
Tree Data Structures and Efficient Indexing Techniques for Big
Data Management: A Comprehensive Study

Dimitrios Samoladas
Department of Computer Engineering

and Informatics
University of Patras
Patras, Rion, Greece

samoladas@ceid.upatras.gr

Christos Karras
Department of Computer Engineering

and Informatics
University of Patras
Patras, Rion, Greece

c.karras@ceid.upatras.gr

Aristeidis Karras
Department of Computer Engineering

and Informatics
University of Patras
Patras, Rion, Greece

akarras@ceid.upatras.gr

Leonidas Theodorakopoulos
Department of Management Science

and Technology
University of Patras

Patras, Koukouli, Greece
theodleo@upatras.gr

Spyros Sioutas
Department of Computer Engineering

and Informatics
University of Patras
Patras, Rion, Greece

sioutas@ceid.upatras.gr

ABSTRACT
In the modern era where data is produced frommultivariate sources,
there is an urge to handle such data in an efficient yet effective
manner. Therefore, applications that necessitate such capabilities
shall make use of data structures and indexing mechanisms that
can perform fast index operations along with low complexity as
per insertion, deletion, and search. In this work, we survey B+
Tree, QuadTree, kD Tree, R Tree, and others along with efficient
indexing techniques for big data management in order to provide
a generic overview of the field to readers. Ultimately, we provide
some indexing experiments as per insert operations and response
times.

CCS CONCEPTS
• Information systems→ Data structures.

KEYWORDS
Data Structures, B+ Tree, kD Tree, QuadTree, Indexes, Big Data
Management

ACM Reference Format:
Dimitrios Samoladas, Christos Karras, Aristeidis Karras, Leonidas Theodor-
akopoulos, and Spyros Sioutas. 2022. Tree Data Structures and Efficient
Indexing Techniques for Big Data Management: A Comprehensive Study.
In 26th Pan-Hellenic Conference on Informatics (PCI 2022), November 25–27,
2022, Athens, Greece. ACM, New York, NY, USA, 10 pages. https://doi.org/
10.1145/3575879.3575977

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PCI 2022, November 25–27, 2022, Athens, Greece
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9854-1/22/11. . . $15.00
https://doi.org/10.1145/3575879.3575977

1 INTRODUCTION
In the past decade, there has been a significant increase in the
amount of information and data that is being produced. As a result
of this matter, there has been an increasing interest in developing
high-performance systems that are able to provide responses to
queries across terabytes of data in a matter of seconds.

Furthermore, efficient indexing and searching techniques are
currently gaining a lot of attention and they should be considered
a priority for big data analysis. Such types of solutions have the
potential to provide consumers with insightful information about
their data. This can also be applied in economics [1, 34] as well as
in query expansion schemes [21]. However, in order to successfully
retrieve and manage such information in terms of index size and
search time, optimization of indexing methods is necessary, which
is a process that may be rather challenging to carry out.

In this work, we survey emerging tree data structures and we
present some index mechanisms along with the centralized and
distributed variants of specific trees. The next section provides an
extensive overview of such data structures in detail.

2 OVERVIEW
In this section, we will discuss about indexes and their utility in
the database world. The indexes that we will talk about are B+
Tree, QuadTree, kD Tree and we will also mention their distributed
implementations according to third-party works and experiments
on them.

But first, let us initiate with some basic concepts of indexes.
Indexes are structures that arose out of the need to quickly look up
information stored in databases. Conventionally, if we wanted to
search for all records that belong to a range or generally satisfy a
criterion, we would have to access the records one by one and check
if they meet the conditions. For a database with N items, this would
require O(𝑁) time, which for the huge databases required today, as
we have seen due to Big Data, is prohibitive for any undertaking.

Therefore, an index is any data structure that can improve search
time. To achieve this improvement it sacrifices space and extra
writes to storage to maintain its structure. There is a wide variety

123

https://orcid.org/0000-0001-9188-6078
https://orcid.org/0000-0002-4253-7661
https://orcid.org/0000-0002-4632-6511
https://orcid.org/0000-0002-0891-6780
https://orcid.org/0000-0003-1825-5565
https://doi.org/10.1145/3575879.3575977
https://doi.org/10.1145/3575879.3575977
https://doi.org/10.1145/3575879.3575977
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3575879.3575977&domain=pdf&date_stamp=2023-03-29

PCI 2022, November 25–27, 2022, Athens, Greece D. Samoladas, et al.

of indexes that satisfy different needs of a wide variety of data, such
as spatial, temporal, text, multidimensional data, etc. Choosing the
right index for the task we want to perform is a major part of the
whole process since it can lead to time complexities for search from
O(𝑙𝑜𝑔𝑁) to O(1).

2.1 B+ Tree
B+ Tree is a tree version of the B-tree and an extension of the
binary tree in essence. The primary distinction between B and B+
trees is that B+ trees are leaf-oriented. Thus, rather than containing
key-value pairs, internal nodes only hold keys, whereas data is
stored on the leaves. The node of a B+ tree may contain up to 𝑛
indices, but no less than [𝑛/2] indices, and 𝑛−1 keys. The root is an
exception because, regardless of 𝑛, it may have at least two children.
The keys of each node are sorted, and pointers are interpolated
between them. In other words, if we have keys 𝐾1, 𝐾2 . . . , 𝐾𝑛−1 and
indices 𝑃1, 𝑃2, . . . , 𝑃𝑛 , then the index in position 𝐼 corresponds to
child nodes with keys less than 𝐾𝑖 and higher than or equal to 𝐾𝑖−1.
Figure 1 is an example of the structure that we have explained. To
hold 𝑁 keys, the B+ tree requires O(𝑁) storage capacity.

Figure 1: Representation of a 𝐵+ tree with 𝑛 = 4.

B+ trees are balanced. That is, the distance of the root from
any leaf is the same for all leaves. This property makes the B+
tree reliable since any change occurring, the tree makes sure it is
always balancedwhich keeps its performance constant in insertions,
deletions and searches.

2.1.1 Insert Operations. To insert a new element into the tree, we
begin at the root and compare the key to be inserted with the keys
already existing in the node. We choose the proper index based
on what the key belongs to. We repeat the same procedure in a
recursive manner till we reach the sheet. If the leaf has room for
extra data (that is, there are less than 𝑛−1 keys), the new key is
added. If the sheet is full, tearing will occur.

When splitting, a new leaf is created, half of the old leaf’s keys are
transferred to it, and the smallest key of the new leaf is transferred
to the parent. Despite the fact that the parent is already full, we have
merely separated once more by pushing up the middle key instead
of the minor one. This procedure is repeated until a parent node
does not need splitting. If we reach the root and further splitting is
required, we generate a new root with a key and two pointers. The
temporal complexity of inserting a new key is O(𝑙𝑜𝑔𝑏𝑁), where 𝑁
is the number of keys in the tree and 𝑏 is the capacity of the node
in children.

2.1.2 Range Search. For range search, B+ trees are modified such
that their leaves are connected serially by pointers, similar to a
linked list. To locate the data that falls within the search range,
we begin with a straightforward search for the smallest key that
falls within the search range. This search is conducted by locating
the leaf that the left end of the search range corresponds to. Then,
after the keys have been sorted, we identify the first key that is
larger than the left end of the search range and proceed serially
to the right, comparing each key to the right end of the search
range. Since the leaves are connected by pointers, we do not need
to retrace to access the next leaf but may instead utilise the pointer
it has. Range-based search has a complexity of O(𝑙𝑜𝑔𝑏𝑁 +𝑚), as
𝑙𝑜𝑔𝑏𝑁 is required to locate the leftmost key and𝑚 is the number
of keys retrieved.

2.1.3 Distributed implementation of 𝐵+ Tree index. Initially, we
have the creation of the tree. The tree as a whole will be stored in
an HBase table where each row of it represents a node of the tree.
Then, we have an arbitrary ROWKEY and as columns, we have
information concerning the node such as the keys that show the
following nodes the range of keys covered by the specific node and
in the case of the leaves the data values.

Using a MapReduce task, the index was created and stored in
HBase. It receives the data of a dataset from the Mapper and turns it
into an appropriate key-value format. After the records have been
created, they are passed to a custom partitioner in order to divide the
data uniformly throughout the reducers. The default MapReduce
hash partitioner is thus not utilised. The uniform distribution of
data in the reducers is accomplished by constructing intervals or
chunks, as they are referred to in the Partitioner, by subtracting the
smallest key from the biggest key in the dataset and dividing the
resulting value by the number of reducers. The preceding result of
the operation returns the interval that determines the endpoints of
each interval. When the records reach the partitioner, their key is
determined and they are forwarded to the appropriate reducer.

In the reduction step, local 𝐵+ trees are generated, which are
subsequently connected to form the global tree. There are two nodes
inside the reducer, the current and the next. Each pair that enters
the reducer is added to the leaf that is currently being created. If the
leaf is already full, a new leaf is produced and the entered pair is
added to it. The leaf is then inserted into a buffer. When the buffer
is filled, the data (the newly produced HBase leaves) are written.
A final function is responsible for constructing the remainder of
the tree from the already-made leaves. The function ends when
a node with fewer children than the tree’s order is encountered.
This function constructs the tree by recursively using the process
outlined for the leaves.

2.2 QuadTree
QuadTree [30] is a reasonably basic geographical data indexing
approach. Each node in a QuadTree represents a box that covers a
portion of the area being indexed, with the root node representing
the whole region. Each node is either a leaf, which includes one
or more points in the space and no children, or an internal node,
which has precisely four children, one for each quadrant resulting
from splitting the space of the node by two vertical axes, as seen in
Figure 2. The name of the tree is derived from the term quadrants.

124

Tree Data Structures and Efficient Indexing Techniques: A Comprehensive Study PCI 2022, November 25–27, 2022, Athens, Greece

Figure 2: Representation of how space is split by a QuadTree.

2.2.1 Insert Operation. Inserting data into QuadTree is pretty con-
cise. We begin at the root and identify the quadrant to which the
desired location belongs. As we travel further into the tree, we
repeat the same procedure for each node until we reach a leaf node.
Once the leaf is reached, the point is added to the list of remaining
points on the leaf. If this list exceeds a predefined maximum number
of components, the original single node without quadrants will be
divided into quadrants.

These quadrants become new leaf nodes, whereas the node that
was split becomes an internal node. The components of the for-
mer node are then relocated to their respective quadrants. After
inserting many items, the resulting tree structure resembles Figure
3.

Figure 3: The internal structure of QuadTree.

2.2.2 Range Search. To locate the points inside an interval, we
begin with the root. We evaluate each child node to see whether
it intersects the desired space region. If so, we go to the next child
node and repeat the procedure until we reach a leaf. As soon as we
reach the leaf, we examine each of its components and return it if
it falls inside the search region.

In a QuadTree, the search complexity (range query) is (𝑛 + ℎ),
where 𝑛 is the number of nodes in the tree and ℎ is its height. This
intricacy is a consequence of the variety of the search space and the
structure of the tree (the order in which the data is entered affects
the creation of the tree). If we have a lengthy query that returns
essentially all of the tree’s nodes, then all should be returned, thus
we have Θ(𝑛). If we have a short query that returns the data of

a single subtree, it is sufficient to traverse all of the levels of the
subtree; hence, we have Θ(ℎ). So in total, we have Θ(𝑛 + ℎ).

2.3 kD Tree
The kD Tree is a tree structure used to represent points in 𝑘-
dimensional space. It shares similarities with QuadTree, but its
implementation is different. Each internal node in the structure
divides the space into two parts. The right child of the node repre-
sents the right part and the left child represents the left part. The
split does not necessarily takes place in the middle of the space as
in QuadTree, but at some point chosen so that as much as possible
there is an equal distribution of the remaining points of the space in
the two parts. This of course requires knowing all the points from
the start and is not possible in serial point input. The decomposition
we have described is shown in Figure 4.

Figure 4: Representation of splits of a two-2D kD Tree.

As shown in Figure 4, each node of the tree corresponds to a
point in space. The splitting from level to level is done in terms of
axes alternately. The whole process is described in the next section
where we analyze the Insert operation.

2.3.1 Insert Operation. Each process of input splits the space. By
checking the associated point coordinates from the root, we identify
the node to which the point belongs. Since we are at the root, the
x coordinate is examined. If the point to be inserted has a smaller
x than the point represented by the node, the inserted point will
move to the left; otherwise, it will move to the right. At each level
of the tree, the division axis alternates clockwise.

By checking where the point will go depending on the axis that
divides the specified plane, we proceed recursively to the next nodes.
For instance, if it separates it at level x, we check level x, level y,
and level z if it is a 3D kD Tree, then level x again, and so on. When
we reach the leaf to which the point belongs, we split the space
of the leaf according to the axis that is next in line according to
the round-robin Algorithm. The topology of a two-dimensional kD
tree following the insertion of certain points is seen in Figure 5.

Inserting elements into the tree has time complexity Θ(𝑙𝑜𝑔2𝑁)
or O(𝑁) in the worst case where 𝑁 is the number of elements in
the tree.

2.3.2 Range Search. Spatial search in kD Tree follows the same
method as QuadTree. We start from the root and check if the chil-
dren intersect with the search space. If so, we continue recursively
to the next nodes until we reach the leaf. There we check if the

125

PCI 2022, November 25–27, 2022, Athens, Greece D. Samoladas, et al.

Figure 5: Representation of the structure of a two-
dimensional kD Tree. The space complexity of a kD Tree
is O(𝑁) where 𝑁 is the number of inserted points.

points belong to the search space and return them if the answer is
yes. An optimization happening here and in QuadTree is the case
where the search space encompasses the entire child. In this case,
we do not need to continue the search in the subtree spanning the
child, but we return all elements belonging to it.

An orthogonal range query takes O(
√
𝑁 +m)time in the worst

case, where𝑚 is the number of points returned. In the more general
case where we have a kD Tree in 𝑘-dimensions, the time complexity
of a 𝑘-dimensional range query is O

(
𝑛1−1/𝑘 +𝑚

)
.

2.3.3 Comparison of kD Tree with QuadTree. QuadTree and kD
Tree are quite comparable. Some contend that kD Tree is a k-
dimensional extension of QuadTree. Nonetheless, they vary in
terms of both their structure and the temporal complexity of certain
of their operations.

The manner in which the space between the two trees is divided
is different. QuadTree splits the space into 2𝑘 subspaces, where k
is the number of dimensions and kD has no predetermined parti-
tion independent of the data but divides the space into two halves
depending on some measure (such a metric is for example the
mean value with respect to the corresponding axis). Due to the
exponential growth of the number of dimensions in the QuadTree,
this difference makes the kD tree more efficient as the number of
dimensions rises.

Another distinction is the simplicity of tree modification. In the
event of a single modification, the kD tree may need to be rebuilt,
but the QuadTree is more sensitive to alterations that may disrupt
its equilibrium or initiate a chain of changes. Lastly, both trees are
highly efficient in range searches, with the kD Tree edging out the
QuadTree owing to its superior fit to the data and its insignificant
production of empty quadrants if the data is not evenly distributed.
Accessing empty quadrants increases the cost of the range search,
giving kD Trees an advantage over non-uniform data.

2.4 R Tree
In this Section, the R-tree index is introduced, as well as its dis-
tributed implementation along with its usefulness in the realm of
databases.

This Section is based on the initial paper on R-trees [12] and on
the work in [16]. R-Tree is a height-balanced tree with entries stored
in its leaves, similar to B-Tree. It specialises in storing spatial data
using coordinates as its keys. The tree is entirely dynamic since
it permits insertions, removals, and searches without requiring
periodic reorganisations for optimal functioning.

The entries in an R-Tree leaf are of the form (𝑚𝑏𝑟, 𝑖𝑑), where𝑚𝑏𝑟
(Minimal Bounding Rectangle) refers to theminimum𝑛-dimensional
rectangle that encompasses the item to be inserted. In the case of
points, the𝑚𝑏𝑟 is the point itself, but for polygons of general shape,
the𝑚𝑏𝑟 contains coordinates that span the whole polygon without
any gaps. The 𝑖𝑑 refers to the data associated with the𝑚𝑏𝑟 in the
tree and is either the data itself or a key identifying the location
of the data in a database. The records in R-Tree internal nodes
have the form (𝑚𝑏𝑟, 𝑐ℎ𝑖𝑙𝑑 − 𝑝𝑜𝑖𝑛𝑡𝑒𝑟), where the child-pointer is a
reference to a node at the next level of the R-Tree. In the internal
node, the𝑚𝑏𝑟 spans all of the rectangles in the node indicated by
the child pointer. R-tree and its internal structure are determined
by a number of variables which are listed below:

• Each leaf node contains from𝑚 to𝑀 children (entries) unless
it is the root. The same applies to internal nodes.

• The root has at least two children unless it is a leaf. If it is
a leaf, it can have a single child (the first record that enters
the tree).

• All leaves are at the same level within the tree.
Figure 6 shows the internal structure of the tree. The height

of an R-Tree for 𝑁 data is at most
⌈
log𝑚 𝑁

⌉
− 1 while the spatial

complexity for all nodes except the root is𝑚/𝑀 .

54 |

6.17 - R-Tree. [20]

6.18 - MBRs) R-Tree 6.17. [20]

6.6.1 Insert

R-Tree B-Tree

1.

2.
 mbr

Figure 6: Internal structure of R-Tree.

2.4.1 Insert. Insertion into R-Trees is relatively similar to insertion
into B-Trees with the distinction that filled nodes are split and
these splits are propagated up the tree. The method for putting new
elements into the tree is as follows:

(1) First the root is visited. If the root is a leaf then the record is
saved to the root and returned.

(2) If the root is not a leaf we continue recursively until we reach
a leaf. To get to the leaf we check at each node whose the𝑚𝑏𝑟
of the child needs to be expanded the least to include the new
record. If more children claim the registration, differences
are resolved by the new registration going to the child whose
𝑚𝑏𝑟 covers a smaller area.

(3) We continue recursively performing step 2 from node to
node until we reach the leaf.

(4) When we get to the leaf, we enter the new record. If the
leaf has children less than or equal to𝑀 , the algorithm ends.
Otherwise, we apply a strategy of fragmentation. If the split
caused chained splits that reached the root, then we create a
new root with children of the two nodes resulting from the
split of the old one.

In terms of splitting, what we are essentially doing is splitting
the node into two nodes and splitting the records of the old node
between them. Then the pointers of the old node’s parent node are
updated to replace the old pointer with the two new pointers. If
the parent node overflows, the process is repeated. It is important

126

Tree Data Structures and Efficient Indexing Techniques: A Comprehensive Study PCI 2022, November 25–27, 2022, Athens, Greece

here to choose the method by which the records of the old node are
shared with the new ones in order to reduce as much as possible the
overlaps and the empty space inside the𝑚𝑏𝑟 as well as to minimize
the total space covered.

2.4.2 STR Packing (Sort Tile recursive). Having covered the inser-
tion of a single element in the previous section, a method for bulk
insertion of data into an R-Tree is presented named STR packing
[25].

The difference with the serial input of data in the tree lies in the
existence of overlaps and its efficient structure. A dataset in the real
world is usually not in an efficient format, meaning that the data is
not efficiently ordered so that when serialized it creates an efficient
structure. This means that elements that are far apart and ideally
should be on different nodes end up on the same node due to the
serialization causing the MBR of the corresponding node to swell
sharply and creating unnecessary empty space. Also, the splitting
strategies, while they do the job fairly well, are by no means perfect
and create a large amount of overlap when there is no favourable
partitioning of elements, again due to their serialization. All of
this, if viewed globally, leads to an unbalanced tree from some
splits with the result that some subtrees need to be accessed much
more than others, while many times we have unnecessary accesses
when searching for elements due to overlaps (looking at the MBR
a subtree appears to contain a particular element, but ultimately it
is not there but in some adjacent overlapping subtree).

With STR we can solve all of these problems by creating a tree
that breaks up the space optimally and without overlaps. However,
STR to achieve this result puts quite a burden on main memory
compared to serial input since it keeps all the data of a dataset in
memory to make the necessary modifications before building the
tree. Below we will describe the algorithm assuming that we have a
file with 𝑟 points, where each node can have up to 𝑛 elements and
the R-Tree will be two-dimensional:

(1) We first calculate two values: 𝑃 = ⌈𝑟/𝑛⌉ and 𝑆 = ⌈
√
𝑃 |. The

aim is to divide the space of 𝑟 points into
√︁
𝑟/𝑛 vertical pieces

(slices) that have enough points to create
√︁
𝑟/𝑛 nodes.

(2) We first sort the data with respect to the 𝑥 coordinate and
divide it into 𝑆 vertical slices. Each slice receives 𝑆 × 𝑛 con-
secutive points from the sorted data. The last slice can have
less than 𝑆 × 𝑛 points.

(3) We sort the data of each slice by the 𝑦 coordinate and group
them sequentially by 𝑛. These groups at the lowest level are
the leaves of the tree.

(4) We gather all the leaves created in each slice into a list and
recursively follow the previous steps to create the internal
nodes. For internal nodes the elements listed as points above
are replaced by rectangular MBRs of each leaf.

(5) We perform step 4 until a list of internal nodes less than or
equal to 𝑛 is generated. This list contains the children of the
root we are creating.

By sorting the elements in each layer with respect to 𝑥 , and then
using partitioning we achieve vertical partitioning of the space into
non-overlapping pieces. For the same reason, we then sort by 𝑦
and split so that there are no overlaps in the horizontal split. The

Figure 7: R-Tree structure with serial input of elements
(left) and with the STR algorithm (right). The spatial rep-
resentation shows how much more efficiently split and zero-
overlapping the tree is using STR as opposed to the densely
overlapping structure resulting from serial input using the
quadratic split strategy.

partition resulting from the STR algorithm described is shown in
Figure 7.

The above procedure is generalized to dimensions greater than 2.
We follow the same process by sorting on the first dimension and
dividing by 𝑆 =

[
𝑃

1
𝑘

]
vertical slices where each slice has

[
𝑃

𝑘−1
𝑘

]
sequential elements. Each slice is then processed recursively as if
we had a 𝑘 − 1 dimensional dataset.

2.4.3 Range Search. The range search follows the same process in
R-Tree as in similar trees. Below the steps of the search algorithm
based on a range 𝑆 and node 𝑇 are shown:

(1) If 𝑇 is not a leaf, we check each of its children to see if its
MBR intersects the range 𝑆 . For all children intersecting the
search range, we perform the steps of this algorithm.

(2) If 𝑇 is a leaf, we check all its elements and return those that
belong to the range 𝑆 .

The complexity of the algorithm cannot be clearly defined as it
largely depends on the nature of the data, how it was inserted into
the tree, and the scope of the search. A lot of overlap due to serial
input of scrambled data leads to a lot of extra searches in subtrees
and thus the performance decreases. Depending on the scope of
the search, the accesses can be limited to a few leaves-children of
an internal node or extend to a large number of subtrees and leaves,
reducing or increasing the search time respectively. Finally, the data
itself may not be uniformly distributed in space and exhibit sparse
and dense regions leading to individual accesses in specific subtrees.
However, in most cases the tree structure allows the elimination of
irrelevant subtrees from the search to a satisfactory level, which
leads to efficient searches in general cases.

2.5 Distributed kD Tree index and QuadTree
In [28], the authors present a data management system based on
HBase named MD-HBase. This system is intended to address the
urge formass input of new data and real-time spatial query response
as required by Location Based Services (LBS). Within this system,
they implement two data structures, KD tree, and QuadTree, which
are stored according to the key-value data model. But before moving
on to the implementation details, we will initiate by explaining the

127

PCI 2022, November 25–27, 2022, Athens, Greece D. Samoladas, et al.

special way these indexes will partition the space and how this
partitioning helps to store them efficiently.

In a key-value database, as we saw in previous sections, objects
are stored ordered by a key and partitioned by the range of the key
space. As a key, we use the Z-value of the dimensions on which the
index is built. But how is this Z-value obtained? If we consider that
the multidimensional space is divided into subspaces of equal size
and each dimension is numbered in the binary system, then the
z-order of the specific subspace is given by joining the names of the
spaces that contain it, adding at the end the name of the subspace
itself. Such a z-order is shown in Figure 8, where for example for
the subspace (01, 01) the z-order is 0011. This follows from the
surrounding space named 00 and the subspace itself (01, 01) which
has the name 11. If we join the two names we get the z-order 0011
of the subspace (01,01).

Figure 8: Binary Z-ordering.

Extending this concept of space partitioning to kD Trees and
QuadTrees, we may encode the subspaces created by these trees
while adding points, as seen in Figure 9. The Longest Common
Prefix that occurs in the subspace is used for encoding. In the right
subspace generated by the kD Tree in the right portion of Figure
9, for instance, the number 1 is the longest common prefix shared
by subspaces in this space. Therefore, this number will serve as its
name.

Figure 9: Left: Coding of the spaces generated by QuadTree.
Right: Encoding of the spaces generated by the kD Tree.

The design of indexes in the distributed system takes advantage
of the Z-ordering and longest common prefix properties. First, if
space A surrounds space B, the name A is appended to the name B.
Second, the name of the subspace is enough for defining the areas’
bounds in all dimensions. The second attribute is a consequence
of the fact that the name of a space is derived from the union of
the names of all the spaces within a dimension, and so may help
eliminate subtrees that do not belong to range queries.

By storing the Z-values of the spaces created by multidimen-
sional structures such as kDTree and QuadTree, Z-values have
allowed us to reduce their dimensions to one.

2.6 Index format and storage
Two levels comprise the index: the Index Layer and the Storage
Layer. There is an ordered series of subspace names in the Index
Layer. This ordered sequence is stored in a BigTable and has a B+
tree structure as a result. The two tiers of this B+ tree are ROOT
and META. The ROOT layer is never subdivided and always leads
to the META layer, which points to the data. At all levels, each row
is quite small since it carries just a few bits of information, such
as the name of the subspace, the location of the contents of the
subspace, and some query processing metadata. This enables the
index as a whole to grow to extremely big sizes without the Index
Layer expanding too large proportionately while maintaining a
large index size inside the same partition of the BigTable. Figure 10
illustrates the format stated before.

Figure 10: Storage format of the index stored in BigTable
while the Storage Layer follows another way of storage.

HBase was used for the Storage Layer. Data in the Storage Layer
is organized into buckets. For experimental reasons, different data
storage models were implemented. These models are as follows:

• Table share model (TS): In this model, all buckets are placed
in the same HBase table with keys of their z-values. This
model allows efficient partitioning of the space simply by
updating the rows of the table.

• Table per bucket model (TPB): In this model, each bucket has
its own table and therefore the Storage Layer has multiple
HBase tables. This model allows parallelism to be exploited
since multiple tasks can be started simultaneously on differ-
ent tables.

• Hybrid model: A balance between the previous two models.
First, the space is partitioned and we create a table for each
subspace created. After the initial split, if there is an over-
flow and additional splits are required, the newly created
subspaces share the same array as their enclosing space.

128

Tree Data Structures and Efficient Indexing Techniques: A Comprehensive Study PCI 2022, November 25–27, 2022, Athens, Greece

• Region per bucket model (RPB): As we saw previously, a
table in HBase consists of regions. This model uses a table
for the data and regions as buckets. This model, however,
required changes in the strategy and process by which HBase
internally splits the table into regions, so that the split is done
at the appropriate point.

Finally, tree and index data structures alongwith their insert/delete
and search operations complexities are summarized in Table 1.

3 EXPERIMENTAL RESULTS
3.1 B+ Tree
The data used in the experiments were created by simulating similar
massive datasets using a data generator to assess the distributed
index. The simulated dataset was one gigabyte per size and it in-
cludes nine million records. This file was initially stored in HDFS
before the index is constructed and experiments are set.

Initially, the performance of tree construction is assessed de-
pending on the selected class. Figure 11 illustrates the assessment
outcomes for two distinct groups. Clearly, the class of the tree is of
utmost significance throughout the construction of the tree. It is
crucial to fit the tree order to the amount of data, as a dispropor-
tionate choice of parameters (big dataset, tiny tree order) hinders
the speed of both construction and search owing to the numerous
additional visits necessitated by the high number of internal nodes.
Lastly, with a tiny class, a very deep and massive tree is generated,
which may need dividing it into numerous RegionServers when
the dataset is enormous, resulting in degraded performance.

Figure 11: Comparison of performance as a function of the
order of the B+ tree.

The construction of the centralised and distributed B+ trees was
then compared. The results are shown in Figure 12. Clearly, the
building time of a centralised B+ tree is much longer than that of
a distributed B+ tree. This is because the distributed tree uses the
parallelism offered by MapReduce in order to be created quickly. In
fact, the findings are even more astounding when we realise that
the dataset used to create the centralised tree was 300MB, but it
was 1GB for the distributed tree owing to capacity constraints.

Finally, the range query performance of the centralised and dis-
tributed frameworks was evaluated. For each structure, 100 ran-
dom range queries were executed on the 300MB and 1GB datasets,

Figure 12: Comparison of centralized and distributed B+ tree
construction performance.

respectively. The results are shown in Figure 13. Although the con-
centrated tree dealt with far less data than the distributed tree, its
performance was not superior. These assessments led to the conclu-
sion that HBase and Hadoop are very competent technologies for
managing large data sets and executing queries on them quickly.

Figure 13: Performance comparison on range queries be-
tween centralized and distributed B+ tree implementation.

To further enhance the findings, the prewarm approach men-
tioned in Section 2.1.2 was used, and tests were conducted to es-
tablish the extent to which this strategy reduces the search time.
The results are shown in Figure 14. As it can be seen, the prewarm
approach greatly improves the time, and maybe to a higher amount
than it seems, given that the data is not large enough to be divided
into several RegionServers and to benefit even more from the pre-
warm technique. However, its advantage may be shown in smaller
datasets as well.

3.2 Index Experiments
The experiments were conducted on an Amazon EC2 cluster rang-
ing in size from 4 to 16 nodes. Each node had 4 virtual cores, 15.7
GBs memory, 1.6 TB hard disk and 64bit Linux operating system.
The experiments were done for all the models we mentioned above.

The first measurements concerned the insert throughput and are
shown in Figure 15. The measurements were made in relation to
the load the system had to deal with. The load was simulated with

129

PCI 2022, November 25–27, 2022, Athens, Greece D. Samoladas, et al.

Table 1: Tree and Index Data structures and their Insert/Delete and Search Complexities.

Proposition Reference Dataset Type Insertion/Deletion Complexity Search Complexity
B-tree [10] Temporal 𝑂 (𝑛 log(𝑛)) 𝑂 (𝑛 log(𝑛))
B+-tree [13] Temporal 𝑂 (𝑛 log(𝑛)) 𝑂 (𝑛 log(𝑛))
B*-tree [24] Temporal 𝑂 (𝑛 log(𝑛)) 𝑂 (𝑛 log(𝑛))

Compact B-tree [7] Temporal 𝑂 (𝑛 log(𝑛)) 𝑂 (𝑛 log(𝑛))
T-tree [24] Temporal 𝑂 (2𝑛 log(𝑛)) 𝑂 (𝑛 log(𝑛))

Masstree [26] Temporal 𝑂 (𝑛 log(𝑛)) 𝑂 (𝑛 log(𝑛))
Fully Persistent B-tree [6] Temporal 𝑂

(
log𝐵 𝑛 + log2 𝐵

)
𝑂
(
log𝐵 𝑛 + 𝑡/𝐵

)
UB-tree [29] Spatio-temporal 𝑂 (𝑛 log(𝑛)) 𝑂 (𝑛 log(𝑛))
PaIndex [41] Spatio-temporal 𝑂 (𝑛 log(𝑛)) 𝑂 (𝑛 log(𝑛))

MLB+-tree [36] Seismic Data 𝑂 (𝑛 log(𝑛)) 𝑂 (𝑛 log(𝑛))
SR-tree [23] Image feature vectors 𝑂 (𝑛 log 3(𝑛)) 𝑂 (𝑛 log 3(𝑛))
E-tree [40] Spatial < 𝑂 (𝑛 log(𝑛)) Not calculated

ER+-tree [2] OpinRank Review Not calculated Not calculated
SUSHI [11] Color histogram and Synthetic data 𝑂 (𝑛2 log(𝑛)) Not calculated
R-tree [12] Geographical and Multimedia 𝑂 (𝑑𝑛 log(𝑛)) 𝑂 (𝑛 log(𝑛))
R+-tree [33] Geographical and Multimedia 𝑂 (𝑛 log(𝑛)) 𝑂 (𝑛 log(𝑛))
R*-tree [3, 4] Geographical and Multimedia 𝑂 (𝑛 log(𝑛)) + 𝑅𝑒 − 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑂 (𝑛 log(𝑛))

Hilbert R-tree [15] Spatial 𝑂 (log(𝑛) +𝑀 log(𝑛)) 𝑂 (𝑛 log(𝑛))
SS-tree [38] Multi-media data 𝑂 (𝑛 log(𝑛)) + 𝑅𝑒 − 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑂 (𝑛 log(𝑛))

BFM & R-tree [37] Multidimensional Not calculated Not calculated
ST2B-tree [8] Multidimensional Not calculated Not calculated

DCC & R-tree [35] Medical data 𝑂 (𝑛𝑘𝑡) 𝑂 (𝑛 log(𝑛))
X-tree [5] Spatial data Not calculated Not calculated
aX-tree [31] Spatial data Not calculated Not calculated
X+-tree [9] Spatial data Not calculated Not calculated
R*Q-tree [14] Spatial data 𝑂 ((𝑘𝑛𝑑𝑡) (𝑛 log(𝑛))) Not calculated
LSM-tree [27] Spatial 𝑂 (1) 𝑂 (𝑛)

Figure 14: Range query performance for centralized, dis-
tributed, and improved B+ Tree.

generators producing 10,000 inputs per second and their number
varied from 2 to 64.

Due to the expense of dividing a bucket, the TPB (table per
bucket) and TS (table share) models have poor scalability. In con-
trast, these splits are performed asynchronously utilizing the HBase
technique for separating areas in the RPB model. This technique is
quite inexpensive per cost. The first two types prevent additional
activities from occurring until the bucket split has been completed.

Therefore, despite the fact that these two models make more use
of parallelism in the import load distribution, their throughput is
limited by the lengthy delay caused by splits.

The range query performance of the models for the QuadTree
and kDTree indexes was then evaluated. For purposes of compar-
ison, MapReduce was added to the experimental analysis, which
verifies for each point whether it falls within the search range and
returns it. On almost 400,000,000 points acquired by mimicking
moving objects on the streets of San Francisco, experiments were
conducted. Figure 16 depicts search times as a function of altering
selectivity (i.e. the range of data covered by the specified query).

As shown in Figure 16, all of the previously proposed models
are more efficient than ordinary MapReduce or Z-order searches.
Particularly for queries with a high degree of selectivity, the pro-
vided models demonstrate an improvement of almost twofold or
even thrice. In addition, the response time to queries is propor-
tional to the selectivity for the work models, while the MapReduce
implementation results in poorer response times regardless of the
selectivity. A thorough examination reveals that the TPB approach
is the most effective. In queries with a high degree of selectivity,
the RPB model has greater execution times than the other models.

Regarding the two structures, QuadTree and kD Tree queries
with high selectivity demonstrated superior performance with
QuadTree than with kD Tree. However, when the selectivity of

130

Tree Data Structures and Efficient Indexing Techniques: A Comprehensive Study PCI 2022, November 25–27, 2022, Athens, Greece

Figure 15: Insert operation performance of the models.

QuadTree drops, so does its reaction time. This is because kD Tree
produces fewer buckets than QuadTree, yet QuadTree performs
subtree removal more effectively than kD Tree. Due to this, the tree
with the fewest buckets, i.e. the kD Tree, will be more efficient in
cases of high selectivity when time is mostly used by making sub-
queries for each bucket. In contrast, with low selectivity, searching
inside a bucket consumes more time than making subqueries for
each bucket (since we are not searching in many due to low selectiv-
ity). Consequently, the tree that removes buckets more effectively
throughout the search will be more efficient. We find that the per-
formance of range queries relies directly on the capacity to remove
superfluous searches (this property is referred to as pruning).

Figure 16: Log-scaled response times as a function of selec-
tivity for the kD Tree and QuadTree indexes.

Finally, measurements were also made for nearest neighbour
searches (kNN queries). The measurements were made on the same
data as before and for various values of 𝑘 (number of neighbours).
The results of the measurements are shown in Figure 17.

The Figure reveals that the TPB model from QuadTree has the
greatest performance, with a response time of around 250ms. Re-
sponse times grow as 𝑘 increases, but not exponentially, indicating
that we are dealing with an efficient kNN algorithm. When 𝑘 is less
than or equal to 100, TPB/Quad outperformed the other models.
The TPB/Quad model outperforms the TPB/Kd model because the
lower bucket size decreases the bucket scan time. Both TS model
implementations display equal response times for tiny 𝑘 .

Comparing the two trees, QuadTree has lower reaction times
for small 𝑘 , but longer response times for high 𝑘 . This is due to the
size of the bucket. The search extension is uncommon for small
𝑘 since the closest neighbours are often included inside the same
bucket. Consequently, QuadTree discovers neighbours quicker than
kDTree owing to the smaller buckets it produces. For large values
of 𝑘 , the likelihood of expanding the search to more buckets is high.
The performance of QuadTree is inferior to that of kD Tree due to
the frequent expansions caused by its tiny buckets.

Figure 17: Response times for nearest neighbour queries as a
function of the number of neighbours.

4 CONCLUSIONS
In the context of this comprehensive study, well-known tree data
structures are surveyed and covered including B+ Tree, QuadTree,
kD Tree, R Tree and others which are summarized in the overview
table of the preceding section. Moreover, we present the data types
they support as well as the insertion/deletion complexity and the
search complexity per worst-case scenario. Additionally, we present
some efficient indexing techniques with experiments including
their centralized and decentralized implementation as per time and
insert performance evaluation of fundamental indexing models.
Ultimately, this review will serve as an informative summary paper
that will familiarize readers with tree data structures and indexing
mechanisms for big data management. Future directions of this

131

PCI 2022, November 25–27, 2022, Athens, Greece D. Samoladas, et al.

work include the integration of sampling schemes [17–20, 22] for
approximations along with Tiny Machine Learning (TinyML) meth-
ods running on embedded devices [32, 39] which will enable us to
run ML models on data structures on top of micro-controllers.

REFERENCES
[1] Hera Antonopoulou, Vicky Mamalougou, and Leonidas Theodorakopoulos. 2022.

The Role of Economic Policy Uncertainty in Predicting Stock Return Volatility in
the Banking Industry: A Big Data Analysis. (2022).

[2] Balamurugan Balasubramanian, Kamalraj Durai, Jegadeswari Sathyanarayanan,
and Sugumaran Muthukumarasamy. 2019. Tree based fast similarity query search
indexing onoutsourced cloud data streams. Int. Arab J. Inf. Technol. 16, 5 (2019),
871–878.

[3] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.
1990. The R*-tree: An efficient and robust access method for points and rectangles.
In Proceedings of the 1990 ACM SIGMOD international conference on Management
of data. 322–331.

[4] Norbert Beckmann and Bernhard Seeger. 2009. A Revised R*-Tree in Comparison
with Related Index Structures. In Proceedings of the 2009 ACM SIGMOD Interna-
tional Conference on Management of Data (Providence, Rhode Island, USA) (SIG-
MOD ’09). Association for Computing Machinery, New York, NY, USA, 799–812.
https://doi.org/10.1145/1559845.1559929

[5] Stefan Berchtold, Daniel A Keim, and Hans-Peter Kriegel. 1996. The X-tree: An
index structure for high-dimensional data. In Very large data-bases. 28–39.

[6] Gerth Stølting Brodal, Spyros Sioutas, Konstantinos Tsakalidis, and Kostas Tsich-
las. 2020. Fully persistent B-trees. Theoretical Computer Science 841 (2020), 10–26.
https://doi.org/10.1016/j.tcs.2020.06.027

[7] Peter Bumbulis and Ivan T. Bowman. 2002. A Compact B-Tree. In Proceedings of
the 2002 ACM SIGMOD International Conference on Management of Data (Madison,
Wisconsin) (SIGMOD ’02). Association for Computing Machinery, New York, NY,
USA, 533–541. https://doi.org/10.1145/564691.564753

[8] Su Chen, Beng Chin Ooi, Kian-Lee Tan, andMario A Nascimento. 2008. ST2B-tree:
a self-tunable spatio-temporal B+-tree index for moving objects. In Proceedings of
the 2008 ACM SIGMOD international conference on Management of data. 29–42.

[9] MN Doja, Sapna Jain, and M Afshar Alam. 2012. SAS: Implementation of scaled
association rules on spatial multidimensional quantitative dataset. International
Journal of Advanced Computer Science and Applications 3, 9 (2012).

[10] Goetz Graefe. 2006. B-Tree Indexes for High Update Rates. SIGMOD Rec. 35, 1
(mar 2006), 39–44. https://doi.org/10.1145/1121995.1122002

[11] Stephan Günnemann, Hardy Kremer, Dominik Lenhard, and Thomas Seidl. 2011.
Subspace clustering for indexing high dimensional data: a main memory index
based on local reductions and individual multi-representations. In Proceedings of
the 14th International Conference on Extending Database Technology. 237–248.

[12] Antonin Guttman. 1984. R-trees: A dynamic index structure for spatial searching.
In Proceedings of the 1984 ACM SIGMOD international conference on Management
of data. 47–57.

[13] Christian S Jensen, Dan Lin, and Beng Chin Ooi. 2004. Query and update effi-
cient B+-tree based indexing of moving objects. In Proceedings of the Thirtieth
international conference on Very large data bases-Volume 30. 768–779.

[14] Pan Jin and Quanyou Song. 2011. A novel index structure r* q-tree based on
lazy splitting and clustering. In 2011 IEEE International Conference on Computer
Science and Automation Engineering, Vol. 3. IEEE, 405–407.

[15] Ibrahim Kamel and Christos Faloutsos. 1993. Hilbert R-tree: An improved R-tree
using fractals. Technical Report.

[16] Aristeidis Karras, Christos Karras, Dimitrios Samoladas, Konstantinos C.
Giotopoulos, and Spyros Sioutas. 2022. Query Optimization in NoSQL Databases
Using an Enhanced Localized R-tree Index. In Information Integration and Web
Intelligence, Eric Pardede, Pari Delir Haghighi, Ismail Khalil, and Gabriele Kotsis
(Eds.). Springer Nature Switzerland, Cham, 391–398.

[17] Christos Karras and Aristeidis Karras. 2022. DBSOP: An Efficient Heuristic for
Speedy MCMC Sampling on Polytopes. https://doi.org/10.48550/ARXIV.2203.
10916

[18] Christos Karras, Aristeidis Karras, Markos Avlonitis, Ioanna Giannoukou, and
Spyros Sioutas. 2022. Maximum Likelihood Estimators on MCMC Sampling
Algorithms for Decision Making. In Artificial Intelligence Applications and In-
novations. AIAI 2022 IFIP WG 12.5 International Workshops, Ilias Maglogiannis,
Lazaros Iliadis, John Macintyre, and Paulo Cortez (Eds.). Springer International
Publishing, Cham, 345–356.

[19] Christos Karras, Aristeidis Karras, Markos Avlonitis, and Spyros Sioutas. 2022.
An Overview of MCMC Methods: From Theory to Applications. In Artificial
Intelligence Applications and Innovations. AIAI 2022 IFIP WG 12.5 International
Workshops, Ilias Maglogiannis, Lazaros Iliadis, John Macintyre, and Paulo Cortez
(Eds.). Springer International Publishing, Cham, 319–332.

[20] Christos Karras, Aristeidis Karras, and Spyros Sioutas. 2022. Pattern Recognition
and Event Detection on IoT Data-streams. https://doi.org/10.48550/ARXIV.2203.

01114
[21] Christos Karras, Aristeidis Karras, Leonidas Theodorakopoulos, Ioanna Gian-

noukou, and Spyros Sioutas. 2022. Expanding Queries with Maximum Likelihood
Estimators and Language Models. In Proceedings of the ICR’22 International Con-
ference on Innovations in Computing Research, Kevin Daimi and Abeer Al Sadoon
(Eds.). Springer International Publishing, Cham, 201–213.

[22] Christos Karras, Aristeidis Karras, Dimitrios Tsolis, Konstantinos C. Giotopou-
los, and Spyros Sioutas. 2022. Distributed Gibbs Sampling and LDA Modelling
for Large Scale Big Data Management on PySpark. In 2022 7th South-East Eu-
rope Design Automation, Computer Engineering, Computer Networks and So-
cial Media Conference (SEEDA-CECNSM). 1–8. https://doi.org/10.1109/SEEDA-
CECNSM57760.2022.9932990

[23] Norio Katayama and Shin’ichi Satoh. 1997. The SR-tree: An index structure for
high-dimensional nearest neighbor queries. ACM Sigmod Record 26, 2 (1997),
369–380.

[24] Tobin J Lehman and Michael J Carey. 1985. A study of index structures for
main memory database management systems. Technical Report. University of
Wisconsin-Madison Department of Computer Sciences.

[25] Scott T Leutenegger, Mario A Lopez, and Jeffrey Edgington. 1997. STR: A sim-
ple and efficient algorithm for R-tree packing. In Proceedings 13th international
conference on data engineering. IEEE, 497–506.

[26] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache craftiness
for fast multicore key-value storage. In Proceedings of the 7th ACM european
conference on Computer Systems. 183–196.

[27] Fei Mei, Qiang Cao, Hong Jiang, and Lei Tian Tintri. 2017. LSM-Tree Managed
Storage for Large-Scale Key-Value Store. In Proceedings of the 2017 Symposium on
Cloud Computing (Santa Clara, California) (SoCC ’17). Association for Comput-
ing Machinery, New York, NY, USA, 142–156. https://doi.org/10.1145/3127479.
3127486

[28] Shoji Nishimura, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. 2011.
MD-HBase: A Scalable Multi-dimensional Data Infrastructure for Location Aware
Services. In 2011 IEEE 12th International Conference on Mobile Data Management,
Vol. 1. 7–16. https://doi.org/10.1109/MDM.2011.41

[29] Frank Ramsak, Volker Markl, Robert Fenk, Martin Zirkel, Klaus Elhardt, and
Rudolf Bayer. 2000. Integrating the UB-tree into a database system kernel.. In
VLDB, Vol. 2000. Citeseer, 263–272.

[30] Hanan Samet. 1984. The quadtree and related hierarchical data structures. ACM
Computing Surveys (CSUR) 16, 2 (1984), 187–260.

[31] Grace Samson, Lu Joan, Mistura M Usman, Aminat A Showole, and Hadeel Jazzaa
Hadeel. 2018. Large spatial database indexing with aX-tree. International Journal
of Scientific Research in Computer Science, Engineering and Information Technology
3, 3 (2018), 759–773.

[32] Nikolaos Schizas, Aristeidis Karras, Christos Karras, and Spyros Sioutas. 2022.
TinyML for Ultra-Low Power AI and Large Scale IoT Deployments: A Systematic
Review. Future Internet 14, 12 (2022). https://doi.org/10.3390/fi14120363

[33] Timos Sellis, Nick Roussopoulos, and Christos Faloutsos. 1987. The R+-Tree: A
Dynamic Index for Multi-Dimensional Objects. Technical Report.

[34] Leonidas Theodorakopoulos, Hera Antonopoulou, Vicky Mamalougou, and Kon-
stantinos Giotopoulos. 2022. The drivers of volume volatility: A big data analysis
based on economic uncertainty measures for the Greek banking system. Banks
and Bank Systems 17, 3 (08 2022), 49–57. https://doi.org/10.21511/bbs.17(3).2022.
05

[35] Xinlu Wang, Weiming Meng, and Mingchuan Zhang. 2019. A novel information
retrieval method based on R-tree index for smart hospital information system.
International Journal of Advanced Computer Research 9, 42 (2019), 133–145.

[36] Yida Wang, Changhai Zhao, Zengbo Wang, Jiguo Du, Chao Liu, Haihua Yan,
Jiamin Wen, Hongjun Hou, and Kun Zhou. 2018. MLB+-tree: A Multi-level
B+-tree Index for Multidimensional Range Query on Seismic Data. In 2018 5th
International Conference on Systems and Informatics (ICSAI). IEEE, 1176–1181.

[37] Zhu Wang, Tiejian Luo, Guandong Xu, and Xiang Wang. 2013. A new indexing
technique for supporting by-attribute membership query of multidimensional
data. In International Conference on Web-Age Information Management. Springer,
266–277.

[38] David A White and Ramesh Jain. 1996. Similarity indexing with the SS-tree. In
Proceedings of the Twelfth International Conference on Data Engineering. IEEE,
516–523.

[39] Angelos Zacharia, Dimitris Zacharia, Aristeidis Karras, Christos Karras, Ioanna
Giannoukou, Konstantinos C. Giotopoulos, and Spyros Sioutas. 2022. An Intel-
ligent Microprocessor Integrating TinyML in Smart Hotels for Rapid Accident
Prevention. In 2022 7th South-East Europe Design Automation, Computer Engi-
neering, Computer Networks and Social Media Conference (SEEDA-CECNSM). 1–7.
https://doi.org/10.1109/SEEDA-CECNSM57760.2022.9932982

[40] Peng Zhang, Chuan Zhou, Peng Wang, Byron J Gao, Xingquan Zhu, and Li Guo.
2014. E-tree: An efficient indexing structure for ensemble models on data streams.
IEEE Transactions on Knowledge and Data engineering 27, 2 (2014), 461–474.

[41] Shaoming Zhang, Xudong Liu, Mingming Zhang, and Tianyu Wo. 2017. PaIndex:
An online index system for vehicle trajectory data exploiting parallelism. In 2017
4th International Conference on Systems and Informatics (ICSAI). IEEE, 696–703.

132

https://doi.org/10.1145/1559845.1559929
https://doi.org/10.1016/j.tcs.2020.06.027
https://doi.org/10.1145/564691.564753
https://doi.org/10.1145/1121995.1122002
https://doi.org/10.48550/ARXIV.2203.10916
https://doi.org/10.48550/ARXIV.2203.10916
https://doi.org/10.48550/ARXIV.2203.01114
https://doi.org/10.48550/ARXIV.2203.01114
https://doi.org/10.1109/SEEDA-CECNSM57760.2022.9932990
https://doi.org/10.1109/SEEDA-CECNSM57760.2022.9932990
https://doi.org/10.1145/3127479.3127486
https://doi.org/10.1145/3127479.3127486
https://doi.org/10.1109/MDM.2011.41
https://doi.org/10.3390/fi14120363
https://doi.org/10.21511/bbs.17(3).2022.05
https://doi.org/10.21511/bbs.17(3).2022.05
https://doi.org/10.1109/SEEDA-CECNSM57760.2022.9932982

	Abstract
	1 Introduction
	2 Overview
	2.1 B+ Tree
	2.2 QuadTree
	2.3 kD Tree
	2.4 R Tree
	2.5 Distributed kD Tree index and QuadTree
	2.6 Index format and storage

	3 Experimental Results
	3.1 B+ Tree
	3.2 Index Experiments

	4 Conclusions
	References

