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ABSTRACT
Educational timetabling has long piqued the interest of the schedul-
ing community. Since timetabling governs how universities operate
daily, it has been vital in academia to put substantial effort into
creating schedules of the highest caliber. To create schedules that
satisfy all stakeholders, various approaches have been tried to solve
educational timetabling problems, which are typically NP-Hard.
Over the past 20 years, several scheduling contests have been held
with a focus on issues related to educational operations. In this pa-
per, we focus on the Post Enrollment Course Timetabling Problem
and two datasets from the International Timetabling Competitions
held in 2002 and 2007. We propose a local search procedure aug-
mented by a base mathematical model and variations of this model
that yields competitive results, within reasonable execution times,
to some of the best-known solutions.
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1 INTRODUCTION
In educational institutions, there are a number of scheduling prob-
lems that manifest themselves. Such scheduling problems are high
school timetabling, examination timetabling, course timetabling,
thesis timetabling, and others. Details of each problem differ among
institutions worldwide. For example, in some situations, rooms
and lecturer availabilities are the main problem, while in others,
course precedences, timeslot restrictions, and others might be more
crucial. The focus of attention for most educational timetabling
problems is the students. Therefore, the resulting timetable should
facilitate students’ studies or examinations with adequate breaks
and enough time for studying and resting. The primary goal is to
construct feasible timetables, so it is unacceptable to schedule two
courses that are attended by a student at the same time or leave
any event unscheduled. Feasible timetables are diversely perceived.
Their assessment depends on quality metrics that may vary from
institution to institution. These desires result in a multitude of
difficult optimization problems.

In this paper, we study the post-enrollment course timetabling
(PE-CTT) problem that aims at scheduling a set of events. Each
event takes place at a specific time and location with a particular
set of students attending it. Moreover, precedence relations among
events, event-timeslot availabilities, and requirements about spe-
cific room capacities and features also exist in PE-CTT.

The structure of the paper follows. In section 2 a brief description
of the problem and its constraints is presented. In section 4 we
propose a preprocessing workflow applicable to all instances. In
section 5 descriptive analytics for ITC_2002 and ITC_2007 datasets
are described. In section 6 we provide a mathematical model and
some model variations. A simulated annealing procedure and the
neighborhood operators that it uses are also presented in the same
section. Experimental results are given in section 7.

2 PROBLEM DESCRIPTION
Awell-known scheduling problem having both theoretical and prac-
tical significance is course scheduling. Curriculum-based course
scheduling (CB-CTT) and post-enrollment course scheduling (PE-
CTT) are two problem variations. While we have information about
each student’s enrollments in PE-CTT, in CB-CTT these enroll-
ments are “hidden” behind courses. The goal of the PE-CTT varia-
tion, which is the subject of this paper, is to schedule events in the
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available timeslots and rooms. Each day has 9 timeslots, and a week
consists of 5 days, so 45 timeslots are available for all instances.

Various problem instances for Course Timetabling exist, adher-
ing to several assumptions about the problem. The International
Timetabling Competition held in 2002 and its sequel in 2007 [6] pro-
vided a set of instances that were later used by several researchers
as a common testbed. These are the datasets, ITC2002 and ITC2007,
that we use hereafter. For these datasets the hard constraints are:

• Each event must be scheduled in a timeslot and a room.
• Events with common students must be placed at different
timeslots.

• A room can host at most one event in each timeslot.
• The capacity and feature requirements of each event must
be met by the room that will eventually host it.

• Certain timeslot requirements may apply to specific events.
• There may be relationships of precedence between events.

Note that the two last hard constraints of the above list mani-
fest themselves only in problem instances of ICT2007 and not in
ITC2002. On the other hand, the soft constraints are:

• A student attends an event at the last timeslot of a day.
• A student attends three (or more) events in a row on the
same day.

• A student attends only one event in a day.
One penalty point is imposed for each of the conditions above.

3 RELATEDWORK
Educational timetabling problems have attracted interest from the
academia since such problems stem from the needs of universities
and other educational institutes. Implicit familiarity makes them
easily understandable. Main educational timetabling problems are
examination timetabling [9], course timetabling [8], high school
timetabling [20] and their variants [5]. Moreover, several other
timetabling problems arise in the educational context, like thesis
defense timetabling [1], invigilator duty allocation [13], and others.

Recent surveys for educational timetabling have been published
by Tan et al. [19] and by Ceschia et al. [4] that complement existing
surveys on the field [18].

For the version of the PE-CTT problem that we study, many pa-
pers were published during and after the competitions. The interest
in this problem remains strong, with recent publications propos-
ing various methodologies. Recent papers focusing on local search
methods are the papers by Goh et al. [10] [11] and Nagata et al. [16].
Metaheuristics like Simulated Annealing also effectively tackled
the problem by Ceschia et al. [3]. Cambazard et al. [2] presented a
Constraint Programming approach.

Lewis et al. [15] explored the connectivity of the solution space
in course timetabling problems under various neighborhood opera-
tors.

4 PREPROCESSING
The format of the problem instances assumes rooms with varying
capacities alongside features that each room might have (e.g., video
projector, smart-board, laboratory equipment, etc.). Additionally, it
lists the events that each student participates and any additional
obligations associated with those events. In ITC2007 dataset, events

can additionally have timeslot restrictions (i.e., a timeslot might
be prohibited for certain events) and precedence relations (i.e., an
event may be required to take place earlier than another event). We
investigated the possibility of tracking all the feasible combinations
consisting of three events in order to reduce the model size.

4.1 Event-Room eligibility
Let E by the set of all events. Equation 1 determines when a student
attends an event and the total number of attendees of each event is
given by Equation 2. This information is extracted from the problem
data.

𝑎𝑠𝑒 =

{
1 if student 𝑠 attends event 𝑒
0 otherwise ∀𝑠 ∈ S, ∀𝑒 ∈ E (1)

𝑆𝑒 =
∑︁
𝑠∈S

𝑎𝑠𝑒 ∀𝑒 ∈ E (2)

4.2 Event Conflicts
Events with common students are prohibited from taking place
at the same timeslot because, by definition, no student can attend
more than one event at once. Such pairs of events are considered
conflicting events. Let R be the set of all rooms, and R𝑒 be the set of
rooms that can host event 𝑒 . We increase the number of conflicting
events by adding pair of events without common students if for
two events 𝑒1 and 𝑒2 the relations R𝑒1 ≡ R𝑒2 and |R𝑒1 | = |R𝑒2 | = 1
hold true (singleton sets). This condition means that 𝑒1 and 𝑒2 can
be hosted only in the same room and, therefore, can not be hosted
in the same timeslot. Finally, the pairs of all conflicting events form
set S. Based on the event conflicts, we compute the conflict density
of each problem which is twice the size of set C divided by the
square of the size of set 𝐸. Conflict density can be considered a
measure of each problem instance’s difficulty, but room existence
seems to distort its relevance.

4.3 Event Combinations
In the preprocessing stage, we compute all combinations of three
events and store the number of students participating in each com-
bination. More formally, let S be the set of students, and E𝑠 be
the set of events that student 𝑠 attends. For every student 𝑠 , all
possible combinations consisting of three events 𝑒1, 𝑒2, 𝑒3, where
𝑒1 ∈ E𝑠 , 𝑒2 ∈ E𝑠 , 𝑒3 ∈ E𝑠 are generated. Finally, C is the set com-
prised of all previously generated three event combinations.

5 DATASET
Details about problem instances belonging to datasets ITC2002 and
ITC2007 are presented in Table 1 and Table 2 respectively. The
former table has three fewer columns than the latter since problem
instances of ITC2002 have neither event-precedence relations nor
event-timeslot restrictions.

6 FORMULATION
6.1 Mathematical Model
In this section we will present the base mathematical model of the
problem.
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Table 1: Dataset ITC2002
DS: Instance Name, E: Events, R: Rooms, F: Features, CD: Con-
flict Density, PA: Average Period UnAvailability, RC:Average
Room Size(Capacity), RS: Average Room Suitability

DS E R F S CD RC RS
o01.tim 400 10 10 200 0.20 10.40 1.96
o02.tim 400 10 10 200 0.21 10.40 1.92
o03.tim 400 10 10 200 0.23 10.80 3.42
o04.tim 400 10 5 300 0.23 15.30 2.45
o05.tim 350 10 10 300 0.31 17.30 1.78
o06.tim 350 10 5 300 0.26 17.90 3.59
o07.tim 350 10 5 350 0.21 20.60 2.87
o08.tim 400 10 5 250 0.17 12.80 2.93
o09.tim 440 11 6 220 0.17 10.36 2.58
o10.tim 400 10 5 200 0.20 10.70 3.49
o11.tim 400 10 6 220 0.20 11.40 2.06
o12.tim 400 10 5 200 0.20 10.30 1.96
o13.tim 400 10 6 250 0.21 12.60 2.43
o14.tim 350 10 5 350 0.25 20.30 3.08
o15.tim 350 10 10 300 0.25 17.40 2.19
o16.tim 440 11 6 220 0.18 10.73 3.17
o17.tim 350 10 10 300 0.31 17.20 1.11
o18.tim 400 10 10 200 0.21 10.50 1.75
o19.tim 400 10 5 300 0.20 15.30 3.94
o20.tim 350 10 5 300 0.25 17.50 3.43

Let S be the set of all students.
Let 𝑆𝑒 be the total number of students attending event 𝑒 .
Let R be the set of all rooms.
Let 𝑅𝑒 be the set of rooms that can not host event 𝑒 .
Let T be the set of all timeslots.
Let 𝑇𝑒 be the set of timeslot that event 𝑒 cannot be scheduled.
Let L = [9, 18, 27, 36, 45]. These numbers refer to the last timeslot

of each one of the 5 days.
Let G be the set of conflicting event pairs.
Let C be the set consisting of combinations of three events with

students in common.
Let 𝐶𝑒1,𝑒2,𝑒3 be the total number of students attending all three

events 𝑒1, 𝑒2 and 𝑒3.
Let P be the set of pairs of events having a precedence relation.
We define binary decision variables 𝑥𝑒𝑡𝑟 as seen in equation 3.

Binary variables 𝑦𝑠𝑑 and 𝑧𝑒1𝑒2𝑒3 in equations 4 and 5 are auxiliary
variables.

𝑥𝑒𝑡𝑟 =

{
1 if event 𝑒 is scheduled in timeslot 𝑡 at room 𝑟

0 otherwise
∀𝑒 ∈ E,∀𝑡 ∈ T,∀𝑟 ∈ R (3)

𝑦𝑠𝑑 =

{
1 if student 𝑠 has a single event in day 𝑑
0 otherwise ∀𝑠 ∈ S,∀𝑑 ∈ [1..5]

(4)

Table 2: Dataset ITC2007
DS: Instance Name, E: Events, R: Rooms, F: Features, CD: Con-
flict Density, PA: Average Period UnAvailability, RC:Average
Room Size(Capacity), RS: Average Room Suitability

DS E R F S CD PA RC RS
i01.tim 400 10 10 500 0.34 0.44 37.70 4.08
i02.tim 400 10 10 500 0.37 0.43 36.10 3.95
i03.tim 200 20 10 1000 0.47 0.43 86.60 5.04
i04.tim 200 20 10 1000 0.52 0.43 89.15 6.40
i05.tim 400 20 20 300 0.31 0.43 21.55 6.80
i06.tim 400 20 20 300 0.30 0.44 21.80 5.07
i07.tim 200 20 20 500 0.53 0.60 42.00 1.57
i08.tim 200 20 20 500 0.51 0.62 44.50 1.92
i09.tim 400 10 20 500 0.34 0.44 37.90 2.91
i10.tim 400 10 20 500 0.38 0.43 36.30 3.20
i11.tim 200 10 10 1000 0.50 0.44 84.10 3.38
i12.tim 200 10 10 1000 0.58 0.43 84.10 3.35
i13.tim 400 20 10 300 0.32 0.43 22.10 8.68
i14.tim 400 20 10 300 0.32 0.43 22.25 7.56
i15.tim 200 10 20 500 0.53 0.61 44.00 2.23
i16.tim 200 10 20 500 0.45 0.61 43.90 1.74
i17.tim 100 10 10 500 0.70 0.43 138.20 2.77
i18.tim 200 10 10 500 0.65 0.43 70.40 3.48
i19.tim 300 10 10 1000 0.47 0.44 56.30 3.66
i20.tim 400 10 10 1000 0.28 0.44 44.80 3.73
i21.tim 500 20 20 300 0.23 0.42 17.40 7.36
i22.tim 600 20 20 500 0.26 0.43 24.85 5.65
i23.tim 400 20 30 1000 0.44 0.21 68.65 2.89
i24.tim 400 20 30 1000 0.31 0.44 42.65 1.59

𝑧𝑒1𝑒2𝑒3 =

{
1 if events 𝑒1 , 𝑒2 and 𝑒3 are placed

in 3 sequential timeslots in the same day
0 otherwise

∀(𝑒1, 𝑒2, 𝑒3) ∈ C (5)

Minimize
∑︁
𝑒∈E

∑︁
𝑡 ∈L

∑︁
𝑟 ∈R

𝑆𝑒 ∗ 𝑥𝑒𝑡𝑟 +
∑︁
𝑠∈S

5∑︁
𝑑=1

𝑦𝑠𝑑

+
∑︁

(𝑒1,𝑒2,𝑒3 ) ∈C
𝐶𝑒1,𝑒2,𝑒3𝑧𝑒1,𝑒2,𝑒3 (6)

Subject to ∑︁
𝑡 ∈T𝑒

∑︁
𝑟 ∈R

𝑥𝑒𝑡𝑟 = 0 ∀𝑒 ∈ E (7)∑︁
𝑡 ∈T

∑︁
𝑟 ∈R𝑒

𝑥𝑒𝑡𝑟 = 0 ∀𝑒 ∈ E (8)∑︁
𝑡 ∈T

∑︁
𝑟 ∈R

𝑥𝑒𝑡𝑟 = 1 ∀𝑒 ∈ E (9)∑︁
𝑒∈E,𝑟 ∈R

𝑥𝑒𝑡𝑟 ≤ 1 ∀𝑟 ∈ R, ∀𝑡 ∈ T (10)

∑︁
𝑟 ∈R

𝑥𝑒1𝑡𝑟 +
∑︁
𝑟 ∈R

𝑥𝑒2𝑡𝑟 ≤ 1 ∀(𝑒1, 𝑒2) ∈ G, ∀𝑡 ∈ T (11)

79



PCI 2022, November 25–27, 2022, Athens, Greece Dimitsas et al.

∑︁
𝑡 ∈T

∑︁
𝑟 ∈R

𝑡 ∗ 𝑥𝑒1𝑡𝑟 + 1 ≤
∑︁
𝑡 ∈T

∑︁
𝑟 ∈R

𝑡 ∗ 𝑥𝑒2𝑡𝑟 ∀(𝑒1, 𝑒2) ∈ P (12)

𝑡 ′+2∑︁
𝑡=𝑡 ′

∑︁
𝑟 ∈R

𝑥𝑒1𝑡𝑟 + 𝑥𝑒2𝑡𝑟 + 𝑥𝑒3𝑡𝑟 ≤ 2 + 𝑧𝑒1𝑒2𝑒3

∀(𝑒1, 𝑒2, 𝑒3) ∈ C, ∀𝑡 ′ ∈ 𝑇, 𝑡 ′ ∉ [8, 9, 17, 18, 26, 27, 35, 36, 44, 45]
(13)

𝑦𝑠𝑑 = 1, if
∑︁
𝑒∈E𝑠

𝑑∗9∑︁
𝑡=1+(𝑑−1)∗9

∑︁
𝑟 ∈R

𝑥𝑒𝑡𝑟 = 1 ∀𝑠 ∈ S, ∀𝑑 ∈ [1..5]

(14)
Equation 6 is the objective function that incorporates the costs

associated with the three soft constraints. The first term imposes
penalty 𝑆𝑒 for any event 𝑒 scheduled in the day’s final time slot.
The second term imposes a single penalty point for each student
who participates in only one event during a day. The last term
imposes a penalty equal to the total number of students attending
a combination of three events if these events are in three adjacent
timeslots on the same day.

Constraints 7, 8 handle timeslot and room availability limitations,
while constraint 9 ensures that each event is scheduled once and
only once. Constraint 10 ensures that at most one event is scheduled
in each room in each timeslot. Conflicting events are banned from
the same timeslot through the use of constraint 11, and precedence
relations are respected as a consequence of constraint 12. To enforce
a penalty for three consecutive events constraint 13 will activate 𝑧
decision variables. Finally, since constraint 14 is nonlinear, it can
be handled by CP solvers and MIP solvers equipped with automatic
linearization capabilities.

6.1.1 Model Modifications. The base mathematical model may not
be able to handle large instances, mainly due to the large size of C.
However, a decomposition of the problem that operates over 2 or 3
days can produce partial solutions that hopefully will drive the Sim-
ulated Annealing procedure described in section 6.3 to promising
subdomains of the search space.

The three modifications to the base model follows.
• Improve day by day Optimizing each day in isolation re-
sults in some advantages. Since the number of events that are
scheduled in one day is fewer than all events, the number of
combinations of three events becomes significantly smaller.
Moreover, the second term of the objective function is re-
dundant now because the events of the day are determined.
Finally, since the involved students participate in a number
of events that cannot be changed, constraint 14 becomes
redundant.

• Improve days In this modification of the base model, we
consider two or three days. Again, as in the previous modifi-
cation, the three event combinations are fewer than combi-
nations involving all events. In this setting, students can be
considered to attend a subset of the events they actually at-
tend since some events have not been scheduled on the days
we consider. The advantage is that now more, temporarily

identical students can be identified and consolidated in the
second term of the objective function and constraint 14.

• Fix room Starting from a given solution, we can enforce
all events not to change rooms but allow them to change
timeslots. Practically, we allow events placed in the same
room at different timeslots to swap places.

6.2 Neighborhood operators
Three different neighborhood operators are used in this work:

• Transfer Event: An event 𝑒 ∈ E is moved from its currently
designated timeslot 𝑡 ∈ T, to a new, randomly selected times-
lot 𝑡1 ∈ T. The move is executed only if 𝑡1 is available for 𝑒 ,
a compatible free room 𝑟 ∈ 𝑅 exists in 𝑡1 for event 𝑒 and the
precedence relations for event 𝑒 are not violated .

• Swap Events: Two timeslots 𝑡1, 𝑡2 ∈ T that are designated
to two events 𝑒1, 𝑒2 ∈ E are swapped. The move is executed
only if 𝑒1 and 𝑒2 are in conflict, a suitable room 𝑟1 ∈ R for
𝑒1 is available at 𝑡2 and a suitable room 𝑟2 ∈ R is available
at 𝑡1 and is all the precedence relations for 𝑒1 and 𝑒2 are not
violated.

• Kempe Chain: An event 𝑒 residing in timeslot 𝑡1 ∈ T is
selected randomly and moved to timeslot 𝑡2 ∈ T. All events
in 𝑡2 conflictingwith 𝑒 aremoved to 𝑡1. An ejection procedure
follows until no conflicting events co-exist in 𝑡1 or 𝑡2. The
move is executed if:
– At each step for an event 𝑒𝑠 ∈ E a compatible room exists
in the selected timeslot.

– All the precedence relations of 𝑒 are not violated.
– The selected period is available for the event 𝑒 .

6.3 Simulated Annealing(SA)
Many versions of simulated annealing have been proposed in the lit-
erature [7]. The version we use is based on the classic one proposed
by Kirkpatrick [14]. In detail, at each iteration, a neighborhood
operator 6.2 is randomly selected. The move is performed if the
objective value is reduced. If 𝐷 𝑓 > 0, where 𝐷 𝑓 is the difference
between the cost of the current iteration and the cost of the previ-
ous iteration, then the candidate solution has the potential of being
accepted. The acceptance depends on the probability defined in
equation 15 where 𝑇 is the current temperature value and 𝑇𝑠 is the
temperature value used for initiating the procedure. We employ a
geometric cooling scheme 𝑇 = 𝑎 ∗𝑇 , where 𝑎 ∈ [0.9, 0.999] is the
cooling rate. Also, a freezing temperature 𝐹𝑡 = 1 is used in the pro-
cedure. When 𝑇 reaches 𝐹𝑡 , two or three random days are selected,
and an improve_days model is solved to reduce the objective value.
When the previous step ends, the temperature is set to a random
value in the range [0.5 ∗ 𝑇𝑠 , 1.5 ∗ 𝑇𝑠 ]. The procedure terminates
when the time limit expires.

𝑃 = 𝑒−𝐷𝑓 /𝑇 (15)

7 EXPERIMENTS
Our experiment were programmed in Python, and we used Gurobi
MIP solver [12] and Google OR-Tools CP-SAT solver [17]. The
Gurobi MIP solver constructs the initial solution using the base
model. Then, the solution improves by employing the day-by-day
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modification of the base model. The simulated annealing procedure
follows as described in section 6.3. In each iteration of the simulated
annealing procedure, a neighborhood operator is selected randomly
either from the operators described in subsection 6.2, or one of the
model modifications described in subsection 6.1.1. The implementa-
tions of the model modifications were programmed using CP-SAT
solver. We provided a generous time duration for each execution
(all steps) which amounted to approximately two hours for each
problem instance. The experiments ran in a workstation equipped
with an AMD Ryzen 5700G(8C/16T) processor and 32GB of RAM,
running Windows 11. Results are presented in table 3 for itc2002
dataset and table 4 for itc2007 dataset.

Table 3: ITC_2002 results

Dataset Best solution Our solution
o01.tim nan 454
o02.tim 14 19
o03.tim 36 38
o04.tim 76 77
o05.tim 56 65
o06.tim 1 8
o07.tim 2 18
o08.tim 6 14
o09.tim 8 12
o10.tim 41 50
o11.tim 19 27
o12.tim nan 460
o13.tim 51 58
o14.tim 13 28
o15.tim 3 17
o16.tim 4 13
o17.tim 35 41
o18.tim 11 20
o19.tim 46 48
o20.tim 0 20

8 CONCLUSION
In this work, we presented a hybrid approach for the Post Enroll-
ment Timetabling problem that returns results close to best known
in several instances of a publicly available dataset. The contribution
of our approach is the exact model we proposed and its modifi-
cations used for attaining those good solutions. The basic idea is
that we try to reduce the complexity of the model by identifying
groups of identical students. In effect, the model disengages from
each student, becoming more event-centric. This alternate view of
the problem gives the advantage of having manageable model sizes,
especially when we solve subparts of the problem involving either
a single or a few days. Given that the constraints added in ITC 2007
and room requirements kept the problem out of reach for modern
solvers, we believe that our approach is a step forward in using
exact solvers for approaching the Post Enrollment Timetabling
problem.

Table 4: ITC_2007 results

Dataset Best solution Our solution
i01.tim 0 0
i02.tim 0 0
i03.tim 31 193
i04.tim 21 92
i05.tim 0 35
i06.tim 0 0
i07.tim 0 0
i08.tim 0 39
i09.tim 0 31
i10.tim 0 31
i11.tim 39 76
i12.tim 0 0
i13.tim 0 0
i14.tim 0 0
i15.tim 0 10
i16.tim 0 34
i17.tim 0 89
i18.tim 0 56
i19.tim 0 50
i20.tim 543 574
i21.tim 5 6
i22.tim 5 19
i23.tim 1292 1335
i24.tim 0 12
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