Check for
Updates

A Cluster-based Virtual Edge Computation Offloading Scheme
for MEC-enabled Vehicular Networks

Leontios Sotiriadis
University of West Attica, Dept. of
Informatics and Computer
Engineering
Isotiriadis@uniwa.gr

ABSTRACT

Internet of Vehicles (IoV) has received a great deal of attention in
recent years from many researchers. Recently, vehicular edge com-
puting has been a new paradigm to support computation-intensive
and latency-sensitive services in IoV. Moreover, with the cellular-
vehicle to everything technology, many tasks and applications can
be efficiently offloaded to another node for processing. In this paper
a novel cluster-based virtual edge computation offloading scheme
is proposed, which has as its main objective to efficiently find the
most suitable multi-hop neighbor to act as a virtual edge computing
(VEC) server for task offloading. The proposed scheme is initially
based on the formation and maintenance of multi-hop clusters with
high stability, whereas its efficiency is further enhanced by the
local/distributed computations taking place where it’s possible.

CCS CONCEPTS
» Networks — Algorithms; Network types; Ad hoc networks.

KEYWORDS

Internet of Vehicles, Multi-hop Clustering, Vehicular Edge Comput-
ing, Virtual Edge, Computation Offloading

ACM Reference Format:

Leontios Sotiriadis, Basilis Mamalis, and Grammati Pantziou. 2022. A
Cluster-based Virtual Edge Computation Offloading Scheme for MEC-
enabled Vehicular Networks. In 26th Pan-Hellenic Conference on Informatics
(PCI 2022), November 25-27, 2022, Athens, Greece. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3575879.3575989

1 INTRODUCTION

The emergence of vehicular edge computing has been a new para-
digm to support the rapidly growing computation-intensive and
latency-sensitive services in intelligent transportation systems (ITS)
[1]. However, there are still some challenges in conducting efficient
edge computing tasks due to the high mobility of vehicles and the
limited bandwidth in vehicular networks [2]. Smart vehicles are
equipped with devices to connect with each other, and have power-
ful processing unit to execute computation tasks. It is forecasted

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PCI 2022, November 25-27, 2022, Athens, Greece

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9854-1/22/11...$15.00
https://doi.org/10.1145/3575879.3575989

Basilis Mamalis
University of West Attica, Dept. of
Informatics and Computer
Engineering
vmamalis@uniwa.gr

175

Grammati Pantziou
University of West Attica, Dept. of
Informatics and Computer
Engineering
pantziou@uniwa.gr

that smart vehicles on the roads could reach nearly two billion by
2025, and each one may produce up to 30 terabytes of data every day.
On the other hand, the workloads in the vehicles are not evenly dis-
tributed. For example, slow-moving vehicles have less computation
tasks in a relatively stable road traffic context, whereas fast-moving
vehicles have to process a much larger amount of data in a shorter
time to guarantee a safe driving. Generally, the problem of the effi-
cient utilization of the idle vehicle computational resources needs
further investigations.

Improving task execution performance in computation offload-
ing is one of the key challenges in vehicular edge computing. To
face the challenge, researchers conduct many kinds of studies, and
the first attempts were mainly focused on the energy-efficient allo-
cation of computing resources [3], binary computation offloading
[4], and partial computation offloading [5], usually following well
studied theoretical techniques to optimize the task offloading deci-
sion (MDP, game theory, branch and bound etc. [6-8]). However,
most of the existing studies only consider the offloading compu-
tation tasks from vehicles to edge servers, such as roadside units
(RSU) or cloud servers (see also [9, 10]), and the problem of how to
utilize the computing capabilities of moving vehicles efficiently in
dynamic vehicular networks has not been sufficiently clarified yet.

Two of the most valuable recent attempts towards that direc-
tion are presented in [1, 2]. In [1] the authors propose Virtual
Edge, which is an efficient scheme to utilize free computational
resources of multiple nearby vehicles as a virtual server to facilitate
collaborative vehicular edge computing. Extensive simulations are
conducted to show the advantage of the proposed scheme in terms
of the completion ratio and average task execution time. In [2] a
cluster-based collaborative offloading scheme is proposed, in which
the collaboration between the MEC servers and vehicles with idle
computation resources is explored (both theoretically and experi-
mentally). According to simulation results, the proposed scheme
reduces offloading latency and energy consumption compared to
other existing schemes. Several other related attempts can also
be found in [11-14] where moving and parked cars with idle re-
sources are viewed as collaborating/fog nodes for task offloading
and the idea of vehicles as an infrastructure (Vaal) is introduced, as
well as in [15-17] where relevant combined solutions of vehicular
MEC with collaborative task offloading are further studied. The
reader may also find some interesting discussions on joint resource
allocation and computation offloading in [18-20].

In this work we present a novel virtual edge computation of-
floading scheme for MEC-enabled vehicular networks (i.e. in the
form of Fig. 1) which is mainly based on clustering as well as on the
efficient calculation of the companion times between the vehicles.
The adopted cluster formation algorithm first creates highly stable

https://doi.org/10.1145/3575879.3575989
https://doi.org/10.1145/3575879.3575989
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3575879.3575989&domain=pdf&date_stamp=2023-03-29

PCI 2022, November 25-27, 2022, Athens, Greece

N

;
|

OB A @
] X i / \ (nam) /
N, —~_ i /

N & o) ya E .

(- VEC server (IMED) TaskVehicle Cluster head

@ orinary venice

PC5 connection

_~4~~" Uuconnection —A=

Figure 1: Basic IoV architecture with eNodeB/RSU and MEC
server support [2]

and secure multi-hop clusters, and also uses a suitable maintenance
mechanism to further increase the stability of the formed clusters.
Given the underlying stable cluster organization, when a task is
generated on a vehicle/member of a cluster, the main purpose of
the proposed offloading scheme is to efficiently find another (the
most suitable) cluster member (CM) that can act as a virtual edge
computing (VEC) server for offloading the requested task. Local
processing of the task or offloading to the closest MEC server is
also conducted in specific cases. The efficiency of the proposed
scheme is further enhanced by the local / distributed computations
applied in specific time-consuming steps. The followed multi-hop
clustering approach is briefly described in section 2. The proposed
cluster-based computation offloading scheme as well as the detailed
description of the distributed VEC-server finding procedure and its
generalization are presented in section 3. Our evaluation plan is
discussed in section 4, whereas section 5 concludes the paper.

2 THE CLUSTER FORMATION ALGORITHM

As mentioned above, our overall offloading approach is initially
based on the formation of stable clusters, whose members are then
considered as the best candidate VEC servers for task offloading.
Specifically, a suitable clustering algorithm is adopted (proposed
in our previous work of [21]), in which multi-hop clusters are
formed, with not only stable CHs, but also having highly stable
neighborhoods. This high stability feature is inherited recursively
till the leaf nodes of the cluster. Also, a suitable RSU/MEC-server
assisted maintenance mechanism is applied in order to further
increase the stability of the formed clusters. Finally, an RSU/MEC-
server assisted trust management mechanism is also introduced
to ensure the resistance of the whole network to specific kinds
of security attacks. In brief, the proposed clustering formation
algorithm consists of the following steps:

i. First, each vehicle i computes its Mobility Difference (MD value)
with each neighbor j, and constructs a set U of eligible neighbors,
the ones for which the computed MD value doesn’t exceed a specific
threshold (Ts) and have the same direction. In this way it detects the
most appropriate neighbors (i.e. the other ones in its neighborhood
with the most similar mobility behavior), in order to choose later
one of them to follow as its parent node. The MD value for each
neighbor vehicle j with respect to i is computed based on the speed

176

Leontios Sotiriadis et al.

and acceleration differences (SD(i,j) and, AD(i,j) respectively — see
[3] for their exact definition) between the two vehicles, which are
the most important factors indicating the actual similarity in the
mobility behavior of the two vehicles. The final MD value is given
by the following formula, where c; and c; are appropriately selected
constant coefficients (with ¢; + ¢z = 1):

MD (i, j) = ¢1-SD (i, j) + c2-AD (i, j)

ii. Each vehicle i also computes its overall Stability Factor (SF) value.
The SF value of a vehicle is computed based on the total/average
differences in speed and acceleration as well as on the degree of the
vehicle and its total/average distance form all its neighbors. More
concretely, it’s computed as follows:

SF(i) = & SDgy (i) + - ADgy (i) +y - Do (i) + & - d (i)

In the above computation «, §, y and § are (appropriately selected)
constant coefficients, with & + f +y + § = 1, d(i) is the degree of node
i, and SDgy (i), ADgy (i), Dgy(i) are the justified measurements of
the average speed difference, average acceleration difference and
average relative distance, respectively, between vehicle i and all its
neighbors (see [3] for their exact definition).

iii. Based on the advertised SF values of all it’s neighbor vehicles,
each vehicle i elects the best neighbor node to follow as its parent
(among the ones already put in set U as eligible candidates). More
concretely, i elects as its parent node (from the nodes of set U)
the one which the maximum overall Stability Factor (SF) value,
provided that this value is also greater than its own SF value.

iv. Finally, the vehicle which doesn’t have a neighbor node with
both sufficient mobility similarity (sufficiently small MD value) and
greater SF value announces itself as a clusterhead (CH).

Thus, at the end of execution each vehicle has elected as its
parent a vehicle that has sufficiently similar mobility behavior and
the maximum overall stability among its neighbors. Based on this
feature, which progressively extends till the root node (which is
elected as the CH), the proposed algorithm naturally leads to the for-
mation of highly stable clusters with increased lifetime. The reader
may also refer to [21] for more details with regard to the stability
maintenance and trust management mechanisms also adopted.

3 THE PROPOSED COMPUTATION
OFFLOADING SCHEME

Let’s assume a task Ti is generated on a vehicle Vhi and it’s de-
scribed byT; = (Gi, Ci, Z;) where G; denotes the size of Ti,Ci de-
notes the amount of computing resources needed to execute T4,
and Zi is the maximum latency of Ti To enhance network utility,
vehicles can process task by themselves. Alternatively, and usually
as a preferred option in order to exploit possible idle resources of
neighboring vehicles, a vehicle Vhi may offload a task to another
cluster member (CM, which in this case acts as virtual edge comput-
ing — VEC - server) or to the closest mobile edge computing (MEC)
server for processing. Specifically, the host vehicle Vhi schedules
the necessary communication with the other cluster members and
calculates the necessary parameters to finally decide if offloading
the task to another CM or to a MEC server is possible. We also
distinguish between tasks that need to be completed within a strict
deadline i.e., Zi =< max Latency, and tasks that have a loose dead-
line or practically, have no deadline i.e., Zi > max Latency, where

A Cluster-based Virtual Edge Computation Offloading Scheme for MEC-enabled Vehicular Networks

if (Zi <= MaxLatency)
if (a CM Vhj with enough resources — fo serve as a VEC server within the deadline — is found)
then offload Tl/!u Vhf
else /" none eligible CM is found */
process Ti locally
else /™ tasks with loose deadline or practically no deadline */
if (a CM Vhj with enough resources — fo serve as a VEC server — is found)
then offload Ti to Vihj
else /[none eligible CM is found %/
offload Ti to the closest MEC server

Figure 2: The basic offloading decision algorithm

MaxLatency is a predefined high threshold value meaning that any
task with at least such latency practically will not fail in our algo-
rithm. More concretely, the host vehicle Vhi acts for each task Ti
as described in Fig. 2.

Note that in case of tasks with loose deadline or practically no
deadline, it’s not necessary to compute the companion time between
vehicle Vhi and the candidate CMs (virtual edge computing servers),
which is a quite time-consuming task, and the offloading decision
procedure is further simplified. Also, in that case the results of the
task execution may probably not sent back directly but through
the closest MEC server. More details on the above cases as well as
with regard to the exact procedure through which a specific CM is
chosen to act as a VEC server for offloading are given in sections
3.2 and 3.3.

3.1 Local Processing

As mentioned above, to enhance network utility, vehicles can pro-
cess task by themselves. However local processing is encouraged
only if no other solution is feasible (i.e. offloading to another CM or
to the closest MEC server is prohibited due to time limit restrictions
or lack of the required resources). In that way the vehicle remains
free and with enough resources to execute crucial tasks (i.e. tasks
with strict deadlines/low latency values Z; etc) either of its own
or offloaded by other cluster members. Obviously, when a vehicle
processes a task by itself there is no data transmission cost, so the
delay is due only to execution time. Otherwise, the vehicle decides
to offload a task to either a CM (virtual edge server) or a MEC server,
which involves transmission cost through the wireless network.

3.2 Offloading to a MEC server

As indicated in the basic decision algorithm (Fig. 2), a decision for
MEC server offloading is taken for tasks with loose (or practically
no) deadline that no other CM can be found to execute them due
to lack of resources. More concretely, if the host vehicle decides to
offload task Ti to the closest MEC server, the whole transmission is
then performed through the CH of the cluster the vehicle belongs to.
Therefore, the task transmission is done in two phases. In phase 1, Ti
is transmitted from the vehicle to the CH through the unique (multi-
hop in general) path connecting them. In phase 2, Ti is transmitted
from the CH to the MEC server. By involving the CH (and the
underlying cluster structure) in the whole transmission procedure,
our scheme guarantees the proper balancing of the communication
overhead and eliminates congestions. Moreover, due to the stable
and secure nature of the clustering algorithm, our approach leads
to reliable communication routes between nodes for efficient task

177

PCl 2022, November 25-27, 2022, Athens, Greece

offloading, and hence minimizes communication overhead among
vehicles.

The transmission of the results back to the host vehicle (Vhi)
may be done in one of the following two ways:

o If the vehicle remains in the communication range of the
MEC server the results are sent back to the vehicle in the
same way as the offloading was done (following the opposite
direction).

o If the vehicle lies now outside the range of the MEC server,
the results are sent to the next (neighboring) MEC servers to
finally disseminate them to the host vehicle when it comes
into their range.

In both cases the whole transmission is performed again in two
phases, through the CH of the cluster the vehicle belongs to.

3.3 Offloading to a Cluster Member (virtual
edge computing server)

The basic offloading decision algorithm (which is illustrated in
Fig. 2) clearly encourages finding another vehicle (with enough
resources) to act as a VEC server for offloading the requested task.
In the proposed computation offloading scheme the search for such
a suitable VEC server is guided among the other members of the
same cluster, trying to take advantage of the relevant attractive
features of the adopted cluster formation algorithm (see section
2 for more details). More concretely, as mentioned in section 2,
the relevant clustering procedure enforces the formation of stable
and secure clusters, whereas the corresponding RSU/MEC-server
assisted maintenance strategy enhances the overall clusters stability
even more. Based on the above considerations, when a task is
generated in a CM, the other CMs should be considered as the best
candidates to act as VEC servers for task offloading, especially when
strict deadlines have to be satisfied. In this case the companion time
between the vehicle in which the task is generated and the vehicle
in which the task is finally offloaded should be long enough to cover
both the necessary processing time and the total communication
times (required to offload the task and get back the results).

Specifically, the companion time CTIJ between two neighboring
vehicles Vhi and Vhj is expressed as the upper limit of the link du-
ration between the two vehicles and it’s derived based on a general
discretized longitudinal kinematic motion equation of vehicles as
described in [1, 22]. Further, the companion time between two ve-
hicles communicating through multiple relay nodes/vehicles (mul-
tiple hops — i.e. assume that Vhi communicates with Vhj through
m relay nodes/vehicles Vhrl...Vhry, is expressed as follows.

CTij = min {CTir, CTriry,CTrars, . CTrm—17m CTrmj}

In other words, in that case the companion time is expressed as
the minimum companion time among the companion times of all
the consequent pairs of neighboring nodes on the path connecting
Vhi and Vhj.

Additionally, the proposed scheme is enhanced suitably by ap-
plying local and distributed computations where it’s possible. More
concretely, both the calculation of the companion times of each
other CM Vhj with the host vehicle Vhi and the estimation of the
expected processing times on each other CM Vhyj, are performed in

PCI 2022, November 25-27, 2022, Athens, Greece

a distributed manner in order to save both energy and time com-
paring to the alternative of making all the necessary calculations
centrally in the host vehicle (Vhi), as for example is suggested in
the work presented in [1].

The detailed searching procedures for each case (tasks with strict
or loose deadlines) have as follows.

A. In case of tasks with strict deadlines (Zi <= max Latency) the
following steps are taking place to find a suitable CM to act as a
VEC-server:

Al First, the host vehicle Vhi disseminates the necessary infor-
mation (of both itself and task Ti) to all CMs as the root of the
cluster tree. More concretely, the relevant info message INFO_MSG
consists of (a) the vehicle movement values (Li, Vi, Ai) where Li
denotes its current location, and Vi, Ai denote its current velocity
and acceleration respectively, and (b) the task description values
(Gi, Ci, Z1) where Gi denotes the size of Ti, Ci denotes the amount
of computing resources needed to execute Ti, Ci, and Zi is the max-
imum latency of Ti. Moreover, in order to optimize the distributed
calculation of the companion times between Vhi and the other CMs,
while disseminating the info message each relay node Vhr substi-
tutes the vehicle movement values contained in the message with
its own corresponding values (Lr, Vr, Ar).

A2. Each vehicle Vhj that receives such an INFO_MSG message,
calculates the following parameters:

(i) A binary flag Fprj denoting if it has enough resources (memory,
cpu ete.) to process task Ti or not (taking value ‘1° or ‘0’ respectively).
This flag is calculated based on the remaining resources of its own
and the values Gi, Ci just received.

(ii) The estimated time Tprj it needs to process task Ti. The cor-
responding calculation is also based on the remaining resources of
its own and the values Gi, Ci just received, and it’s being performed
only if Fprj is equal to ‘1. Also, in case that Tprj is greater than Zi
Tprj is set to ‘0’ (to indicate that Ti isn’t possible to be processed by
Vhj within the relevant deadline).

(iii) The estimated companion time CTjk between itself and the
relay node (let’s name it Vhk) from which the info message was
received (i.e the last node in the path connecting Vhi and Vhj). The
calculation of the companion time is being performed only if Fprj
is equal to ‘1’ and Tprj is greater than ‘0’. Also, in case that Tprj
is greater than CTjk, CTjk is set to ‘0’ (to indicate here too that Ti
can’t be processed by Vhj within the relevant deadline since the
companion time between the two vehicles will be definitely not
enough).

A3. Each vehicle Vhj that has received the INFO_MSG message
and has already calculated the above parameters sends back a re-
sponse message RES_MSG to the host vehicle Vhi, based on the
values Fprj, TPrj and CTjk. More concretely, if Fprj is equal to ‘1’
and both Tprj and CTjk are greater than ‘0’, RES_MSG consists of
the values Tprj and CTjk, whereas in any other case a zero-value
RES_MSG is returned. Moreover, to suitably support the optimized
distributed calculation of the companion times, while forwarding
back the response message each relay node Vhr substitutes the value
of the companion time contained in the message with the minimum
between that value and its own corresponding value (CTjk’, where
Vhk’ is the last node in the path connecting Vhi and Vhr).

A4. The host vehicle Vhi, for each RES_MSG message it receives
(corresponding to the response sent by a cluster member vehicle

178

Leontios Sotiriadis et al.

Direction

Figure 3: Example of the proposed task offloading procedure

Vhj), it first checks if it’s not a zero-value message, and if so, it
calculates the final completion time Tcj in case that Ti is offloaded
to vehicle Vhj. More concretely, Tcj is calculated as the sum of the
value Tprj and the estimated transmission time Ttrj to offload Ti to
Vhj and get back the results. If Tcj is not greater than the estimated
companion time CTij, the vehicle Vhj is regarded as an eligible CM
that than can act as virtual edge computing server for task Ti. Task
Ti is finally offloaded to the vehicle with the shortest completion
time Tc.

B. In case of tasks with loose deadline or practically no deadline
(Zi > maxLatency) the relevant procedure is simplified as follows:

B1. In the first step, only the task description values (Gi, Ci) are
disseminated to all CMs.

B2. In the second and third steps, only the flag Fprj and the value
Tprj are calculated (by each other cluster member — except Vhi) and
then returned (through the RES MSG message) to the host vehicle
Vhi.

B3. In the last step, among all the vehicles which returned a non-
zero RES_MSG message, the vehicle Vhj with the shortest processing
time Tprj is chosen for offloading task Ti.

Here also a special case has to be considered; specifically, the
case in which the connection between the two vehicles Vhi and Vhj
has been lost when the results have to be returned to Vhi. In that
case, the results should be sent from Vhj (through its CH) to the
closest MEC server and then sent back to Vhi either by the same
or the next (neighboring) MEC servers when it comes into their
range.

An overview of the proposed task offloading scheme is given in
Fig. 3.

More concretely, in Fig. 3 an example of the cluster structure is
first shown; the black-colored nodes are the CHs elected through
the cluster formation procedure, and the rest ones are the cluster
members (forming four clusters in total). Further, the green-colored
nodes are the ones which have tasks to be completed, whereas the
orange-colored nodes are the nodes to which a task has been finally
offloaded. Nodes 4, 6, 14, 16 and 21 have finally offloaded their tasks
to nodes 10, 7, 13, 26 and 19 respectively (as implied by the red
arrows), whereas nodes 22 and 24 have offloaded their tasks to
the closest MEC server (through the intra-cluster and inter-cluster
communication pattern implied by the underlying cluster structure
- see also [21] for more details). Before taking their offloading
decision, nodes 4, 6, 14, 16, 21, 22 and 24 have been assumed to
execute the basic decision algorithm implied by Fig. 2, as it is stated
in more details in the present section. Note that during the execution
of the algorithm each one of the source nodes (4, 6, 14, 16, 21, 22

A Cluster-based Virtual Edge Computation Offloading Scheme for MEC-enabled Vehicular Networks

and 24) first disseminates the necessary info message to all the
other cluster members (acting as the root of its cluster tree) and
then waits for the relevant responses as implied by the details of
the proposed algorithm.

3.3.1 Generalization for multiple tasks / subtasks. The proposed
scheme mainly focuses on an optimized distributed algorithm for
finding a VEC-server to offload a single task; and also fits appropri-
ately in the case of multiple tasks that may appear in periodic time
intervals in the host vehicle.

However, it can also be appropriately generalized for (a) the case
of multiple concurrent tasks (i.e. tasks that are being ready to exe-
cute at the same time in the waiting queue of the host vehicle) or (b)
the case of a large task that may be initially divided into a number
of subtasks before offloading. For such cases, beyond the straight-
forward solution of executing the proposed algorithm separately
for each task/subtask (which keeps the fully highly distributed ex-
ecution advantage, however it may not be regarded sufficiently
efficient), a more comprehensive modification of our basic scheme
may be followed, as described below.

o The estimation for each other CM Vhj whether it has enough
resources to process one or more tasks/subtasks of Vhi (cal-
culation of the Fprj flags), as well as the calculation of
the expected processing time Vhj needs to process each
task/subtask (values Tprj), should be performed centrally
by vehicle Vhi itself (instead of the local/distributed calcu-
lation by each Vhj separately). To achieve that, instead of
disseminating the task description values to all the CMs, the
resource description values of each CM should be sent to the
host vehicle Vhi.

e In this way, the optimized treatment of the waiting
tasks/subtasks as a batch (i.e. leading to probable offloading
of groups of tasks/subtasks on the same CM/vehicle Vhj etc.)
would be feasible in the most effective manner (as well as
highly efficient, since multiple message exchanging sepa-
rately for each task/subtask would be avoided), following for
example some of the existing relevant approaches presented
in the literature [1, 2, 10, 20].

Note also that the corresponding companion times (CTij values)
would still be computed distributedly (not centrally as proposed
for example in [1]), and only once for each group of tasks/subtasks
waiting in the queue of the host vehicle, thus leading to an even
more efficient offloading scheme.

4 PERFORMANCE EVALUATION

The proposed scheme is being evaluated through extended simula-
tions. Our simulation process involves OMNeT++, Veins and SUMO
simulation tools as follow. OMNeT++ [23] is a well-established
network simulation framework available as open-source software
for academic usage. Because of its modular approach, it has been
extended by many third-party frameworks focusing on special-
ized communication technologies like LTE and IEEE 802.11p. Veins
[24] is an open-source model library for (and a toolbox around)
OMNeT++, which supports researchers conducting simulations in-
volving communicating road vehicles—either as the main focus of
a study or as a component.

179

PCl 2022, November 25-27, 2022, Athens, Greece

Veins already includes a full stack of simulation models for in-
vestigating cars and infrastructure communicating via IEEE 802.11
based technologies in simulations of VANET and ITS. Traffic simula-
tion in Veins is performed by the microscopic road traffic simulation
package SUMO [25], which can import city maps from a variety
of file formats and allows high-performance simulations of huge
networks with roads consisting of multiple lanes, using simple
right-of-way rules or traffic lights etc.

For the performance evaluation an area from Athens, GR, is
extracted. Simulation parameters to be set include (a) general pa-
rameters, such as simulation time/area, vehicles distribution, total
number of vehicles, MAC protocol, total number and distribution of
RSUs/MEC servers, communication ranges etc., (b) parameters rel-
evant to the cluster formation procedure, such as MD, SF and Trust
thresholds, c1,c2 and a, f, y, § coeflicients etc., and (c) parameters
relevant to the computation offloading procedure, such as tasks re-
quirements (Gi,Ci, Zi), MaxLatency, vehicles computation resources
etc. The completion ratio of the offloaded tasks and the average task
execution time are primarily measured, as well as the total number
of exchanged messages and the average energy consumption. Ex-
tensive measurements are taken for varying number and resource
values of vehicles, varying number and computation/latency re-
quirements of the generated tasks, varying number of RSUs/MEC
servers etc., which are then compared to other existing schemes
of the literature (like [1] and [2]). The evaluation process is an on-
going work with promising results (especially in the case of dense
clusters with low-to-medium speed vehicles and low-to-medium
number of hops) in our first simulation experiments.

5 CONCLUSION

A novel cluster-based virtual edge computation offloading scheme
for MEC-enabled vehicular networks is presented throughout the
paper. The efficiency of the proposed scheme is based on the for-
mation of highly stable multi-hop clusters (whose members are
suitably requested to act as virtual edge computing - VEC - servers
for task offloading) as well as on the local/distributed computations
taking place where it’s possible. The completion of the evalua-
tion process, as well as the efficient generalization of the proposed
scheme for multiple concurrent tasks/subtasks in the context of the
total edge power of the underlying cluster structure, are of high
priority in our future work.

ACKNOWLEDGMENTS

The publication of this article was fully funded by the University
of West Attica.

REFERENCES

[1] Cha, N., Wu, C., Yoshinaga, T, Ji, Y., Yau, K.A. 2021. Virtual edge: Exploring
Computation Offloading in Collaborative Vehicular Edge Computing. IEEE Access
9:37739-37751.

Bute, M. S., Fan, P, Liu, G., Abbas, F., Ding, Z. 2022. A cluster-based coopera-
tive computation offloading scheme for C-V2X networks. Ad Hoc Networks, 132,
102862.

C. You, K. Huang, H. Chae, and B.-H. Kim. 2017. Energy-efficient resource alloca-
tion for mobile-edge computation offloading. IEEE Trans. Wireless Commun., vol.
16, no. 3, pp. 1397-1411.

S.Biand Y. J. Zhang. 2018. Computation rate maximization for wireless powered
mobile-edge computing with binary computation of_oading. IEEE Trans. Wireless
Commun., vol. 17, no. 6, pp. 4177-4190.

[2]

PCl 2022, November 25-27, 2022, Athens, Greece

Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li. 2016. Mobile-edge comput-
ing: Partial computation offloading using dynamic voltage scaling. IEEE Trans.
Commun., vol. 64, no. 10, pp. 4268-4282.

X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, M. Bennis. 2019. Optimized computation
offloading performance in virtual edge computing systems via deep reinforcement
learning, IEEE Internet Things J. 6 (3), pp. 4005-4018.

Z. Hong, W. Chen, H. Huang, S. Guo, Z. Zheng. 2019. Multi-hop cooperative
computation offloading for industrial IoT-edge-cloud computing environments,
IEEE Trans. Parallel Distrib. Syst. 30 (12), pp. 2759-2774.

X. Yang, X. Yu, A. Rao. 2019. Efficient energy joint computation offloading and
resource optimization in multi-access MEC systems. In Proc. 2019 IEEE Intl. Conf.
on Electronic Information and Communication Technology (ICEICT), Harbin,
China, pp. 151-155.

[9] J. Zhao, Q. Li, Y. Gong, K. Zhang. 2019. Computation offloading and resource

[10

(11

[12

(13

[14

]
]

]

]

allocation for cloud assisted mobile edge computing in vehicular networks. IEEE
Trans. Veh. Technol. 68 (8), pp. 7944-7956.

H. Guo, J. Zhang, J. Liu. 2019. Fiwi-enhanced vehicular edge computing networks:
Collaborative task offloading. IEEE Veh. Technol. Mag. 14 (1), pp. 45-53.

X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, S. Chen. 2016. Vehicular fog computing: A
viewpoint of vehicles as the infrastructures. IEEE Trans. Veh. Technol., vol. 65,
no. 6, pp. 3860-3873.

Y. Wang, K. Wang, H. Huang, T. Miyazaki, S. Guo. 2019. Traffic and computa-
tion co-offloading with reinforcement learning in fog computing for industrial
applications. IEEE Trans. Ind. Informat., vol. 15, no. 2, pp. 976-986.

X. Wang, Z. Ning, and L.Wang. 2018. Offloading in Internet of vehicles: A fog-
enabled real-time traffic management system. IEEE Trans. Ind. Informat., vol. 14,
no. 10, pp. 4568-4578.

Z.Ning, J. Huang, and X. Wang. 2019. Vehicular fog computing: Enabling real-
time traffic management for smart cities. IEEE Wireless Commun., vol. 26, no. 1,
pp. 87-93.

180

[15

[16]

(17]

(18]

Leontios Sotiriadis et al.

G. Qiao, S. Leng, K. Zhang, Y. He. 2018. Collaborative task offloading in vehicular
edge multi-access networks. IEEE Commun. Mag., vol. 56, no. 8, pp. 48-54.

C. Wu, Z. Liu, D. Zhang, T. Yoshinaga, Y. Ji. 2018. Spatial intelligence toward
trustworthy vehicular IoT. IEEE Commun. Mag., vol. 56, no. 10, pp. 22-27.

Y. Sun, J. Song, S. Zhou, X. Guo, and Z. Niu. 2018. Task replication for vehicular
edge computing: A combinatorial multi-armed bandit based approach. In Proc.
IEEE Global Commun. Conf. (GLOBECOM), Abu Dhabi, United Arab Emirates,
pp- 1-7.

C. Wang, C. Liang, F. R. Yu, Q. Chen, L. Tang. 2017. Computation offloading and
resource allocation in wireless cellular networks with mobile edge computing.
IEEE Trans. Wireless Commun., vol. 16, no. 8, pp. 4924-4938.

[19] J. Yan, S. Bi, Y. J. Zhang, M. Tao. 2020. Optimal task offloading and resource

[20]

[21]

[22]

(23]
[24]

[25]

allocation in mobile-edge computing with inter-user task dependency. IEEE
Trans. Wireless Commun., vol. 19, no. 1, pp. 235-250.

X. Xu, Y. Xue, L. Qi, Y. Yuan, X. Zhang, T. Umer, S. Wan. 2019. An edge computing-
enabled computation offloading method with privacy preservation for Internet
of connected vehicles. Future Gener. Comput. Syst., vol. 96, pp. 89-100.

L. Sotiriadis, B. Mamalis, G. Pantziou. 2021. Stable and Secure Clustering for
Internet of Vehicles with RSU-assisted Maintenance and Trust Management. PCI
2021: 25th Pan-Hellenic Conference on Informatics. Nov. 2021, pp. 124-129.

B. Khondaker, L. Kattan, “Variable Speed Limit: A Microscopic Analysis in a
Connected Vehicle Environment,” Transp. Res. C, Emerg. Technol., vol. 58, Sep.
2015, pp.146-159.

OMNeT++ Official Documentation. Accessed: Sept. 7, 2022. [Online]. Available:
https://omnetpp.org/documentation/

Veins. The open source vehicular network simulation framework. Accessed: Sept.
7, 2022. [Online]. Available: https://veins.car2x.org/

SUMO. Simulation of Urban Mobility. Accessed: Sept. 7, 2022. [Online]. Available:
http://sumo.dlr.de/wiki/Simulation_of Urban_Mobility

https://omnetpp.org/documentation/
https://veins.car2x.org/
http://sumo.dlr.de/wiki/Simulation_of_Urban_Mobility

	Abstract
	1 INTRODUCTION
	2 THE CLUSTER FORMATION ALGORITHM
	3 THE PROPOSED COMPUTATION OFFLOADING SCHEME
	3.1 Local Processing
	3.2 Offloading to a MEC server
	3.3 Offloading to a Cluster Member (virtual edge computing server)

	4 PERFORMANCE EVALUATION
	5 CONCLUSION
	Acknowledgments
	References

