data that is available from profiling, it is possible to esti-

mate the level of statistical dependence, i.e. the degree of correlation,

between the behaviors of the different classifiers. This can be char-

acterized by calculating Pearson’s correlation coefficient
8
for each

pair of classifiers. This coefficient 𝑟𝑥𝑦 is given by:

𝑟𝑥𝑦 =

∑𝑁
𝑖=1 (𝑥𝑖 − 𝑥) (𝑦𝑖 − 𝑦)√︃∑𝑁

𝑖=1 (𝑥𝑖 − 𝑥)2
√︃∑𝑁

𝑖=1 (𝑦𝑖 − 𝑦)2

where 𝑥𝑖 and 𝑦𝑖 are the paired results for the two classifiers on

input sample 𝑖 = 1 . . . 𝑁 , while 𝑥 and 𝑦 are the respective means of

the 𝑁 results.

Pearson’s correlation coefficient 𝑟𝑥𝑦 can take values in the range

[−1, +1], with 𝑟𝑥𝑦 = 0 implying no correlation, and hence possibly

independence.
9
The value 𝑟𝑥𝑦 = +1 implies identical behavior, and

at the other extreme 𝑟𝑥𝑦 = −1 implies exactly opposite behavior.

Table 2 shows the coefficients computed for all seven classifiers

in Multi-Modal case study, color-coded by the degree of correla-

tion between the outputs of the distinct classifiers: red indicating a

8
See https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

9
Although independence implies a correlation of zero, a correlation of zero does not

necessarily imply independence.
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Table 2: Behavior: Pearson Correlation Coefficients

A B C D E F G

A 1 0.931 0.725 0.815 0.860 0.717 0.687

B 0.931 1 0.721 0.832 0.872 0.723 0.6944

C 0.725 0.721 1 0.570 0.687 0.819 0.440

D 0.815 0.832 0.570 1 0.747 0.579 0.699

E 0.860 0.872 0.687 0.747 1 0.711 0.717

F 0.717 0.723 0.819 0.579 0.711 1 0.433

G 0.687 0.694 0.440 0.699 0.717 0.433 1

strong degree of correlation (𝑎𝑏𝑠 (𝑟𝑥𝑦) > 0.5), orange a moderate

degree of correlation (0.1 < 𝑎𝑏𝑠 (𝑟𝑥𝑦) ≤ 0.5), and green a weak

degree of correlation (𝑎𝑏𝑠 (𝑟𝑥𝑦) ≤ 0.1). As expected, the outputs

of the classifiers in the case study mostly show a strong positive

correlation of between 0.433 and 0.909 for each pair, with 95% con-

fidence intervals
10

for these correlation coefficients of [0.39, 0.47]
and [0.90, 0.92] respectively.

We also examined the dependences between the execution times

of the classifiers. For each of the 𝑁 input samples, we recorded the

execution time of each classifier and categorized these execution

times as either: 1 indicating above the median value or 0 indicating

equal to or below the median value. We then computed Pearson’s

correlation coefficient for each pair of classifiers based on this

binary data. Recall that the coefficients can range from −1 to +1,
with a value of 0 implying no correlation. Table 3 shows these

coefficients for all seven classifiers in the Multi-Modal case study.

Table 3: Execution Times: Pearson Correlation Coefficients

A B C D E F G

A 1 0.031 0.036 -0.011 -0.027 -0.009 0.022

B 0.031 1 0.009 0.024 -0.040 -0.013 -0.024

C 0.036 0.009 1 0.000 0.029 -0.004 0.031

D -0.011 0.024 0.000 1 -0.020 0.062 -0.058

E -0.027 -0.040 0.029 -0.020 1 -0.007 0.076

F -0.009 -0.013 -0.004 0.062 -0.007 1 0.024

G 0.022 -0.024 0.031 -0.058 0.076 0.024 1

Observe that for the execution times of the Multi-Modal classi-

fiers, the correlation coefficients in Table 3 for all pairs of distinct

classifiers indicate weak correlation (𝑎𝑏𝑠 (𝑟𝑥𝑦) ≤ 0.1). The weak

degree of correlation implies that the majority of the execution time

of each classifier is effectively independent of the execution time

of other classifiers, with a small effect size of less than 10% that

is dependent. Hence regarding the execution time behavior of the

classifiers as independent is a reasonable approximation. In Table 3,

the correlation coefficients range from −0.058 to 0.076; the 95% con-

fidence intervals
10

for these coefficients are [−0.104,−0.0118] and
[0.030, 0.122] respectively. (Note, the widest confidence interval of
[−0.046, 0.046] occurs when the correlation coefficient is 0.0).

Figure 2 illustrates the frequency distributions of the execution

times of the classifiers. Observe that classifiers 𝐴 and 𝐵, which use

the DeepSense neural network architecture and operate on both

10
Computed using https://www.statskingdom.com/correlation-confidence-interval-

calculator.html

 

0%

5%

10%

15%

20%

25%

30%

35%

40%

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

Fr
e

q
u

e
n

cy

Execution time (ms)

G
F
E
D
C
B
A

Figure 2: Frequency distribution of execution times.

seismic and acoustic data, have similar execution time distributions.

This is also the case with classifiers 𝐶 and 𝐷 , which also use the

DeepSense neural network architecture, but each operate on only

a single form of input data. Finally, classifiers 𝐸, 𝐹 , and 𝐺 all use a

standard convolutional neural network and have similar execution

time distributions.

4 TYPICAL-CASE OPTIMAL ALGORITHM
In this section, we present a typical-case optimal algorithm (see

Definition 4) for the hazard detection classifier sequencing prob-

lem. This algorithm has a substantial off-line component that then

permits minimally dynamic run time operation with 𝑂 (1) over-
heads at each scheduling point. By construction, this typical-case

optimal algorithm is guaranteed to find a feasible solution if and

only if a static solution exists. We therefore assume that the typical-

case optimal algorithm is only run on problems that admit a static

solution.

The aim of the algorithm is to determine a preferred sequence of
classifiers to run, along with a corresponding series of trigger times
(derived from the typical-case execution times of the classifiers) and

escape sets, i.e. subsets of classifiers to run if the preferred classifiers

do not complete by the trigger times. The trigger times and escape

sets are determined such that the constraint on false negatives

and the constraint on overall latency are always guaranteed to be

met. In other words, if the preferred classifiers complete by the

trigger times, then the preferred sequence executes, otherwise the

classifiers in an escape set are executed, either way the constraint

on the probability of false negatives and the latency constraint will

be met. The difference being that the preferred sequence will result

in a lower probability of false positives.

We assume as input to the algorithm the profile table described in
Section 3, populated with the 𝐹𝑃 (𝑆), 𝐹𝑁 (𝑆), and𝑊𝐶𝐸𝑇 (𝑆) values
for each of the distinct subsets of classifiers.

As a prelude to the main off-line operation of the typical-case

algorithm, values for the typical-case execution times𝑇𝐶𝐸𝑇 (𝑆) and
the escape set 𝐸𝑆𝐶𝐴𝑃 (𝑆) are added to the profile table for each

subset of classifiers 𝑆 . Table 4 extends Table 1, adding these values

for the five classifiers 𝐴 to 𝐸 considered.

First, typical-case execution times are defined for each classifier.

This is achieved by selecting an appropriate percentile from the
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Table 4: Extended profile table for theMulti-Modal case study

Binary Classifiers 𝑆 𝐹𝑃 (𝑆) 𝐹𝑁 (𝑆) 𝑊𝐶𝐸𝑇 (𝑆) 𝑇𝐶𝐸𝑇 (𝑆) 𝐸𝑆𝐶𝐴𝑃 (𝑆)
00000 ∅ 0.0000 1.0000 0 0 CD

00001 A 0.0075 0.1183 0.025121 0.018166 DE

00010 B 0.0042 0.1383 0.023854 0.017788 DE

00011 AB 0.0100 0.0933 0.048975 0.035954 E

00100 C 0.0200 0.3600 0.017554 0.012263 D

00101 AC 0.0250 0.0933 0.042675 0.030429 E

00110 BC 0.0242 0.1067 0.041408 0.030051 D

00111 ABC 0.0275 0.0850 0.066529 0.048217 ∅
01000 D 0.0358 0.2083 0.01618 0.011878 C

01001 AD 0.0417 0.0883 0.0413 0.030044 E

01010 BD 0.0383 0.1067 0.040033 0.029666 E

01011 ABD 0.0433 0.0750 0.065154 0.047832 ∅
01100 CD 0.0542 0.0850 0.033734 0.024141 ∅
01101 ACD 0.0575 0.0700 0.058854 0.042307 ∅
01110 BCD 0.0567 0.0767 0.057587 0.041929 ∅
01111 ABCD 0.0592 0.0667 0.082708 0.060095 ∅
10000 E 0.0250 0.1850 0.0053 0.004112 CD

10001 AE 0.0292 0.0900 0.030421 0.022277 D

10010 BE 0.0275 0.1083 0.029154 0.0219 D

10011 ABE 0.0308 0.0800 0.054274 0.040066 ∅
10100 CE 0.0425 0.1267 0.022854 0.016374 D

10101 ACE 0.0458 0.0783 0.047975 0.03454 ∅
10110 BCE 0.0450 0.0867 0.046708 0.034162 D

10111 ABCE 0.0475 0.0750 0.071828 0.052328 ∅
11000 DE 0.0592 0.0983 0.021479 0.01599 C

11001 ADE 0.0617 0.0700 0.0466 0.034156 ∅
11010 BDE 0.0600 0.0850 0.045333 0.033778 ∅
11011 ABDE 0.0625 0.0650 0.070454 0.051944 ∅
11100 CDE 0.0750 0.0667 0.039033 0.028252 ∅
11101 ACDE 0.0767 0.0617 0.064154 0.046418 ∅
11110 BCDE 0.0758 0.0650 0.062887 0.046041 ∅
11111 ABCDE 0.0775 0.0600 0.088008 0.064206 ∅

execution time distribution obtained from running the classifiers

on the 𝑁 representative input samples during the profiling phase.

Initially for the purposes of an illustrative worked example, we

will assume that the 70-percentile value is used. We return to the

selection of an appropriate percentile for the typical-case execution

times in the evaluation in Section 5). The 𝑇𝐶𝐸𝑇 (𝑆) values are then
set to the sum of the typical-case execution times of the individual

classifiers in 𝑆 . This is a valid estimate of the typical-case execution

times of each subset 𝑆 , since the execution times of individual clas-

sifiers have a very weak degree of correlation, as shown in Section

3.3, and can therefore be modeled as independent. In any case cor-

rect operation of the algorithm does not rely on the precise values

chosen for the typical-case execution times, since compliance with

the constraints is guaranteed irrespective of the actual execution

times realized at run time, provided that they do not exceed the

worst-case execution times that were previously determined.

Second, the escape set 𝐸𝑆𝐶𝐴𝑃 (𝑆) is computed for each subset of

classifiers 𝑆 . Recall that running the classifiers in the set 𝐸𝑆𝐶𝐴𝑃 (𝑆)
provides the shortest guaranteed time to meet the constraint on

false negatives following the completion of the classifiers in 𝑆 .

𝐸𝑆𝐶𝐴𝑃 (𝑆) is determined by finding the subset𝑉 in the profile table

that has the smallest value of𝑊𝐶𝐸𝑇 (𝑉 ) of those subsets where
𝑆∩𝑉 = ∅ and 𝐹𝑁 (𝑆∪𝑉 ) ≤ 𝐻 . (If 𝐹𝑁 (𝑆) ≤ 𝐻 , then 𝐸𝑆𝐶𝐴𝑃 (𝑆) = ∅,
since 𝑆 already meets the constraint on false negatives). Since there

are 2
𝑛
subsets 𝑆 in the profiling table, computing the 2

𝑛 𝐸𝑆𝐶𝐴𝑃 (𝑆)
values takes 𝑂 (4𝑛) time.

 

Figure 3: DAG representation.

A Directed Acyclic Graph (DAG) representation is used to derive

a typical-case optimal solution. Figure 3 illustrates the DAG for

the five classifiers 𝐴 to 𝐸 from the Multi-Modal case study, with

a constraint on the probability of false negatives of 𝐻 = 0.085, a

latency constraint of 𝐿 = 0.05 (i.e 50ms), and typical-case execution

times assumed to be given by the 70-percentiles. The meaning of

the dashed and solid lines and the color-coding used in the figure

is explained below.

Each vertex in the DAG corresponds to a unique subset 𝑆 of

the classifiers, hence there are 2
𝑛
vertices, starting with the empty

set ∅. The vertices are connected via directed edges. A directed

edge connects each vertex representing a subset of classifiers with

a vertex that represents the same subset extended via the addition

of exactly one further classifier.

Any vertex corresponding to a subset 𝑆 that complies with the

constraint on false negatives, i.e. 𝐹𝑁 (𝑆) ≤ 𝐻 , has 𝐸𝑆𝐶𝐴𝑃 (𝑆) = ∅.
Such vertices cannot be improved upon by running further classi-

fiers, since to do so cannot decrease either the overall execution

time required or the probability of false positives. Such vertices

therefore have no outgoing edges and are referred to as exit ver-
tices. Exit vertices are indicated in Figure 3 via a solid (rather than

dashed) boundary. While exit vertices represent potential solutions

that meet the constraint on false negatives, not all such vertices are

reachable due to the constraint on latency.

Along an edge, let 𝑃 be the set of classifiers for the previous

vertex and 𝑄 the set of classifiers for the subsequent vertex. Hence,

an edge represents the addition of the single classifier in the set

𝑄 − 𝑃 . An edge is only valid, i.e. can form part of a solution that

is feasible when classifiers take their typical-case execution times,

if 𝑇𝐶𝐸𝑇 (𝑃) +𝑊𝐶𝐸𝑇 (𝑄 − 𝑃) +𝑊𝐶𝐸𝑇 (𝐸𝑆𝐶𝐴𝑃 (𝑄)) ≤ 𝐿. In other

words, the typical-case execution time for all completed classifiers

plus the worst-case execution time of the classifier to run next
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plus the worst-case execution time of the escape set after running

that classifier, must be able to be completed within the latency

constraint. All invalid edges are removed, since they cannot form

part of a solution that is guaranteed not to fail. For example, on

the left hand side of Figure 3 the edges between 𝐴𝐵 and 𝐴𝐵𝐶 and

between 𝐴𝐵 and 𝐴𝐵𝐷 have been removed for this reason. As have

the edges between 𝐵𝐶𝐸 and 𝐵𝐶𝐷𝐸 and between 𝐵𝐶𝐸 and 𝐴𝐵𝐶𝐸.

The slack time associated with an edge is given by 𝐿−(𝑇𝐶𝐸𝑇 (𝑃)+
𝑊𝐶𝐸𝑇 (𝑄 − 𝑃) +𝑊𝐶𝐸𝑇 (𝐸𝑆𝐶𝐴𝑃 (𝑄)). When there are two or more

valid incoming edges to a vertex 𝑄 , then this implies that there

are multiple sub-sequences, i.e. permutations of the classifiers in

the set 𝑄 , that could be utilized as part of a feasible solution that

includes that vertex. We need only retain one such possibility, and

therefore choose, without compromising solution optimality, to

consider only the incoming edge with the maximum slack. Such

edges are illustrated in Figure 3 by solid arrows, with other valid

edges shown as dashed arrows.

The optimal solution is determined by choosing the vertex𝑍 that

has the minimum probability of false positives, 𝐹𝑃 (𝑍 ), from all of

the exit vertices 𝑄 corresponding to feasible solutions, i.e. that have
𝐹𝑁 (𝑄) ≤ 𝐻 and are reachable via valid edges from the start vertex.

For example, in Figure 3 the vertices corresponding to feasible

solutions have a shaded background. They are 𝐶𝐷 , 𝐴𝐵𝐸, 𝐴𝐶𝐷 ,

𝐴𝐶𝐸, 𝐴𝐷𝐸, 𝐵𝐶𝐷 , 𝐵𝐷𝐸, and 𝐶𝐷𝐸. Of these vertices, subset 𝐴𝐵𝐸,

highlighted in red, has the smallest probability of false positives

and so is the optimal subset 𝑍 .

The order in which the classifiers in 𝑍 should be run is recovered

by tracing back the preferred incoming edges starting with vertex

𝑍 . Let 𝑍0, 𝑍1, . . . , 𝑍𝑘 be the 𝑘 vertices (sub-sets) in sequence where

𝑍0 is the start vertex and 𝑍𝑘 = 𝑍 is the optimal subset and an exit

vertex. For example, in Figure 3, the typical-case optimal sequence

of classifiers to run is 𝐴𝐵𝐸, as indicated by the red arrows.

To facilitate the best use of any available slack at run time, we

set the trigger points to be as late as possible, while still ensuring

that the escape sets can be completed in time if necessary. Hence

∀𝑖 = 1 . . . 𝑘 𝑇𝑅𝐼𝐺 (𝑍𝑖 ) = 𝐿−𝑊𝐶𝐸𝑇 (𝑍𝑖−𝑍𝑖−1)−𝑊𝐶𝐸𝑇 (𝐸𝑆𝐶𝐴𝑃 (𝑍𝑖 )).
Hence, the solution in the format for use in run time scheduling

consists of 𝑖 = 1 . . . 𝑘 triplets of the form:

(𝑍𝑖 − 𝑍𝑖−1, 𝑇𝑅𝐼𝐺 (𝑍𝑖 ), 𝐸𝑆𝐶𝐴𝑃 (𝑍𝑖−1)).
Each triplet indicates: (i) the preferred classifier 𝐾 ′

𝑖
= 𝑍𝑖 − 𝑍𝑖−1 to

execute next; (ii) the latest permitted start time 𝑇𝑅𝐼𝐺 (𝑍𝑖 ) for that
preferred classifier, sufficient to ensure that if it takes its worst-

case execution time, then a feasible solution can still be guaran-

teed via the subsequent execution of 𝐸𝑆𝐶𝐴𝑃 (𝑍𝑖 ) in at most time

𝑊𝐶𝐸𝑇 (𝐸𝑆𝐶𝐴𝑃 ((𝑍𝑖 )); and (iii) the escape set 𝐸𝑆𝐶𝐴𝑃 (𝑍𝑖−1) to exe-

cute if it is too late to start the preferred classifier. By construction,

provided that all classifiers comply with their worst-case execution

times, then this scheduling point cannot be so late that escape set

𝐸𝑆𝐶𝐴𝑃 (𝑍𝑖−1) is unable to complete within the latency constraint.

Considering the five classifiers𝐴 to 𝐸, the optimal solution is: ((𝐴,

0.0034, 𝐷𝐸), (𝐵, 0.02085, 𝐷𝐸), (𝐸, 0.0447, 𝐸)). Meaning that if before

any classifier runs, the current time 𝑡 is no larger than 0.0034 then

preferred classifier 𝐴 should run. (Since 𝑡 = 0 to begin with then

this is always true). If classifier𝐴 completes before 𝑡 = 0.02085, then

preferred classifier 𝐵 should run, otherwise employing escape set

𝐷𝐸 is guaranteed to meet the constraints, since 𝐹𝑁 (𝐴𝐷𝐸) = 0.07

and 0.0034 +𝑊𝐶𝐸𝑇 ({𝐴}) +𝑊𝐶𝐸𝑇 ({𝐷, 𝐸}) = 0.05 = 𝐿. If classifier

𝐵 completes before 𝑡 = 0.0477, then preferred classifier 𝐸 should

run, otherwise employing escape set 𝐸 is guaranteed to meet the

constraints, since 𝐹𝑁 (𝐴𝐵𝐸) = 0.08 and 0.02085 +𝑊𝐶𝐸𝑇 ({𝐵} +
𝑊𝐶𝐸𝑇 ({𝐸})) = 0.05 = 𝐿. Note, in this example in the final stage, 𝐸

is both the preferred classifier and also provides the escape set, since

it is the only remaining classifier that can be guaranteed to meet

the constraints in time. In general, however, this is not necessarily

the case, a different escape set could be needed.

Observe that the typical-case optimal algorithm, by considering

all possible paths through the DAG, covers all possible permutations

of the classifiers. However, because the information about each

vertex 𝑆 (i.e. 𝐹𝑁 (𝑆), 𝐹𝑃 (𝑆),𝑊𝐶𝐸𝑇 (𝑆), 𝐸𝑆𝐶𝐴𝑃 (𝑆), 𝑇𝐶𝐸𝑇 (𝑆)) only
depends on the set of classifiers in 𝑆 and not on the order in which

they are run, then the complexity of the DAG-based approach is

exponential in 𝑛, rather than factorial in 𝑛 as would be the case if

every permutation were actually considered separately.

The overall complexity of the off-line part of the typical-case

optimal algorithm is 𝑂 (4𝑛), dominated by the construction of the

extended profile table. Once that table has been populated, the

DAG-based component of the algorithm has 𝑂 (𝑛2𝑛) complexity,

since there are 2
𝑛
vertices and at most 𝑛 outgoing edges per vertex.

It is interesting to compare the statically optimal, clairvoyant

optimal, and typical-case optimal solutions for the Multi-Modal

case study, with the constraints set as described previously, and

assuming in the clairvoyant case that 𝐴𝐶𝐸𝑇 (𝑆) = 𝑇𝐶𝐸𝑇 (𝑆). The
three solutions are as follows:

Static: 𝐴𝐶𝐸 (any order):

𝐹𝑃 (𝑆) = 0.0458,𝑊𝐶𝐸𝑇 (𝑆) = 0.047975, 𝑇𝐶𝐸𝑇 (𝑆) = 0.03454.

Typical: 𝐴𝐵𝐸 (specific order):

𝐹𝑃 (𝑆) = 0.0308,𝑊𝐶𝐸𝑇 (𝑆) = 0.054274, 𝑇𝐶𝐸𝑇 (𝑆) = 0.040066.

Clairvoyant: 𝐴𝐵𝐶 (any order):

𝐹𝑃 (𝑆) = 0.0275,𝑊𝐶𝐸𝑇 (𝑆) = 0.066529, 𝑇𝐶𝐸𝑇 (𝑆) = 0.048217.

Observe that the overall typical-case execution time of the clair-

voyant solution fits within the latency constraint of 0.05; however,

this does not mean that this solution is typical-case optimal, since it

cannot be guaranteed not to fail. This can be seen by observing that

if the first two classifiers run in their typical-case execution times,

there is insufficient time left to guarantee that the final classifier

can be completed within the latency constraint of 0.05 if it takes its

worst-case execution time:

𝑇𝐶𝐸𝑇 ({𝐴, 𝐵}) +𝑊𝐶𝐸𝑇 ({𝐶}) = 0.0535081

𝑇𝐶𝐸𝑇 ({𝐴,𝐶}) +𝑊𝐶𝐸𝑇 ({𝐵}) = 0.0542823

𝑇𝐶𝐸𝑇 ({𝐵,𝐶}) +𝑊𝐶𝐸𝑇 ({𝐴}) = 0.0551716

By contrast, the typical-case optimal algorithm provides the best

solution, i.e. with the lowest probability of false positives, when the

classifiers take their typical-case execution times,without permitting
the possibility of failure if their execution times exceed those values.

The hypothetical clairvoyant algorithm dominates the static and

typical-case algorithms. However, there are scheduling anomalies

that mean there is no clear dominance between the typical-case

and static algorithms when actual execution times are considered.

It is possible that for some actual-case execution times the solu-

tion chosen by the typical-case algorithm will result in a higher

probability of false positives than the solution chosen by the static

algorithm. This happens when the typical-case algorithm chooses

a classifier to run first that is not present in the solution given by
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the static algorithm. If this and all further classifiers require their

worst-case execution times, then although a feasible solution is still

guaranteed, it may result in a higher probability of false positives

than running the set of classifiers chosen by the static algorithm.

5 EVALUATION
In this section, we evaluate the performance of the typical-case opti-

mal algorithm compared to the hypothetical clairvoyant algorithm

and also the static algorithm. The running example in the previous

section considered specific values for the constraint on the proba-

bility of false negatives and the latency constraint, here we provide

a systematic evaluation that examines the performance of the three

algorithms for a range of different values of these constraints.

The evaluation is based on the Multi-Modal case study intro-

duced in Section 3, considering classifiers 𝐴 to𝐺 . This necessitates

a profile table with 128 rows, covering all 2
7
distinct combinations

of these seven classifiers. Due to the space that it would require, we

do not reproduce this table here. The basic characteristics of the two

additional classifiers 𝐹 and 𝐺 are as follows: 𝐹𝑃 ({𝐹 }) = 0.004167,

𝐹𝑁 ({𝐹 }) = 0.42,𝑊𝐶𝐸𝑇 ({𝐹 }) = 0.00777 and 𝐹𝑃 ({𝐺}) = 0.0675,

𝐹𝑁 ({𝐺}) = 0.3167,𝑊𝐶𝐸𝑇 ({𝐺}) = 0.0058.

The experiment involved 1000 runs. In each run:

• The latency constraint was randomly selected in the range

[0.03333, 0.06667], i.e. 33 to 67ms, which is typically achiev-

able using three classifiers.

• The constraint on themaximumprobability of false negatives

was randomly selected in the range [0.06667, 0.08333], which
is again typically achievable using three classifiers

11
.

• Only pairs of constraints on latency and the probability of

false negatives that admitted a static solution were used,

otherwise further random constraints were generated.

• The set of actual execution times for the classifiers was se-

lected at random from the sets of execution time values

obtained for the 1800 input samples used during profiling.

On each run, we computed the solution produced by the static

and the clairvoyant algorithms, and also that produced by the

typical-case optimal algorithm assuming typical-case execution

times equating to the 25−, 50−, and 75−percentiles. For the typical-
case solutions, we simulated the schedule of classifiers obtained

when the classifiers took their assigned actual-case execution times.

Figure 4 shows the Cumulative Distribution Function of the

probability of false positives, computed for the 1000 runs, using

the set of classifiers that were selected in each case. The smallest

probability of false positives achieved was 0.0308333 for 𝐴𝐵𝐸 and

the largest was 0.104167 for 𝐷𝐸𝐹𝐺 . Figure 4 shows that the typical-

case optimal algorithm results in performance that is on average

significantly better than that of the statically optimal algorithm,

roughly halving the gap to the hypothetical clairvoyant algorithm.

Out of the 1000 runs, the static algorithm outperformed the

typical-case algorithm on 33, 41, and 94 occasions, i.e. just 3.3%, 4.1%,

and 9.4% of the time, when the latter algorithm used the 75−, 50−,
and 25−percentiles respectively for the typical-case execution times.

The average probability of false positives across the experiment was

11
No single classifier or pair of classifiers can achieve a value for 𝐹𝑁 (𝑆 ) in this range.

The best that can be achieved using two classifiers is 𝐹𝑁 (𝑆 ) = 0.085, using three

classifiers, 𝐹𝑁 (𝑆 ) = 0.06667, and using four classifiers, 𝐹𝑁 (𝑆 ) = 0.06.
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Figure 4: CDF: Multi-Modal case study, 7 classifiers.

0.062 for the static algorithm, 0.048 for the clairvoyant algorithm,

and 0.052 for all three variants of the typical-case optimal algorithm.

Again, illustrating the gains that can be made by employing a

minimally dynamic solution rather than a static one.

The performance of the typical-case optimal algorithm was not

especially sensitive to the values chosen for the typical-case ex-

ecution times between the upper and lower quartiles. Choosing

different percentiles (25%, 50%, or 75%) for the typical-case execu-

tion times resulted in small differences in performance for different

constraint settings, resulting in the lines crossing in Figure 4. Fur-

ther optimization in specific cases could be achieved by exploring

a limited number of different percentiles for the typical-case execu-

tion times, and making a pragmatic choice of the one that provides

the best overall performance in that case.

It is interesting to note that if all seven classifiers were employed,

then the probability of false positives would be 144/1200 = 0.12

and the probability of false negatives 32/600 = 0.053333. If instead

of (logically) OR-ing together the classifier outputs, we required a

minimum of two classifiers to agree on a hazard designation, then

in this case the probability of false negatives would increase to

49/600 = 0.081667, while the probability of false positives would

decrease to 41/1200 = 0.034167. However, this configuration is

outperformed by requiring only one classifier to indicate hazard

and using only classifiers 𝐴𝐵𝐸, for a probability of false negatives

of 0.08 and a probability of false positives of 0.0308. Nevertheless,

considering how the outputs of different classifiers should be com-

bined to balance requirements on the probabilities of both false

negatives and false positives is an interesting avenue for future

work.

Relaxing the latency constraint, i.e. 𝐿 = ∞, the clairvoyant op-

timal, typical-case optimal, and statically optimal algorithms all

choose the same solution for any given constraint on the probability

of false negatives. Figure 5 illustrates the Pareto front characterizing

this trade-off between the solution with the minimum probability

of false positives and the constraint on the probability of false nega-

tives, for the Multi-Modal case study with 7 classifiers. Observe that,
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as expected, the tighter the constraint, the larger the probability of

false positives.
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By contrast, relaxing the constraint on the probability of false

negatives, i.e. 𝐻 = 0.999, results in very few different solutions

when the latency constraint is varied. In the Multi-Modal case study

with 7 classifiers, the optimal static solution for latency constraints

in the range [0.0053, 0.00777] is to run classifier 𝐸, with 𝐹𝑃 ({𝐸}) =
0.025. For all larger latency constraints, the optimal solution is

to run classifier 𝐹 , with 𝐹𝑃 ({𝐹 }) = 0.004167. The reason there

are so few different solutions is that the relaxed constraint on the

probability of false negatives can be met by using a single classifier,

while adding further classifiers only increases the probability of

false positives. Hence, finding the optimal solution with a relaxed

constraint on the probability of false negatives effectively reduces

to choosing the single classifier that minimizes the probability of

false positives while also meeting the latency constraint.

6 CONCLUSIONS
The research described in this paper addressed a problem of real-

time classification-based machine perception, specifically the haz-

ard detection classifier sequencing problem (see Definition 1). The

main contribution was in the derivation of optimal algorithms for

the scheduling of classifiers that minimize the probability of false

positives, while meeting both a latency constraint and a constraint

on the maximum acceptable probability of false negatives (i.e. haz-

ards not detected). The classifiers may have arbitrary statistical

dependences between their functional behaviors (i.e. probabilities

of correct detection of hazards), as well as variability in their ex-

ecution times. The solutions proposed were both applicable to

real-world scenarios and practical, with 𝑂 (1) run-time overheads.

The effectiveness of the approach was illustrated via a case-study

based on real Deep Learning classifiers operating on data from mul-

tiple sensors. The evaluation showed that the minimally dynamic,

typical-case optimal algorithm provides a significant improvement

over the best possible static solutions, approximately halving the

performance gap to a hypothetical clairvoyant algorithm.

6.1 Directions for future work
Deriving an optimal fully dynamic algorithm and assessing its

complexity is one possible avenue for future work. While such an

algorithm is likely to have prohibitively high run-time overheads,

it would provide a more precise reference for the performance of

the typical-case optimal algorithm presented in this paper, and any

heuristic algorithms that may be derived in future.

The work in this paper assumes that the performance of the

classifiers, as characterized by the profile table, is consistent across

different operational environments or contexts. Research in late 2022
[29] showed that this is not always the case, and that the training

of machine learning classifiers can lead to over-fitting, and hence

performance that can be significantly degraded in some practical

contexts. By comparison, simpler traditional classifiers are less

likely to suffer from this problem [29]. An interesting avenue for

future research relates to catering for different operational contexts

with associated classifier characterizations (i.e. multiple profiles

for each classifier) within the same system. This could potentially

be achieved by using the methodology presented in this paper to

determine solutions appropriate to different operational modes,

corresponding to the different contexts or environments.
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