
Task and Memory Mapping of Large Size Embedded Applications
over NUMA architecture∗

Alessandro Druetto
1
, Enrico Bini

1
, Andrea Grosso

1

Stefano Puri
2
, Silvio Bacci

2
, Marco Di Natale

2,3
, Francesco Paladino

3

1
University of Turin

2
Huawei Research Center, Pisa

3
Scuola Superiore Sant’Anna, Pisa

Italy

ABSTRACT
Multicore architectures provide the increased performance required

by modern embedded real-time systems. Most platforms exhibit a

non-uniform memory access (NUMA). In NUMA, memory banks

with different access time can be explicitly addressed. Such an archi-

tecture, however, is challenging predictability given the significant

impact of the allocation of variables on the execution times.

At software level, real-world embedded applications (e.g. automo-

tive) are composed by thousands of functions often communicating

through shared variables stored in memory, with a variable access

time because of NUMA.

This paper addresses the mapping of complex embedded applica-

tions onto NUMA multicore architectures. The developed problem

formulation offers a solution to the following problems: (i) allocat-

ing variables (called labels in the automotive context) over memo-

ries of different characteristics, (ii) mapping functionalities (called

runnables) onto CPUs, (iii) creating OS tasks from runnables, and

(iv) assigning priorities to tasks. Our developed implementation is

capable to handle an application composed by 1K+ runnables, all

sharing 10K+ labels and finds a solution in at most 3 minutes on a

standard laptop, enabling interactive design space exploration.

ACM Reference Format:
Alessandro Druetto

1
, Enrico Bini

1
, Andrea Grosso

1
and Stefano Puri

2
, Silvio

Bacci
2
, Marco Di Natale

2,3
, Francesco Paladino

3
. 2023. Task and Memory

Mapping of Large Size Embedded Applications over NUMA architecture. In

The 31st International Conference on Real-Time Networks and Systems (RTNS
2023), June 07–08, 2023, Dortmund, Germany. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3575757.3593650

1 INTRODUCTION
In many embedded systems, including most of automotive real-

time controls, the fundamental problems for designers are (i) the

definition of the task model from the set of functions that need to

be executed, (ii) the allocation of those tasks to the available CPUs,

and (iii) the mapping of data onto memory, including all variables

shared among functions.

∗
Patent pending with World Intellectual Property Organization (WIPO).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

RTNS 2023, June 07–08, 2023, Dortmund, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9983-8/23/06. . . $15.00

https://doi.org/10.1145/3575757.3593650

In automotive systems, the application definition is in most cases

formalized by the AUTOSAR standard, in which a system is defined

as a collection of components. The internal behavior of each compo-

nent consists of a set of runnables (functions) activated in response

to events. In this context, the problem input consists of a set of

runnables to be executed according to some specified event (e.g.

periodic, or upon the completion of another one, or upon receiving

some input, or call request). A set of tasks needs to be defined to

execute these runnables. These tasks need to be allocated to CPUs,

and the data (including the program and communication variables)

need to be allocated in memory.

Solving this problem is not easy and is key to achieve good

performance of the application. It is the concern of most designers

how NUMA architectures can result in a large variation in the

execution times if the memory allocation is not carefully managed.

The problem has been investigated along several lines by the

research community. However, the delivered performance and in-

sights of current methodologies accounting for the memory alloca-

tion are not fully satisfactory, as described next.

1.1 Related works
A large number of previous works makes use of stochastic opti-

mization techniques. McLean et al. [29] use a Simulated Annealing

algorithm to assign tasks to CPUs and to generate a static schedule

of tasks per CPU that is compatible with the communication pat-

tern. An algorithm based on Simulated Annealing was proposed

in [14] to partition non-independent tasks over a multicore plat-

form and assign them a priority value. Similar to our case, the

objective of the mapping is to maximize the robustness of the ap-

plication against execution overruns, computed as the time units

the execution time of each task can be inflated while still retaining

the schedulability of the whole taskset. Genetic algorithms (GAs)

were also used to map tasks over heterogeneous processors [3],

though ignoring the placement of shared labels. Among the meta-

heuristics, Systematic Memory-based Simulated Annealing was

also used to partition AUTOSAR applications [13]. In the context

of the AMALTHEA Projects [40], GAs were also proposed to solve

the mapping problem [10]. Finally, Bouaziz et al. [7] proposed a

Multi-Objective Evolutionary Algorithm to find the Pareto front of

the runnables to tasks mapping, whereas Ferrandi et al. proposed

an ant-colony approach to the problem of mapping both tasks and

communication messages over an heterogeneous architecture [16].

In all of these papers, not only the optimization engine is differ-

ent. Also, the impact of label allocation on the execution time of

runnables is either modeled as a generic communication cost to

be minimized (with an extremely simplified representation of the

166

https://doi.org/10.1145/3575757.3593650
https://doi.org/10.1145/3575757.3593650
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3575757.3593650&domain=pdf&date_stamp=2023-06-07

RTNS 2023, June 07–08, 2023, Dortmund, Germany Druetto, Bini, Grosso et al.

memory accesses overheads and their dependency on the memory

structure), or ignored altogether.

Based on past experience and our own, we claim that stochastic
optimization methods are in general unfit for the whole mapping
problem, since it is very difficult to select the right set of transitions

(or mutation/crossover) operators to escape from local optima. Con-

sequently, the quality of the found solution is extremely difficult

to evaluate. In fact, our Simulated Annealing (SA) alternate solver

remained stuck at a local minimum despite executing for more than

20 hours (more details are reported in Section 8).

Other methods presented in the past operate in the context of spe-

cific architectures or programming paradigms. Kobayashi et al. [22]

propose the Model-Based Parallelizer (MBP), which maps C appli-

cations generated by Simulink’s Embedded Coder onto Kalray’s

MPPA2-256, which is composed by 16 clusters of 16 cores. Becker

et al. [4] propose to partition memories into banks and to schedule

accesses to the same bank at different instants. Pazzaglia et al. [34]

implements a partitioning scheme that includes memory allocation

using the Logical Execution Time (LET) paradigm.

Methods that use constraint programming have been proposed,

without exploring the complex dimension of the mapping of the

variables to memory. Perret et al. [35] proposed a constraint pro-

gramming approach to map a large application over a massively

parallel architecture. An ILP formulation of the runnable-to-task-

to-core mapping was proposed by [36]. However, the addressed

use case was two orders of magnitude smaller than our target auto-

motive application. Optimal partitioning and priority assignment

using mathematical optimization is also proposed by Zhao and

Zeng [42] and by Casini et al. [8].

Methods to adapt the application partitioning to dynamic work-

load do exist [33]. Fernandez et al. [15] identified the “cyclic depen-

dency” between the execution cycles of tasks and their partitioning

(later represented in Figure 3) as one of the main challenges. They

proposed to break this dependency by establishing ties between

tasks of varying strength. However, none of these works explored

the mapping of labels with awareness of NUMA.

The closest contribution to ours is probably [20], in which the

partitioning of automotive applications is addressed by (i) allocating

runnables into tasks based on their activation pattern, (ii) creating

DAGs based on the shared labels, and (iii) finally mapping DAGs

onto the CPUs. Performing such a grouping of runnables based

on the activation pattern, however, does not necessarily lead to a

lower resource utilization. Also, mapping DAGs injects an unnec-

essary level of complexity which prevents the applicability to large

applications.

Commercially, there are patents that cover some of the steps

that are needed for optimization, but in very general terms and not

with a realistic modeling of the memory costs. The patents apply

to a specific method for allocating tasks to cores, which does not

control over the use of the memory resources (and therefore the

actual runnable execution time e.g. [32] and [18]). Other methods

consider the optimization of the memory allocation of data and code

(e.g. [28] and [25]) by assuming a given assignment of runnables to

tasks and tasks to CPUs. Instead, the originality of our contribution

is in the capacity to address all dimensions of the mapping (both

runnables and labels) and to achieve superior results with a run-time

orders of magnitude smaller than existing meta-heuristic-based

approaches.

Contribution of the paper. Summarizing, the large majority of

related works have ignored the impact of the placement of shared

variables over the NUMA architectures. The few works which have

considered this additional dimension, have proposed a GA formu-

lation. GAs, however, ignore the peculiarities of the mapping of

embedded applications and then hinder a full understanding of the

role played by the many available tuning parameters of the model.

Hence, to best of our knowledge, our ILP approach is the first one

proposing a tractable problem formulation that wholly addresses

the mapping of the runnables over the available cores, the mapping

of the labels over the NUMA architecture, and the aggregation of

runnables into tasks. Compared to GA formulations, our approach

has the advantage of being computationally more efficient andmore

transparent to the designer, and it enables interactive design space

exploration through the linear constraints and cost which can be

tuned at design time.

2 SYSTEM MODEL
AUTOSAR (AUTomotive Open System ARchitecture)

1
is a stan-

dardized software architecture for the definition of automotive

components and for providing the foundation platform for their

execution [17]. The essential element of AUTOSAR that is relevant

for our problem is the concept of runnables, that are functions to
be executed in response to events. For the sake of our work, we

are interested in capturing the nature of these activation events,

assumed as periodic or sporadic. AUTOSAR runnables commu-

nicate by means of data ports or by client-server interactions. In

both cases, memory locations shall be identified (in a stage called

RTE, or Run-Time Environment generation) to store the values

communicated over the ports or the arguments of the call.

In the AMALTHEA Projects (Model Based Open Source Devel-

opment Environment for Automotive Multi Core Systems) and its

follow-up APP4MC [1], the problem is abstracted by analyzing the

results of the RTE generation stage directly. The model contains

the elements that provide the minimal level of details necessary to

setup a partitioning problem [40]. The App4MC platform was used

to introduce the model of the 2017 WATERS challenge [23], which

is used as our reference use case.

2.1 Hardware model
The AMALTHEA/App4MC hardware model is depicted in Figure 1.

It provides the key features with an impact on timing analysis,

without delving into too fine-grained details, which have little

impact on the mapping problem. According to this view:

• A set of the identical CPUs, denoted here byM, is available

for processing instructions;

• Each CPU 𝑘 ∈ M has a directly connected Local RAM
(LRAM) of size 𝑆cpu

𝑘
, which can be accessed at higher speed;

• A Generic RAM (GRAM) is available. We assume its size is

large enough to accommodate data as needed;

• A crossbar switch enables all CPUs to access both the GRAM

and the LRAM of the others with dedicated virtual channels;

1
https://www.autosar.org/

167

https://www.autosar.org/

Task and Memory Mapping of Large Size Embedded Applications over NUMA architecture RTNS 2023, June 07–08, 2023, Dortmund, Germany

LRAM0 LRAM1 LRAM2 LRAM3

CPU0 CPU1 CPU2 CPU3

GRAM

Figure 1: Abstract hardware model.

Number of labels in L 10000

Total memory of labels [bytes] 27363

Number of runnables in N 1250

Number of tasks in T 21

Number of different release patterns 19

Number of accesses by runnables to any label 15255

Table 1: Key data of an automotive reference application [23].

• All LRAMs and the GRAM are mapped to a unique address

space, making them accessible from any CPU.

2.2 Software model
The software model used in AMALTHEA, which is also relevant to

our purposes, includes the following terms:

• A label is a data element used by the application code; it has

a type, which determines its memory size. The set of labels

is denoted by L and 𝑠ℓ is the size of label ℓ ∈ L.
• A runnable is a function implemented by sequential code.

The set of runnables is denoted byN . A runnablemay read or

write labels with a given frequency. Communication between

runnables is implemented by writing/reading shared labels.

As illustrated later in Section 4, a subset of labels L𝑖 ⊆ L is

attached to the runnable 𝑖 ∈ N .

• 𝑇𝑖 denotes the period or minimum interarrival time of

runnable 𝑖 . Later, we may use the notation 𝑓𝑖 = 1/𝑇𝑖 to
denote the maximum frequency of activation.

• A task corresponds to the operating system notion of thread.

Its code corresponds to a sequence of runnables invoked

sequentially. The set of tasks is denoted by T .
• Other notions will be used in the paper such as the gain
𝑔𝑖,ℓ for runnable 𝑖 to have fast access to label ℓ or the exe-
cution cycles 𝐶0

𝑖
of runnable 𝑖 . However, we postpone their

precise definitions to the context when they will be needed

(Sections 4 and 5, respectively)

Table 1 reports the size of the 2017 WATERS challenge [23] embed-

ded application, which we extensively use in this paper.

Finally, tasks execute on statically assigned CPU (partitioned

scheduling) and are scheduled by Fixed Priority.

LRAM0 LRAM1 LRAM2 LRAM3

CPU0 CPU1 CPU2 CPU3

GRAM

a c

i kh j

db

e f g

1 2 3 4 5 6 7

Figure 2: The mapping problem. Runnables are azure circles
(“1”, “2”, . . .), labels aremint green rounded boxes (“a”, “b”, . . .).
The mapping (of runnables to CPUs and labels to LRAMs) is
represented by thick dashed gray arrows.

Mapping

− of labels to LRAMs

− of runnables to CPUs

Execution cycles
− of runnables

Access times
− by runnables to labels

Figure 3: The cyclic dependency of the mapping problem.

3 THE PROBLEM
The problem addressed in this paper is the mapping of an applica-

tion modeled by runnables N and labels L over the CPUsM and

their associated LRAMs, respectively (as depicted in Figure 2.)

The main difficulty of the problem is due to the accesses that

runnablesmake to labels. Depending on themapping, these accesses

may happen either locally (from a CPU to its directly connected

LRAM, such as LRAM2 from CPU2 in Figure 1) or remotely. Since

access times vary by one order of magnitude (please refer to Table 2),

they do affect the overall execution cycles of runnables. In turn,

the execution cycles of runnables do affect the mapping as any

knapsack problem is affected by the size of the items to be packed.

Such a cyclic dependency is represented in Figure 3. Finally, the

size of real-world problem (please refer to Table 1) is about two

orders of magnitude above the size of tractable problems of this

kind.

Hence, we decompose the mapping in the following stages.

168

RTNS 2023, June 07–08, 2023, Dortmund, Germany Druetto, Bini, Grosso et al.

LRAM0 LRAM1 LRAM2 LRAM3

CPU0 CPU1 CPU2 CPU3

GRAM

a c

i kh j

db

e f g

1 2 43 65 7

Figure 4: In our methodology: (i) labels are first bound to the
runnable which benefits the most (represented by a thick
link), then (ii) runnables only are mapped to CPU, the bound
labels will follow to the linked LRAM.

(1) First, we address the problem of binding labels to runnables

(in Section 4). This is the key enabler of the significant reduc-

tion in complexity. In Figure 4, labels bound to a runnable

are represented by a thick link.

(2) Then runnables are mapped to CPUs (Section 5). As illus-

trated in Figure 4, every runnable carries the bound labels

which are then implicitly mapped to the corresponding

LRAM.

(3) Finally, runnables are assigned to tasks (Section 6) and, then

tasks are assigned a priority (Section 7).

As it will be illustrated in greater details in the next section, the

guiding principles that drive all optimization stages are

• the minimization of the resource utilization, and
• themaximization of the slack so that further upgrades or

extensions may be accommodated more easily.

Without loss of generality, we identify the elements in any setN
by the integers 1, . . . , |N |. Also, to lighten the presentation, we use

the same notation of any set N to denote the number of elements

as well. In short, we consider correct to write N = {1, 2, . . . ,N}.

4 BINDING LABELS TO RUNNABLES
The key phase that makes the overall methodology feasible for the

large scale automotive use case, is the binding of labels to runnables.

In fact, given the size of realistic applications (of 1K+ runnables

and 10K+ labels, please refer to Table 1 for details), a unique ILP

formulation for the joint mapping of the labels and runnables is not

tractable with the computing capacity available at time of writing.

Hence, we bind labels to runnables (as represented by thick black

links between runnables and labels in Figure 4). When a runnable 𝑖

is mapped to CPU 𝑘 , then all the labels L𝑖 bound to it are mapped

to the LRAM directly linked to CPU 𝑘 .

We formulate the binding problem as follows. For each pair

(𝑖, ℓ) ∈ N × L,
• if the label ℓ is used by the runnable 𝑖 , we define the gain
𝑔𝑖,ℓ as the saved execution cycles by one invocation of the

runnable 𝑖 when the label ℓ is allocated to the LRAM linked

to the CPU where the runnable 𝑖 is mapped,

• we set 𝑔𝑖,ℓ = 0 if the label ℓ is not used by runnable 𝑖 .

The gain 𝑔𝑖,ℓ is expressed in clock cycles. Its calculation depends

on many factors: type of access, size 𝑠ℓ of ℓ , frequency of access,

etc. Later, in Section 8.1, we illustrate the gain models used in

the experiments. We remark that our proposed methodology is

independent of such a choice.

Variables. For the purpose of partitioning labels among

runnables, we introduce the following variables

𝑖 ∈ N , ℓ ∈ L, 𝑥𝑖,ℓ =

{
1 label ℓ bound to runnable 𝑖

0 otherwise,
(1)

and we define the partition of labels by

𝑖 ∈ N , L𝑖 = {ℓ ∈ L : 𝑥𝑖,ℓ = 1}.

Constraints. If we denote by 𝑆𝑖 the amount (unknown) of LRAM

assigned to labels in L𝑖 , then the following constraint

𝑖 ∈ N ,
∑︁
ℓ∈L

𝑠ℓ𝑥𝑖,ℓ ≤ 𝑆𝑖 (2)

ensures that the total memory local to the runnable 𝑖 is not exceeded,

while the next one ∑︁
𝑖∈N

𝑆𝑖 ≤
∑︁
𝑘∈M

𝑆
cpu
𝑘

(3)

is needed not to exceed the total LRAM. If needed, our formulation

can also include a constraint on the maximum amount of memory

𝑆𝑖 needed by runnable 𝑖 .

Finally, it is certainly needed to assign a label to at most one

runnable, that is

ℓ ∈ L,
∑︁
𝑖∈N

𝑥𝑖,ℓ ≤ 1. (4)

Notice that the subsets L𝑖 are not a partition (that is Equation (4)

is not written with the “=” sign) as there may be some labels that

are not bound to any runnable.

Goal function. The natural aim of the binding is to minimize the

resource usage by runnables. In fact, wherever every runnable 𝑖 is

mapped, we are certain that accesses to labels in L𝑖 are through
local links. Since each runnable executes with frequency 𝑓𝑖 , the

metric to be maximized is∑︁
𝑖∈N

𝑓𝑖

∑︁
ℓ∈L

𝑔𝑖,ℓ 𝑥𝑖,ℓ . (5)

The rationale of the cost of Eq. (5) is to bind label ℓ to the runnable

𝑖 that can benefit the most in terms of saving CPU utilization.

Size of the problem. For this problem, the number of variables

𝑥𝑖,ℓ (1) is N × L, while the number of constraints is N + L + 1
following from (2)–(4).

169

Task and Memory Mapping of Large Size Embedded Applications over NUMA architecture RTNS 2023, June 07–08, 2023, Dortmund, Germany

4.1 Polynomial-time algorithms
If the overall amount of LRAM is sufficient to store all labels, then

the constraint of Eq. (3) is never active. This means that the only

active constraint remains (4) and that the optimal solution is:

ℓ ∈ L, 𝑥𝑖,ℓ = 1 ⇔ 𝑖 = argmax

𝑗∈N

{
𝑓𝑗 𝑔 𝑗,ℓ

}
(6)

which is found in O(N × L) time. For such a solution, every label

ℓ brings the maximum saving of resource usage, which is 𝐺ℓ =

max𝑗 {𝑓𝑗 𝑔 𝑗,ℓ }.
If instead the constraint of (3) is active, then the problem becomes

the knapsack problem in which “a person is planning a hike and has
decided not to carry more than 70 lb of different items, such as bed roll,
Geiger counters (these days), cans of food, etc.” [11]. The continuous
relaxation of this problem is solved exactly in O(L log(L)) time

as suggested by Dantzig [11] and described below:

(1) Labels are sorted by decreasing gain density as follows

ℓ, ℓ′ ∈ L, ℓ < ℓ′, 𝐺ℓ/𝑠ℓ ≥ 𝐺ℓ ′/𝑠ℓ ′ . (7)

(2) Labels are selected, and assigned to the runnable of (6), fol-

lowing the ordering of (7) until the memory capacity con-

straint (3) is not violated.

(3) Let 𝑧 ∈ L be the critical item, which is the first label that, ac-

cording to the ordering of (7), violates the capacity constraint

of Eq. (3).

If we set

𝑆slack =
∑︁
𝑘∈M

𝑆
cpu
𝑘
−

𝑧−1∑︁
ℓ=1

𝑠ℓ ,

which is the remaining memory capacity after allocating the first

𝑧 − 1 labels, then the optimum is found by taking a fraction 𝑆 slack/𝑠𝑧
of the label 𝑧. The value of the maximized metric of Eq. (5) for such

an optimal solution is

𝑧−1∑︁
ℓ=1

𝐺ℓ +
𝑆slack

𝑠𝑧
𝐺𝑧 .

In our polynomial time greedy algorithm:

(1) we drop the critical item “label 𝑧” and bind labels up to the

one in position 𝑧 − 1 in the ordering of (7), and

(2) we fill up the remaining capacity 𝑆slack with any label that

fits.

Distance to optimality. The maximum penalty of this solution is

𝑆slack

𝑠𝑧
𝐺𝑧 ≤ 𝐺𝑧 ≤ max

ℓ∈L
𝐺ℓ = max

ℓ∈L,𝑖∈N
{𝑓𝑖 𝑔𝑖,ℓ }.

If the granularity 𝑓𝑖𝑔𝑖,ℓ ≪ 1, as in our use case [23], the penalty is

negligible. Our experiments confirm the quality of the polynomial

greedy algorithm, since its solution and the optimal one are nearly

indistinguishable.

5 MAPPING RUNNABLES TO CPUS
The mapping of the runnables in N over the available CPUs is

formalized as a Binary ILP (BILP) problem.

Variables. We model the mapping over the CPUs by N × M
variables 𝑦𝑖,𝑘 with the following interpretation

𝑖 ∈ N , 𝑘 ∈ M, 𝑦𝑖,𝑘 =

{
1 runnable 𝑖 mapped to CPU 𝑘

0 otherwise.
(8)

We remind that if 𝑦𝑖,𝑘 = 1, then the bound labels in L𝑖 will be
mapped to the LRAM associated to CPU 𝑘 .

The distinguishing feature that needs to be captured in the prob-

lem of mapping runnables to CPUs is whether or not any pair of

runnables is mapped onto the same core. In fact, if runnable 𝑖 is on

the same CPU as runnable 𝑗 , it may save processing time if it uses

labels in L 𝑗 . Motivated by this observation, we add the following

variables to the problem formulation

𝑖, 𝑗 ∈ N ,

𝑖 < 𝑗,
𝑥same
𝑖, 𝑗 =

{
1 runnables 𝑖 and 𝑗 on same CPU

0 otherwise.
(9)

Finally, an additional continuous slack variable 𝑧 is added. Such a
variable represents the “extensibility” of software for future updates

and it is going to be maximized. A negative value of 𝑧 indicates an

infeasible design.

Constraints. If runnables 𝑖 and 𝑗 are bound to the same CPU 𝑘 ,

then the corresponding variable 𝑥same
𝑖, 𝑗

must be equal to one:

𝑖, 𝑗 ∈ N , 𝑖 < 𝑗, 𝑥same
𝑖, 𝑗 = max

𝑘∈M
(𝑦𝑖,𝑘 + 𝑦 𝑗,𝑘) − 1, (10)

which can also be written as linear constraint, by adding extra

variables for each 𝑘 ∈ M.

Each runnable is mapped over one CPU only, that is

𝑖 ∈ N ,
∑︁
𝑘∈M

𝑦𝑖,𝑘 = 1. (11)

Notice that if a runnable must be necessarily mapped to some spe-

cific CPU (e.g. some of the available CPUs offer some HW features

or accelerator which are necessary to the runnable), it is possible

to encode such a constraint by setting 𝑦𝑖,𝑘 = 1.

The variables𝑥same
𝑖, 𝑗

as defined by (9) clearly imply an equivalence

relation. Hence, we enforce the following properties

• reflexivity is enforced implicitly by omitting the variables

𝑥same
𝑖,𝑖

, as it would always be 𝑥same
𝑖,𝑖

= 1

• symmetry is enforced implicitly by having only one variable

𝑥same
𝑖, 𝑗

for both ordered pairs (𝑖, 𝑗) and (𝑗, 𝑖). To have a more

convenient notation, we may be using 𝑥same
𝑖, 𝑗

with 𝑖 > 𝑗 .

When this happens, we mean 𝑥same
𝑗,𝑖

.

• transitivity that is

(𝑥same
𝑖, 𝑗 = 1) ∧ (𝑥same

𝑗,ℓ = 1) ⇒ (𝑥same
𝑖,ℓ = 1) .

Transitivity is not explicitly enforced because implied by (10)

and (11). In fact, if 𝑥same
𝑖, 𝑗

= 1, from (10) it must exist 𝑘1 ∈ M such

that 𝑦𝑖,𝑘1 = 𝑦 𝑗,𝑘1 = 1. For the same reason, 𝑥same
𝑗,ℓ

= 1 implies that

it must exist 𝑘2 ∈ M such that 𝑦 𝑗,𝑘2 = 𝑦ℓ,𝑘2 = 1. Constraint (11)

implies that 𝑘1 = 𝑘2 and then from 𝑦𝑖,𝑘1 = 𝑦ℓ,𝑘1 = 1 we have

𝑥same
𝑖,ℓ

= 1.

Furthermore, applications may require two or more runnables

to be scheduled together over the same CPU. For example, in the

automotive AUTOSAR standard, runnables may belong to Soft-

ware Components (SWCs), which need to be mapped to the same

170

RTNS 2023, June 07–08, 2023, Dortmund, Germany Druetto, Bini, Grosso et al.

core. This can be easily encoded constraining 𝑥same
𝑖, 𝑗

= 1 for all the

runnables 𝑖 and 𝑗 belonging to the same SWC.

Before formulating the constraints on the CPU capacity, let us

introduce the following notation.

• 𝐶0

𝑖
denotes the execution cycles of runnable 𝑖 , assuming that:

– all labels in L𝑖 , bound to runnable 𝑖 as described in Sec-

tion 4, are stored in LRAM and then enjoy a faster access

– all other labels are stored in GRAM.

• Δ𝐶𝑖, 𝑗 denotes the execution cycles saved by one invocation

of runnable 𝑖 if runnable 𝑗 executes over the same CPU.

Δ𝐶𝑖, 𝑗 is non-zero, if runnable 𝑖 happens to use any label in

L 𝑗 . Δ𝐶𝑖, 𝑗 is written as function of the gains 𝑔𝑖,ℓ introduced

in Section 4, as follows

𝑖 ∈ N , Δ𝐶𝑖, 𝑗 =
∑︁
ℓ∈L 𝑗

𝑔𝑖,ℓ . (12)

• the variable 𝐶𝑖,𝑘 ≥ 0 represents the number of execution

cycles required by runnable 𝑖 over CPU 𝑘 , that is

𝑘 ∈ M, 𝐶𝑖,𝑘 ≥ 𝐶0

𝑖 𝑦𝑖,𝑘 −
∑︁

𝑗∈N, 𝑗≠𝑖
Δ𝐶𝑖, 𝑗 𝑥

same
𝑖, 𝑗 . (13)

It is worth noting that, if the solver does not map runnable 𝑖

to CPU 𝑘 , the value of 𝐶𝑖,𝑘 is set to zero.

As stated in Section 4, when runnable 𝑖 is partitioned it also

carries an amount of needed local memory 𝑆𝑖 . The constraint of

limited size of the local memory is formulated as

𝑘 ∈ M,
1

𝑆
cpu
𝑘

∑︁
𝑖∈N

𝑦𝑖,𝑘 𝑆𝑖 ≤ 1 − 𝛼mem𝑧, (14)

which requires to account for some slack in the memory constraint

on CPU 𝑘 . Analogously, the constraint on the CPU capacity is

𝑘 ∈ M,
∑︁
𝑖∈N

𝑓𝑖 𝐶𝑖,𝑘 ≤ 1 − 𝛼cpu𝑧. (15)

The weights 𝛼mem
and 𝛼cpu represent the relevance of the slack

in each constraint and can be freely chosen by the designer. A large

value of 𝛼mem
or 𝛼cpu encodes the goal of having much slack in

the constraint, while a value of zero informs the solver that the

constraint can also hold tightly.

Goal function. The goal of the design is to maximize the “exten-

sibility” of software for future updates, that is

maximize 𝑧. (16)

If the optimal 𝑧∗ found is negative then the problem is not feasible.

If 𝑧∗ ≥ (1−𝑈LL)/𝛼cpu, with 𝑈LL equal to the Liu and Layland [26]

utilization upper bound log 2 ≈ 0.693 the problem is feasible. Oth-

erwise, schedulability is ensured by the next step of the design

(the assignment of priority described in Section 7). Notice that

the proposed design goal generalizes the typical optimization goal

borrowed from the literature [34].

Size of the problem. Summarizing, the total number of variables is

2(N×M), counting𝑦𝑖,𝑘 of Eq. (8) and𝐶𝑖,𝑘 of Eq. (13). The number of

constraints isO(N2), dominated by Eq. (10). In real-world scenarios,

N ≈ 1000 as shown in Table 1, making the number of constraints

in the order of millions. When such a problem becomes intractable,

a different approach, illustrated next, is required.

5.1 Hierarchical Clustering
To mitigate the issues due to the size of the problem, we borrow the

hierarchical clustering from the literature [31]. In hierarchical clus-

tering, runnables are aggregated into clusters of tunable size. Then

the mapping described earlier in Section 5 is applied to the fewer

clusters, rather than to all runnables. An advantage of hierarchical

clustering is that the size of clusters can be set by the designer

to trade accuracy vs. tractability. Also, hierarchical clustering is

particularly well suited for partitioning very many “small” items,

as in our use case.

Algorithm 1 Hierarchical Clustering

1: function HC(N ,U) ⊲ runnables, their utilizations

2: clusters← {{𝑖} : 𝑖 ∈ N} ⊲ initialize clusters

3: utils←U ⊲ utilization of singleton clusters

4: mergeTree← [] ⊲ tracking of cluster merges

5: for 𝑛 from |N | − 1 to 1 do ⊲ need |N | − 1 merges

6: 𝑐min ← argmin(utils) ⊲ min cluster utilization

7: 𝑈avg ← (sum(utils) − utils[cmin])/𝑛
8: maxGain← −1
9: for 𝑐 in clusters \ {𝑐min} do
10: if utils[𝑐] > 𝑈avg then continue
11: end if
12: 𝑔← utilGain(𝑐min, 𝑐)
13: if 𝑔 > maxGain then
14: maxGain← 𝑔

15: 𝑐best ← 𝑐

16: end if
17: end for
18: clusters← clusters \ {𝑐min} \ {𝑐best}
19: 𝑐new ← 𝑐min ∪ 𝑐best ⊲ merge clusters

20: clusters← clusters ∪ {𝑐new} ⊲ add new cluster

21: utils[𝑐new] ← utils[𝑐min] +utils[𝑐best] −maxGain ⊲

update utilization of new cluster considering gain.

22: mergeTree[𝑛] ← clusters ⊲ save found 𝑖 clusters

23: end for
24: return mergeTree
25: end function

The full procedure of hierarchical clustering is outlined in Al-

gorithm 1. The initial clustering set clusters is initialized (line 2)

by considering all runnables as singleton clusters. The array utils
contains the CPU utilization of all clusters (line 3) and for any

cluster 𝑐 we denote its utilization of utils[𝑐]. The array of clusters

mergeTree (initialized at line 4) is meant to contain the set of all

found clusters. More specifically,mergeTree[𝑛] reports the solution
of how all runnables in N are partitioned in 𝑛 clusters.

The loop from line 5 to line 23 picks a pair of clusters and merges

them until a unique cluster with all runnables is created. At every

iteration, our algorithm first picks the cluster 𝑐min with the lowest

utilization (line 6). The second cluster 𝑐best to be merged with 𝑐min
satisfies two properties:

(1) it has utilization no greater than the average utilization of

clusters (enforced by the condition at line 10), and

(2) it has the highest gainmaxGain if paired with 𝑐min (enforced

by the condition at line 13).

171

Task and Memory Mapping of Large Size Embedded Applications over NUMA architecture RTNS 2023, June 07–08, 2023, Dortmund, Germany

The choice of this merging rule was proven to keep a very balanced

utilization of the clusters, while leading towards the best possible

decrease in utilization for all merge operations.

Once the joining pair of clusters is chosen, they are removed

from the set (line 18), all runnables that they contain are merged in a

new cluster 𝑐new (at line 19), which is then added to the set (line 20).

At line 21, the utilization of the new cluster 𝑐new is computed

accounting for the utilization of each of the merged clusters and

the gain maxGain they have from being together.

An immediate advantage of hierarchical clustering is the avail-

ability of the entire hierarchical tree recording the history of the

merges. Such a tree enables the designer to choose the desired level

of granularity. Once a level of granularity has been chosen, the

newly formed clusters are considered as “runnables” for the model

described in Section 5 and the problem of mapping runnables to

CPUs is solved with a significantly smaller set N .

6 AGGREGATION OF RUNNABLES INTO
TASKS

Runnables, we remind, are equivalent to functions to be properly

invoked. The division of software in runnables responds to spec-

ifications and principles at application design level. At the lower

OS level, instead, it may be infeasible (due to the potentially large

number of runnables) and it is certainly inefficient (due to context

switches) to dedicate an OS task to each runnable. For example, in

the 2017 WATERS Challenge [23], there are 1250 runnables, but

21 tasks only executing them, as reported in Table 1. It is then

necessary to establish criteria to aggregate runnables.

Our approach to aggregate runnables in tasks is applied after the

optimal mapping of runnables (or clusters of runnables) to CPUs

is performed as described in Section 5. We assume then to have

a solution to the mapping represented by the variables 𝑦𝑖,𝑘 and

𝑥same
𝑖, 𝑗

defined in (8) and (9), respectively. Let us now formalize the

aggregation of runnables.

• The set of tasks is denoted by T .
• The set of runnables inN to form task 𝑡 is denoted byN𝑡 ⊆
N . The subsets in {N𝑡 }𝑡 ∈T form a partition of N that is

every runnable 𝑖 ∈ N belongs to one and only one subset

N𝑡 .
• The equivalence relation ∼ over the pairs of runnablesN ×N
encodes the aggregation of runnables. In our case, 𝑖 ∼ 𝑗 if

“the two runnables 𝑖 and 𝑗 have the same release period and

none of them self-suspends”. We remark that our methodol-

ogy works for any other choice ∼ providing the properties
of equivalence relations.

• The runnables inN𝑡 belonging to the same task 𝑡 are defined

as follows

𝑖, 𝑗 ∈ N𝑡 ⇔ (𝑖 ∼ 𝑗) ∧ 𝑥same
𝑖, 𝑗 = 1 (17)

with 𝑥same
𝑖, 𝑗

being the variables representing the optimal map-

ping found in Section 5.

From our definition of ∼ above, it follows that

𝑖 ∼ 𝑗 ⇒ 𝑇𝑖 = 𝑇𝑗 , (18)

meaning that two runnables with different period, cannot be ag-

gregated together in the same task. Such assumption holds for the

Algorithm 2 Robust Priority Assignment [12]

1: function RPA(T𝑘) ⊲ tasks mapped to CPU 𝑘

2: pri← lowest priority available

3: Tunassigned ← T𝑘
4: while Tunassigned not empty do
5: 𝑧best ← −∞
6: for 𝑖 in Tunassigned do
7: Thp ← Tunassigned \ {𝑖}
8: 𝑧𝑖 ← slack of task 𝑖 ⊲ RHS of Eq. (21)

9: if 𝑧𝑖 > 𝑧best then ⊲ found a better task

10: 𝑧best ← 𝑧𝑖
11: 𝑖best ← 𝑖

12: end if
13: end for
14: priority[𝑖best] ← pri
15: pri← next priority higher than pri
16: Tunassigned ← Tunassigned \ {𝑖best}
17: end while
18: return priority
19: end function

2017 WATERS Challenge [23] and is recommended in software

design. Still, having runnables with different period in the same

task is possible. In such a case, the task implementation simulates

the different periods by counting the invocations of each runnable

and the execution pattern of the task becomes analogous to the

multi-frame task model [30]. The analysis of this case, however, is

left to future investigations due to the lack of space.

The definition of Equation (17) partitions runnables to tasks. We

can now define the parameters of tasks, starting from the parame-

ters of the runnables

• From (13), the execution cycles of task 𝑡 ∈ T are

𝐶𝑡 =
∑︁
𝑖∈N𝑡

(
𝐶0

𝑖 −
∑︁

𝑗∈N,𝑥 same
𝑖,𝑗

=1

Δ𝐶𝑖, 𝑗
)

(19)

• Because of (18), all runnables of a task have the same period

(or minimum interarrival time). Hence, ∀𝑡 ∈ T , we set 𝑇𝑡 =
𝑇𝑖 , picking any 𝑖 ∈ N𝑡
• The deadline of task 𝑡 ∈ T is

𝐷𝑡 = min

𝑖∈N𝑡

𝐷𝑖 .

• Finally, it is useful to introduce the partition of tasks over

the CPUs inM. We define

T𝑘 = {𝑡 ∈ T : 𝑖 ∈ N𝑡 , 𝑦𝑖,𝑘 = 1}.
Notice that this is a good definition because if 𝑦𝑖,𝑘 = 1 for

some runnable 𝑖 ∈ N𝑡 , then 𝑦 𝑗,𝑘 = 1 for all 𝑗 ∈ N𝑡 .

7 ASSIGNING PRIORITIES TO TASKS
For each CPU 𝑘 , the priorities of the tasks in T𝑘 are assigned based

on Robust Priority Assignment (RPA) [12], recalled in Algorithm 2.

The only adaptation w.r.t. the original RPA is the computation of

the maximum slack 𝑧𝑖 at line 8. Rather than using binary search as

originally proposed [12], we borrow the sensitivity analysis [6] to
find the exact expression of the per-task slack 𝑧𝑖 . More, precisely,

172

RTNS 2023, June 07–08, 2023, Dortmund, Germany Druetto, Bini, Grosso et al.

from the exact schedulability condition [24] properly modified to

account for the per-task weighted slack 𝑧𝑖

∃𝑡 ∈ P𝑖 ,
1

𝑡

©­«𝐶𝑖 + 𝐵𝑖 +
∑︁
𝑗∈Thp

⌈
𝑡

𝑇𝑗

⌉
𝐶 𝑗

ª®¬ ≤ 1 − 𝛼sched𝑖 𝑧𝑖

with

P𝑖 = {𝐷𝑖 } ∪ {𝑘𝑇𝑗 : 𝑗 ∈ Thp, 0 < 𝑘𝑇𝑗 < 𝐷𝑖 , 𝑘 ∈ N}, (20)

we find

𝑧𝑖 ≤ max

𝑡 ∈P𝑖

𝑡 −
(
𝐶𝑖 + 𝐵𝑖 +

∑
𝑗∈Thp

⌈
𝑡
𝑇𝑗

⌉
𝐶 𝑗

)
𝛼sched
𝑖

𝑡
, (21)

which is the expression used at line 8 of Alg. 2 for computing 𝑧𝑖 .

The blocking time 𝐵𝑖 in Eq. (21), is the time spent by task 𝑖

waiting for the execution of lower priority tasks on the same CPU

or any task on other CPUs. This may happen because of:

• An attempt to access to a shared resource locked by:

– a lower priority task within the same CPU, or

– a task executing on a different CPU;

• The invocation of a blocking system call such as a remote

procedure call (allowed by the AUTOSAR standard, for ex-

ample).

Several protocols can be used to protect resources shared globally.

In the case of the AUTOSAR standard, a discussion on their ap-

plicability to AUTOSAR and blocking times can be found in [39]

and [41], where linear formulations for lock-based protocols that

admit a bounded blocking time are presented. AUTOSAR requires

that a task can be terminated at any time, even when waiting (in a

spin lock) for a global resource. This can be in principle solved by

using the protocols in [9] and [37]. We remark that, shared resource

protocols for multiprocessor systems are outside the scope of this

paper and that our methodology can integrate any protocol above.

Complexity. Algorithm 2 is pseudo-polynomial as the cardinality

of P𝑖 of Eq. (20). In our experiments, Algorithm 2 completed in a

matter of tenths of a second.

8 EXPERIMENTS
8.1 The use case
Our experiments are based on the use case of an automotive appli-

cation provided by the WATERS 2017 challenge [23], whose size

was reported earlier in Table 1. Our methodology is relevant for

those applications which make an intensive use of labels in memory.

Applications with CPU-bound work and few memory operations

do not particularly benefit by our approach since the impact of the

mapping of labels is negligible.

In our experiments, we borrowed the values of the memory

access times from the datasheet of TC39xx architectures. Table 2

reports the stall cycles to access a 32-bit word. In the table

• The cycles for read and write accesses are reported;

• Since write operations are buffered, stall cycles “5,3” mean:

– 5 cycles for the first write of a 32-bit word,

– 3 cycles for the next consecutive writes;

• The column “local CPU” reports the access time from a CPU

to the directly connected to LRAM (direct accesses to GRAM

are not possible as shown in the architecture of Figure 1);

local CPU remote CPU

Memory type read write read write

LRAM 0 0 7 5, 3

GRAM n.a. n.a. 7 5, 3

Table 2: Stall cycles for memory accesses in TC39x. LRAM
denotes: Data Scratchpad RAM (DSPR) and distributed Local
Memory Units (dLMUs). GRAM denotes: Local Memory Units
(LMUs)) and Default Application Memory (DAM). (source:
Table 72 of User Manual [21])

• The column “remote CPU” reports the time for accesses

from a CPU to LRAM or GRAM which need to traverse the

crossbar (shown as a horizontal arrow in Figure 1).

Given these characteristics, we model the gain 𝑔𝑖,ℓ of the cycles

saved by one invocation of runnable 𝑖 when accessing the label ℓ

in the directly connected LRAM, by

𝑔𝑖,ℓ =

{
7 × num𝑖 × ⌈𝑠ℓ/4⌉ read accesses

5 + 3 × (⌈𝑠ℓ/4⌉ − 1) write accesses

with

• 𝑠ℓ denoting the size of the label ℓ in bytes

• ⌈𝑠ℓ/4⌉ accounting for accesses made by 4-bytes words

• num𝑖 denoting the number of reads by the one invocation

of runnable 𝑖

• and the expression of the write cycles accounting for the

different number of write cycles to the first word and the

following ones in presence of write buffers.

The model of the gain 𝑔𝑖,ℓ assumes that a runnable writes to a

label only once per invocation. This assumption originates from an

inspection of the WATERS 2017 use case, which does not contain

any information about the access statistics for the labels to be

written. Clearly, our approach can account for labels to be written

more than once whenever this information is available. Moreover,

we underline that our approach is compatible with any model of

the memory access times such as the one proposed in the WATERS

2017 challenge (which is 1 cycle to access to the directly linked

LRAM, 9 cycles for other accesses) or others. In fact, the gains 𝑔𝑖,ℓ
are fed as input to our problem.

To avoid trivial solutions (in which, for example, all runnables

fit onto the same core or the mapping is infeasible), we scaled the

execution cycles of all runnables such that:

• if no label is in LRAM, then the total utilization

∑
𝑖∈N 𝑓𝑖𝐶𝑖

is equal to 2.110 (still fitting on 4 CPUs)

• if all runnables have their used labels in the directly linked

LRAM, then the total utilization is equal to 1.479 (not fitting

a single CPU)

These values allow exploring rich scenarios for the mapping over

4 identical CPUs, and set upper and lower bounds to the total

utilization of any solution.

8.2 A Simulated Annealing approach
To evaluate the quality of the ILP solution, we implemented a simu-

lated annealing (SA) [2] mapping optimizer as baseline. The choice

upon a SA algorithm in spite of other meta-heuristics or genetic

173

Task and Memory Mapping of Large Size Embedded Applications over NUMA architecture RTNS 2023, June 07–08, 2023, Dortmund, Germany

algorithms is twofold: SA is a generally applicable and easy-to-

implement stochastic approximation approach, and it is able to

produce good solutions for an optimization problem even if the

underlying structure of the problem is not obvious nor easily un-

derstandable. Moreover, SA algorithms in the past history [5] have

outperformed the best known heuristics for several problems, while

for other problems their performance was comparable to specialized

heuristics finely-crafted to solve exactly those specific problems.

SA belongs to the category of randomized optimization tech-

niques and aims at optimizing a given objective function by per-

forming a sequence of random changes to the system configuration,

generating at every iteration a new mapping solution. At each step,

the new configuration is evaluated and retained if its performance

is better than the previous solution. If the new solution is worse, it

can still be conditionally accepted with a probability 𝑃 computed

by

𝑃 = 𝑒
−Δ𝑉
𝑇 (22)

which exponentially decreases with “temperature”𝑇 . This prevents

being stuck in a local optimum. Δ𝑉 is the difference between the

current and the new performance values.

The performance metric is the same as the ILP (maximization

of the slack as in Eq. (16)). The constraints are not explicit, to let

the algorithm explore unfeasible regions of the solution space and

guarantee the reachability of any possible configuration. However,

unfeasible configurations are penalized in the objective function,

hence the SA moves towards feasible solutions in the end.

The random modifications to the system configuration are real-

ized by 4 transition operators.

(1) Task priority: this operator picks a task of the system and

sets its priority to a different value.

(2) Runnable-to-task mapping: this operator chooses a runnable
of the system and moves it to another task. The runnable can

be moved to an existing task, or a newly created one. If the

task where the runnable was originally allocated contains no

runnables after the transition, it is removed from the system.

(3) Task-to-CPU mapping: this operator picks a task of the sys-

tem and moves it to a different CPU.

(4) Label-to-memory mapping: this operator chooses a label and
places it to a different memory where it can fit according to

the currently available space.

At every step, the algorithm randomly chooses the number of con-

secutive transition operators to apply to the current solution (be-

tween 1 and 3) and then randomly picks the operators. Applying

more than one operator at a time helps the SA escape local optima

during the search.

The algorithm was programmed to run with an initial tempera-

ture of 20000, a final temperature of 0.0001, a cooling rate of 0.94,

a maximum number of temperature values (MAXNUMCHAINS)

of 4000000, a maximum number of iterations for each temperature

value (MAXTRY) of 400000, a maximum number of acceptable con-

figurations for each temperature value (MAXCHANGE) of 20000

and a penalty multiplier 10 (in cost) for unfeasible configurations.

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 0 5000 10000 15000 20000 25000 30000

T
ot

al
 U

ti
li

za
ti

on

Total LRAM [B]

No local label
After binding

After clustering
After mapping
All local labels

Figure 5: Utilization as function of the allocated memory,
with 40 clusters.

8.3 Setup
The executions of the solver are performed over one of the cores

available in the 11th Generation Intel Core i7-11700, 2.5 GHz desk-

top, with Linux kernel 5.15.0.

To ease the process of data extraction and analysis of the 2017

WATERS challenge, described in XML, we implemented the parsing

process, the two polynomial algorithms to bind labels to runnables

(Section 4.1) and to aggregate runnables in clusters (Section 5.1),

and the pseudo-polynomial algorithm to assign priorities (described

in Section 7) in Python 3 [38]. The solver of the ILP problem to

map clusters to CPUs of Section 5 is made with COIN-OR Cbc [27].

Cbc is one of the best open-source integer optimization solvers, and

it is developed and maintained explicitly for research by the non-

profit COIN-OR Foundation. The communication between the main

Phyton code and solver is made by Python’s library Pyomo [19].

The solver was invoked as a single thread.

We underline that we purposely targeted a not-so-performing

implementation (e.g. Phyton, single-thread solver) to focus exclu-

sively on the optimization problems and leave room to further

performance improvements by those willing to make an industrial

product out of our research prototype.

Theweights to the slack𝛼mem
,𝛼cpu, and𝛼sched

𝑖
of Equations (14),

(15), and (21) are set as follows:

• 𝛼mem = 0 and 𝛼cpu = 1 meaning that we aim at balancing

the total utilization among CPUs and

• 𝛼sched
𝑖

= 1 meaning that we equally weight all tasks.

We tried different weights, which did not highlight any different

behavior.

8.4 Results
The experiment of Figure 5, made with 40 clusters, shows the impact

of the amount of allocated LRAM onto the total utilization of the ap-

plication. For reference, we also plot the upper and lower bounds to

the utilization found as described in Section 8.1. The “After binding”

plot corresponds to the total utilization of the whole application

after labels are bound to runnables (as described in Section 4). Then,

174

RTNS 2023, June 07–08, 2023, Dortmund, Germany Druetto, Bini, Grosso et al.

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0 5000 10000 15000 20000 25000 30000

S
la

ck

Total LRAM [B]

utilization-based upper bound
average slack

minimum slack among CPUs
per-CPU slack

simulated annealing (20h)

Figure 6: Slack of the mapping, with 40 clusters.

 1.52

 1.525

 1.53

 1.535

 1.54

 1.545

 1.55

 1.555

 0 10 20 30 40 50 60 70 80 90 100

T
ot

al
 U

ti
li

za
ti

on

clusters

After binding
After clustering
After mapping

Figure 7: Utilization as function of the number of clusters.

“After clustering” accounts for the extra utilization savings achieved

by hierarchical clustering (Section 5.1). And finally, “After mapping”

is the utilization after the clusters are mapped to CPUs. As expected,

the more LRAM is available for storing labels, the lower the final

utilization it is. We also observe that a much steeper descent is

achieved for the low values of LRAM. Our explanation is that stor-

ing in LRAM a very frequently used label has a greater impact on

utilization than storing another one with the same size, but used

less frequently.

Figure 6 shows the achieved slack. As the ILP optimzation targets

the maximization of the minimum slack among CPUs, we observe

that the per-CPU slacks are quite balanced. It is very striking to

observe that SA, despite running about 1500 times longer than the

proposed ILP approach, is always achieving significantly inferior

results.

The impact of the number of clusters on the utilization (Figure 7)

is as expected. As clusters get merged, their total utilization de-

creases, because the merged pair takes advantage of the commonly

used labels. On the other hand, if clusters are too few, then the

mapping has really little maneuvering margin to allocate clusters

which are then very coarse grained. To our experience, a number

between 20 and 40 demonstrated to be a good compromise when

mapping over 4 CPUs.

Phase average [msec] std deviation [msec]

Binding labels 10.7 8.1

Clustering runnables 338.6 40.0

Priority assignment 17.4 12.1

Table 3: Run-time of binding, clustering, and priority assign-
ment.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90 100
T

im
e

[s
ec

]
clusters

LRAM=16K
LRAM=3.2K

Figure 8: Run-time of mapping of clusters.

Let us now examine the run-time of the whole method. The run

time taken by the binding (Section 4.1), the clustering (Section 5.1),

and the priority assignment (Section 7) is negligible compared to the

time taken to map clusters over CPUs. Table 3 reports the average

and standard deviation of their run-times. Figure 8 shows the run-

time of the mapping of clusters (of runnables). Not surprisingly,

it grows rapidly with the number of clusters. We also observe

that if the amount of allocated LRAM is smaller (3.2K instead of

16K) then the run-time is also smaller. This happens because if the

LRAM is large, then there are more pairs of clusters with potential

utilization savings by staying together. Our explanation for the

observed decrease of the run time when the number of clusters

approaches 100 is that for such a value, the clusters gets smaller

and smaller. Hence, the pruning rules of the solver operate very

effectively.

9 CONCLUSIONS
In this paper we have illustrated a whole methodology for mapping

complex embedded software over NUMA architectures, exploiting

the features of the different memory areas. The key innovation

of our approach resides in the “binding” phase that reduces the

complexity of the problem by orders of magnitude.

In the future, we may exploit the efficiency of our method by

integrating it with other tools including measurement-based timing

analysis tools. Also, we may be investigating the adaptation of the

mapping in response to variations in the application features or

in the processing capacity. Finally, a valuable direction of further

investigation is the possibility to add end-to-end constraints, which

are very typical of automotive applications.

175

Task and Memory Mapping of Large Size Embedded Applications over NUMA architecture RTNS 2023, June 07–08, 2023, Dortmund, Germany

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers of pre-

vious versions of the paper for suggesting the usage of RPA [12]

and for fixing a few technical details.

REFERENCES
[1] 2017. Eclipse APP4MC. Eclipse APP4MC Website, https://www.eclipse.org/

app4mc/.

[2] Emile Aarts and Jan Korst. 1989. Simulated Annealing and Boltzmann Machines.
Wiley & Sons.

[3] Adrian Alexandrescu, Ioan Agavriloaei, and Mitică Craus. 2011. A genetic algo-

rithm for mapping tasks in heterogeneous computing systems. In 15th Interna-
tional Conference on System Theory, Control and Computing. IEEE, 1–6.

[4] Matthias Becker, Dakshina Dasari, Borislav Nicolic, Benny Akesson, Vincent

Nélis, and Thomas Nolte. 2016. Contention-free execution of automotive appli-

cations on a clustered many-core platform. In 2016 28th Euromicro Conference on
Real-Time Systems (ECRTS). IEEE, 14–24.

[5] Dimitris Bertsimas and John Tsitsiklis. 1993. Simulated Annealing. Statist. Sci. 8,
1 (1993), 10–15. https://doi.org/10.1214/ss/1177011077

[6] Enrico Bini, Marco Di Natale, and Giorgio Buttazzo. 2008. Sensitivity analysis

for fixed-priority real-time systems. Real-Time Systems 39, 1–3 (2008), 5–30.

https://doi.org/10.1007/s11241-006-9010-1

[7] Rahma Bouaziz, Laurent Lemarchand, Frank Singhoff, Bechir Zalila, and Mo-

hamed Jmaiel. 2018. Multi-objective design exploration approach for ravenscar

real-time systems. Real-Time Systems 54, 2 (2018), 424–483.
[8] Daniel Casini, Paolo Pazzaglia, Alessandro Biondi, and Marco Di Natale. 2022.

Optimized partitioning and priority assignment of real-time applications on het-

erogeneous platforms with hardware acceleration. Journal of Systems Architecture
(2022), 102416.

[9] Travis S. Craig. 1993. Queuing spin lock algorithms to support timing predictabil-

ity. 1993 Proceedings Real-Time Systems Symposium (1993), 148–157.

[10] Pedro Cuadra, Lukas Krawczyk, Robert Höttger, Philipp Heisig, and CarstenWolff.

2017. Automated scheduling for tightly-coupled embedded multi-core systems

using hybrid genetic algorithms. In International Conference on Information and
Software Technologies. Springer, 362–373.

[11] George B. Dantzig. 1957. Discrete-variable extremum problems. Operations
research 5, 2 (1957), 266–288.

[12] Robert I Davis and Alan Burns. 2007. Robust priority assignment for fixed priority

real-time systems. In 28th IEEE International Real-Time Systems Symposium (RTSS
2007). IEEE, 3–14.

[13] Hamid Reza Faragardi, Björn Lisper, Kristian Sandström, and Thomas Nolte. 2014.

An efficient scheduling of AUTOSAR runnables to minimize communication cost

in multi-core systems. In 7’th International Symposium on Telecommunications
(IST’2014). IEEE, 41–48.

[14] Frédéric Fauberteau and Serge Midonnet. 2010. Robust Partitioned Scheduling

for Static-Priority Real-Time Multiprocessor Systems with Shared Resources. In

18th International Conference on Real-Time and Network Systems. 217–225.
[15] Gabriel Fernandez, Jaume Abella, Eduardo Quinones, Luca Fossati, Marco

Zulianello, Tullio Vardanega, and Francisco J Cazorla. 2015. Seeking time-

composable partitions of tasks for cots multicore processors. In 2015 IEEE 18th
International Symposium on Real-Time Distributed Computing. IEEE, 208–217.

[16] Fabrizio Ferrandi, Pier Luca Lanzi, Christian Pilato, Donatella Sciuto, and An-

tonino Tumeo. 2010. Ant colony heuristic for mapping and scheduling tasks

and communications on heterogeneous embedded systems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 29, 6 (2010), 911–924.

[17] Simon Fürst, Jürgen Mössinger, Stefan Bunzel, Thomas Weber, Frank Kirschke-

Biller, Peter Heitkämper, Gerulf Kinkelin, Kenji Nishikawa, and Klaus Lange.

2009. AUTOSAR — A Worldwide Standard is on the Road. In 14th International
VDI Congress Electronic Systems for Vehicles, Baden-Baden, Vol. 62. 5.

[18] Mo Guan and Tong Tong. 2016. Ant colony algorithm based optimization method

for real-time task scheduling of multi-core system.

[19] William EHart, Jean-PaulWatson, and David LWoodruff. 2011. Pyomo: modeling

and solving mathematical programs in Python. Mathematical Programming
Computation 3, 3 (2011), 219–260.

[20] Robert Höttger, Lukas Krawczyk, and Burkhard Igel. 2015. Model-based automo-

tive partitioning and mapping for embedded multicore systems. In International
Conference on Parallel, Distributed Systems and Software Engineering, Vol. 2. 888.

[21] Infineon [n. d.]. AURIX™TC3xx User’s Manual. Infineon. Available

at https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-

microcontroller/32-bit-tricore-aurix-tc3xx/aurix-family-tc39xxx/.

[22] Yutaro Kobayashi, Kentaro Honda, Sasuga Kojima, Hiroshi Fujimoto, Masato

Edahiro, and Takuya Azumi. 2022. Mapping Method Usable with Clustered

Many-core Platforms for Simulink Model. Journal of Information Processing 30

(2022), 141–150.

[23] Simon Kramer, Dirk Ziegenbein, and ArneHamann. 2017. Automotive application

model based on APP4MC (WATER17). available at https://www.ecrts.org/forum/

viewtopic.php?f=31&t=108&sid=9e9dc98cfb2dac9e2606ef421789ceeb.

[24] John P. Lehoczky, Lui Sha, and Ye Ding. 1989. The Rate-Monotonic Scheduling

Algorithm: Exact Characterization and Average Case Behavior. In Proceedings of
the 10th IEEE Real-Time Systems Symposium. Santa Monica (CA), U.S.A., 166–171.

[25] Liu Liping. 2017. CPU (Central Processing Unit) performance optimization

method and device based on NUMA (Non-uniformMemory Access) architecture.

[26] Chung Laung Liu and James W. Layland. 1973. Scheduling Algorithms for

Multiprogramming in a Hard real-Time Environment. Journal of the Association
for Computing Machinery 20, 1 (Jan. 1973), 46–61.

[27] Robin Lougee. 2003. The Common Optimization INterface for Operations

Research: Promoting open-source software in the operations research com-

munity. IBM Journal of Research and Development 47 (02 2003), 57 – 66.

https://doi.org/10.1147/rd.471.0057

[28] Matias Maspoli, Matthias Knauss, and Marcin Nowacki. 2017. Method and device

for operating a many-core system.

[29] Shane D. McLean, Silviu S. Craciunas, Emil Alexander Juul Hansen, and Paul Pop.

2020. Mapping and Scheduling Automotive Applications on ADAS Platforms

using Metaheuristics. In 2020 25th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), Vol. 1. IEEE, 329–336.

[30] Aloysius K. Mok and Deji Chen. 1997. A multiframe model for real-time tasks.

IEEE Transactions on Software Engineering 23, 10 (Oct. 1997), 635–645.

[31] Fionn Murtagh and Pedro Contreras. 2011. Methods of Hierarchical Clustering.

Computing Research Repository - CORR (04 2011). https://doi.org/10.1007/978-3-

642-04898-2_288

[32] Suzuki Noriaki, Edahiro Masato, and Sakai Junji. 2012. Real time system task

configuration optimization system for multi-core processors, and method and

program.

[33] Suraj Paul, Navonil Chatterjee, Prasun Ghosal, and Jean-Philippe Diguet. 2020.

Adaptive Task Allocation and Scheduling on NoC-basedMulticore Platforms with

Multitasking Processors. ACM Transactions on Embedded Computing Systems
(TECS) 20, 1 (2020), 1–26.

[34] Paolo Pazzaglia, Alessandro Biondi, and Marco Di Natale. 2019. Optimizing the

functional deployment on multicore platforms with logical execution time. In

2019 IEEE Real-Time Systems Symposium (RTSS). IEEE, 207–219.
[35] Quentin Perret, Pascal Maurère, Éric Noulard, Claire Pagetti, Pascal Sainrat, and

Benoît Triquet. 2016. Mapping hard real-time applications on many-core proces-

sors. In Proceedings of the 24th International Conference on Real-Time Networks
and Systems. 235–244.

[36] Salah Eddine Saidi, Sylvain Cotard, Khaled Chaaban, and Kevin Marteil. 2015.

An ILP approach for mapping autosar runnables on multi-core architectures. In

Proceedings of the 2015 Workshop on Rapid Simulation and Performance Evaluation:
Methods and Tools. 1–8.

[37] H. Takada and K. Sakamura. 1994. Predictable spin lock algorithms with preemp-

tion. In Proceedings of 11th IEEE Workshop on Real-Time Operating Systems and
Software. 2–6. https://doi.org/10.1109/RTOSS.1994.292571

[38] Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateS-
pace, Scotts Valley, CA.

[39] A. Wieder and B. Brandenburg. 2013. On spin locks in AUTOSAR: Blocking

analysis of FIFO, unordered, and priority-ordered spin locks. In Proceedings of
the IEEE 34th Real-Time Systems Symposium. 45–56.

[40] Carsten Wolff, Lukas Krawczyk, Robert Höttger, Christopher Brink, Uwe

Lauschner, Daniel Fruhner, Erik Kamsties, and Burkhard Igel. 2015. AMALTHEA

—Tailoring tools to projects in automotive software development. In 2015 IEEE 8th
International Conference on Intelligent Data Acquisition and Advanced Computing
Systems: Technology and Applications (IDAACS), Vol. 2. IEEE, 515–520.

[41] M. Yang, A. Wieder, and B. Brandenburg. 2015. Global real-time semaphore

protocols: A survey, unified analysis, and comparison. In Proceedings of the IEEE
36th Real-Time Systems Symposium. 1–12.

[42] Yecheng Zhao and Haibo Zeng. 2018. The concept of unschedulability core for

optimizing real-time systems with fixed-priority scheduling. IEEE Trans. Comput.
68, 6 (2018), 926–938.

176

https://www.eclipse.org/app4mc/
https://www.eclipse.org/app4mc/
https://doi.org/10.1214/ss/1177011077
https://doi.org/10.1007/s11241-006-9010-1
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc3xx/aurix-family-tc39xxx/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc3xx/aurix-family-tc39xxx/
https://www.ecrts.org/forum/viewtopic.php?f=31&t=108&sid=9e9dc98cfb2dac9e2606ef421789ceeb
https://www.ecrts.org/forum/viewtopic.php?f=31&t=108&sid=9e9dc98cfb2dac9e2606ef421789ceeb
https://doi.org/10.1147/rd.471.0057
https://doi.org/10.1007/978-3-642-04898-2_288
https://doi.org/10.1007/978-3-642-04898-2_288
https://doi.org/10.1109/RTOSS.1994.292571

	Abstract
	1 Introduction
	1.1 Related works

	2 System model
	2.1 Hardware model
	2.2 Software model

	3 The problem
	4 Binding labels to runnables
	4.1 Polynomial-time algorithms

	5 Mapping runnables to CPUs
	5.1 Hierarchical Clustering

	6 Aggregation of runnables into tasks
	7 Assigning priorities to tasks
	8 Experiments
	8.1 The use case
	8.2 A Simulated Annealing approach
	8.3 Setup
	8.4 Results

	9 Conclusions
	Acknowledgments
	References

