
ar
X

iv
:2

30
5.

11
19

5v
2 

 [
cs

.L
G

] 
 2

2 
A

ug
 2

02
3

DClEVerNet: Deep Combinatorial Learning for Efficient EV
Charging Scheduling in Large-scale Networked Facilities

Bushra Alshehhi∗

100050085@ku.ac.ae
Khalifa University

Abu Dhabi, P.O. Box 127788, United
Arab Emirates

Areg Karapetyan∗

areg.karapetyan@nyu.edu
Khalifa University

Abu Dhabi, P.O. Box 127788, United
Arab Emirates

New York University Abu Dhabi
Abu Dhabi, P.O. Box 129188, United

Arab Emirates

Khaled Elbassioni
khaled.elbassioni@ku.ac.ae

Khalifa University
Abu Dhabi, P.O. Box 127788, United

Arab Emirates

Sid Chi-Kin Chau
sid.chau@acm.org

Australian National University
Canberra ACT 2601, Australia

Majid Khonji
majid.khonji@ku.ac.ae
Khalifa University

Abu Dhabi, P.O. Box 127788, United
Arab Emirates

ABSTRACT

With the electrification of transportation, the rising uptake of elec-

tric vehicles (EVs) might stress distribution networks significantly,

leaving their performance degraded and stability jeopardized. To

accommodate these new loads cost-effectively, modern power grids

require coordinated or “smart” charging strategies capable of opti-

mizing EV charging scheduling in a scalable and efficient fashion.

With this in view, the present work focuses on reservation man-

agement programs for large-scale, networked EV charging stations.

We formulatea time-coupled binary optimizationproblem thatmax-

imizes EV users’ total welfare gain while accounting for the net-

work’s available power capacity and stations’ occupancy limits. To

tackle the problem at scale while retaining high solution quality, a

data-driven optimization framework combining techniques from

the fields of Deep Learning and Approximation Algorithms is in-

troduced. The framework’s key ingredient is a novel input-output

processing scheme for neural networks that allows direct extrapola-

tion to problem sizes substantially larger than those included in the

training set. Extensive numerical simulations based on synthetic

and real-world data traces verify the effectiveness and superiority

of the presented approach over two representative scheduling al-

gorithms. Lastly, we round up the contributions by listing several

immediate extensions to the proposed framework and outlining

the prospects for further exploration.
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1 INTRODUCTION

Recent years have witnessed a surge in the adoption of electric ve-

hicles (EVs) as eco-conscious and economical alternatives to com-

bustion engine vehicles. Case in point, over one million EVs were

sold in China in 2018 alone [42], and it is estimated that by 2040,

approximately 700 million EVs will hit the roads worldwide [27].

Smart Grid (SG) technologies can facilitate EV integration and al-

low utilizing their elasticity for real-time load regulation purposes.

However, even with a moderate EV population, the excess demand

for charging power might place local distribution circuits under

critical strain, leading to potential stability issues and deteriorated

efficacy [5, 32]. In fact, as demonstrated in [5, 32], just 10% EV pen-

etration rate in a residential distribution network suffices to cause

inordinate voltage deviations, branch congestion, and overheating

of substation transformers, leaving the power system equipment

with shortened lifespan.

While the increased energy demand can be supported via grad-

ual capacity upgrades, the sudden spikes in EV and non-EV loads

require expensive fast generators as a backup, entailing high power

losses. Coordinated, or “smart”, charging strategies can mitigate

http://arxiv.org/abs/2305.11195v2
https://doi.org/10.1145/3575813.3595205
https://doi.org/10.1145/3575813.3595205
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these issues by exploiting the flexibility of EV users’ charging reser-

vation requests (e.g., at which station and/or time period to charge).

By optimizing the charging schedule based on these requests, coor-

dinated charging can improve energy utilization while still meet-

ing the needs of EV owners. Such schemes can be deployed in

public parking sites, workplaces, shopping malls, residential com-

plexes and would be particularly effective for large-scale charging

facilities.

To unlock this tremendous demand-side management potential,

SG operators require efficient and scalable means to tackle large-

scale scheduling problems. The optimization involved is time-coupled

and combinatorial in nature: deciding which EV may charge at

which station/rate and time given the available net power supply

over the scheduling horizon. Unlike convex programming, which

can be readily handled by off-the-shelf numerical solvers (e.g., Cplex

or Gurobi), combinatorial (discrete) optimization is generally no-

torious for being computationally expensive. To exemplify, Fig. 1

plots the execution time of Gurobi when applied to the combi-

natorial EV charging reservation management problem at hand

(dubbed EVCRP and formalized in Sec. 3). As observed from Fig. 1,

with growing problem size, the solver’s running time quickly turns

prohibitive andmay vary significantly depending on the input data.

Thanks to the inherent massive parallelism and powerful learn-

ing capacity (of approximating sophisticated non-linear mappings

from labeled data), Deep Neural Networks (DNNs) have gained

traction as an increasingly viable method to streamline decision-

making in complex large-scale engineering systems [14, 16, 25].

Specifically, problem instances routinely solved in practice often

share similar patterns or stem from related data distributions,which

DNNs can exploit and learn to imitate the known optimal/near-

optimal iterative algorithms, thereby dramatically boosting the com-

puting speed. However, the application of DNNs to constrained

optimization problems confronts with a number of hurdles. First,

the solutions predicted by DNNs may violate the problem con-

straints. Second, since the number of neurons in DNNs’ input layer

is normally predetermined, even a tiny increase in the problem size

(e.g., when several new EV users subscribe to EVCRP program)

will necessitate retraining the model1. Last but not least, obtain-

ing training sets for large-scale combinatorial problems with tens

of thousands of decision variables could prove computationally in-

tractable unless one accepts crude approximations.

To address the aforementioned concerns, we introduce a Deep

Combinatorial Learning framework, coined as DClEVerNet, that

can produce close-to-optimal feasible solutions to large-scale EVCRP

instances in sub/near-linear time. Notably, the proposed approach

conforms to EVCRP inputs of arbitrary cardinality without requir-

ing to retrain or alter the network structure (namely, the number

of neurons and connecting weights) for each input size, while also

maintaining satisfactory performance as the count of participant

EVs continues to rise. In summary, the current work complements

and advances the existing research with the following three-fold

contributions:

(1) By drawing on ideas from the toolbox of algorithmic tech-

niques, we devise a computationally conducive input-output

(IO) representation scheme for neural networks allowing to

1When the input data is straightforwardly fed into DNN.

Figure 1: Average computational time (across 10 runs) taken

to solve randomly generated EVCRP instances (considering

3 charging stations) with the Gurobi optimizer against the

input size at 95% confidence interval. Outliers are plotted as

crosses.

tackle packing (and covering) combinatorial problems in a

scalable and efficient fashion. With this scheme in place, a

neural network trained on small problem sizes can be di-

rectly invoked (without retraining) to generate approximate

solutions for the problem in high dimensional spaces. Fur-

thermore, the adaptive structure of the scheme allows tun-

ing the granularity of predicted optimization decisions to

govern the trade-off between complexity and performance

of the learning process (in a sense resembling an approxi-

mation scheme).

(2) We assemble a sampleDClEVerNetmodel2 consisting of a

feed-forward DNN3 augmented by the proposed IO scheme

and complemented by a simple (sorting based) and fast post-

processing routine for extracting feasible, approximate solu-

tions to EVCRP. Leveraging the scalability of DClEVerNet,

we employ the model trained on the inputs of EVCRP prob-

lem for 1500 users (4500 binary decision variables) to pro-

duce solutions to instances with up to 10, 000 users (30, 000

binary decision variables), achieving on average nearly 80%

of the optimal objective value.

(3) To consolidate the contributions, the performance of the

featured approach is scrutinized extensively under various

case studies based on both synthetic and real-world data

traces (acquired fromCaltech’s Adaptive Charging Network

(ACN) [22]). First, we demonstrate the scalability and effi-

ciency of DClEVerNet by contrasting it against two bench-

marks: (i) An adapted version of the polynomial-time ap-

proximation scheme (PTAS) recently developed in [19]; (ii)

A greedy baseline strategy prioritizing higher-valued requests.

Subsequently,we investigate the generalisability and robust-

ness of DClEVerNet to out-of-sample and out-of-distribution

inputs generated by perturbing the values of EVCRP param-

eters (e.g., the available power capacity or the number of

charging slots in stations).

2The trainedmodel along with its sample application tutorial can be accessed online at
https://drive.google.com/drive/folders/17miO6eaIxDqYmtXGrPQHV1brnjU81owh.
3Note that the framework is applicable beyond DNNs and can incorporate more com-
plex architectures, such as Convolutional Neural Networks or Transformers as elabo-
rated in Sec. 6.

https://drive.google.com/drive/folders/17miO6eaIxDqYmtXGrPQHV1brnjU81owh
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The remainder of this paper is organized as follows. Sec. 2 re-

views the related literature on the EV charging scheduling prob-

lem. Sec. 3 formulates the problemmathematically. In Sec. 4, we lay

out the proposed Deep Combinatorial Learning approach, and in

Sec. 5 validate its performance through extensive simulation stud-

ies. Lastly, Sec. 6 sketches several immediate extensions for future

work, followed by concluding remarks in Sec. 7.

2 RELATED WORK

As surveyed in [4, 29, 39], a considerable body of literature has

been published on controlled EV charging, proffering a rich arsenal

of techniques to cater for various operational objectives, such as re-

lieving power system congestion [1], maximizing EV owners’ con-

venience [38], minimizing charging expenses [11], enhancing volt-

age profile [6], valley filling [12, 38], to name a few. From amethod-

ological standpoint, the existing approaches can be broadly catego-

rized into three groups: approximation algorithms, heuristics/meta-

heuristics, and Deep Learning (DL) based methods.

Approximation algorithms are relatively simpler and faster than

exact solution methods, such as branch-and-bound and dynamic

programming. The salience of these algorithms manifests in prov-

able optimality guarantees quantified by approximation ratio, which

measures the performance gap against the optimal objective value

over all possible input realizations (i.e., in the worst possible sce-

nario). In [2], Alinia et al. formulate EVCRP as a 0-1 programming

problem that aims to maximize the total revenue obtained from

charged EVs while respecting local and global peak power con-

straints. Assuming all EVs start charging simultaneously, the au-

thors develop a primal-dual scheduling algorithm with a bounded

approximation ratio. Towards a more realistic heterogeneous sce-

nario, Majid et al. [19] devised a (1 − n) polynomial-time approx-

imation scheme (PTAS), where n ∈ (0, 1) parameterizes the de-

sired approximation ratio and the running time, to solve EVCRP

for constant-length scheduling horizons. Though theoretically sig-

nificant, these methods could be of limited practicality as improve-

ments in solution quality typically come at the expense of scalabil-

ity.

As such, heuristics/meta-heuristics are devoid of any optimality

guarantees, yet often prove practically valuable when applied to

combinatorial problems. The study in [28] formulates EVCRP as a

multi-objective optimization problem to maximize EV users’ rev-

enue (by minimizing the charging cost and duration while also in-

creasing the supplied energy). An evolutionary-inspired heuristic

search algorithm, Ant Colony, is invoked to attain scalability. How-

ever, the setting in [28] does not account for the power network

capacity constraint. Taking a step further, Liu et al. [24] consider

an extended formulation incorporating the power constraints. Yet,

a somewhat restrictive assumption is imposed that EVs must stop

in multiple charging stations to fulfill their power demand. On the

other hand, Sun et al. [38] frame EVCRP as two consecutive prob-

lems, where the first schedules the requests to achieve a flat load

profile, whereas the second, which is combinatorial, aims to min-

imize interruptions during charging to preserve EVs’ battery life.

The authors provide a simple heuristic algorithm and evaluate its

performance empirically through simulations.

Different from the above two, DL-based approaches can learn

representations of data and then capitalize on the inferred infor-

mation to guide or aid the decision-making process. In general, the

existing learning-based approaches to optimization problems fall

under two themes: end-to-end (i.e., standalone) and hybrid. Stud-

ies focusing on the former, e.g., [7, 31, 34, 44], utilize DL tech-

niques to predict the solutions directly (without solving the op-

timization problem) by mapping the input data to the desired out-

put (e.g., the optimal solution). For instance, the work in [44] con-

structs a DNN to learn the optimal load-generation mapping in

the DC Optimal Power Flow problem. Such methods can capture

complex relationships between the input data and the output, yet

may not be able to exploit the problem’s structural properties. In

contrast, hybrid approaches pair known traditional optimization

methods or numerical solvers withmachine learning techniques [8,

13, 15, 40, 41]. This allows incorporating problem-specific knowl-

edge/techniques to improve the computational efficiency of these

algorithms or speed up the solvers. For example, Xu et al. [41] em-

pirically enhance dynamic programmingwithDNNs to tackle com-

binatorial optimization problems in a computationally more effi-

cient manner. Gasse et al. [13], on the other hand, present a Graph

Convolutional Neural Network model to speed up mixed-integer

linear programming solvers by automatically learning on which

variables to branch.

Among various DL techniques, DNNs [21] are by far the most

prevalent and mature models [14]. Typically, DNNs comprise a

series of layers stacked on top of each other, which collectively

seek to approximate complex non-linear mappings. The universal

approximation capability [16] coupled with the coveted computa-

tional efficiency renders DNNs particularly suited for large-scale

optimization tasks. This stimulated application of DNNs to smart

charging of EVs [3, 23, 26, 35, 36] (see [43] for a recent review) as

well as to power system problems in general [10, 44]. The study

in [3] proposed to utilize Deep Reinforcement Learning within

a dynamic pricing framework as an alternative to the traditional

on-peak and off-peak pricing. Some prior research studies consid-

ered a simplified variant of EVCRP, where the problem is reduced

to a classification task of predicting the EV charging rate, charg-

ing location, or the mode of charging (i.e., charging or discharg-

ing) [35, 36]. In [36], the authors compare the performance of vari-

ous machine learning approaches, including Decision Tree (DT),

Random Forest (RF), Support Vector Machine (SVM), K-Nearest

Neighbours (KNN), Long Short-Term Memory (LSTM) and DNN.

The developedmethod relies on two separate classifiers for predict-

ing the charging rate and the charging location, respectively. For

both classifiers, RF and LSTM achieved the highest accuracy. How-

ever, it is important to note that casting EVCRP as the said classifi-

cation task limits the network operator functionalities, hence the

demand-side management potential.

To reduce charging costs, Lopez et al. [26] develop a DNN-based

strategy that can determine the optimal EV charging periods in re-

sponse to real-time electricity price signals. The model was trained

with historical data of charging sessions as inputs and the corre-

sponding optimal solutions (calculated by Dynamic Programming)

as prediction labels. In [23], Li et al. additionally consider the ef-

fect of discharging operations and propose a reinforcement learn-

ing framework wherein policies are optimized by invoking DNNs.
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Nevertheless, for constrained optimization problems, which are a

departure from those studied in [23, 26], DNNs do not necessar-

ily guarantee a feasible solution due to lacking representation of

the exact feasibility region as well as their inherent and inevitable

approximation errors. Recently, Zhao et al. [44] proposed a DNN-

based scheme for DC Optimal Power Flow problem that assures

the feasibility of output generator set-points. The underlying idea

is to “preventively” adjust (perturb by an appropriate magnitude)

the constraints during the training stage, thereby anticipating ap-

proximation errors and warding off potential violations in the test-

ing phase. While beneficial on its own, this method does not seem

amenable to combinatorial optimization problemswith binary/integer

variables.

3 PROBLEM STATEMENT

Recall that in the problem under study, the charging network oper-

ator seeks to determine binary scheduling assignments (reflecting

the accept/reject decisions) for the charging reservation requests

of subscribed EV users containing the preferred charging stations

(CSs), intervals, and valuations. We assume a centralized control

scheme wherein the requests are elicited in an apriori manner (e.g.,

a day ahead); hence, all users’ profiles are accessible beforehand.

In the said network, embedded within and supplied by a power

distribution grid, CSs are indexed by the set C and distinguished by

their charging power rate A2 ∈ R, 2 ∈ C. We consider a time-slotted

system model in which the scheduling horizon T , {1, . . . ,) } is

discretized into ) equidistant intervals according to the desired

frequency of control signals. In the set of participant EVs, denoted

by A, each customer 0 ∈ A lodges a charging request which in-

cludes
(

C0, {T0
2 }2∈C0

)

, where C0 ⊆ C is the set of favored CSs

and T0
2 ⊆ T are the corresponding preferred charging periods, in

order to fulfill their charging power demand %0 = %02 , A2 |T
0
2 |

for ∀ 2 ∈ C (Note that the power demand is invariant across CSs).

Accordingly, shall user 0’s request be accepted, the scheduler will

select one among 0’s preferred options and reserve the correspond-

ing electric vehicle supply equipment (EVSE) for the requested du-

ration. Let G02 denote the scheduling decision for user 0 ∈ A, then

G02 =

{

1, If user 0 is assigned to charge at the CS 2 ∈ C0

0 Otherwise
.

To model users’ welfare, define the gain for each user 0 ∈ A with

respect to the charging decision G02 as

�0 (G02 ) , D0G02 −
∑

C∈T02

cost(C) · G02 , (1)

where cost(C) refers to the time-varying electricity cost andD0 is a

user-defined parameter included in the charging request that mea-

sures the utility perceived by customer 0. Here, utility quantifies

the extent of user-obtained comfort or, alternatively, the worthi-

ness (valuation) of receiving the requested charging power. In this

context, �0 (G02 ) can be interpreted as the savings gained by user

0 from participating in the reservation program. Without loss of

generality, we suppose that D0 is sufficiently large so that �0 (G02 )

is non-negative for ∀ 0 ∈ A, 2 ∈ C. For brevity, in what follows,

we shall write �0 to denote users’ gain if the charging request is

satisfied (i.e., G02 = 1 for some 2 ∈ C0 ) and henceforth refer to �0

as user 0’s conditional gain. Also, we define ' ,
�0

%0
to be user 0′B

conditional gain-to-power ratio.

To account for practical aspects, we assume that in addition

to the EV load, the network supplies energy to residential and

commercial consumers, referred to as background active power de-

mand or base load and denoted by 3 (C) ∈ R at time C ∈ T . Addi-

tionally, to cater for physical limitations, we bound the total power

capacity of the network by % and cap the occupancy limit of each

CS 2 ∈ C by #2 corresponding to the number of installed EVSE.

With the above notation, EVCRP translates into the following

combinatorial optimization problem:

max
G02

∑

0∈A

∑

2∈C0

�0 (G02 )
(

EVCRP
)

s.t. 3 (C) +
∑

0∈A

∑

2∈�0 : C∈T02

A2 · G
0
2 ≤ %, ∀ C ∈ T (2)

∑

2∈�0

G02 ≤ 1, ∀ 0 ∈ A (3)

∑

0∈A : 2∈�0 , C∈T02

G02 ≤ #2 , ∀ 2 ∈ �, C ∈ T (4)

G02 ∈ {0, 1}, ∀ 0 ∈ A, 2 ∈ C . (5)

EVCRP seeks to maximize users’ total welfare gain while consid-

ering both local and global peak constraints in the networked CSs.

Constr. (2) stipulates the total supplied power to remain below the

network’s maximum capacity. Constr. (3) ensures that each user is

assigned only to one CS. Constr. (4) imposes a limit on the number

of customers who can charge at a particular CS at any given time

so that it does not exceed the maximum number of EVSE. Finally,

Constr. (5) enforces the integrality of decision variables.

The crux of solving EVCRP lies in its combinatorial structure

imposed by the binary decision variables - ,
(

G02
)

0∈A,2∈C . As

such, EVCRP specializes to several classical NP-hard combinato-

rial problems, including the two-dimensional Knapsack problem

(when |T | = |C| = 1) and the Unsplittable Flow on a Path problem

(when |C| = 1 and Constr. (4) is ignored). This rules out EVCRP’s

NP-hardness and hints that it is substantially more complicated

than the latter two problems. Given these facts, designing scal-

able and near-optimal scheduling algorithms for EVCRP becomes

markedly challenging. In the proceeding section, through a judi-

cious combination of algorithmic and DL techniques, we devise

a Deep Combinatorial Learning framework that, on average, can

closely approximate the optimal solutions of large-scale EVCRP in-

stances in linear time.

4 PROPOSED APPROACH

This section introduces DClEVerNet and provides a detailed de-

scription of its architecture. First, we outline the methodology of

the proposed framework and highlight the challenges inherent to

designing a learning-based approach for combinatorial optimiza-

tion problems, and how the framework addresses these hurdles.

The framework’s structure is comprised of three modules: (1) Pre-

processing step that downsamples (compresses) EVCRP input into

a succinct representation; (2) DNN for predicting the distribution

of users in the optimal solution; (3) Fast post-processing procedure

to extract a feasible solution from the prediction. Each of these



DClEVerNet: Deep Combinatorial Learning for Efficient EV Charging Scheduling in Large-scale Networked Facilities e-Energy ’23, June 20–23, 2023, Orlando, FL, USA

components is thoroughly analyzed and explained in the follow-

ing subsections.

Notational Convention: In the remainder of this paper, unless

otherwise explicitly stated, we shall enclose the inputs of proce-

dures, such as counting or averaging, within the operator [ ]. Given

a vector/set E we let |E | symbolise itsmagnitude/size and wewrite Ẽ

to denote the normalization of the elements in E by a certain value.

4.1 Overview and Challenges

As illustrated in Fig.2, which depicts the high-level schematics of

DClEVerNet, the methodology can be broken down into two dis-

tinct phases: training and prediction. During the training phase,

input instances of EVCRP and their corresponding solutions (from

which the prediction labels are constructed) are fed to the neural

network. The primary objective of the training phase is for the

DNN to acquire the ability to predict solutions for previously un-

seen instances of EVCRP during the prediction phase.

A significant amount of research has been conducted to explore

the application of DNNs for solving combinatorial optimization

problems (COPs). One of the challenges encountered is adequately

representing the optimization problem as features and labels (i.e.,

input and output of the DNN). COPs often involve a large num-

ber of variables and complex constraints and objectives, making

it difficult to encode an appropriate input representation for the

network. Despite the robust nature of DNNs, poorly represented

input can affect their performance.

A well-defined input reduces the number of parameters to be

learned by the network, thus resulting in a more efficient training

process. Furthermore, compact inputs can also help reduce over-

fitting, which is a common problem in DNNs. Overfitting occurs

when a model performs well on the training data but poorly on

unseen data. This is because the model has learned to fit the noise

and redundancy in the training data rather than generalizing to

new examples.

The main challenge in remodeling a COP solution as a label

is the discrete format of the data representation. Applying this to

deep learning models that work best with continuous data can be

challenging. In addition, encoding the optimal solution as the out-

put of a DNN is not a recommended practice due to its inherent

sparsity. The optimal solution to many real-world problems is of-

ten sparse. In such cases, encoding the solution directly into the

Figure 2: High-level block diagram of the featured DL-

assisted optimizer enabling rapid computation of near-

optimal solutions to EVCRP.

output layer of a DNN would result in a large number of parame-

ters, many of which would have little impact on the solution. This

would render the model difficult to train and could lead to overfit-

ting.

In view of the above, the authors in [26] designed a DNN that

outputs decisions for a single EV at a time. Given only the cur-

rent state of the battery, the output is a single variable to indicate

whether to admit the user or not. The downside of this approach is

that the decisions are (locally)madewithout considering the entire

set of EV requests, which could lead to highly suboptimal global

solutions. The study in [17] addresses the issue by utilizing the ca-

pability of DNN to predict a partial solution to the optimal power

flow problem (OPF). Then, the final solution is constructed by solv-

ing OPF initialized with the DNN output. This approach is suitable

for small-scale instances since it requires numerical solvers for con-

structing the final solution and is hence limited by the capabilities

of these solvers.

Feeding DNNs with a feasible solution is not sufficient to guar-

antee the feasibility of output solutions. Therefore, the authors

in [30] propose incorporating a penalty term in addition to the

mean square error (MSE) loss function. However, it is still possible

that the obtained solutionwill not satisfy all the constraints. There-

fore, a post-processing step, in which the nearest feasible solution

is chosen greedily, was employed. To ensure feasibility, in [44], the

authors improve the approach by calibrating the penalty to be en-

forced when the constraints are within a percentage of the viola-

tion value. While this approach shows some promise, it is not triv-

ial to tune the calibration for optimal performance. In addition, for

EVCRP, calibration of constraints may lead the network to learn

a significantly suboptimal solution due to the discreteness of the

problem.

Importantly, all of the aforementioned studies require re-training

if the input size (e.g., number of EV requests) is varied. The present

work introduces a novel approach that overcomes the above limi-

tations. In DClEVerNet, we tackle the encoding of EVCRP inputs

and outputs through a judiciously constructed scheme (detailed in

Sec. 4.2) that enables scalability. Unlike existing methods in the re-

lated literature, we model the DNN input as groups of EV charging

requests. This parses the input size invariant to the number of EV

charging requests. The output of the network is the optimal dis-

tribution of allocated users with respect to groups, thus allowing

the network to be able to handle large-scale instances. The feasibil-

ity is assured through a lightweight post-processing routine that

extracts the solution from the predicted distribution (detailed in

Sec. 4.4).

In the current study, we utilize a training dataset labeled with

optimal solutions obtained from the Gurobi solver. However, for

certain combinatorial optimization problems, such as the Travel-

ing Salesman Problem, it may be computationally infeasible to find

the optimal solution when the problem size is large. An alternative

approach is to construct the training data based on near-optimal so-

lutions obtained from known efficient approximation algorithms.

By training the model on these solutions, the network can learn

to imitate the underlying principles of the utilized approximation

algorithm, thereby unlocking substantial speedup gains.
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Figure 3: Detailedarchitecture of the constructed sampleDClEVerNetmodel comprised of aDNNaugmentedby the proposed

input-output processing scheme. For scalability, in the pre-processing step, EVCRP input is downsampled via grouping and

averaging to allow succinct representation. The output layer predicts the number of users within groups in EVCRP’s optimal

solution.

4.2 Pre-processing

Recall that EVCRP’s input consists of EV users’ charging reserva-

tion requests characterized by the set of favored CSs, the corre-

sponding preferred charging intervals, and conditional gains asso-

ciated with each request. As seen from Fig. 3, we first partition

the requests by the requested charging station into |C| groups. For

each station 2 ∈ C, the conditional gains for users in the respective

group are normalized by dividing by the maximum value within

that group. Then, the requests in each group are further classified

into & groups based on their normalized conditional gains in de-

scending order. In particular, the set of users @8 in the 8Cℎ group is

as follows:

@8 ,

{

0 :
8 − 1

&
< �̃0 ≤

8

&
, 0 ∈ A

}

, ∀ 8 = 1, . . . , & , (6)

where �̃0
,

�0

max0∈@8 �
0
denotes the conditional gain of user 0

normalized by the maximum conditional gain among the users in

@8 . The rationale underlying this clustering criterion is to produce

groups wherein the difference between users’ conditional gains is

bounded. In other terms, the users within a group share roughly

“similar” conditional gains and can be represented by a “centroid”

user. This, in turn, allows for decision-making at a group level

rather than at an individual level without inflicting a significant

loss in the total gain of the selected customers. Such grouping

schemes have been frequently employed in theoretical computer

science literature to devise approximation algorithms for packing

optimization problems. For instance, a similar method inwhich the

users are discerned into a logarithmic number of groups wherein

their utilities differ by no more than a constant factor was em-

ployed in [9, 18, 20] to devise approximation algorithms for differ-

ent variants of the Unsplittable Flow on Paths and A -weighted Min-

imization Knapsack problems. This method provides a systematic

and efficient manner of downscaling the inputs of packing/covering

COPs. Note that the partitioning criteria can be adapted based on

the problem type. In addition to conditional gains, users can be

alternatively clustered based on their utility, power demand, or

utility-to-demand ratio.

For DNN to learn the optimal scheduling of EV charging re-

quests effectively, the network must gain a comprehensive under-

standing of the constraints and parameters of EVCRP. In this re-

gard, as illustrated in Fig. 3 we include the normalized load profile

3̃ (C)C∈T in the input layer. This intends to convey the congestion

status of the power network at any given time slot. Each group @8
is represented by four key input entities that summarize the infor-

mation of users in @8 :

(1) �E6[(%̃0 )0∈@8 ] - The average %̃
0
,

%0

%
of ∀ 0 ∈ @8 , where

%̃0 is user 0’s power demand normalized by the capacity of

the power network % .

(2) ˜#$* [@8] - The group size normalised by the total number

of users |A|, i.e., ˜#$* [@8 ] ,
|@8 |

|A|
;

(3) �E6[(�̃0 )0∈@8 ] - The average �̃0 (as defined above) of all

the users in group @8 ;

(4) �E6[('̃0 )0∈@8 ] - The average '̃0 ,
'0

max0∈ (@8 )8=1,...,& '0
of

the users in @8 , where '̃0 is user 0’s conditional gain-to-

power ratio normalized by the maximum ratio among all

the users in the corresponding CS.

In addition to the aforementioned input entities, we also include

for each charging station 2 ∈ C the normalized number of charg-

ing requests in each time slot. The normalization was done with

respect to the maximum number of requests at any time slot in

the corresponding CS. The adopted DNN can benefit from this in-

formation by learning the temporal dynamics of the charging re-

quests, which can aid in identifying the peak charging periods. We

note that input normalization can play a crucial role in the effi-

ciency of the learning process as well as aid in preventing overfit-

ting. As transpires from the simulation results presented in Sec. 5,
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taken together, these input entities allowed the trained sampleDClEV-

erNet model to extract transferable knowledge about the struc-

ture and parameters of EVCRP.

One of the key design considerations when encoding the EV re-

quests as proposed is determining the number of groups & . The

latter corresponds to the input data’s granularity; thus, increasing

the number of groups will result in a more detailed representation

of the input. This can be beneficial for applications for which ac-

curacy is of crucial importance. However, to ensure efficient train-

ing, the size of the training data should be increased. Conversely,

decreasing the number of groups compresses the input resulting

in a more general representation of the input. The advantage of

this is that the DNN will identify the most salient features of the

input data, and the compressed representation will highlight the

most important information. Aside from the representation, the

number of groups governs the number of parameters in the model

to be trained, hence directly affecting the required computational

resources. Therefore, the input dimensionality should be adjusted

considering the trade-off between the desired accuracy and the

available computational resources.

4.3 Network Architecture

As illustrated in Fig.3, we adopt a multi-layer feed-forward neural

network architecture of the form:

.0 =

[

3̃ (C)C∈T , j
�(1 , . . . , j�(

|C |
]

, (7)

.8 = f
(

,8.8−1 + 18

)

, ∀ 8 = 1, 2, . . . , � (8)

.̂ = f′
(

,�+1.� + 1�+1

)

, (9)

where j�(
1

encodes the input entities for CS 1, as depicted in Fig. 3

and detailed above, .0 and .̂ are the input and output layers, re-

spectively, while .8 is the output vector of the 8-th hidden layer

(out of� in total) which depends on the weights,8 , biases 18 , and

the output of the previous layer .8−1. In Eqns. (8) and (9), f (.) and

f′ (.) stand for the Rectified Linear Unit (ReLU) activation func-

tions used in the hidden layers and the linear activation function

for the output layer, respectively. ReLU allows the network to learn

non-linear relationships in the data, and the linear activation func-

tion allows the output layer to produce continuous values that rep-

resent the number of users in each group. In the present study, we

construct a DNNwith nine hidden layers, thus� = 9. The number

of neurons in the first hidden layer is 800, gradually decreasing to

50 as the layers become deeper. As a loss function, we utilize the

mean squared error (MSE):

L"(� =
1

=

=
∑

8=1

(

. 8 − .̂ 8 )2 , (10)

where = is the number of samples, .̂ 8 is the prediction of the net-

work for sample 8 , and . 8 is the corresponding ground truth value.

The selection of MSE as a loss function rests on extensive experi-

mentation with various alternatives, including Huber Loss, mean

percentage error, and mean absolute error. In particular, the exper-

imentation results revealed that MSE provided the most accurate

and reliable performance.

Similar to the grouping in the input layer, the EV requests in

the output are grouped by the requested charging station into |C|

groups. For each station 2 ∈ C, the requests are partitioned into !

groups based on �̃0 in descending order. Let ;8 be the set of users

in the 8-th group, then

;8 ,
{

0 :
8 − 1

!
< �̃0 ≤

8

!
, 0 ∈ A

}

, ∀ 8 = 1, . . . , ! . (11)

For further granularity, in each group ;8 , the power demand is nor-

malized by dividing over % , and the requests are partitioned into

+ groups based on their normalized power demand in ascending

order. Denote by E8 the set of users in the 8-th group such that

@8 ,
{

0 : (1 −
8

+
) < %̃0 ≤

+ − 8 + 1

+
, 0 ∈ A

}

, ∀ 8 = 1, . . . ,+ ,

(12)

where %̃0 denotes the normalized power demand of user 0 ∈ A.

The groups have been arranged so that the first group comprises

users with the highest conditional gain and the lowest power de-

mand. The output layer denoted by .̂ consists of
�

�.̂
�

� =
(

|C| · ! ·+
)

neurons. Each output neuron in .̂ represents the number of users

to include in the final solution from each group.

4.4 Post-processing

As previously noted, the network learns the distribution of user

categories in the optimal solution thus requiring post-processing

to extract the final solution of EVCRP. For the purposes of the cur-

rent study we employ a greedy approach explained in Alg. 1.

The output of the DNN, .̂ , representing the number of users

to be assigned to each group 9 , serves as an input to Alg. 1. The

algorithm proceeds by rounding down the elements of .̂ to their

nearest integer values. For each group 9 , we defineM as the set

of prospective users in group 9 sorted in descending order of their

�0 . Then, the algorithm iterates overM , selecting the users unless

the solution is deemed infeasible. The feasibility of the solution is

contingent upon constraints (2) to (5). Constr. (2) is violated if the

maximum network capacity is exceeded at any point in time. Con-

str. (3) requires a user to be assigned to only one charging station.

Constr.(4) is violated if the number of assigned users in any station

exceeds #2 . Lastly, as the procedure either accepts or rejects users,

constraint (5) is ensured to be met. In the event that incorporating

a user leads to an infeasible solution, their charging request will be

declined, and the algorithm continues to the next user inM . The

algorithm terminates when either the proposed number of users

to be added to group 9 is zero or all the users in the group have

been evaluated.

The number of groups
�

�.̂
�

� (i.e., the number of neurons in the

output layer) is an important hyperparameter that can have a sig-

nificant effect on the performance and accuracy of the model. Re-

call that
�

�.̂
�

� can be manipulated by varying ! and/or + . The ac-

curacy of the model can be positively affected by the increase in

the number of groups, since the search space of Alg. 1 is reduced.

Yet, an excessive number of groups (e.g., comparable to the num-

ber of EV users), hence output neurons, will likely result in highly

sparse predictions leading to increased complexity and a higher

chance of overfitting. These aspects combined can degrade the per-

formance severely. Likewise, reducing the number of groups ex-

pands the search space thus requiring more computational power
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Algorithm 1 Post-processing Routine

Input: .̂

Output: Solution - to EVCRP

1: .̂ =

⌊

.̂
⌋

2: for 9 ∈ .̂ do

3: M← Users in group 9 sorted in descending order of their

utility values.

4: NOU ( 9) = |M|

5: V ← .̂ ( 9)

6: [ ← 0

7: while V ≠ 0 AND [ ≤ NOU ( 9) − 1 do

8: - (M[) = 1

9: if - is not feasible then

10: - (M[) = 0

11: else

12: V = V − 1

13: end if

14: [ = [ + 1

15: end while

16: end for

during post-processing. Consequently, adjusting this number can

improve the predictions made by the model, but it is important to

consider the trade-offs between computational efficiency and per-

formance. Ultimately, the optimal number of neurons in the out-

put layer should be determined through empirical experimentation

and evaluation using appropriate evaluation metrics.

To guarantee a feasible solution to EVCRP, Alg. 1 verifies the

constraints’ violations in line 9. The computational complexity of

this post-processing routine depends on the number of groups and

the sorting procedure within each group. Assuming that the num-

ber of users in each group is constant (i.e., << |A|), the computa-

tional time amounts toO
(

|.̂ |+ |C| · |T |
)

. In the unlikely worst-case

scenario whereDClEVerNet forecasts a solution instance with all

the users partitioned into a single group, the computational com-

plexity would be O
(

|A| log |A| + |A| · |C| · |T |
)

.

5 EVALUATION STUDIES

In this section, the performance of the proposed approach is evalu-

ated by simulations. The considered criteria are the approximation

ratio and the running time.

5.1 Simulation Setup and Settings

Distribution network setting: The capacity of the power substa-

tion, denoted by % , is set to be 1MW. The base-load, denoted by

3 (C), varies and is dependent on the time of the day. In our sim-

ulations, we adopt three base-load profiles as depicted in Fig. 4;

each profile represents the daily average household load profile in

the service area of South California from 00:00, January 1, 2011, to

23:59, January 3, 2011 [37]. Each EV has the option to charge in

3 charging stations with charging rates of 1.5:W, 7Kw, and 50kW,

respectively. In each station, the number of installed chargers, de-

noted by #2 , is set to 200.

Figure 4: The considered three versions of base-load profiles

based on 650 households.

Scheduling horizon: We consider a 24-hour time horizon divided

into 96 slots of 15 minutes, i.e., |T | = 96.

Training and Testing data: For training the presented DClEVer-

Netmodel, 50, 000input samples were produced, to which an 80/20

split was applied to divide the data into training and test sets. The

data is equally comprised of synthetic and real-world charging re-

quests. The synthetic data are based on real-world patterns. Ac-

cording to [33], most EV users start charging when return home at

18:00, and more than 90% of EVs start charging between 13:00 and

23:00. Therefore, the start time can be modeled as a normal distri-

bution with a mean of 18:00 and a standard deviation of 5 hours.

We set the charging start time at random (following a normal dis-

tribution) and its length to the time needed to fulfill the energy

requirement. The energy required for user 0 ∈ A was formulated

as follows:

%0 =

(

1 −
SOC0

100

)

· �0 , (13)

where SOC0 and �0 are the state of charge and the battery size for

user 0 ∈ A.

The SOC is modeled as a truncated normal distribution with a

mean of 0.5 and a standard deviation of 0.3. For each EV, the SOC

is limited between 20% to 80%. Similarly, �0 is modeled as a nor-

mal distribution with a mean of 24kW and a standard deviation

of 10kW, for ∀ 0 ∈ A. For real-world data, we are utilizing the

Caltech Adaptive Charging Network dataset [22], which is a com-

prehensive collection of data related to the energy consumption

patterns and charging behaviors of electric vehicles within a net-

work environment. The dataset contains rich information about

EV driving and charging patterns. We adopt the arrival time and

the power demand of EVs on Tuesdays.

For inclusivity, this study evaluates two distinct settings for util-

ity values. The first setting involves a linear utility, which can be

expressed as:

D0 = 0.36 · %0 , (14)

where 0.36 is the peak electricity price. The second setting involves

a random selection of utilities within the range from 5000 to 8000.

In the case studies performed, the energy cost is based on the

time of use rate in South California [37]. For both the training and

testing data, the non-EV load is chosen to be the load profile 1

pictured in Fig 4.

Benchmark algorithms:
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(a) The average approximation ratio and running time of PTAS∗,

DclEVerNet [Q=4, L=10,V=10], and GreedyU on 250 EVCRP instances

randomly taken from the synthetic testing dataset.

(b) The average approximation ratio and running time of PTAS∗,

DclEVerNet [Q=4, L=10,V=10], and GreedyU on 250 EVCRP instances

randomly taken from the ACN testing dataset.

Figure 5: Performance comparison of DclEVerNet, GreedyU, and PTAS∗ algorithms on the synthetic and ACN datasets.

• PTAS∗: A PTAS is an algorithm that for any n > 0 is guar-

anteed to produce a (1 − n)-approximation to a given max-

imization problem. The running time of a PTAS is polyno-

mial in the input size for every fixed n, but the exponent of

the polynomial might depend on 1

n . In other words, a PTAS

allows trading approximation ratio for the running time. As

one benchmark, we implement an adapted version of the

PTAS for EVCRP proposed in [19]. The adapted variant, de-

noted by PTAS∗, proceeds as follows. The algorithm consid-

ers randomly generated initial guesses for a small subset of

users. For each guess, the remaining subproblem of EVCRP

is solved with a numerical solver by relaxing the other dis-

crete control variables to be continuous, then rounding these

variables to obtain a feasible solution. The key difference be-

tween PTAS and PTAS∗ is that the former iterates over all

possible guess combinations in the search for the best ap-

proximation ratio, whereas the latter considers only a lim-

ited number of guesses. Even with a few users, the running

time of PTAS in practice could be computationally prohibi-

tive. Therefore, in PTAS∗, we restrict the number of guesses

to 250.

• GreedyUtilityAlgorithm (GreedyU): As a baseline, we adopt

a commonly utilized greedy strategy that sorts the EV users

in A = {1, . . . , |A|} according to their conditional gain in

descending order, such that

�1 ≥ �2 ≥ . . . ≥ � | A | , (15)

then selects the customers sequentially in that order, subject

to feasibility constraints. Since GreedyU sorts and iterates

over the entire customer setA, the running time complexity

is O
(

|A| log |A| + |A| · |C| · |T |
)

.

Implementation of the DNNmodel: The presented DClEVerNet

model was constructed on the basis of the Keras platform. The

model was trained over 200 epochs with a batch size of 32. The

learning rate was set to 0.001.

The simulationswere evaluated on a desktopmachine with Intel

i7-8750 CPU 2.2GHz processor and 16 GB of RAM. The algorithms

were coded in Python 2.7 programming language with SciPy and

NumPy libraries for scientific computation.

Figure 6: The evolution of training and validation losses over

the number of epochs trained.

5.2 Evaluation Results

To thoroughly evaluate the effectiveness of the assembled DClEV-

erNet model, we performed a series of experiments utilizing out-

of-sample data from both synthetic and real-world data sets. In

addition, in our evaluations, we examine the generalizability of

the trainedmodel by testing its performance on out-of-distribution

data. This involved manipulating various factors, such as reducing

the number of chargers #2 , increasing the number of EV charging

requests, and varying the load profile. Through these experiments,

we aim to assess the method’s ability to adapt and make accurate

predictions in new and unseen situations.

Figure 7: The average approximation ratio and running time

of DclEVerNet [Q=4, L=10,V=10] and GreedyU on 250 EVCRP

instances randomly taken from the synthetic and ACN test-

ing datasets.
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Figure 8: The average approximation ratio and running time

of DclEVerNet [Q=4, L=10,V=10], and GreedyU on 200 ran-

domly generated synthetic EVCRP instances with gradually

increasing input size from 3000 to 10,000.

First, we analyze the behavior of the loss function over multi-

ple epochs, as depicted in Fig.6. The results show a consistent de-

crease in the loss function for both the training and testing data.

This indicates that the model is effectively learning to produce in-

creasingly similar predictions to the corresponding labels. Next,

we examine the approximation ratio (i.e., how close the predicted

solution is to the optimal solution) and the running time of the

model. The performance of DClEVerNet was evaluated over 250

testing instances from the synthetic and ACN data sets, respec-

tively. The comparative results depicted in Fig.7, clearly demon-

strate that DClEVerNet outperforms the GreedyU algorithm in

terms of both approximation ratio and computational time. In ad-

dition, a comparison was made between DClEVerNet and PTAS∗,

and the results, plotted in Fig.5, indicate that the average case per-

formance of DClEVerNet is nearly on par with that of PTAS∗ in

terms of solution quality for both synthetic and ACN instances.

As evidenced by Figs.5 and 7, for the ACN dataset the worst-case

approximation ratio achieved by DClEVerNet was higher than

those of PTAS∗ and the GreedyU method. Furthermore, DClEVer-

Net demonstrated superior computational efficiency, on average

being the fastest in all the case studies conducted.

To demonstrate the scalability of the proposed approach, we

tested the trainedDClEVerNetmodel (on instances with 1500 cus-

tomers) on higher-dimensional problem instances with the num-

ber of EV requests ranging from 3, 000 to 10, 000. Each case was

evaluated with 200 synthetic instances with random utilities. The

results are depicted in Fig.8, which compares the performance of

the proposed approach to that of the GreedyU algorithm. As ob-

served from the figure, DClEVerNet demonstrates a superior ap-

proximation ratio, and it’s significantly faster than GreedyU across

all instances. This indicates that the proposed approach can han-

dle large-scale EV charging scheduling problems with acceptable

performance without the need for re-training.

The load profile is an important parameter in the EV charging

scheduling problem as it affects the distribution of the energy de-

mand, and thus it is crucial to evaluate themodel’s performance un-

der different load profiles. The performance of DClEVerNet was

evaluated on 200 instances with load profiles 2 and 3, which were

not included in the training dataset. The results of this evaluation

are presented in Fig.10. While the observed performance of the

DClEVerNet is lower than in the instances with load profile 1 (on

Figure 9: The average approximation ratio and running time

of DclEVerNet [Q=4, L=10,V=10] and GreedyU on 100 EVCRP

instances considering modified number of charging slots

(#2 = 100).

Figure 10: The average approximation ratio and running

time of DclEVerNet [Q=4, L=10,V=10] and GreedyU on 200

EVCRP instances generated considering load profiles previ-

ously unseen during the training.

which it was trained), it still significantly outperforms theGreedyU

algorithm in both solution quality and running time. Lastly, to fur-

ther assess the robustness and generalizability of the constructed

model, we test the performance of the trainedDClEVerNetmodel

on 100 instances with a modified number of charging slots in each

station: #2 = 100 for ∀ 2 ∈ C. As Fig 9 demonstrates, DClEVer-

Net continued to perform superior to the GreedyU algorithm in

terms of approximation ratio and computational efficiency. This

signifies that the proposed approach is robust and can adapt to dif-

ferent load profiles while retaining satisfactory performance.

6 DISCUSSION AND PROSPECTIVE
EXTENSIONS

While the performed extensive simulations demonstrate the effec-

tiveness of the trained sample DclEVerNet model, a number of

further improvements can be attained to solidify the overall frame-

work. We identify the following immediate extensions as well as

prospective avenues for further exploration.

(1) One promising immediate extension is to augment the pro-

posed framework by incorporating more complex neural

network architectures. Specifically, the utilization of Trans-

former based architectures, which employ the self-attention

mechanism, has demonstrated remarkable performance in

a wide range of applications. The self-attention mechanism

enables the network to focus on specific parts of the input

by assigning different weights to different parts of the in-

put, this allows the network to focus on the most relevant
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parts of the input and improve the performance of the net-

work. Another technique that can be considered is the inte-

gration of skip connections. These connections enable the

flow of information to bypass certain layers in the network,

which can improve the efficiency of the flow of information

and improve the performance of the network. Combining

these two and integrating them intoDclEVerNetwill allow

training a substantially deeper network than the currently

presented one, likely yielding drastically improved general-

isability and performance.

(2) Another immediate extension is to substitute the employed

post-processing routine. Depending on the desired outcome,

one can improve the computational efficiency or the per-

formance quality. For example, towards the latter, one can

adopt a variant of the Beam Search algorithm. Beam Search

is a heuristic exploration algorithm that maintains a set of

candidate solutions based on different algorithms and then

returns the one with the highest objective value. For exam-

ple, instead of relying only on one sorting procedure, the

post-processing can simultaneously employ several sorting

criteria based on power demand and/or gain-to-power ratio,

then return the selection of users with the highest objective

value. This would allow to explore the predicted solution

space more extensively. On the other hand, Alg. 1 can be re-

placed by a faster yet possibly less efficient procedure. One

example of such a method is the selection of users proba-

bilistically via a randomprocess. In this worst-case scenario,

this would consume only linear running time.

(3) In future work, the extension of this framework to include

covering and mixed covering and packing problems will be

explored. Covering problems involve finding a subset of items

that can completely cover a set of resources, while mixed

covering and packing problems involve both covering re-

sources and packing items. The proposed framework can

be extended to include these types of problems by creating

a similar dataset as described in Sec. 4.2.

(4) Added to the latter, another promising direction is to com-

pletely eliminate the need for post-processing, thus provid-

ing an end-to-end DL optimizer for combinatorial optimiza-

tion problems. Though profoundly difficult, we believe that

it is plausible to devise a standalone DL solver (possibly a

two-stage approach combining two different DL techniques)

which on expectationmay return near-optimal approximately

feasible (with a bounded violation error) solutions.

7 CONCLUSION

This paper studied the problem of maximizing the total welfare

gain of EV users participating in scheduling reservation programs

in large-scale, networked EV charging facilities. Aiming to inform

and advance the design of scalable and efficient reservation man-

agement strategies, we introduced and empirically verified a Deep

Combinatorial Learning pipeline that can attain near-optimal sched-

uling decisionswithin sub/near-linear time. To provide further scrutiny,

we tested the constructed model’s generalisability and robustness

against out-of-sample and out-of-distribution inputs based on pre-

viously unseen settings and parameters of the problem. The find-

ings signify the potential of the proposed approach to pave theway

towards more efficient means of tackling combinatorial optimiza-

tion problems with tens of thousands of decision variables.
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