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ABSTRACT

Audio datasets support the training and validation of Machine
Learning algorithms in audio classification problems. Such datasets
include different, arbitrarily chosen audio classes. We initially inves-
tigate a unifying approach, based on the mapping of audio classes
according to the Audioset ontology. Using the ESC-10 audio dataset,
a tree-like representation of its classes is created. In addition, we
employ an audio similarity calculation tool based on the values
of extracted features (spectrum centroid, the spectrum flux and
the spectral roll-off). This way the audio classes are connected
both semantically and in feature-based manner. Employing the
same dataset, ESC-10, we perform sound classification using CNN-
based algorithms, after transforming the sound excerpts into images
(based on their Mel spectrograms). The YAMNet and VGGish net-
works are used for audio classification and the accuracy reaches 90%.
We extend the classification algorithm with segmentation logic, so
that it can be applied into more complex sound excerpts, where
multiple sound types are included in a sequential and/or overlap-
ping manner. Quantitative metrics are defined on the behavior of
the combined segmentation and segmentation functionality, includ-
ing two key parameters for the merging operation, the minimum
duration of the identified sounds and the intervals. The qualitative
metrics are related to the number of sound identification events for
a concatenated sound excerpt of the dataset and per each sound
class. This way the segmentation logic can operate in a fine- and
coarse-grained manner while the dataset and the individual sound
classes are characterized in terms of clearness and distinguishabil-

ity.
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1 INTRODUCTION

Machine learning (ML) techniques are increasingly applied in sound
classification problems as an alternative to the traditional sound
classification techniques, where sound features are being extracted
and compared to separate different classes of sounds. Deep learning
(DL) techniques are achieving high classification accuracy, includ-
ing specific Convolutional Neural Networks (CNNs) which have
been designed especially for sound classification, such as YAMNet,
VGGish [1], OpenL3 [2] and Crepe [3]. In parallel, audio datasets
are being created, consisting of sounds of different types (from
mainstream or more specialized contexts such the operation of
machines), used to train and validate the ML algorithms (e.g. En-
vironmental Sound Classification (ESC) [4]). A challenging point
regarding the usage of the audio datasets is due to the lack of an
association mechanism among sound classes included in the same
or different datasets. The association is related to the contextual (e.g.
origin) and technological (e.g. acoustic features) similarity of the
classes and the labelling of the sound, which typically takes place
manually. Labelling can also have different level of fine-graining e.g.
from the more generic human-sounds to the more specific sneezing.
Another difference among audio datasets is related to the quality
of the sounds (in some cases a sound type can be clear while in
others sound types may be mixed). One further aspect is that un-
der realistic conditions of sound classification, sounds appear in a
sequential (or even intermixed) fashion calling for robust segmen-
tation techniques. These factors create a segmented approach in
the audio dataset landscape.
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1.1 Objectives

In this work, we investigate two types of systematic associations
among sound classes: a) the ‘semantic’ (considering the origin, e.g.
sounds coming from humans), and b) the comparison based on
audio features. Regarding (a), sound classes can be semantically
connected, considering a unifying graph ontology. One of the first
and most systematic approach has been performed by [5], with
the Audioset ontology. The Audioset ontology includes 632 classes
connected in a tree — like structure (ontology), with the association
among sound types being based on the origin of the sound. This
can allow for high-level mapping of classes belonging to different
datasets, especially for identical and similar classes. Regarding (b),
sound class association can be based on the extraction of audio
features and calculation of the (Euclidean or other) distance among
them. Features can be extracted and weighted according to existing
methodologies [6]. Such similarity metrics (distances) may not
necessarily coincide with the semantic affinity of the sounds.
Sound coming from realistic settings may include multiple types,
combined in a sequential and/or overlapping manner. In such cases,
sound classification and identification should also consider the seg-
mentation of the sounds and management of the identified sounds.
This involves decision on a) the separation or merging of the same
sounds excerpts depending on their temporary adjacency and b) to
threshold-related decisions, such as the minimum duration so that
an identified sound excerpt is considered. This area is effectively
researched in dynamic analysis and segmentation techniques of
signal timeseries but it presents challenges in generic (i.e. without
predetermined dialogues) audio ‘streaming’ scenarios.
Considering the above, this research has the following objectives:

o Investigate association among sound classes, considering
both the semantic and the technological perspectives.

e Evaluate sound classification using state-of-the-art CNN
tools and contribute to the mapping of sound types, belong-
ing to the same or different audio datasets, in a quantitative
manner, considering the semantic affinity and the feature-
based similarity.

e Extend the sound classification scenarios from independent,
discrete sound classes towards complex sound streams of
larger duration, which include multiple sound types and
design a sound segmentation and classification algorithm in
such settings.

1.2 Similar work

Sound classification is a challenging research field given the com-
plexity and the dynamic nature of the signal and the simultaneous
presence of sounds from different sources either outdoor (environ-
mental or urban) [7, 8], or indoor (business, residential, educational)
[9]. Sound classification techniques are increasingly oriented to-
wards Machine Learning mechanisms [10] and Deep Learning [11].
In the first case, features of the sound (from the time, frequency
or perceptual domain) are extracted, evaluated in terms of their
descriptive power (using methodologies such as Relief-F [12] or
Principal Component Analysis (PCA) [13, 14]) and feed classifi-
cation algorithms. In DL the process takes place internally in the
CNNs which are gradually trained from layer to layer with the last
one to perform the classification [15]. Transfer learning is a widely
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used classification method where CNNs that have been already
trained on a large set of either images (i.e. ImageNet!) or sounds
(i.e. AudioSet) are retrained on the dataset under consideration.
Retraining of CNNs on specific datasets typically has benefits in
computational resources and classification accuracy [16].

Audio signal segmentation is a subset of the signal segmenta-
tion for non-deterministic signals. Signal segmentation is based
on the identifying and processing changes in signal frequency and
amplitudes, while other techniques have been applied, e.g. [17]
has employed discrete wavelet transform (DWT) to decompose
signals into orthonormal time series with different frequency bands
(e.g., in EEG signals). In the case of sound, the Bayesian Informa-
tion Criterion has been used for speech segmentation [18]. In our
work we perform sound classification based on deep learning us-
ing the retrained YAMNet and VGGish networks, to achieve high
classification accuracy upon the ESC-10 dataset. In addition, we
investigate segmentation of complex sound streams (consisting not
only of speech but also of arbitrary sound types), leveraging the
classification performed upon the fine-grained sound frames.

The structure of the document is the following: Section 2 de-
scribes the methodology, the selection of the audio dataset and
the ML algorithms for sound classification scenarios. Section 3 dis-
cusses the results of a set of sound segmentation and classification
scenarios using different parameter values. Section 4 includes the
conclusions of the work.

2 METHODOLOGY
2.1 Sound type mapping and similarity

Audio datasets include different types of sounds, arbitrarily cho-
sen. Semantic association among these types can be achieved con-
sidering the tree-like hierarchy based on the audio set ontology.
This is verified with the ESC-10 audio dataset which includes 10
classes [dog bark, rain, sea waves, baby cry, clock tick, person
sneeze, helicopter, chainsaw, rooster and fire crackling]. Mapping is
straightforward as these classes can be associated with [bark, rain,
waves-surf, baby cry-infant cry, tick, sneeze, helicopter, chainsaw,
chicken-rooster, crackle], which are depicted in Figure 1. For ex-
ample, tick, helicopter and chainsaw belong to the sound of things
category (2" level), while rain and surf belong to water category
(34 level category).

Another criterion to associate sound classes is the calculation
of the feature-based similarity. Audio is characterized by temporal,
spectral and perceptual features. Extracting a subset of (representa-
tive) features and calculating the Euclidean distance among their
values can provide for a quantitative association of the ‘technical’
similarity. We select the spectrum centroid, the spectrum flux and
the spectral roll-off based on the work performed by [14]. For each
ESC-10 class, a representative file consisting of 20 concatenated
excerpts is created, and pre-processed (converted to monophonic
in case the original samples are stereo, with a single sampling rate
of 44100 Hz and quantization scheme). These files are processed
to extract the audio features using a Hanning window of 3 ms and
overlapping length of 2 ms.

Uhttps://www.image-net.org/
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Figure 1: Subset of audio set ontology mapping the ESC-10 classes
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Figure 2: Sound type similarities

After calculating the mean of the moving median for each feature
and normalizing, the Euclidean distance of the feature values is
calculated. The results are depicted in Figure 2 (as heatmap) and
provide a quantitative indication of the technical similarity among
classes. The distance between dog bark and rooster is closer than
rain and helicopter.

2.2 Sound classification and segmentation

Sound type identification under realistic conditions involves audio
streams consisting of multiple, sequential sounds, while in some
cases sounds can be overlapping. This creates the need for a flexible
and robust segmentation mechanism, a) indicating a sound type
only when the (identification) confidence level exceeds a threshold,
and b) identifying the (temporal) boundaries of the sounds. Fur-
thermore, considering that sounds of very limited duration (e.g.
dozens of milliseconds) may have limited value for practical ap-
plications, the mechanism should handle the minimal duration of
identified sounds. From another point of view, sounds of the same
type are typically separated by short periods of noise or silence, e.g.
there are blank periods between sequential dog barks. So, it may be
more meaningful to consider as a single continuous period rather
than as multiple discrete periods of the same sound type. This way
adequately adjacent sounds of the same type can be merged. To
quantitatively approach these operations we have considered a set
of parameters, as in Table 1.

375

The process applied (as depicted in Figure 3) is the following:
The sound files go through preprocessing for homogenizing the
sampling frequency (e.g. to 16 or 44.1 KHz) and quantization level.
Each sound excerpt (of length FILELEN) is split into frames of
fixed length (WINLEN) with overlapping and hop length equal to
HOPLEN. The window and overlap lengths can be related to (the
reverse of) the sampling rate and with each other (e.g., the hop
can be 12.5% to 50% of the window length). The number of frames
is approached as: N = (FILELEN — WINLEN)/(HOPLEN) + 1.
For each frame, the Mel spectrogram is calculated using the STFT
(Short Time Fourier Transform), resulting in N figures. The N Mel
spectrograms represent the sound file as a set of figures and for each
the type of sound is estimated using the CNN. As these estimations
may include multiple (overlapping) sound types, the prevailing
identification is selected so that there is a single identification per
hop.

Based on the set of identified sounds and temporal boundaries,
the results are further filtered considering the identification confi-
dence level (comparison with the IDCONF threshold). The sounds
to be included and/or excluded are considered. The minimum du-
ration length (MINDUR) is applied after being translated to hops
(through its division with the HOPLEN) and removes sound identi-
fications across durations smaller than the minimum accepted. In
parallel, if the interval between two identical identifications is less
or equal to MINSEP (which is translated to hop number through its
division with the HOPLEN), the identification sound excerpts are
merged.

3 RESULTS

3.1 Sound classification based on CNNs

Two Sound CNNs, VGGish and YAMNet, have been employed. The
dataset was split into the training set, the validation set and the
test set by 60%, 20% and 20% respectively. The retraining of these
networks was carried out by selecting the values of the hyperpa-
rameters according to [19] where evaluation of multiple number
combinations has been performed. The optimizer is set to Adaptive
Moment Estimation (Adam) [20], the mini batch size to 32, the
learning rate to 0.5 X 10~ and the maximum number of epochs
to 10, for both CNNs. The classification accuracy and erroneous
identifications per class are depicted in the confusion matrices of
Figure 4 for VGGish and YAMNet.
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Table 1: Parameters for sound identification and segmentation

Parameter Description Value
Minimum sound duration (MINDUR)  MINDUR is the minimum duration of sound region, so that it is recognized 0.5 (sec)
Identification confidence (IDCONF) IDCONTF is used to include, or filter identified sounds [0, 1]
Minimum temporal distance Minimum separation between sequential regions of the same detected 0.25 (sec)
(MINSEP) sound
Included sound types Subset of the Audioset ontology types that are included Sound type
subset
Excluded sound types Subset of the Audioset ontology types that are excluded Sound type
subset
Specificity level The depth of the identified sound in the structured set 0,1,2
Sound window length (WINLEN) The temporal length of the window, upon which the algorithm is applied 0.5 to 1.5 (sec)
Hop length (HOPLEN) The hop length that allows the windowing of each sound excerpt 80 to 250 (ms)

Overlapping

Frames Classifier per

Overlapping Frame
hop (CNN)

Segmentation

Identified Sound
Types (per frame

Filtered
identification:

Include / Exclude
identifications

Merging

identifications

Figure 3: Sound type identification and segmentation
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Figure 4: Confusion matrix for VGGish and YAMNet (applied upon ESC-10, after transfer learning)

3.2 Fine- and coarse-grained segmentation
scenarios

To verify the behavior of the classification and segmentation algo-
rithm, we consider values for the two key parameters (related to
merging and segmentation), i.e., the Minimum Sound Duration (MIN-
DUR) and the Minimum Sound Separation (MINSEP) from range
{0,0.2,0.4, 0.6, 0.8, 1} and {0, 0.1, 0.2, 0.3, 0.4, 0.5} respectively. The
classification algorithm is run for each of the 36 (6x6) combinations,
upon a sound concatenation representative of the dataset (including
2 excerpts per each class). Figure 5 indicates the number of sound
identifications for each of the combinations (per discrete minimum
duration values in x axis and minimum separation in y axis). The ra-
dius of the circles (bubbles) is proportional to the number of sound
identifications. When these parameters take their minimum value
(MINDUR=MINSEP=0), the sound segmentation takes its more fine-
grained form (the number of sound identifications is 32), while for
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their maximum value, the segmentation process becomes more
coarse-grained and the corresponding sound identification number
converges to the number of the concatenated discrete sound ex-
cerpts (24 sounds). This behavior can be indicative of the clearness
of the dataset (i.e. whether each sound excerpt consists of a single
sound or multiple ones sequential or overlapping).

The scenario can be extended, if we consider sound excerpts
representative of each sound type (within the same or different
dataset). For the case of ESC-10, we repeat the experiment for
each of the classes (after concatenating 20 audio files belonging to
the same class). The statistical results, in terms of the number of
sound identifications are presented in Table 2 (2" column indicates
the minimum number of sound identifications, 31 column the
maximum, 4 the average and the 5 the standard deviation for
the values of MINDUR and MINSEP).
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Table 2: Minimum, maximum, average and standard deviation number of sounds for each class

Class Min Max Average Standard Deviation
Dog bark 14 18 16.8 1.1
Rain 10 22 17.7 3.8
Sea waves 16 23 20.8 1.9
Baby cry 13 33 225 6.1
Clock tick 5 13 9 24
Person sneeze 27 46 36 6.7
Helicopter 10 16 13.1 1.6
Chainsaw 17 33 27.2 5.4
Rooster 35 37 36.3 0.9
Fire crackling 13 28 22.6 4.9

0.5

a2
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Number of Sounds Identified

.32
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w

Minimum Sound Separation
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24

0 0z 04 0.6 08 1
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Figure 5: Sound segmentation and identification results for
different values of minimum sound duration and separation

Considering that for each class the number of discrete appear-
ances of this sound type is 20, and that all classes are efficiently
recognized by the classification algorithm, the minimum number
of sound identifications can be an indication of the ‘recognizability’
- ‘distinguishability’ of the class. According to Table 2 (column
average), rooster and person sneezing are the most recognizable,
while clock ticking and helicopter the least ones.

4 CONCLUSIONS

Audio datasets support machine learning frameworks, through
algorithm training, and validation. Such datasets can be heteroge-
neous in terms of technical properties (sampling rate, quantization)
and more importantly in terms of sound classes they include. Map-
ping of similar sound classes belonging to different datasets can be
achieved with the assistance (bridging) of the audio ontology (as
verified with ESC-10). This mapping allows for a semantic associ-
ation of sound types (i.e. belonging to the same sub-category). In
addition, sound type similarity and comparison can be performed
using the value of features extracted from sound excerpts.

In parallel, we have evaluated sound classification techniques
using sound CNNs (YAMNet and VGGish) achieving high classi-
fication accuracy (90%) in the ESC-10 dataset. The classification
algorithm has been extended from discrete sound excerpts of single
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sound type files towards more complex and realistic sounds of larger
duration, which include multiple sound types and need segmen-
tation. A set of operational parameters (minimum sound duration
and sound intervals) has been defined which specify the segmenta-
tion process. The application of the segmentation algorithm with
different values of the operational parameters has verified the pos-
sibility of customization from coarse-grained to fine-grained sound
segmentation and classification, i.e. resulting in smaller and larger
number of sound identifications.

In terms of future work, we will be elaborating the segmen-
tation scenarios with a broader set of sounds as well as streams
consisting of overlapping audio types. We also plan to apply these
techniques in video footage, consisting of sequential images, where
different sentiment / gaze expression takes place [21]. Such an anal-
ysis framework can provide a holistic understanding of the smart
context events based upon the two most important signals (audio
and video).
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