L))

Check for
updates

The Best of Both Worlds: Combining Learned Embeddings
with Engineered Features for Accurate Prediction of
Correct Patches

HAQYE TIAN, University of Luxembourg

KUI LIU, Huawei

YINGHUA LI and ABDOUL KADER KABORE, University of Luxembourg

ANIL KOYUNCU, Sabanci University

ANDREW HABIB, University of Luxembourg

LI LI, Monash University

JUNHAO WEN, Chongqing University

JACQUES KLEIN and TEGAWENDE F. BISSYANDE, University of Luxembourg

A large body of the literature on automated program repair develops approaches where patches are automat-
ically generated to be validated against an oracle (e.g., a test suite). Because such an oracle can be imperfect,
the generated patches, although validated by the oracle, may actually be incorrect. While the state-of-the-
art explores research directions that require dynamic information or rely on manually-crafted heuristics, we
study the benefit of learning code representations in order to learn deep features that may encode the prop-
erties of patch correctness. Our empirical work investigates different representation learning approaches
for code changes to derive embeddings that are amenable to similarity computations of patch correctness
identification, and assess the possibility of accurate classification of correct patch by combining learned em-
beddings with engineered features. Experimental results demonstrate the potential of learned embeddings
to empower LEOPARD (a patch correctness predicting framework implemented in this work) with learning
algorithms in reasoning about patch correctness: a machine learning predictor with BERT transformer-based
learned embeddings associated with XGBoost achieves an AUC value of about 0.803 in the prediction of patch
correctness on a new dataset of 2,147 labeled patches that we collected for the experiments. Our investiga-
tions show that deep learned embeddings can lead to complementary/better performance when comparing
against the state-of-the-art, PATCH-SIM, which relies on dynamic information. By combining deep learned
embeddings and engineered features, PANTHER (the upgraded version of LEOPARD implemented in this work)
outperforms LEOPARD with higher scores in terms of AUC, +Recall and -Recall, and can accurately iden-
tify more (in)correct patches that cannot be predicted by the classifiers only with learned embeddings or

This work was supported by funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation program (grant agreement No. 949014). Kui Liu was also supported by the National Natural
Science Foundation of China (Grant No. 62172214), the Natural Science Foundation of Jiangsu Province, China (Grant
No. BK20210279), and the Open Project Program of the State Key Laboratory of Mathematical Engineering and Advanced
Computing (No. 2020A06).

Authors’ addresses: H. Tian, Y. Li, A. K. Kaboré, A. Habib, J. Klein, and T. F. Bissyandé, University of Luxembourg,
Luxembourg; emails: {haoye.tian, yinghuali, abdoulkader.kabore}@uni.lu, andrew.a.habib@gmail.com, {jacques.klein,
tegawende.bissyande}@uni.lu; K. Liu (corresponding author), Huawei, China; email: brucekuiliu@gmail.com; A. Koyuncu,
Sabanci University, Istanbul, Turkey; email: anil koyuncu@sabanciuniv.edu; L. Li, Monash University, Australia; email:
li.li@monash.edu; J. Wen, Chongging University, China; email: jhwen@cqu.edu.cn.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

1049-331X/2023/05-ART92 $15.00

https://doi.org/10.1145/3576039

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 92. Pub. date: May 2023.

https://orcid.org/0000-0002-8049-3997
https://orcid.org/0000-0003-0145-615X
https://orcid.org/0000-0003-1390-0393
https://orcid.org/0000-0002-3151-9433
https://orcid.org/0000-0001-6975-6752
https://orcid.org/0000-0002-5857-1864
https://orcid.org/0000-0003-2990-1614
https://orcid.org/0000-0002-6561-560X
https://orcid.org/0000-0003-4052-475X
https://orcid.org/0000-0001-7270-9869
https://doi.org/10.1145/3576039
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576039&domain=pdf&date_stamp=2023-05-27

92:2 H. Tian et al.

engineered features. Finally, we use an explainable ML technique, SHAP, to empirically interpret how the
learned embeddings and engineered features are contributed to the patch correctness prediction.

CCS Concepts: « Software and its engineering — Software verification and validation; Software defect
analysis; Software testing and debugging;

Additional Key Words and Phrases: Program repair, patch correctness, distributed representation learning,
machine learning, embeddings, features combination, explanation

ACM Reference format:

Haoye Tian, Kui Liu, Yinghua Li, Abdoul Kader Kaboré, Anil Koyuncu, Andrew Habib, Li Li, Junhao Wen,
Jacques Klein, and Tegawendé F. Bissyandé. 2023. The Best of Both Worlds: Combining Learned Embeddings
with Engineered Features for Accurate Prediction of Correct Patches. ACM Trans. Softw. Eng. Methodol. 32, 4,
Article 92 (May 2023), 34 pages.

https://doi.org/10.1145/3576039

1 INTRODUCTION

Automatic program repair (APR) [28, 37, 46], the process of fixing software bugs automatically,
has gained a huge momentum with the ever increasing pervasiveness of software. While a few
APR techniques try to model program semantics and synthesize execution constraints towards
producing correct-by-construction patches, they often fail to scale to large programs. Instead, the
large majority of APR research [47] focuses on generate-and-validate approaches where patch
candidates are generated and then validated against an oracle.

In the absence of precise program specifications, test suites provide affordable approxima-
tions that are widely used as the oracle in APR. In their seminal work on test-based APR,
Weimer et al. [62] consider that a patch is acceptable as soon as the patched program passes all
test cases in the given test suite. Since then, a number of studies [51, 54] have explored the over-
fitting problem in patch validation: an automatically generated patch makes the buggy program
pass a given test suite and yet it is incorrect w.r.t. the intended program specification. Since test
suites only weakly approximate program specifications, a patched program can indeed satisfy the
requirements encoded in the test suite yet present a behavior that deviates from what is expected
by the developer but not specified in the existing test suite.

Overfitting patches constitute a key challenge in generate-and-validate APR approaches. Recent
studies [18, 21, 22, 33-36, 38, 53, 59, 63] on APR systems highlight the importance of estimating the
correct ratio among the valid patches that can be found. To improve this ratio of correct patches,
researchers explore several directions which we categorize in three groups depending on when
the processing to detect correct patches is applied: before, during, or after patch generation:

(1) Test-suite augmentation: Yang et al. [70] proposed to generate better test cases to enhance
the validation of patches, while Xin and Reiss [65] opted for increasing test inputs.

(2) Curation of repair operators: approaches such as CapGen [63] demonstrate that carefully-
designed repair operators (e.g., fine-grained fix ingredients) can lead to correct patches.

(3) Post-processing of generated patches: Long and Rinard [39] introduced some heuristics to
discard patches that are likely overfitting.

So far, the state-of-the-art works targeting the identification of patch correctness are based on
computing the similarity of test case execution traces [66], or using machine learning to identify
correct patches based on engineered static code features [71], pre-trained natural language-based
embeddings [8], and source code trained embeddings [57].

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 92. Pub. date: May 2023.

https://doi.org/10.1145/3576039

The Best of Both Worlds 92:3

This article. In this work, we extensively study and evaluate how effective are source code em-
beddings and engineered features in predicting correct patches. For example, which set of features:
engineered or learned embeddings yield better performance in predicting correct patches? Can a
combination of both kinds of features achieve higher performance? Our work fills this gap.

This work builds on and extends our previous work [57] in the following manner:

— We examine and compare the effectiveness of code embeddings, engineered features, and their
combination for predicting patch correctness.

— We present an analysis for detecting which kinds of features contribute to the (in)correct
prediction of patch correctness.

We investigate in this article the feasibility of leveraging advances in deep representation learn-
ing to produce embeddings for APR-generated patches and their engineered features, that are
amenable to reasoning about correctness.

@ We investigate different representation learning models adapted to natural language tokens
and source code tokens that are more specialized to code changes. Our study considers both
pre-trained models and the retraining of models.

® We empirically investigate whether, with learned embeddings, the hypothesis of minimal
changes incurred by correct patches remains valid: experiments are performed to check the
statistical difference between similarity scores yielded by correct patches and those yielded
by incorrect patches.

® We run exploratory experiments assessing the possibility to select cutoff similarity scores
between learned embeddings of buggy code and patched code fragments for heuristically
filtering out incorrect patches.

® We investigate the discriminative power of learned embeddings in a classification train-
ing pipeline (that we named LEOPARD) aimed at learning to predict patch correctness with
learned embeddings. We evaluate our and state-of-the-art approaches by applying a 10-
group cross validation in a practical perspective. Compared against the state-of-the-art,
LEOPARD is complementary to them, even outperforms them on filtering out incorrect
patches.

® We explore the combination of the learned embeddings and the engineered features to im-
prove the performance on identifying patch correctness with more accurate classification,
and implement an upgraded version of LEOPARD, that we named PANTHER. The exploring
examination is supported by our experimental results.

® We empirically interpret the cause of prediction behind features and classifiers to help aware
the essence of identifying patch correctness with an explainable ML technique SHAP.

The remainder of this article is organized as follows. Section 2 provides the background of our
work, Section 3 introduces our methodology and study design, Sections 4 and 5 cover the experi-
mental results and a discussion, and Sections 6 and 7 discuss related work and conclude the article.

2 BACKGROUND

This work leverages learning representation and machine learning techniques to tackle the prob-
lem of identifying correct patches among incorrect and plausible APR-generated patches. Addi-
tionally, we examine the explainability of ML models used to predict correct patches. The explain-
ability aspect is of high importance to developers applying APR in their workflow. Therefore, we
begin by providing the necessary background of the four pillars of our work: (i) patch correctness,
(ii) representation learning for code, (iii) engineered features for predicting patch correctness, and
(iv) the explainability of ML models using SHAP.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 92. Pub. date: May 2023.

92:4 H. Tian et al.

2.1 Patch Plausibility and Correctness

Defining patch correctness is a non-trivial challenge in the APR community. Until the release of
empirical investigations by Smith et al. [54], actual correctness (w.r.t. the intended behavior of
the program) was seldom used as a performance criterion of APR systems. Instead, experimental
results were focused on the number of patches that make the program pass all test cases. Such
patches are actually only plausible. Qi et al. [51] demonstrated that an overwhelming majority of
plausible patches generated by GenProg [27], RSRepair [50], and AE [61] are overfitting the test
suite while actually being incorrect. To improve the practicability of APR systems to generate cor-
rect patches, researchers have mainly invested in strengthening the validation oracle (i.e., the test
suites). Opad [70], Diff TGen [65], UnsatGuided [75], PATCH-SIM/TEST-SIM [66] generate new
test inputs that trigger behavior cases which are not addressed by APR-generated patches.

More recent works [8, 71] are starting to investigate static features and heuristics (or machine
learning) to build predictive models of patch correctness. Ye et al. [71] presented the ODS approach
which relates to our study since it investigated machine learning with static features (i.e., carefully
hand-crafted features [71]) extracted from Java program patches. The study of Csuvik et al. [8]
is also closely related to ours since it explores BERT embeddings to define similarity thresholds
between buggy and patched code. Their work however remains preliminary (it does not investigate
the discriminative power of features) and has been performed at a very small scale (single pre-
trained model on 40 one-line bugs from simple programs).

2.2 Distributed Representation Learning

Learning distributed representations have been widely used to advance several machine learning-
based software engineering tasks [9, 12, 13, 49, 76]. In particular, embedding techniques such
as Word2Vec [23], Doc2Vec [23], and BERT [9] have been successfully applied to different
semantics-related tasks such as code clone detection [60], vulnerability detection [48], code rec-
ommendation [77], and commit message generation [15].

By building on the hypothesis of code naturalness [1, 14], a number of software engineering
research works have also leveraged the aforementioned approaches for learning distributed rep-
resentations of code [30, 31]. Alon et al. [2] have then proposed code2vec, an embedding tech-
nique that explores AST paths to take into account structural information in code. More recently,
Hoang et al. [15] have proposed CC2Vec, which further specializes to code changes. Our work ex-
plores different techniques across the spectrum of distributed representation learning. We, there-
fore, consider four variants from the seemingly-least specialized to code (i.e., Doc2Vec) to the
state-of-the-art for code change representation (i.e., CC2Vec).

Doc2Vec [23] is an unsupervised framework mostly used to learn continuous distributed vector
representations of sentences, paragraphs and documents, regardless of their lengths. It works on
the intuition, inspired by the method of learning word vectors [45], that the document represen-
tation should be good enough to predict the words in the document. Doc2Vec has been applied
in various software engineering tasks. For example, Wei and Li [60] leveraged Doc2Vec to exploit
deep lexical and syntactical features for software functional clone detection. Ndichu et al. [48]
employed Doc2Vec to learn code structure representation at AST level to predict JavaScript-based
attacks.

BERT [9] is a language representation model that has been introduced by an Al language team
in Google. BERT is devoted to pre-train deep bidirectional representations from unlabeled texts.
Then a pre-trained BERT model can be fine-tuned to accomplish various natural language process-
ing tasks such as question answering or language inference. Zhou et al. [77] employed a BERT
pre-trained model to extract deep semantic features from code name information of programs in

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 92. Pub. date: May 2023.

The Best of Both Worlds 92:5

order to perform code recommendation. Yu et al. [74] even leveraged BERT on binary code to
identify similar binaries.

code2vec [2] is an attention-based neural code embedding model developed to represent code
fragments as continuous distributed vectors, by training on AST paths and code tokens. Its embed-
dings have notably been used to predict the semantic properties of code fragments [2], in order,
for instance, to predict method names. Compton et al. [7] recently leveraged code2vec to embed
Java classes and learn code structures for the task of variable naming obfuscation.

CC2Vec [15] is a specialized hierarchical attention neural network model which learns vector
representations of code changes (i.e., patches) guided by the associated commit messages (which
is used as a semantic representation of the patch). As the authors demonstrated in their large
empirical evaluation, CC2Vec presents promising performance on commit message generation,
bug fixing patch identification, and just-in-time defect prediction.

2.3 Engineered Features

Engineered features are carefully designed and selected features which represent and capture im-
portant properties of the underlying data. In APR, one possibility is to statically extract those
features from the abstract syntax tree (AST) of the buggy code, the AST of the patched path and
the related AST edit scripts as proposed by ODS [71].

ODS extract three kinds of features to detect correct patches: (i) Code description features, e.g.,
kinds of specific operators in patch code and kinds of statements, (ii) Repair pattern features,
whether the repair code has specific patterns according to [41], and (iii) Contextual syntactic fea-
tures, e.g., the types of faulty statements and the types of their surrounding statements. Using
these engineered features, ODS trains a series of machine learning classifiers to predict patch cor-
rectness. The experimental evaluation on 713 patches shows that ODS can filter out 57% of over-
fitting patches and exhibits competitive results when compared with state-of-the-art. We adopt
ODS engineered features to conduct our study. Because ODS can not steadily generate all the orig-
inally designed engineered features in their research for our patches, we consider to mainly use,
in our study, two kinds of engineered features generated by ODS:! (1) Prophet features (i.e., the
re-implementation of Long et al.s’ work [39]) and (2) the repair pattern (the related operations of
transforming the buggy code to patched code).

2.4 SHAP-SHapley Additive Explanations

SHAP is a unified framework proposed by Lundberg et al. [40] to interpret the output of machine
learning models. It connects optimal credit allocation with local explanations using the classic
Shapley values from the game theory and their related extensions, thus can provide the importance
of each feature for certain particular prediction. Through SHAP, the positive and negative effect of
features on prediction can be generated, which allow practitioners to understand which behaviors
lead to the (in)correct prediction. Besides, SHAP provides the interaction analysis between features
to explore how different features are complementary to each other.

3 METHODOLOGY

In this section, we first present the methodology of our study and then we introduce the research
questions that we aim at answering using the proposed methodology.

Overall, our goal is to study the effectiveness of different representations of APR-generated
patches and codes for the task of predicting which patches are correct. We first investigate a wide-
spread hypothesis that a patch incurring minimal changes is more likely to be correct. To quantify

'We have received confirmation from the authors about this bug and the effectiveness of these two kinds of features.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 92. Pub. date: May 2023.

92:6 H. Tian et al.

Input Feature extractor Learners
CoTTTTTT T oo Vo rTTmmmmmmmm \
1 1 ' o — 1 1
! : : % = Feature crosses ! f :
! I S ! LR
! — 2 | ccavee n sub I |
| T iy
1 1 ' o 1 1
i b 2 - b -
| IK, SN . | 2% :
! oy [@ Ep — Random Forest 1
, S |buggy code, " = — ' .
. g v | 1 & |BERT RS :
. ﬂ»% fragments , - . ! g '
1 — i =
! A 1 B —1 > : =8 :
1 =3 1 1 09 n 1 S 1
: patches |2 1 ! | % @ ! = XGBoost !
. . 1 2 [Doc2vec , = .
1 1 oo — 1 1
! patched code! ' Ep ! @ '
: — fragments : :::F_n::::::::::::::::::::::::::‘I :
' ' ! u§ Extract ' DNN '
| . 1 2| ops m| |
\ , V3 ' Train & test
1 ' [=% 1

__

Fig. 1. Overview of PANTHER.

the patch changes, we exploit different code representation learning methods that leverage deep
learning techniques to learn features for code. We adapt them to generate the vectors of buggy
code and patched code as well as compute the similarity value of vectors. Based on the similarity
distribution, we experimentally filter out incorrect APR-generated patches by relying on naively-
defined thresholds.

In the view that learning representation reveals the properties of code related to patch correct-
ness, we propose to further identify patch by training classifiers (learners) on the representation
vector of a patch. Figure 1 provides an overview of such a pipeline and its variants. To represent
patches in a format suitable for learning algorithms, we use the aforementioned representation
learning methods to generate vectors for buggy code and patched code. Afterward, we cross the
vectors by applying subtraction, multiplication, cosine similarity, and euclidean similarity to ob-
tain the deep learned feature of the patches. The resulting patch embedding has 2*n + 2 dimensions
where n is the dimension of input code fragment embeddings. The values of the dimension n for
BERT, Doc2Vec, and CC2Vec are set as 1,024, 64, and 64, respectively. On the other hand, we also
exploit the manually engineered features that are extracted from the given data, the patch in our
case, and aim at capturing specific information that is thought to be relevant to the patch correct-
ness. The dimension m for ODS is 195.

Learned and engineered features represent a patch from different perspectives. To improve
the identification performance of patch correctness, we further propose three methods (Ensem-
ble learning, Naive Vector Concatenation, and Deep Combination.) to combine the two features for
obtaining the informative representation of a patch. After obtaining a vector that represents a
given patch, different machine learning algorithms such as random forest or a deep neural net-
work (DNN) are trained as classifiers that distinguish correct from incorrect APR patches. In the
end, we provide the SHAP explanation of the features and interaction of different features that
contribute to the patch correctness prediction. Our study follows the four parts below:

(1) The empirical study of a hypothesis in filtering out incorrect patches (RQs 1 to 2),
(2) The effectiveness of machine and deep learning-based classifiers with learned representa-
tions and engineered features in predicting patch correctness (RQ 3),

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 92. Pub. date: May 2023.

The Best of Both Worlds 92:7

(3) The effectiveness of combining learned representations with engineered features in predict-
ing patch correctness (RQ 4), and
(4) The contribution of features in predicting patch correctness (RQ 5).

In the following, we present the details of each research question.

3.1 Research Questions

RQ-1: Do different representation learning models yield comparable distributions of similarity values
between buggy code and patched code? A widespread hypothesis in program repair is that bug
fixing generally induces minimal changes [4, 5, 17, 18, 32, 34, 35, 44, 62, 63, 67]. We propose
to investigate whether learned embeddings can be a reliable means for assessing the extent
of changes through computation of cosine similarity between vector representations.

RQ-2: To what extent similarity distributions can be generalized for inferring a cutoff value to filter
out incorrect patches? Following up on RQ1, we propose in this research question to experi-
ment ranking patches based on cosine similarity of their vector representations, and rely on
naively-defined similarity thresholds to decide on filtering of incorrect patches.

RQ-3: Can we learn to identify patch correctness by training predictors with learned embeddings
of code input? We investigate whether deep learned features (i.e., learned embeddings) are
indeed relevant for building machine learning predictors for patch correctness. In particular,
we assess whether such a predictor built with static features can provide comparable perfor-
mance with dynamic approaches, such as PATCH-SIM, which leverage execution behavior
information. We also compare the performance yielded when using deep learned features
against the performance yielded when using the engineered features in the state-of-the-art.

RQ-4: Can the combination of learned embeddings and engineered features achieve optimum perfor-
mance for predicting patch correctness? We investigate the possibility of ensuring high accu-
racy in patch correctness identification by combining different representations of patches.

RQ-5: Which features are most useful for predicting patch correctness? We leverage SHAP expla-
nation models to provide an interpretation of the contribution of different features to the
predictions.

3.2 Datasets

We collect patch datasets by building on previous efforts in the community. An initial dataset of
correct patches is collected by using five literature benchmarks, namely Bugs.jar [52], Bears [42],
Defects4] [19], QuixBugs [29], and ManySStuBs4] [20]. These are human-written patches as com-
mitted by developers in open-source project repositories.

We also consider patches generated by APR tools integrated into the RepairThemAll framework.
We use all patch samples released by Durieux et al. [11]. This only includes sample patches that
make the programs pass all test cases. They are thus plausible. However, no validation information
on correctness was given. In this work, we proceed to manually validate the generated patches,
among which we identified 900 correct patches. The correctness validation follows the criteria
defined by Liu et al. [38]. In a recent study on the efficiency of program repair, Liu et al. [38]
released a labeled dataset of patches generated by 16 APR systems for the Defects4] bugs. We
consider this dataset as well as the labeled dataset that was used to evaluate the PATCH-SIM [66]
approach.

Overall, Table 1 summarizes the data sets that we used for our experiments. Each experiment
in Section 4 has specific requirements on the data (large patch sets for training models, labeled
datasets for benchmarking classifiers, etc.). For each experiment, we will recall which sub-dataset
has been leveraged and why.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 92. Pub. date: May 2023.

92:8 H. Tian et al.

Table 1. Datasets of Java Patches Used in Our Experiments

Subjects contains incorrect patches contains correct patches labeled dataset # Patches
Bears [42] No Yes - 251
Bugs.jar [52] No Yes - 1,158
Defects4] [19]" No Yes - 864
ManySStubBs4] [20] No Yes - 34,051
QuixBugs [29] No Yes - 40
RepairThemAll [11] Yes Yes No* 64,293
Liu et al. [38] Yes Yes Yes 1,245
Xiong et al. [66] Yes Yes Yes 139
Total 102,041

"The latest version 2.0.0 of Defects4)? is considered in this study.

#The patches are not labeled in [11]. We support the labeling effort in this study by comparing the generated patches
against the developers’ patches. The 2,918 patches for IntroClassJava in [11] are also excluded from our study since
IntroClass]ava is a lab-built Java benchmark transformed from the C program bugs in small student-written
programming assignments from IntroClass [26].

-—- source/org/jfree/chart/renderer/category/AbstractCategoryltemRenderer. java
+++ source/org/jfree/chart/renderer/category/AbstractCategoryltemRenderer. java
@@ -1795,6 +1795,6 @@ public abstract class AbstractCategoryItemRenderer

int index = this.plot.getIndexOf (this);

CategoryDataset dataset = this.plot.getDataset (index);
- if (dataset != null) {
+ if (dataset == null) {

return result;

Fig. 2. Example of a patch for the Defects4) bug Chart-1.

3.3 Model Input Pre-processing

Samples in our datasets are patches such as the one presented in Figure 2 extracted from the De-
fects4] dataset. Our investigations with representation learning however require input data about
the buggy and patched code. A straightforward approach to derive those inputs would be to con-
sider the code files before and after the patch. Unfortunately, depending on the size of the code
file, the differences could be too minimal to be captured by any similarity measurement. To that
end, we propose to focus on the code fragment that appears in the patch. Thus, to represent the
buggy code fragment (cf. Figure 3) from the initial patch in Figure 2, we keep all removed lines
(i.e., starting with “-”) as well as the patch context lines (the code that has not been modified,
i.e., those lines not starting with either “-”, “+” or “@”). Similarly, the patched code fragment (cf.
Figure 4) is represented by added lines (i.e., starting with “+”) as well as the same context lines.
Since tool support for the representation learning techniques BERT, Doc2Vec, and CC2Vec require
each input sample to be on a single line, we flatten multi-line code fragments into a single line.
In contrast to BERT, Doc2Vec, and CC2Vec, which can take as input some syntax-incomplete
code fragments, code2vec requires the fragment to be fully parsable in order to extract informa-
tion on AST paths. Since patch datasets include only text-based diffs, code context is generally
truncated and is likely not parsable. However, as just explained, we opt to consider only the
removed/added lines to build the buggy and patched code input data. By doing so, we substantially

Zhttps://github.com/rjust/defects4j/releases/tag/v2.0.0.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 92. Pub. date: May 2023.

https://github.com/rjust/defects4j/releases/tag/v2.0.0

The Best of Both Worlds 92:9

1: a/source/org/jfree/chart/renderer/category/AbstractCategoryltemRenderer. java
2 int index = this.plot.getIndexOf (this);

3: CategoryDataset dataset = this.plot.getDataset (index);

5: return result;

6:

}

Fig. 3. Buggy code fragment associated with patch in Figure 2.

b/source/org/jfree/chart/renderer/category/AbstractCategoryItemRenderer. java
int index = this.plot.getIndexOf (this);
CategoryDataset dataset = this.plot.getDataset (index);

return result;

Fig. 4. Patched code fragment associated with patch in Figure 2.

improved the success rate of the JavaExtractor® tool used to build the tokens in the code2vec
pipeline.

3.4 Embedding Models Setup

When representation learning algorithms are applied to some training data, they produce embed-
ding models that have learned to map a set of code tokens in the vocabulary of the training data
to vectors of numerical values. These vectors are also referred to as learned embeddings. Figure 5
illustrates the process of embedding buggy code and patched code for the purpose of our experi-
ments. Considering that the pre-trained embedding models require huge resources (e.g., BERT has
340 M parameters to be trained) to fine-tune for our classification task, we resort to directly lever-
age the pre-trained models to embed the patches, and train the classifiers separately. We propose
to use four baseline embedding models from the literature to explore our proposed hypothesis. We
consider a variety of models trained on, and targeting, different artifact types (natural language,
structured code, and code changes).

—BERT. In the first scenario, we consider an embedding model that initially targets natu-
ral language data, both in terms of the learning algorithm and in terms of training data.
We thus select BERT, one of the state-of-the-art models, for the evaluation of our hy-
pothesis. The network structure of BERT, however, is deep, meaning that it requires large
datasets for training the embedding model. As is now customary in the literature, we
instead leverage a pre-trained 24-layer BERT model, which was trained on a Wikipedia
corpus.

— Doc2Vec. In the second scenario, we consider an embedding model that is trained on code
data but using a representation learning technique that was developed for text data. Doc2Vec
represents documents as a vector by generalizing the basic model word2vec. The code snip-
pets of patches are able to be seen as documents. Therefore, we have trained the Doc2Vec
model with code data of 36,364 patches from the 5 repair benchmarks (Bears, Bugs.jar, etc.,
cf. Table 1).

Shttps://github.com/tech-srl/code2vec/tree/master/JavaExtractor.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 92. Pub. date: May 2023.

https://github.com/tech-srl/code2vec/tree/master/JavaExtractor

92:10 H. Tian et al.

Code representation

L - f

-
1
1
1
1
1

-
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
'
D F : .
i+ 8, buggycode ! '
=]y § : e ' Bert, Doc2Vec or Code2Vec E buggy code
= i 2 3 : embedding model ' vector
il 1 1 f
! = 1 . '
it ——H
1 1 : !
1 3 ! |
L patchedcode 3 ! patched code
vector

Fig. 5. Producing code fragments learned embeddings with BERT, Doc2Vec, and code2vec.

— code2vec. In the third scenario, we consider an embedding model that primarily targets
code, both in terms of the learning algorithm and in terms of training data. Code2vec was
specifically developed for programming languages and trained on a dataset of 14 M methods.
On the other hand, CodeBert [13] was trained both on programming and natural language.
We thus use in this case a pre-trained model of code2vec, which was trained by the authors
using ~14 million code examples from Java projects.

— CC2Vec. Finally, in the fourth scenario, we consider an embedding model that was built in
representation learning experiments for code changes. CC2Vec [15] models the hierarchical
structure of the code change and has been applied to the task of patch identification. How-
ever, the pre-trained model that we leveraged from the work of Hoang et al. is embedding
each patch into a single vector. We investigate the layers and identify the middle CNN-3D
layer as the sweet spot to extract embeddings for buggy code and patched code fragments.
Figure 6 illustrates the process.

4 EXPERIMENTS AND RESULTS

We first introduce the metrics used in the experiments. Then, we present the experiments that we
designed to answer the research questions of our study. For each experiment, we state the objective,
overview the execution details, and present the results.

Our objective is to measure the ability of the approaches in terms of recalling correct patches
while filtering out incorrect patches. Thus, we follow the definitions of Recall proposed by
Tian et al. for the evaluation of their BATS [56] systems:

— +Recall measures to what extent correct patches are identified, i.e., the percentage of correct
patches that are identified from all correct patches.
— -Recall measures to what extent incorrect patches are filtered out, i.e., the percentage of
incorrect patches that are filtered out from all incorrect patches.
T—P, (1) —Recall = T—N, (2)
TP+ FN TN + FP
where TP represents true positive, FN represents false negative, FP represents false positive, TN
represents true negative.
Accuracy and Precision. The ratio of positive and negative samples of our dataset is balanced
(1.3:1). We thus use accuracy and precision to evaluate the performance of the approaches in clas-
sifying the patches.

+Recall =

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 92. Pub. date: May 2023.

The Best of Both Worlds 92:11

CC2Vec code representation

3DCNN Fully connected Output

g layer Jayer layer
_§ . . buggy code
- — > g N : > vector
2.
o
patch o e T —
0Q

Trained CC2vec model | patched code
vector

Fig. 6. Extracting code fragment learned embeddings from CC2Vec pre-trained model.

Table 2. Datasets Used for Assessing the Similarity between Buggy Code and Correctly-patched Code

Bears Bugs.jar Defects4] ManySStuBs4] QuixBugs Total
Patches 251 1,158 864 34,051 40 36,364"

Area Under Curve (AUC) and F1-measure. We train a few machine and deep learning-based
classifiers to identify the patch correctness. Therefore, we use two commonly used metrics for eval-
uating overall performance of the classifiers: AUC and F1 score (harmonic mean between precision
and recall for identifying correct patches).

4.1 [RQ-1: Similarity Measurements for Buggy and Patched Code Using Embeddings]

Objective: We investigate the capability of different learned embeddings to capture the
(dis)similarity between buggy code fragments and the (in)correctly-patched ones. The experiments
are performed towards providing answers for two sub-questions:

—RQ-1.1 Is correctly-patched code actually similar to buggy code based on learned embeddings?
—RQ-1.2 To what extent is buggy code more similar to correctly-patched code than to incorrectly-
patched code?

Experimental Design for RQ-1.1: Using the four embedding models considered in our study
(cf. Section 3.4), we produce the learned embeddings for buggy and patched code fragments asso-
ciated to 36 k patches from five repair benchmarks shown in Table 2. In this case, the patched code
fragment is the correctly-patched code fragment since it comes from labeled benchmark data (gen-
erally representing human-written patches). Given those learned embeddings (i.e., deep learned
representation vectors of code), we compute the cosine similarity between the vectors representing
the buggy and correctly-patched code fragments.

Results for RQ-1.1: Figure 7 presents the boxplots of the similarity distributions with different
embedding models and for samples in different datasets. Doc2Vec and code2vec models appear to
yield similarity values that are lower than BERT and CC2Vec models.

Figure 8 zooms in the boxplot region for each embedding model experiment to overview the
differences across different benchmark data. We observe that, when embedding the patches with
BERT, the similarity distribution for the patches in Defects4] dataset is similar to Bugs.jar and
Bears dataset, but is different from the dataset ManySStBs4] and QuixBugs. The Mann-Whitney—-
Wilcoxon (MWW) tests [43, 64] confirm that the similarity of median scores for Defects4],

“Due to parsing failures, code2vec learned embeddings are available for 21,135 patches.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 92. Pub. date: May 2023.

92:12 H. Tian et al.

IOO-Tv—T-T T'? T T .% Model
- BERT
_ 80 < | E
e 60 R o| E3CC2Vec
g]
g] ‘ $ * ETj code2Vec
E 40 . o 4 |$| DocaV
A e 8 ° oc2Vec
? 20+ °

0 .' - : : r

Bears Bugs jar Defects4] ManySS QuixBugs

Fig. 7. Distributions of similarity scores between correctly-patched code fragments and buggy ones.

’ ; 1 1
100 100 = 00 = 10
H
S $ 80 ° | 90;
2 °
5 : | :
— .
E . ° 60 . 801
v .
: :
o .
L
99+ ' 7 ¢ ; : 91 . : : : 40+— r : : : 70 i v ¥ : :
Bears Bj D4J MSS QB Bears Bj D4J MSS QB Bears Bj D4J MSS QB Bears Bj D4J MSS QB
(a) BERT. (b) CC2Vec. (c) code2vec. (d) Doc2Vec.
Fig. 8. Zoomed views of the distributions of similarity scores between correct and buggy code fragments.

Bugs.jar, and Bears is indeed statistically significant. MWW tests further confirm the statistical
significance of the difference between Defects4] and ManySStBs4J/QuixBugs scores.

Defects4], Bugs.jar, and Bears include diverse human-written patches for a large spectrum of
bugs from real-world open-source Java projects. In contrast, ManySStuBs4]J only contains patches
for single statement bugs. Quixbugs dataset is further limited by its size and the fact that the
patches are built by simply mutating the code of a small Java implementation of 40 algorithms
(quicksort, levenshtein, etc.).

While CC2Vec and Doc2Vec exhibit roughly similar performance patterns with BERT (al-
though at different scales), the experimental results with code2vec present different patterns across
datasets. Note that, due to parsing failures of code2vec, we eventually considered only 118 Bears
patches, 123 Bugs.jar patches, 46 Defects4] patches, 20,840 ManySStuBs4] patches, and 8 QuixBugs.
The change of dataset size could explain the difference with the other embedding models.

RQ-1.1 » learned embeddings of buggy and correctly-patched code fragments exhibit high co-
sine similarity scores. Median scores are similar for patches that are collected with similar heuristics
(e.g., in-the-wild patches vs. single-line patches vs. debugging example patches). The pre-trained
BERT natural language model captures more similarity variations than the CC2Vec model, which
is specialized for code changes. <

Experimental Design for RQ-1.2: To compare the similarity scores of correctly-patched code
fragment vs. incorrectly-patched code fragment to the buggy one, we consider combining datasets
with correct patches and datasets with incorrect patches. Note that, all patches in our experiments
are plausible since we are focused on correctness: plausibility is straightforward to decide based on
test suites. Correct patches are provided in benchmarks. However, all the benchmarks in our study

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 92. Pub. date: May 2023.

The Best of Both Worlds 92:13

Table 3. Scenarios for Similarity Distributions Comparison

Scenario Incorrect patches Correct patches

Imbalanced-all® 674 incorrect patches | 36,364 correct patches from 5 benchmarks in Table 2.
Imbalanced-Defects4] | by 16 APR tools [38] 864 correct patches from Defects4].
Balanced-Defects4] for 184 Defects4] bugs. 184 correct patches for the 184 Defects4] bugs.

Zoomed in CC2Vec and BERT

— 1 |
Doc2Vec T | L TH }—‘—I—'—{

R L Ly i O B
e B cCavee _“HM

-+
i
Il

CC2Vec

(=)

——

Datasets

8 Incorrect code m
BERT 8 Correct code from Inbalanced—all .

8 Correct code from Inbalanced Defects4J

8 Correct code from Balanced Defects4J

0 20 40 60 80 100 95 9% 97 9
Similarity (%)

8§ 99 1

=

0

Fig. 9. Comparison of similarity score distributions for code fragments in incorrect and correct patches.

do not contain incorrect patches. Therefore, we rely on the dataset released by Liu et al. [38]: 674
plausible but incorrect patches generated by 16 repair tools for 184 Defects4] bugs are considered
from this dataset. Those 674 incorrect patches are selected within a larger set of incorrect patches
by adding the constraint that the incorrect patch should be changed the same code location as the
developer-provided patch in the benchmark: such incorrect patch cases may indeed be the most
challenging to identify with heuristics.

We consider three scenarios to select correct patches for the comparison of the similarity scores.
(1) Imbalanced-all, a quick intuition is that we compare the 674 incorrect patches against all correct
patches from five benchmarks. (2) Imbalanced-Defects4], we only use the correct patches from
Defects4]. We design the second scenario because the correct patches from other benchmarks
may create a sample bias. (3) Balanced-Defects4], we use the correct patches for the 184 Defects4]
bugs that the 674 incorrect patches target. In this scenario, incorrect and correct sets have the same
number of patches. We design this to avoid the underlying bias of imbalanced sets. The comparison
is done with different scenarios specified in Table 3.

Results for RQ-1.2: In this experiment, we further assess whether incorrectly-patched code
exhibits different similarity score distributions than correctly-patched code. Figure 9 shows the
distributions of cosine similarity scores for correct patches (i.e., similarity between buggy code frag-
ments and correctly-patched ones) and incorrect patches (i.e., similarity between buggy code frag-
ments and incorrectly-patched ones). The comparison is done with different scenarios specified in
Table 3.

The comparisons do not include the case of learned embeddings for code2vec. Indeed, unlike the
previous experiment where code2vec was able to parse enough code fragments, for the considered
184 correct patches of Defects4], code2vec failed to parse most of the relevant code fragments.

SExcept for Defects4], there are no publicly-released incorrect patches for APR datasets.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 92. Pub. date: May 2023.

92:14 H. Tian et al.

Table 4. Statistics on the Distributions of Similarity Scores
for Correct Patches of Bears+Bugs.jar+Defects4)

Subjects | Min. 1st Qu. Median 3rd Qu. Max. Mean
BERT 90.84 99.47 99.73 99.86 100 99.54
CC2Vec 99.36 99.91 99.95 99.98 100 99.93
Doc2Vec | 28.49 85.80 92.60 96.10 99.89 89.19
code2vec | 2.64 81.19 93.63 98.87 100 87.11

Table 5. Statistics on the Distributions of Similarity Scores
for Correct Patches of QuixBugs

Subjects | Min. 1st Qu. Median 3rd Qu. Max. Mean
BERT 95.63 99.69 99.89 99.95 99.97 99.66

CC2Vec | 99.60 99.94 99.99 100 100 99.95
Doc2Vec | 55.51 89.56 96.65 97.90 99.72 91.29
code2vec | 81.16 98.53 100 100 100 97.06

Hence, we focus the comparison on the other three embedding models (pre-trained BERT, trained
Doc2Vec, and pre-trained CC2Vec). Overall, we observe that the distribution of cosine similarity
scores is substantially different for correctly-patched and incorrectly-patched code fragments.

We observe that the similarity distributions of buggy code and patched code from incorrect
patches are significantly different from the similarities for correct patches. The difference of me-
dian values is confirmed to be statistically significant by an MWW test. Note that the difference
remains high for BERT, Doc2Vec, and CC2Vec whether the correctly-patched code is the coun-
terpart of the incorrectly-patched ones (i.e., the scenario of Balanced-Defects4]) or whether the
correctly-patched code is from a larger dataset (i.e., Imbalanced-Defects4] scenarios). As for the
comparison with the dataset of Imbalanced-all, the heuristic remains valid but note it may be af-
fected by other benchmarks, i.e., the different bugs caused the results.

RQ-1.2 » learned embeddings of code fragments with BERT, CC2Vec, and Doc2Vec yield sim-
ilarity scores that, given a buggy code, substantially differ between correctly-patched code and
incorrectly-patched one. This result suggests that similarity score can be leveraged to discriminate
correct patches from incorrect patches.<

4.2 [RQ-2: Filtering of Incorrect Patches Based on Similarity Thresholds]

Objective: Following up on the findings related to the first research question, we investigate
the selection of cut-off similarity scores to decide on which APR-generated patches are likely incor-
rect. Results from this investigation will provide insights to guide the exploitation of code learned
embeddings in program repair pipelines.

Experimental Design: To select threshold values, we consider the distributions of similarity
scores from the above experiments (cf. Section 4.1). Table 4 summarizes relevant statistics on the
distributions on the similarity scores distribution for correct patches. Given the differences that
were exhibited with incorrect patches in previous experiments, we use, for example, the 15! quartile
value as an inferred threshold value.

Given our previous findings that different datasets exhibit different similarity score distributions,
we also consider inferring a specific threshold for the QuixBugs dataset (cf. statistics in Table 5).

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 92. Pub. date: May 2023.

The Best of Both Worlds 92:15

Our test data is constituted of 64,293 patches generated by 11 APR tools in the empirical study
of Durieux et al. [11]. First, we use the four embedding models to generate learned embeddings of
buggy code and patched code fragments and compute cosine similarity scores. Second, for each
bug, we rank all generated patches based on the similarity scores between the patched code and
the buggy one, where we consider that the higher the score, the more likely the correctness. Finally,
to filter incorrect candidates, we consider two experiments:

(1) Patches that lead to similarity scores that are lower to the inferred threshold (i.e., 1% quartile
in previous experimental data) will be considered as incorrect. Patches where patched code
exhibit higher similarity scores than the threshold are considered correct.

(2) Another approach is to consider only the top-1 patches with the highest similarity scores as
correct patches. Other patches are considered incorrect.

In all cases, we systematically validate the correctness of all 64,293 patches to have the cor-
rectness labels, for which the dataset authors did not provide (all plausible patches having been
considered as valid). First, if the file(s) modified by a patch are not the same buggy files in the bench-
mark, we systematically consider it as incorrect: with this simple scheme, 33,489 patches are found
incorrect. Second, with the same file, if the patch is not making changes at the same code locations,
we consider it to be incorrect: 26,386 patches are further tagged as incorrect with this decision (cf.
Threats to validity in Section 5). Finally, for the remaining 4,418 plausible patches in the dataset,
we manually validate correctness by following the strict criteria enumerated by Liu et al. [38] to
enable reproducibility. Overall, we could label 900 correct patches. The remainders are considered
as incorrect.

Results: By considering the patch with the highest (top-1) similarity score between the patched
code and buggy code as correct, we were able to identify a correct patch for 10% (with BERT), 9%
(with CC2Vec), and 10% (with Doc2Vec) of the bug cases. Overall we also misclassified 96% correct
patches as incorrect. However, only 1.5% of incorrect patches were misclassified as correct patches.

Given that a given bug can be fixed with several correct patches, the top-1 criterion may not
be adequate. Furthermore, this criterion makes the assumption that a correct patch indeed exists
among the patch candidates. By using filtering thresholds inferred from previous experiments
(which do not include the test dataset in this experiment), we can attempt to filter all incorrect
patches generated by APR tools. Filtering results presented in Table 6 show the recall scores that
can be reached. We provide experimental results when we use 15! quartile and Mean values of
similarity scores in the “training” set as threshold values. The thresholds are also applied by taking
into account the datasets: thresholds learned on QuixBugs benchmark are applied to generated
patches for QuixBugs bugs.

RQ-2 » Building on cosine similarity scores, code fragment learned embeddings can help to filter
out between 31.5% with CC2Vec and 94.9% with BERT of incorrect patches. While BERT achieves
the highest recall of filtering incorrect patches, it produces learned embeddings that lead to a lower
recall (at 5.5%) at identifying correct patches.<

4.3 [RQ-3: Classification of Correct Patches with Supervised Learning]

Objective: Cosine similarity between learned embeddings (which was used in the previous
experiments) considers every deep learned feature as having the same weight as the others in
the embedding vector. We investigate the feasibility to infer, using machine learning, the weights
that different features may present with respect to patch correctness. To this end, we build a
patch correctness prediction framework, LEoPARD (LEarn tO Predict pAtch coRrectness with

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 92. Pub. date: May 2023.

92:16 H. Tian et al.

Table 6. Filtering Incorrect Patches by Generalizing Thresholds Inferred from Section 4.1 Results

Dataset Bears, Bugs.jar and Defects4] QuixBugs
Correct Patches 893 7
Incorrect Patches 61,932 1,461
Model/Metric/Threshold 1st Qu. Mean 1st Qu. Mean
+CP 57 49 4 4
-IP 48,846 51,783 1,387 1,378
BERT +Recall 6.4% 5.5% 57.1% 57.1%
-Recall 78.9% 83.6% 94.9% 94.3%
+CP 797 789 4 4
-IP 19,499 23,738 1,198 1,255
CC2vec +Recall 89.2% 88.4% 57.1% 57.1%
-Recall 31.5% 38.3% 82.0% 85.9%
+CP 794 771 7 7
Doc2Vec # -IP 25,192 33,218 1,226 1,270
+Recall 88.9% 86.3% 100% 100%
-Recall 40.7% 53.6% 83.9% 86.9%

“# +CP” means the number of correct patches that can be ranked upon the threshold, while “# -IP” means the number
of incorrect patches that can be filtered out by the threshold. “+Recall” and “-Recall” represent the recall of identifying
correct patches and filtering out incorrect patches, respectively.

embeDdings), with the embedding models and machine learning algorithms. We compare the
prediction evaluation results of LEOPARD with the achievements of related approaches in the
literature. The experiments are performed towards providing insights for the three sub-questions:

—RQ-3.1 Can LEopPARD learn to predict patch correctness by training classifiers based on the
learned embeddings of code?

—RQ-3.2 Can LEOPARD be as reliable as a dynamic state-of-the-art approach such as PATCH-SIM
in the patch correctness identification task?

— RQ-3.3 To what extent learned embeddings of LEOPARD are providing different prediction results
than the engineered features?

Experimental Design for RQ-3.1: To perform our machine learning experiments, we first re-
quire a ground-truth dataset. To that end, we rely on labeled datasets in the literature. Since incor-
rect patches generated by APR tools are only available for the Defects4] bugs, we focus on labeled
patches provided by three independent teams (Liu et al. [38], Ye et al. [73], and Xiong et al. [66])
and other patches generated by APR tools. Very few patches generated by the different tools are
actually labeled as correct, which leads to an imbalanced dataset. To reduce the imbalance issue,
we supplement the dataset with developer (correct) patches as supplied in the Defects4] bench-
mark. Note that one developer patch could include multiple fixing hunks for different files, but the
extraction of engineered features only works on the patches with respect to changing a single file.
Thus, we split such patches into sub patches by their changed files to ensure that one sub patch
is only involved with one code file. In total, we collected 2,687 patches. After removing duplicates,
2,244 patches remained. A total of 97 patches failed to obtain their engineered feature. Eventually,
the ground-truth dataset is built with 2,147 patches, shown in Table 7.

Our ground truth dataset patches are then fed to our embedding models in LEOPARD to produce
embedding vectors. As for previous experiments, the parsability of Defects4] patch code fragments
prevented the application of code2vec: LEOPARD uses pre-trained models of BERT (trained with
natural language text) and CC2Vec (trained with code changes) as well as a retrained model of

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 92. Pub. date: May 2023.

The Best of Both Worlds 92:17

Table 7. Dataset for Evaluating ML-based Predictors of Patch Correctness

Correct patches | Incorrect patches | Total
Liu et al. [38] 94 366 460
Ye et al. [73] 242 452 694
Xiong et al. [66] 30 109 139
Defects4] (developers) [19] 969 0 969
Other APR tools 263 162 425
Dataset 1,598 1,089 2,687
Dataset (deduplicated) 1,288 956 2,244
Dataset (final, with available features) 1,199 948 2,147

Doc2Vec (trained with patches). Since the representation learning models are applied to code frag-
ments inferred from patches (and not to the patch themselves), LEoPARD collects the embeddings
of both buggy code fragments and patched code fragments for each patch. Then LEOPARD must
merge these vectors back into a single input vector for the classification algorithm. We follow an
approach that was demonstrated by Hoang et al. [15] in a recent work on bug fix patch prediction:
the classification model performs best when features of patched code fragments and buggy code
fragments are crossed together.

At first, and following related works in the literature, we used a 10-fold cross validation scheme
to evaluate and compare our approach against the state-of-the-art. However, we found that, with
this scheme, a patch set generated for the same bug can be split into both the training and testing
sets. Such a scenario is actually unrealistic (and biased) since we should not train the model with
some labeled patches of a bug that we intend to repair (test set). To address this bias, we propose
instead a 10-group cross validation scheme: First, we randomly distribute all bugs into 10 groups.
Every group contains unique bugs and their associated patches. Then, we use nine groups as train
data and the remaining group as the test data. Finally, we repeat the selection of train and test
groups for ten rounds and obtain the average score of the metrics.

Results for RQ-3.1: We compare the performance of different embedding models using differ-
ent classification algorithms. Table 8 presents the results with a 10-group cross validation setup.
All classical metrics used for assessing predictors are reported: Accuracy, Precision, Recall, F1-
Measure, Area Under Curve (AUC). XGBoost applied to BERT embeddings yields the best per-
formance on the most of metrics (e.g., AUC with 0.803 and F1-measure with 0.765), while DNN
achieves the best performance on precision of 0.744.

Our previous work [57] was conducted through a 5-fold cross validation. To evaluate perfor-
mance change of the approach on the new augmented dataset, we re-conduct a 5-fold cross vali-
dation experiment. The results show that after increasing the number of training examples (1,147
more patches), the performance of the decision tree, logistic regression and naive bayes classifiers
are improved. For instance, applying the three classifiers with BERT embeddings, their accuracy,
precision, recall, and F1-measure are improved with 3 to 23.6 points (except the recall of Naive
bayes + BERT embedding is decreased). Their AUC values are increased with 0.067, 0.06, 0.126,
respectively. These results provide us the possibility of evolving the patch identification through
datasets augmentation. Note that, for the following experiment, we proceed to focus on using
10-group cross validation because of its effectiveness for evaluating the approaches in practice.

RQ3.1 » Tree-based boosting classifiers (Random forest and XGBoost) and Deep learning clas-
sifier (DNN) with BERT embeddings yield the promising performance on predicting the patch cor-
rectness for APR tools (e.g., F1-measure at 76.5% and AUC at 80.3%).<

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 92. Pub. date: May 2023.

92:18 H. Tian et al.

Table 8. Evaluation of Learned Embeddings on Six ML Classifiers in LEOPARD

Learner Embedding | Accuracy Precision Recall Fl-measure AUC
BERT 62.1 64.7 70.8 67.6 0.611

Decision Trees CC2Vec 58.0 61.7 65.5 63.5 0.572
Doc2Vec 58.7 62.0 67.6 64.6 0.576

BERT 72.2 73.5 78.7 76.0 0.796

Logistic regression CC2Vec 61.8 64.8 68.9 66.8 0.679
Doc2Vec 65.8 66.6 77.7 71.7 0.717

BERT 66.5 72.5 57.6 65.7 0.726

Naive bayes CC2Vec 57.6 70.1 31.9 45.7 0.670
Doc2Vec 55.9 63.0 51.0 56.4 0.610

BERT 69.4 68.3 77.9 75.5 0.793

Random forest CC2Vec 62.1 63.9 74.1 68.6 0.705
Doc2Vec 64.9 63.5 87.6 73.6 0.705

BERT 71.8 71.6 82.1 76.5 0.803

XGBoost CC2Vec 65.3 66.4 76.6 71.1 0.729
Doc2Vec 63.2 63.5 80.2 70.8 0.693

BERT 70.3 74.4 71.3 72.8 0.767

DNN CC2Vec 51.8 55.5 69.0 61.6 0.503
Doc2Vec 63.2 64.7 75.1 69.5 0.679

Experimental Design for RQ-3.2: PATCH-SIM [66] is the state-of-the-art work on predicting
the patch correctness for APR tools. It is a dynamic-based approach, which generates execution
traces of patched programs with new generated tests, and compares the execution traces across
test cases to assess the correctness of APR-generated patches. We propose to apply PATCH-SIM to
our collected patches (cf. Table 7). Unfortunately, PATCH-SIM is implemented to run on Defects4]-
v1.2.0.° Therefore, it failed to process 476 patches generated for some bugs (e.g., JSoup bugs) in the
latest version of Defects4] (i.e., Defects4]J-v2.0.0). Furthermore, even when PATCH-SIM can run, we
observe that it does not yield any prediction output for 1,022 patches.” Eventually, we were able to
assess the performance of PATCH-SIM on 649 patches. To avoid a potential bias in comparisons,
we also conduct the ML-based classification experiments for LEOPARD on the 649 patches.

Results for RQ-3.2: Table 9 provides the comparing results on predicting patch correctness.
In terms of Recall, PATCH-SIM achieved 78.9% that is a bit higher than the BERT embedding
+ Random forest of LEopARD, which demonstrates its ability of recalling correct patches from
plausible patches as reported in [66] by its authors. However, the accuracy, precision and AUC
measurements are just 38.8%, 24.7%, and 52.8%, respectively. These results underperform the three
ML classifiers of LEOPARD. It indicates the many incorrect patches are wrongly identified as correct
by PATCH-SIM. Figure 10 further gives an example on comparing the BERT embedding + the
XGBoost classifier of LEorARD and PATCH-SIM in terms of the number of (in) patches correctly
identified by them. XGBoost classifier of LEOPARD can recall more correct and incorrect patches
than the PATCH-SIM, and the 24 correct patches and 124 incorrect patches are exclusively correctly
predicted by it.

®https://github.com/rjust/defects4j/releases/tag/v1.2.0.
7We have reported the issue to the authors but have not yet been made aware of any solution to address it. Note that in
their original article the authors transparently informed readers that the tool indeed is sensitive to the datasets.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 92. Pub. date: May 2023.

https://github.com/rjust/defects4j/releases/tag/v1.2.0

The Best of Both Worlds 92:19

Table 9. Comparing Evaluation of LEorArRD (BERT Embedding + ML Classifiers) against PATCH-SIM

Approach Accuracy Precision Recall Fl-measure AUC
PATCH-SIM 38.8 24.7 78.9 37.7 0.528
2 | BERT + Random forest 41.3 25.5 78.3 38.4 0.594
é BERT + XGBoost 42.7 26.2 79.6 39.4 0.614
A | BERT + DNN 40.0 26.1 85.5 40.0 0.546

O Leopard gegr 4 xgBoosy & PATCH-SIM

O G

identified correct patches # identified incorrect patches

Fig. 10. Comparison on the number of (in)patches correctly identified by LEorArD (with the BERT embed-
dings + the XGBoost learner) against PATCH-SIM.

Time cost. Note that we have recorded that, on average, PATCH-SIM takes ~17.5 minutes to predict
the correctness of each patch. In contrast, each of the ML classifiers of LEOPARD takes less than
1 minute for prediction. However, note that the training of LEOPARD requires the input of the
learned embeddings of patches generated by pre-trained models (e.g., BERT). Such models, which
are available on-the-shelf, have been trained using hundreds of TPUs that were run for several
hours on a large corpus.

#1 RQ-3.2 » ML predictors of LEOPARD trained on learned embeddings can be complementary
to the state-of-the-art PATCH-SIM. They can also outperform PATCH-SIM in filtering out more
patches generated by APR tools.

Experimental Design for RQ-3.3: As reported by Ye et al. [71] in a recent study, post-
processing APR-generated patches through engineered features achieves promising results. There-
fore, in this study, we also use some of the engineered features (Prophet features and repair pattern)
in[71] to predict correct patches on a larger dataset: overall, our study is based on 2,147 patches
while Ye et al. applied only 713 patches. Results in this study are given based on 10-group cross
validation.

Results for RQ-3.3: Table 10 presents the results of predicting patch correctness with the engi-
neered features. The naive bayes learning algorithm achieves an unusual performance compared
to the other five learners. It yields the highest precision, but leads to a much lower recall than oth-
ers. This suggests that a very small number of correct patches can be recalled via using this learner.
The Random Forest and XGBoost learners achieve similarly high performance (e.g., F1-measure
at 74.7%/74.1% and AUC at 76.9%/77.6%), and are followed by the DNN learner. Overall, the per-
formance achieved with engineered features is generally comparable (in terms of global metrics)
to that yielded by LEOPARD using learned embeddings, except when using the Naive Bayes and
Decision Trees learning algorithm.

Figure 11 further illustrates the differences between the XGBoost classifier with the BERT em-
beddings and the engineered features in terms of the number of identified (in)correct patches. More
(in)correct patches can be correctly identified by the XGBoost classifier with both two scenarios.
Nevertheless, there still is a big complementary space of identifying the patch correctness for the
two scenarios.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 92. Pub. date: May 2023.

92:20 H. Tian et al.

Table 10. Evaluation of Engineered Feature on Six ML Classifiers

Learner Accuracy Precision Recall Fl-measure AUC
DecisionTree 66.6 68.6 73.9 71.1 0.666
Logistic regression 70.0 72.7 74.1 73.4 0.773
Naive bayes 49.6 74.6 14.7 24.5 0.689
Random forest 70.7 72.1 71.5 74.7 0.769
XGBoost 70.5 72.6 79.9 74.1 0.776
DNN 69.8 72.1 74.8 73.4 0.777

O BERT embeddings O Engineered feature

(2

identified correct patches # identified incorrect patches

Fig. 11. Comparison on the number of (in)patches correctly identified by the XGBoost classifier with the
BERT embeddings and the engineered features.

RQ-3.3 » The ML classifiers fed with the engineered features (from static code) can achieve
comparable performance to learned embeddings-based classifiers in identifying patch correctness.
There is nevertheless the possibility to improve the prediction performance in both cases since their
correct predictions are not perfectly overlapping: learned embeddings lead to the identification of
correct/incorrect patches that are not recalled with engineered features and vice versa. <

4.4 [RQ-4: Combining Learned Embeddings and Engineered Features for More
Accurate Classification of Correct Patches]

Objective: Following up on the insights from the previous research question, which compared
engineered features against learned embeddings, we investigate the potential of leveraging both
feature sets to improve the classification of correct patches.

Experimental Design: Leveraging different feature sets can be achieved in several ways, e.g.,
by concatenating feature vectors or by performing ensemble learning. In this study, we investigate
three different methods which are implemented in the upgraded version of LEOPARD, PANTHER
(Predict pAtch correctNess wiTH the learned Embeddings and engineeRed features), as illustrated
in Figure 12:

(1) Ensemble learning. We rely on the six learning algorithms (cf. Tables 8 and 10) to predict the
correctness of patches based either on the learned embeddings or on the engineered features.
Eventually, to combine both, we simply compute the average prediction probability provided
by a pair of classifiers (one trained with learned embeddings and the other with engineered
features), and use this probability to decide on patch correctness.

(2) Naive Vector Concatenation. In the second method, we ignore the fact that learned embed-
dings vectors and engineered feature vectors are not from the same space and propose to
Naively concatenate them into a single representation. Our intuition, indeed, is that both
representations capture different features of patches and can therefore offer, together, a bet-
ter representation. The yielded concatenated vectors are then used to train the classifiers
(with the usual learning algorithms).

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 92. Pub. date: May 2023.

The Best of Both Worlds 92:21

Learned representation Engineered vector Learned representation Engineered vector Learned representation Engineered vector

933323...66 15 56 Yes ... Yes No 933323..6615 56 Yes ... Yes No 933323..6615 56 Yes ... Yes No

Prediction

(a) Ensemble learning. (b) Naive Vector Concatenation. (c) Deep Combination.

Fig. 12. Combination options of features for patch classification in PANTHER.

(3) Deep Combination. In the last method, we consider that learned embeddings and engineered
features are from different spaces. Therefore, we must learn their different weights as well
as the common representations for them before concatenation. We resort thus to DNNs to
attempt a deep combination of feature sets before classification.

In this RQ, given the performance of BERT in previous experiments (cf. Table 8), we focus on the
BERT embedding model to learn the learned embeddings of patches. Similarly, we only consider
Random forest and XGBoost as the best learners to be applied (cf. Tables 8 and 10). The Deep Com-
bination method is based on the work of Cheng et al. [6] who proposed a deep learning fusion struc-
ture which combined layers that were specialized to explore memorization and generalization of
features. Following up this idea of fusion, we design a Double-DNN-fusion structure where learned
embeddings are considered useful for generalization and engineered features are considered for
memorization. Eventually, we conduct 10-group cross validation for the experimental assessment.

Results: Table 11 presents the performance comparison for correctness identification when
using combined features vs. using single feature sets. The comparison is done in terms of three
main metrics: +Recall (to what extent correct patches can be identified), -Recall (to what extent
incorrect patches can be filtered out), and AUC (area under the ROC curve, i.e., comprehensive
performance of the predictor). Overall, the performance of classifying correct patches is improved
after using each of the three combination strategies (except the -Recall of the random forest clas-
sifier with the Naive Vector Concatenation) for the learned (BERT) and engineered (ODS) feature.
With respect to +Recall (i.e., recalling the correct patches), the Random forest and XGBoost-based
classifier with Ensemble Learning achieve the highest value at 83.7%, improving by 1 to 6 percent-
age points the performance with single feature sets. With respect to -Recall (i.e., filtering out
the incorrect patches), the best classifier is DNN-based with the Deep Combination of features:
it achieves the highest recall in correctly excluding 69.6% of the incorrect patches. With respect
to AUC, the XGBoost-based classifier with the Ensemble Learning presents the best performance
at 82.2%, improving by 2-5 percentage points the performance with single feature sets. To sum
up, combining the BERT embeddings of patches with their ODS features does improve the per-
formance of identifying patch correctness. Note that the results show that, in general, Ensemble
Learning applied to independently trained classifiers yields the highest performance gains. The
McNemar’s statistical hypothesis test [10] further confirms that the gains are statistically signifi-
cant for the Ensemble Learning and Deep Combination while it is not the case for the Naive Vector
Concatenation. This suggests that the features (learned and engineered) are from different spaces
and are best exploited when applied standalone to model patch correctness, and can complement
each other in terms of prediction.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 92. Pub. date: May 2023.

92:22 H. Tian et al.
Table 11. Comparing Results of Classifying Correct Patches with Combined Feature against
the Single Feature
Tool ‘ Feature ‘ Accuracy Precision +Recall -Recall Fl-measure AUC
Random Forest
LEOPARD BERT embeddings 0.694 0.683 0.779 0.624 0.755 0.793
Engineered feature 0.707 0.721 0.775 0.620 0.747 0.769
PANTHER Ensemble Learning 0.745 0.740 0.837 0.629 0.786 0.818
Naive Vector Concatenation 0.708 0.693 0.786 0.629 0.766 0.799
XGBoost
BERT embeddings 0.718 0.716 0.821 0.588 0.765 0.803
LEOPARD -
Engineered feature 0.705 0.726 0.799 0.596 0.741 0.776
PANTHER Ensemble Learning 0.757 0.754 0.837 0.655 0.794 0.822
Naive Vector Concatenation 0.730 0.725 0.833 0.600 0.775 0.811
DNN
LEOPARD BERT embeddings 0.703 0.744 0.713 0.690 0.728 0.767
Engineered feature 0.698 0.721 0.748 0.634 0.734 0.777
PANTHER | Deep Combination 0.730 0.760 0.757 0.696 0.758 0.798

BERT Engineered
embeddings ’ ‘ feature

Ensemble Learning

¢

(a) Identified correct patches.

BERT Engineered
embeddings y ‘ feature

Naive Vector Concatenation

§
o

{
{

(c) Identified correct patches.

BERT Engineered
embeddings f ‘ feature

Deep Combination

{0

(e) Identified correct patches.

BERT Engineered
embeddings %w feature

Ensemble Learning

{P

(b) Identified incorrect patches

BERT Engineered
embeddings, f w feature

Naive Vector Concatenation

>
2

(d) Identified incorrect patches.

BERT Engineered
embeddings, y ‘ feature

Deep Combination

¥

(f) Identified incorrect patches.

Fig. 13. Comparison on the number of patches identified with the combined feature vs. the simple feature.

Figure 13 further highlights the number of (in)correct patches identified based on BERT em-
beddings, engineered features and the combined features, respectively. Since the “Random forest”
learner presents a similar performance with “XGBoost”, Figure 13 focuses on the latter.

From a qualitative point of view, with the Ensemble Learning, more (in)correct patches can
be identified than each single feature set (i.e., BERT embeddings or engineered features). However,
this combination does not help to identify patches that were not identified using at least one fea-
ture set. In contrast, with Naive Vector Concatenation and the Deep Combination, which combine

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 92. Pub. date: May 2023.

The Best of Both Worlds 92:23

features before classification, we can identify some (in)correct patches that could not be identified
using either feature set alone.

From a quantitative point of view, the Naive Vector Concatenation helps to identify slightly
more correct patches (among those that could not be identified by each feature set alone) than
the Deep Combination. As for new identified incorrect patches, they achieve the same metrics.
Nevertheless, overall, the Ensemble Learning method helps to identify more correct patches while
the Deep Combination helps to identify more incorrect patches.

RQ-4 » Leveraging learned embeddings (BERT) and engineered features (ODS) contributes to
improve the performance in predicting patch correctness for APR tools. Merging independently
trained classifiers achieves higher performance compared to each separate classifier, but does not
lead to the identification of correct/incorrect patches that could not be identified by at least one
of the classifier. In contrast, feature combination (i.e., Naive Vector Concatenation and Deep Com-
bination) before classification training appears to provide more information to discriminate some
patches that were not correctly classified based on their learned embeddings or their engineered
features alone. <

4.5 [RQ-5: Explanation of Improvements of Combination]

Objective: The experimental results for previous RQs show that ML classifiers built based on
learned embeddings, or on engineered features, or on both, yield promising performance in pre-
dicting patch correctness. The fact remains, however, that the classifier is a black box model for
practitioners. In particular, when leveraging combined feature sets, it may be helpful to investi-
gate the impact of different features on the identification of patch correctness. To that end, we
propose to build on Explainable ML techniques to explore how the models are built. In this work,
we focus on Shapley Values, which compute the contributions of each feature in a given prediction.
Shapley values originate from the field of game theory and have been implemented in the SHAP
framework [40], which is widely used in the Al community.

Experimental Design: Our experiments are focused on the classifier yielded with the Naive
Vector Concatenation method since it managed to recall more correct patches through combining
learned embeddings and engineered features (cf. RQ-3.3 in Section 4.3). We consider the case where
the classifier is trained with the XGBoost learning algorithm. Using SHAP values as a metric of
feature importance, we investigate the top most important features that contribute to the combined
model predictions. We further compare those important features against the features that are most
contributing when the classifier is trained only with learned embeddings or only with engineered
features. Finally, we present three specific patches that are identified by different feature sets to
observe the contribution of the features to prediction.

Results: Figure 14 illustrates the top-10 most contributing features: a feature named B-i refers
to the i feature learned with BERT. Others (e.g., singleLine and codeMove) refer to engineered
features. The appearance of features from learned and engineered feature sets among the most con-
tributing features suggests that both types of features are not only relevant but are also exploited
in the yielded classifier.

Reading a SHAP explanation graph: In a given SHAP graph, each row is a distribution value for
a given feature (Y-axis), where each data point is associated to one sample input data (i.e., a patch
in our case). The color indicates the feature value, which is normalized: the more red, the higher
the value. The X-axis represents the SHAP values, which indicate to what extent a given feature
impacted the model output for a given patch. For example, most patches with high value (red) for
feature singleLine are located on the left (negative SHAP value), which suggests negative impact

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 92. Pub. date: May 2023.

92:24 H. Tian et al.

High
singleLine -w” o o AVP Poetom Stectet o oote
B-1530 cow 000 @MPOWIte 0 cem & o o
B-2026 0 0ane 0 cncpuuges o oo oo
B-1128 X Y B ®
B-1432 . [
g
B-1693 oo E
3
B-1797 0 weo o Nl
B-1909 .
codeMove carinenance oo oo
B-289 o oo
T Low

-0.75 —-0.50 —0.25 0.00 0.25 0.50 0.75 1.00
SHAP value (impact on model output)

Fig. 14. Top-10 contributing features (based on SHAP values) for the classifier built by combining learned
embeddings and engineered features.

High
singleLine
addLineNo

rmLineNo . .
codeMove
P4] SRC_OP_GT_AF
P4)_LATER_OP_LT_AF
P4)_SRC_OP_MOD_AF
P4)_SRC_MODIFIED_SIMILAR_VF
P4)_SRC_OP_ADD_AF
P4)_LATER_REMOVE_PARTIAL_IF

Feature value

ar = : ; i

SHAP value (impact on model output)
Fig. 15. Top-10 contributing features (based on SHAP values) for the classifier built only by the engineered
features.

of singleLine on correctness prediction. It should be noted that, eventually, it is the contributions
of different features that will be merged to yield the final prediction for each sample.

In Figure 14, we note that singleLine and codeMove are the top contributing engineered features
among the combined feature sets. As we see from the figure, their red (high value) points and blue
(low value) points are clearly separated to two sides, which demonstrates their values have obvious
positive or negative effects on the model output. In Figure 15, when leveraging only engineered
features, singleLine and codeMove also have significant contributions and are appearing in the 1st
and 4th positions among the top contributing features. This indicates that the engineered features
must be high-contributors to the decision (e.g., in terms of information gain) as shown in Figure 15,
in order to obtain an efficient combination with learned features. Therefore, in practice we suggest
that the research community should focus more on devising few but effective engineered features
instead of massive but inefficient features to improve the performance of models.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 92. Pub. date: May 2023.

The Best of Both Worlds 92:25

0.2

0.0

o
o
=)

wame @mmo o
e
o
o
=3

| o
0.20 3

|
e
N
1

L0.15 @

singleLine and B-1530

|
2
IS

-0.10

SHAP interaction value for
SHAP interaction value for
singleLine and B-2026
s
a
o
0.

4
=)
a
|
o
N
a

- 0.02
-0.6

.
. -0.30

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
singleLine singleLine

(a) Interaction between singleLine and B-1530. (b) Interaction between singleLine and B-2026.

0.00

o
o
N}

-0.05

-0.10

|
o
°
S
codeMove and B-2026

codeMove and B-1530
o
°
38
S
SHAP interaction value for

SHAP interaction value for
|
[
B
G

-0.04 -0.05 - 0.02
-0.20

0 2 4 6 8 10 0 2 4 6 8 10
codeMove codeMove

(c) Interaction between codeMove and B-1530. (d) Interaction between codeMove and B-2026.

Fig. 16. Feature interaction.

Overall, the SHAP explanations suggest that engineered features have an important effect on
model prediction (because they appear among the top contributing features) but are complemen-
tary to the learned feature set. Indeed, the combination with Naive Vector Concatenation enables
classifiers to identify correct patches that could not be identified when each feature set was used
without the other. Therefore, we conclude that it is the interaction among the features that yields
such a performance improvement. We propose to further investigate the interaction among pairs
of features (one from the engineered features set and the other from the learned features set).

Figure 16 illustrates the interaction information provided by SHAP among singleLine, codeMove,
and B-1530. As it can be seen, in Figure 16(a), when the feature value of singleLine is 0, higher
(redder) feature values of B-1530 will lead to a more negative SHAP value for singleLine (i.e., it has
negative impact on patch correctness prediction). In contrast, when the feature value of singleLine
is 1, the same higher feature values of B-1530 will tend to draw a positive SHAP value (i.e., positive
impact). This example illustrates how learned and engineered features can interact to balance their
contributions for the final predictions based on their respective feature values. Figure 16(b) and
(d) exhibits effective interaction while Figure 16(c) cannot because not enough of the test data are
reaching both the two feature nodes in the tree-based boosting classifier. In the same direction, we
cannot present the SHAP interaction between singleLine and codeMove. Overall, Figure 16 provides
evidence for the impact of the interaction between learned and engineered features on the model
prediction. In contrast, merging classifiers through Ensemble Learning does not allow for features
interaction and thus fails to identify patches that were not identified using one feature set. This

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 92. Pub. date: May 2023.

92:26 H. Tian et al.

higher & lower
base valué(x)
-13.61 -11.61 -9.609 -7.609 -5.609 -3.609 -1.609 0.390¢1.38 2.391 4.391 6.391 8.391 10.39 12.39 14.39

P I KL

B-1832 =0.3909 ' B-1133 = 0.1601 ' B-1448 = 0.1109

(a) Patch for Closure-57.

higher & lower
base value f(x)
-2.692 -1.692 -0.6918 0.3082 0.73 1.308 2.308 3.308

)))))23) N0 NS M (K O O K

expLogicMod = 2 | P4J_SRC_MEMBER_ACCESS_AF = 1 P4J_SRC_ASSIGN_ZERO_AF =1 | singleLine = 1 ' addLineNo =1 ' P4J_SRC_MODIFIED_SIMILAR_VF =0 ' P4J_S

(b) Patch for Math-85.

higher & lower
base valf(e)

13.63 -1 1.63 -9, (.331 -7. §31 -5, §31 -3 §31 -1 ?31 0. 3§L1 .06 2 3.69 4.’.?69 6. 3.69 8 3.69 \0437 12.37 14.37
o)) LGS
singleLine = 0

(c) Patch for Math-56.

Fig. 17. SHAP analysis on patches.

motivates model trainers to combine different types of features through tree-based classifiers or
DNNs to obtain efficient deep information for identifying previously-unidentified correct patches.

Finally, Figure 17 presents the SHAP analyses of three patches that are exclusively identified
by classifiers built based either on learned feature set (a), or on engineered feature set (b), or on
combined feature set (c). We note that contributions of each learned feature is small and it is the
sum of contributions that lead to a prediction. In contrast, contributions of engineered features
are significantly larger for several features. When the sets are combined, engineered features are
contributing in the top, their contributions are impactful, while learned features still contribute,
each, to a lesser extent. Overall, few engineered features make most of the contributions for good
prediction which unsurprisingly imply that the quality and relevance of engineered features are
more important than the number of features.

#y RQ-5 » Thanks to SHAP explanations, we were able to confirm that combining engineered
and learned feature sets creates interactions that impact the prediction of classifiers, leading to
improved precision and recall in correctness prediction. <

5 DISCUSSIONS

We enumerate a few insights from our experiments with representation learning models and dis-
cuss some threats to validity.

5.1 Insights from the Experimental Setup

Code-oriented embedding models may not yield the best embeddings for training patch correct-
ness classifiers. Our experiments have revealed that the BERT model, which was pre-trained on
Wikipedia, is yielding the best recall in the identification of incorrect patches. There are several
possible reasons for this situation: BERT implements the deepest neural network and builds on
the largest training data. Its performance suggests to researchers that code-oriented embedding
models should be trained on large code datasets or fine-tuned on specific target tasks in order to
become competitive against BERT. While we were completing the experiments, a pre-trained Code-
BERT [13] model has been released. In future work, we will investigate its relevance for producing

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 92. Pub. date: May 2023.

The Best of Both Worlds 92:27

"his", "spouse", "is", | |"computer", "science", our", "grandpa', "has'", "a",

"lovely" "is", "difficult" "very", "handsome", "look"

"

Fig. 18. Close cosine similarity scores with small-sized inputs for BERT embedding model.

embeddings that may yield higher performance in patch correctness prediction. In any case, we
note that CC2Vec provided the best embeddings for yielding the best recall in identifying correct
patches (using similarity thresholds). This finding suggests we use the embedding model built for
code changes (e.g., CC2Vec) for the objective of having a high recall in identifying correct patches.

The small sizes of the code fragments lead to similar embeddings. Figure 18 illustrates the differ-
ent cosine similarity scores that can be obtained for the BERT embeddings of different pairs of
short sentences. Although the sentences are semantically (dis)similar, the cosine similarity scores
are quite close. This explains why recalling correct patches based on a similarity threshold was a
failed attempt (~ 5% for APR-generated patches for Defects4]+Bears+Bugs.jar bugs). Nevertheless,
experimental results demonstrated that deep learned features are relevant for learning to discrim-
inate. Considering the different sizes of code fragments contained in each patch may affect the
similarity computation, we suggest that researchers control the size of the code fragments of the
patch when investigating the hypothesis in RQ-2 for patch correctness.

Refutation of literature assumption that “patches with fewer changes are more likely to be correct’.
In RQ-2, we leveraged similarity between buggy code and patched code to filter out incorrect
patches. The hypothesis is the more similar they are, the more likely to be correct the patch is. The
best performance appears in QuixBugs that only contain bugs on one single line. However, regard-
ing Bears, Bugs.jar, and Defects4j, while a large number of incorrect patches are filtered out (cf.
-Recall in Table 6), correct patches are recalled in low numbers (cf. +Recall in Table 6). Or, -Recall is
low while keeping high +Recall. In the RQ-5, we use ground-truth labeled developer’s patches and
generated patches with balanced numbers for Defects4j to avoid bias. We use SHAP to interpret
the impact of feature and find the most important feature is “singleLine”. The feature analysis im-
plies that patch with one single line (fewer change) is more likely to be incorrect, which is against
the hypothesis. This demonstrates correct code normally require more than one-line change.

5.2 Threats to Validity

Our empirical study carries a number of threats to validity that we have tried to mitigate.

THREATS TO EXTERNAL VALIDITY. There are a variety of representation learning models in the
literature. A threat to the validity of our study is that we may have a selection bias by consid-
ering only four embedding models. We have mitigated this threat by considering representative
models in different scenarios (pre-trained vs. retrained, code change specific vs. natural language
oriented).

Another threat to validity is related to the use of Defects4] data in evaluating the ML classifiers.
This choice however was dictated by the data available and the aim to compare against related
work.

THREATS TO INTERNAL VALIDITY. A major threat to internal validity lies in the manual assessment
heuristics that we applied to the RepairThemAll-generated dataset. We may have misclassified

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 92. Pub. date: May 2023.

92:28 H. Tian et al.

some patches due to mistakes or conservatism. This threat however holds for all APR work that
relies on manual assessment. We mitigate this threat by following clear and reproducible decision
criteria, and by further releasing our labeled datasets for the community to review.® Besides, we
supplement the dataset with developer patches to mainly relieve the imbalance problem of the
dataset. This may make the sample distribution of our experiment different from the real APR
patches world. This threat however also holds for some current works [66, 71] that focus on patch
correctness validation.

THREATS TO CONSTRUCT VALIDITY. For our experiment, the considered embedding models are
not perfect and they may have been under-trained for the prediction task that we envisioned.
For this reason, the results that we have reported are likely an under-estimation of the capability
of representation learning models to capture discriminative features for the prediction of patch
correctness. Our future studies on representation learning will address this threat by considering
different re-training experiments.

6 RELATED WORK

Analyzing Patch Correctness: To assess the performance of fixing bugs of repair tools and
approaches, checking the correctness of patches is key, but not trivial. However, this task was
largely ignored or unconcerned in the community until the analysis study of patch correctness
conducted by Qi et al. [51]. Thanks to their systematic analysis of the patches reported by three
generate-and-validate program repair systems (i.e., GenProg, RSRepair, and AE), they shown that
the overwhelming majority of the generated patches are not correct but just overfit the test inputs
in the test suites of buggy programs. In another study, Smith et al. [54] uncover that patches
generated with lower coverage test suites overfit more. Actually, these overfitting patches often
simply break under-tested functionalities, and some of them even make the “patched” program
worse than the un-patched program. Since then, the overfitting issue has been widely studied
in the literature. For example, Le et al. [25] revisit the overfitting problem in semantics-based
APR systems. In [24], they further assess the reliability of authors and automated annotations
in assessing patch correctness. They recommend making publicly available to the community the
patch correctness evaluations of the authors. Yang [69] explores the difference between the runtime
behavior of programs patched with developer’s patches and those by APR-generated plausible
patches. They unveil that the majority of the APR-generated plausible patches lead to different
runtime behaviors compared to correct patches.

Predicting Patch Correctness: To predict the correctness of patches, one of the first explored
research directions relied on the idea of augmenting test inputs, i.e., more tests need to be pro-
posed. Yang et al. [70] design a framework to detect overfitting patches. This framework leverages
fuzz strategies on existing test cases in order to automatically generate new test inputs. In ad-
dition, it leverages additional oracles (i.e., memory-safety oracles) to improve the validation of
APR-generated patches. In a contemporary study, Xin and Reiss [65] also explored how to gener-
ate new test inputs, with the syntactic differences between the buggy code and its patched code,
for validating the correctness of APR-generated patches. As complemented by Xiong et al. [66],
they proposed to assess the patch correctness of APR systems by leveraging the automated genera-
tion of new test cases and measuring behavior similarity of the failing tests on buggy and patched
programs.

Through an empirical investigation, Yu et al. [75] summarized two common overfitting is-
sues: incomplete fixing and regression introduction. To assist alleviating the overfitting issue for

8see: https://github.com/HaoyeTianCoder/Panther.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 92. Pub. date: May 2023.

https://github.com/HaoyeTianCoder/Panther

The Best of Both Worlds 92:29

synthesis-based APR systems, they further proposed UnsatGuided that relies on additional gener-
ated test cases to strengthen patch synthesis, and thus reduce the generation of incorrect overfit-
ting patches.

The success of predicting patch correctness using an augmented set of test cases, as it is done in
prior work, depends on the quality of the tests. In practice, however, tests with high coverage are
often unavailable [71]. To overcome this limitation, our approach does not rely on new test cases,
but instead leverages learning techniques to build representation vectors for buggy and patched
code of APR-generated patches. Patch correctness prediction is therefore conducted without the
constraints in the availability of test cases.

To predict overfitting patches yielded by APR tools, Ye et al. [71] propose ODS, an overfitting
detection system. ODS first statically extracts 4,199 code features at the AST level from the buggy
code and generated patch code of APR-generated patches. Those features are fed into three ma-
chine learning algorithms (logistic regression, KNN, and random forest) to learn an ensemble prob-
abilistic model for classifying and ranking potentially overfitting patches. To evaluate the perfor-
mance of ODS, the authors considered 19,253 training samples and 713 testing samples from the
Durieux et al. empirical study [11]. With these settings, ODS is capable of detecting 57% of over-
fitting patches. The ODS approach relates to our study since both leverage machine learning and
static features. However, ODS only relies on manually identified features which may not generalize
to other programming languages or even other datasets.

In a recent work, Csuvik et al. [8] exploit the textual and structural similarity between the
buggy code and the APR-patched code with two representation learning models (BERT [9] and
Doc2Vec [23]) by considering three patch code representation (i.e., source code, AST, and identi-
fiers). Their results show that the source code representation is likely to be more effective in correct
patch identification than the other two representations, and the similarity-based patch validation
can filter out incorrect patches for APR tools. However, to assess the performance of the approach,
only 64 patches from QuixBugs [72] have been considered (including 14 in-the-lab bugs). This low
number of considered patches raises questions about the generalization of the approach for fixing
bugs in the wild. Moreover, unlike our study, new representation learning models (code2vec [2]
and CC2Vec [15]) dedicated to code representation have not been exploited. In our work, we first
improve the evaluation of the approaches in the real-world by designing a 10-group cross valida-
tion on a large labeled deduplicated dataset of 2,147 patches. Then, we propose an extension of our
previous works on predicting patch correctness by combining engineered features [71] and rep-
resentation learning [57] (BERT, Doc2Vec, and CC2Vec) together and assessing the effectiveness
of each and their combination as well as the improvement of the combination. Our study aims at
showing how the combinations can be carried out to ensure that patches that could not be identi-
fied by either set of features are not identifiable by the combined set. More recently, Yan et al. [68]
proposed to predict the patch correctness of fixing C program bugs through the transfer learning
of execution semantics. Tian et al. [58] explored the relationship between the bug descriptions
carried by bug reports and code changes to identify the correctness of patches for the given Java
program bugs.

Representation Learning for Program Repair Tasks: In the literature, representation
learning techniques have been widely explored to boost program repair tasks. Long and Rinard
explored the topic of learning correct code for patch generation [39]. Their approach learns code
transformation for three kinds of bugs from their related human-written patches. After mining
the most recent 100 bug-fixing commits from each of the 500 most popular Java projects, Soto, and
Le Goues [55] have built a probabilistic model to predict bug fixes for program repair. To identify
stable Linux patches, Hoang et al. [16] proposed a hierarchical deep learning-based method with

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 92. Pub. date: May 2023.

92:30 H. Tian et al.

features extracted from both commit messages and commit code. Liu et al. [31] and Bader et al. [3]
proposed to learn recurring fix patterns from human-written patches and suggest fixes. Our article
does not propose a new automated patch generation approach. Instead, we fill a gap in the liter-
ature by proposing a comprehensive assessment of the effectiveness of different representation
learning models on predicting the correctness of patches generated by program repair tools.

7 CONCLUSION

In this article, we investigated the feasibility of statically predicting patch correctness by leverag-
ing representation learning models and supervised learning algorithms. The objective is to pro-
vide insights for the APR research community towards improving the quality of repair candidates
generated by APR tools. To that end, we first investigated the use of different distributed represen-
tation learning to capture the similarity/dissimilarity between buggy and patched code fragments.
These experiments gave similarity scores that substantially differ for across embedding models
such as BERT, Doc2Vec, code2vec, and CC2Vec. Building on these results and in order to guide
the exploitation of code embeddings in program repair pipelines, we investigated in subsequent
experiments the selection of cut-off similarity scores to decide which APR-generated patches are
likely incorrect. We then implemented a patch correctness predicting framework, LEOPARD, to
investigate the discriminative power of the deep learned features by training machine learning
classifiers to predict correct Patches. Decision Trees, Logistic Regression, Naive Bayes, Random
Forest, XGBoost, and DNN are tried with code embeddings from BERT, Doc2Vec, and CC2Vec.
With BERT embeddings, LEoPARD (with XGBoost) yielded very promising performance on patch
correctness prediction with metrics like Recall at 82.1% and F-Measure at 76.5%, LEOPARD (with
DNN) achieved the highest score with the metric Precision at 0.744 on a labeled deduplicated
dataset of 2,147 patches. We further showed that the performance of these models on learned
embedding features is promising when comparing against the state-of-the-art (PATCH-SIM [66]),
which uses dynamic execution traces. We further implemented PANTHER (an upgraded version of
LEOPARD) to explore the combination of the learning embeddings and the engineered features to
improve the performance on identifying patch correctness with more accurate classification. Fi-
nally, leveraging SHAP, we analyzed the cause of prediction behind features and classifiers to help
aware the essence of identifying patch correctness. Since our approach is able to swiftly predict
patch correctness, future work should investigate how to incorporate it with APR tools to explore
large patch space more efficiently.

Availability. All artifacts of this study are available in the following public repository:
https://github.com/HaoyeTianCoder/Panther.

REFERENCES

[1] Miltiadis Allamanis, Earl T. Barr, Premkumar T. Devanbu, and Charles A. Sutton. 2018. A survey of machine learning
for big code and naturalness. ACM Computing Surveys 51, 4 (2018), 81:1-81:37. DOI : https://doi.org/10.1145/3212695

[2] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: Learning distributed representations of code.
Proceedings of the ACM on Programming Languages 3, POPL (2019), 40:1-40:29. DOI : https://doi.org/10.1145/3290353

[3] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Getafix: Learning to fix bugs automati-
cally. Proceedings of the ACM on Programming Languages 3, OOPSLA (2019), 159:1-159:27. DOI : https://doi.org/10.
1145/3360585

[4] Earl T. Barr, Yuriy Brun, Premkumar T. Devanbu, Mark Harman, and Federica Sarro. 2014. The plastic surgery hypoth-
esis. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering. ACM,
306-317. DOI: https://doi.org/10.1145/2635868.2635898

[5] Junjie Chen, Alastair F. Donaldson, Andreas Zeller, and Hongyu Zhang. 2017. Testing and verification of compilers
(dagstuhl seminar 17502). Dagstuhl Reports 7, 12 (2017), 50-65. DOI : https://doi.org/10.4230/DagRep.7.12.50

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 92. Pub. date: May 2023.

https://github.com/HaoyeTianCoder/Panther
https://doi.org/10.1145/3212695
https://doi.org/10.1145/3290353
https://doi.org/10.1145/3360585
https://doi.org/10.1145/2635868.2635898
https://doi.org/10.4230/DagRep.7.12.50

The Best of Both Worlds 92:31

(6]

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson, Greg
Corrado, Wei Chai, Mustafa Ispir, et al. 2016. Wide and deep learning for recommender systems. In Proceedings of the
1st Workshop on Deep Learning for Recommender Systems. 7-10.

Rhys Compton, Eibe Frank, Panos Patros, and Abigail Koay. 2020. Embedding Java classes with code2vec: Improve-
ments from variable obfuscation. In Proceedings of the 17th Mining Software Repositories. ACM.

Viktor Csuvik, Daniel Horvath, Ferenc Horvath, and Laszl6 Vidacs. 2020. Utilizing source code embeddings to identify
correct patches. In Proceedings of the 2nd International Workshop on Intelligent Bug Fixing. IEEE, 18-25. DOI: https://
doi.org/10.1109/IBF50092.2020.9034714

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional

[10

-

(11]

(12]

(13]

(14]

(15]

(16]

transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies. 4171-4186. DOI : https://doi.org/10.18653/v1/
n19-1423

Thomas G. Dietterich. 1998. Approximate statistical tests for comparing supervised classification learning algorithms.
Neural Computation 10, 7 (1998), 1895-1923.

Thomas Durieux, Fernanda Madeiral, Matias Martinez, and Rui Abreu. 2019. Empirical review of Java program repair
tools: A large-scale experiment on 2,141 bugs and 23,551 repair attempts. In Proceedings of the 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. ACM, 302—
313. DOI: https://doi.org/10.1145/3338906.3338911

Chunrong Fang, Zixi Liu, Yangyang Shi, Jeff Huang, and Qingkai Shi. 2020. Functional code clone detection with
syntax and semantics fusion learning. In Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis. ACM, 516-527. DOI : https://doi.org/10.1145/3395363.3397362

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu,
Daxin Jiang, et al. 2020. CodeBERT: A pre-trained model for programming and natural languages. arXiv:2002.08155.
Retrieved from https://arxiv.org/abs/2002.08155.

Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar T. Devanbu. 2012. On the naturalness of
software. In Proceedings of the 34th International Conference on Software Engineering. IEEE, 837-847. DOI : https://doi.
org/10.1109/ICSE.2012.6227135

Thong Hoang, Hong Jin Kang, Julia Lawall, and David Lo. 2020. CC2Vec: Distributed representations of code changes.
In Proceedings of the 42nd International Conference on Software Engineering. ACM, 518-529. DOI : https://doi.org/10.
1145/3377811.3380361

Thong Hoang, Julia Lawall, Yuan Tian, Richard Jayadi Oentaryo, and David Lo. 2019. PatchNet: Hierarchical deep
learning-based stable patch identification for the linux kernel. arXiv:1911.03576. Retrieved from https://arxiv.org/abs/
1911.03576.

[17] Jiajun Jiang, Luyao Ren, Yingfei Xiong, and Lingming Zhang. 2019. Inferring program transformations from singular

examples via big code. In Proceedings of the 34th IEEE/ACM International Conference on Automated Software Engineer-
ing. IEEE, 255-266. DOI : https://doi.org/10.1109/ASE.2019.00033

[18] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen. 2018. Shaping program repair space with

(19]

[20]

[21]

[22]

(23]

[24]

existing patches and similar code. In Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis. ACM, 298-309. DOI : https://doi.org/10.1145/3213846.3213871

René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4]: A database of existing faults to enable controlled
testing studies for Java programs. In Proceedings of the 23rd International Symposium on Software Testing and Analysis.
ACM, 437-440. DOI : https://doi.org/10.1145/2610384.2628055

Rafael-Michael Karampatsis and Charles A. Sutton. 2020. How often do single-statement bugs occur? The
ManySStuBs4] dataset. In Proceedings of the 17th Mining Software Repositories.

Anil Koyuncu, Kui Liu, Tegawendé F. Bissyandé, Dongsun Kim, Jacques Klein, Martin Monperrus, and Yves Le Traon.
2020. FixMiner: Mining relevant fix patterns for automated program repair. Empirical Software Engineering 25, 3 (2020),
1980-2024. DOI : https://doi.org/10.1007/s10664-019-09780-z

Anil Koyuncu, Kui Liu, Tegawendé F. Bissyandé, Dongsun Kim, Martin Monperrus, Jacques Klein, and Yves Le Traon.
2019. iFixR: Bug report driven program repair. In Proceedings of the 27the ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. ACM, 314-325. DOI : https://doi.org/10.1145/
3338906.3338935

Quoc V. Le and Tomas Mikolov. 2014. Distributed representations of sentences and documents. In Proceedings of the
31st International Conference on Machine Learning. JMLR.org, 1188-1196.

Xuan-Bach D. Le, Lingfeng Bao, David Lo, Xin Xia, Shanping Li, and Corina Pasareanu. 2019. On reliability of patch
correctness assessment. In Proceedings of the 41st International Conference on Software Engineering. IEEE, 524-535.
DOI: https://doi.org/10.1109/ICSE.2019.00064

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 92. Pub. date: May 2023.

https://doi.org/10.1109/IBF50092.2020.9034714
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1145/3338906.3338911
https://doi.org/10.1145/3395363.3397362
https://arxiv.org/abs/2002.08155
https://doi.org/10.1109/ICSE.2012.6227135
https://doi.org/10.1145/3377811.3380361
https://arxiv.org/abs/1911.03576
https://doi.org/10.1109/ASE.2019.00033
https://doi.org/10.1145/3213846.3213871
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1007/s10664-019-09780-z
https://doi.org/10.1145/3338906.3338935
https://doi.org/10.1109/ICSE.2019.00064

92:32 H. Tian et al.

[25] Xuan Bach D. Le, Ferdian Thung, David Lo, and Claire Le Goues. 2018. Overfitting in semantics-based automated
program repair. Empirical Software Engineering 23, 5 (2018), 3007-3033. DOI:https://doi.org/10.1007/s10664-017-
9577-2

[26] Claire Le Goues, Neal Holtschulte, Edward K. Smith, Yuriy Brun, Premkumar Devanbu, Stephanie Forrest, and Westley
Weimer. 2015. The ManyBugs and IntroClass benchmarks for automated repair of C programs. IEEE Transactions on
Software Engineering 41, 12 (2015), 1236-1256. DOI : https://doi.org/10.1109/TSE.2015.2454513

[27] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012. GenProg: A generic method for
automatic software repair. IEEE Transactions on Software Engineering 38, 1 (2012), 54-72. DO : https://doi.org/10.1109/
TSE.2011.104

[28] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated program repair. Communications of the
ACM 62, 12 (2019), 56—65. DOI : https://doi.org/10.1145/3318162

[29] Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama. 2017. QuixBugs: A multi-lingual program repair
benchmark set based on the Quixey Challenge. In Proceedings Companion of the 2017 ACM SIGPLAN International
Conference on Systems, Programming, Languages, and Applications: Software for Humanity. ACM, 55-56. DOI : https://
doi.org/10.1145/3135932.3135941

[30] Kui Liu, Dongsun Kim, Tegawendé F. Bissyandé, Tae-young Kim, Kisub Kim, Anil Koyuncu, Suntae Kim, and Yves Le
Traon. 2019. Learning to spot and refactor inconsistent method names. In Proceedings of the 41st International Confer-
ence on Software Engineering. IEEE, 1-12. DOI : https://doi.org/10.1109/ICSE.2019.00019

[31] Kui Liu, Dongsun Kim, Tegawendé F. Bissyandé, Shin Yoo, and Yves Le Traon. 2018. Mining fix patterns for findbugs
violations. IEEE Transactions on Software Engineering (2018). DOI : https://doi.org/10.1109/TSE.2018.2884955

[32] Kui Liu, Dongsun Kim, Anil Koyuncu, Li Li, Tegawendé F. Bissyandé, and Yves Le Traon. 2018. A closer look at
real-world patches. In Proceedings of the 34th International Conference on Software Maintenance and Evolution. IEEE,
275-286. DOI : https://doi.org/10.1109/ICSME.2018.00037

[33] Kui Liu, Anil Koyuncu, Tegawendé F. Bissyandé, Dongsun Kim, Jacques Klein, and Yves Le Traon. 2019. You cannot fix
what you cannot find! an investigation of fault localization bias in benchmarking automated program repair systems.
In Proceedings of the 12th IEEE International Conference on Software Testing, Verification, and Validation. IEEE, 102-113.
DOI : https://doi.org/10.1109/ICST.2019.00020

[34] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019. AVATAR: fixing semantic bugs with fix
patterns of static analysis violations. In Proceedings of the 26th IEEE International Conference on Software Analysis,
Evolution, and Reengineering. IEEE, 456-467. DOI : https://doi.org/10.1109/SANER.2019.8667970

[35] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019. TBar: Revisiting template-based automated
program repair. In Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis.
ACM, 31-42. DOI: https://doi.org/10.1145/3293882.3330577

[36] Kui Liu, Anil Koyuncu, Kisub Kim, Dongsun Kim, and Tegawendé F. Bissyandé. 2018. LSRepair: Live search of fix
ingredients for automated program repair. In Proceedings of the 25th Asia-Pacific Software Engineering Conference ERA
Track. IEEE, 658-662. DOI : https://doi.org/10.1109/APSEC.2018.00085

[37] Kui Liu, Li Li, Anil Koyuncu, Dongsun Kim, Zhe Liu, Jacques Klein, and Tegawendé F. Bissyandé. 2021. A critical
review on the evaluation of automated program repair systems. Journal of Systems and Software 171 (2021), 110817.
DOI : https://doi.org/10.1016/].jss.2020.110817

[38] Kui Liu, Shangwen Wang, Anil Koyuncu, Kisub Kim, Tegawendé F. Bissyandé, Dongsun Kim, Peng Wu, Jacques
Klein, Xiaoguang Mao, and Yves Le Traon. 2020. On the efficiency of test suite based program repair: A systematic
assessment of 16 automated repair systems for Java programs. In Proceedings of the 42nd International Conference on
Software Engineering. ACM, 625-627. DOI : https://doi.org/10.1145/3377811.3380338

[39] Fan Long and Martin Rinard. 2016. Automatic patch generation by learning correct code. In Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM, 298-312. DOI : https://doi.
org/10.1145/2837614.2837617

[40] Scott M. Lundberg and Su-In Lee. 2017. A unified approach to interpreting model predictions. In Advances in Neu-
ral Information Processing Systems 30. I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (Eds.), Curran Associates, Inc., 4765-4774. Retrieved from http://papers.nips.cc/paper/7062-a-unified-
approach-to-interpreting-model-predictions.pdf.

[41] Fernanda Madeiral, Thomas Durieux, Victor Sobreira, and Marcelo Maia. 2018. Towards an automated approach for
bug fix pattern detection.

[42] Fernanda Madeiral, Simon Urli, Marcelo Maia, and Martin Monperrus. 2019. BEARS: An extensible Java bug bench-
mark for automatic program repair studies. In Proceedings of the 26th International Conference on Software Analysis,
Evolution, and Reengineering. IEEE, 468-478. DOI : https://doi.org/10.1109/SANER.2019.8667991

[43] Henry B. Mann and Donald R. Whitney. 1947. On a test of whether one of two random variables is stochastically larger
than the other. The Annals of Mathematical Statistics 18, 1 (1947), 50~60. DOI : https://doi.org/10.1214/aoms/1177730491

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 92. Pub. date: May 2023.

https://doi.org/10.1007/s10664-017-9577-2
https://doi.org/10.1109/TSE.2015.2454513
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1145/3318162
https://doi.org/10.1145/3135932.3135941
https://doi.org/10.1109/ICSE.2019.00019
https://doi.org/10.1109/TSE.2018.2884955
https://doi.org/10.1109/ICSME.2018.00037
https://doi.org/10.1109/ICST.2019.00020
https://doi.org/10.1109/SANER.2019.8667970
https://doi.org/10.1145/3293882.3330577
https://doi.org/10.1109/APSEC.2018.00085
https://doi.org/10.1016/j.jss.2020.110817
https://doi.org/10.1145/3377811.3380338
https://doi.org/10.1145/2837614.2837617
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://doi.org/10.1109/SANER.2019.8667991
https://doi.org/10.1214/aoms/1177730491

The Best of Both Worlds 92:33

[44]

(45]
(46]
(47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

(55]

[56]

(57]

(58]

(59

—

[60]

[61

—

(62

—

[63]

Matias Martinez and Martin Monperrus. 2015. Mining software repair models for reasoning on the search space of
automated program fixing. Empirical Software Engineering 20, 1 (2015), 176-205. DOI : https://doi.org/10.1007/s10664-
013-9282-8

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in vector
space. arXiv:1301.3781. Retrieved from https://arxiv.org/abs/1301.3781.

Martin Monperrus. 2018. Automatic software repair: A bibliography. ACM Computing Surveys 51, 1 (2018), 17:1-17:24.
DOI: https://doi.org/10.1145/3105906

Martin Monperrus. 2018. The living review on automated program repair. In Proceedings of the HAL/archives-ouvertes.
fr, Technical Report.

Samuel Ndichu, Sangwook Kim, Seiichi Ozawa, Takeshi Misu, and Kazuo Makishima. 2019. A machine learning ap-
proach to detection of JavaScript-based attacks using AST features and paragraph vectors. Applied Soft Computing
84 (2019). DOI : https://doi.org/10.1016/j.as0¢c.2019.105721

Weiguo Pian, Hanyu Peng, Xunzhu Tang, Tiezhu Sun, Haoye Tian, Andrew Habib, Jacques Klein, and
Tegawendé F. Bissyandé. 2022. MetaTPTrans: A meta learning approach for multilingual code representation learning.
arXiv:2206.06460. Retrieved from https://arxiv.org/abs/2206.06460.

Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. 2014. The strength of random search on
automated program repair. In Proceedings of the 36th International Conference on Software Engineering. ACM, 254-265.
DOI:https://doi.org/10.1145/2568225.2568254

Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2015. An analysis of patch plausibility and correctness for
generate-and-validate patch generation systems. In Proceedings of the 24th International Symposium on Software Test-
ing and Analysis. ACM, 24-36. DOI : https://doi.org/10.1145/2771783.2771791

Ripon Saha, Yingjun Lyu, Wing Lam, Hiroaki Yoshida, and Mukul Prasad. 2018. Bugs.jar: A large-scale, diverse dataset
of real-world java bugs. In Proceedings of the 15th IEEE/ACM International Conference on Mining Software Repositories.
ACM, 10-13. DOI : https://doi.org/10.1145/3196398.3196473

Seemanta Saha, Ripon K. Saha, and Mukul R. Prasad. 2019. Harnessing evolution for multi-hunk program repair. In
Proceedings of the 41st International Conference on Software Engineering. IEEE, 13-24. DOI : https://doi.org/10.1109/ICSE.
2019.00020

Edward K. Smith, Ear] T. Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the cure worse than the disease? Overfitting
in automated program repair. In Proceedings of the 10th Joint Meeting on Foundations of Software Engineering. ACM,
532-543. DOI : https://doi.org/10.1145/2786805.2786825

Mauricio Soto and Claire Le Goues. 2018. Using a probabilistic model to predict bug fixes. In Proceedings of the 25th In-
ternational Conference on Software Analysis, Evolution and Reengineering. IEEE, 221-231. DOI : https://doi.org/10.1109/
SANER.2018.8330211

Haoye Tian, Yinghua Li, Weiguo Pian, Abdoul Kader Kabore, Kui Liu, Andrew Habib, Jacques Klein, and Tegawendé F
Bissyandé. 2022. Predicting patch correctness based on the similarity of failing test cases. ACM Transactions on Soft-
ware Engineering and Methodology (2022).

Haoye Tian, Kui Liu, Abdoul Kader Kaboré, Anil Koyuncu, Li Li, Jacques Klein, and Tegawendé F Bissyandé. 2020.
Evaluating representation learning of code changes for predicting patch correctness in program repair. In Proceedings
of the 35th IEEE/ACM International Conference on Automated Software Engineering. IEEE, 981-992.

Haoye Tian, Xunzhu Tang, Andrew Habib, Shangwen Wang, Kui Liu, Xin Xia, Jacques Klein, and Tegawendé F. Bis-
syandé. 2022. Is this change the answer to that problem? Correlating descriptions of bug and code changes for evaluat-
ing patch correctness. In Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering.
IEEE.

Shangwen Wang, Ming Wen, Bo Lin, Hongjun Wu, Yihao Qin, Deqing Zou, Xiaoguang Mao, and Hai Jin. 2020. Auto-
mated patch correctness assessment: How far are we?. In Proceedings of the 35th IEEE/ACM International Conference
on Automated Software Engineering. ACM.

Huihui Wei and Ming Li. 2017. Supervised deep features for software functional clone detection by exploiting lexi-
cal and syntactical information in source code. In Proceedings of the 26th International Joint Conference on Artificial
Intelligence. Morgan Kaufmann, 3034-3040. DOI : https://doi.org/10.24963/ijcai.2017/423

Westley Weimer, Zachary P. Fry, and Stephanie Forrest. 2013. Leveraging program equivalence for adaptive program
repair: Models and first results. In Proceedings of the 28th IEEE/ACM International Conference on Automated Software
Engineering. IEEE, 356-366. DOI : https://doi.org/10.1109/ASE.2013.6693094

Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009. Automatically finding patches
using genetic programming. In Proceedings of the 31st International Conference on Software Engineering. IEEE,
364-374. DOI: https://doi.org/10.1109/ICSE.2009.5070536

Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018. Context-aware patch generation for
better automated program repair. In Proceedings of the 40th International Conference on Software Engineering. ACM,
1-11. DOI: https://doi.org/10.1145/3180155.3180233

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 92. Pub. date: May 2023.

https://doi.org/10.1007/s10664-013-9282-8
https://arxiv.org/abs/1301.3781
https://doi.org/10.1145/3105906
https://doi.org/10.1016/j.asoc.2019.105721
https://arxiv.org/abs/2206.06460
https://doi.org/10.1145/2568225.2568254
https://doi.org/10.1145/2771783.2771791
https://doi.org/10.1145/3196398.3196473
https://doi.org/10.1109/ICSE.2019.00020
https://doi.org/10.1145/2786805.2786825
https://doi.org/10.1109/SANER.2018.8330211
https://doi.org/10.24963/ijcai.2017/423
https://doi.org/10.1109/ASE.2013.6693094
https://doi.org/10.1109/ICSE.2009.5070536
https://doi.org/10.1145/3180155.3180233

92:34 H. Tian et al.

[64] F. Wilcoxon. 1945. Individual comparisons by ranking methods. Biometrics Bulletin 1, 6 (1945), 80-83.

[65] QiXin and Steven P. Reiss. 2017. Identifying test-suite-overfitted patches through test case generation. In Proceedings
of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis. ACM, 226-236. DOI : https://doi.
org/10.1145/3092703.3092718

[66] Yingfei Xiong, Xinyuan Liu, Muhan Zeng, Lu Zhang, and Gang Huang. 2018. Identifying patch correctness in test-
based program repair. In Proceedings of the 40th International Conference on Software Engineering. ACM, 789-799.
DOI: https://doi.org/10.1145/3183519.3183540

[67] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, and Lu Zhang. 2017. Precise condition
synthesis for program repair. In Proceedings of the 39th IEEE/ACM International Conference on Software Engineering.
IEEE, 416-426. DOI : https://doi.org/10.1109/ICSE.2017.45

[68] Dapeng Yan, Kui Liu, Yuqing Niu, Li Li, Zhe Liu, Zhiming Liu, Jacques Klein, and Tegawendé F. Bissyandé. 2022. Crex:
Predicting patch correctness in automated repair of C programs through transfer learning of execution semantics.
Information and Software Technology 152 (2022), 107043. DOI : https://doi.org/10.1016/j.infsof.2022.107043

[69] Bo Yang and Jinqiu Yang. 2020. Exploring the differences between plausible and correct patches at fine-grained level.
In Proceedings of the 2nd International Workshop on Intelligent Bug Fixing. IEEE, 1-8. DOI: https://doi.org/10.1109/
IBF50092.2020.9034821

[70] Jingiu Yang, Alexey Zhikhartsev, Yuefei Liu, and Lin Tan. 2017. Better test cases for better automated program repair.
In Proceedings of the 11th joint Meeting on Foundations of Software Engineering. ACM, 831-841. DOI : https://doi.org/
10.1145/3106237.3106274

[71] He Ye, Jian Gu, Matias Martinez, Thomas Durieux, and Martin Monperrus. 2021. Automated classification of overfit-
ting patches with statically extracted code features. IEEE Transactions on Software Engineering (2021).

[72] He Ye, Matias Martinez, Thomas Durieux, and Martin Monperrus. 2019. A comprehensive study of automatic program
repair on the QuixBugs benchmark. In Proceedings of the 1st International Workshop on Intelligent Bug Fixing. IEEE,
1-10. DOI : https://doi.org/10.1109/IBF.2019.8665475

[73] He Ye, Matias Martinez, and Martin Monperrus. 2019. Automated patch assessment for program repair at scale.
arXiv:1909.13694. Retrieved from https://arxiv.org/abs/1909.13694.

[74] Zeping Yu, Rui Cao, Qiyi Tang, Sen Nie, Junzhou Huang, and Shi Wu. 2020. Order matters: Semantic-aware neural
networks for binary code similarity detection. In Proceedings of the AAAI Conference on Artificial Intelligence. AAAI,
1145-1152. DOI : https://doi.org/10.1609/aaai.v34i01.5466

[75] Zhongxing Yu, Matias Martinez, Benjamin Danglot, Thomas Durieux, and Martin Monperrus. 2019. Alleviating patch
overfitting with automatic test generation: A study of feasibility and effectiveness for the Nopol repair system. Em-
pirical Software Engineering 24, 1 (2019), 33-67. DOI : https://doi.org/10.1007/s10664-018-9619-4

[76] Gang Zhao and Jeff Huang. 2018. DeepSim: Deep learning code functional similarity. In Proceedings of the 2018 ACM
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering.
141-151.

[77] Shufan Zhou, Beijun Shen, and Hao Zhong. 2019. Lancer: Your code tell me what you need. In Proceedings of the 34th
IEEE/ACM International Conference on Automated Software Engineering. IEEE, 1202-1205. DOI : https://doi.org/10.1109/
ASE.2019.00137

Received 26 December 2021; revised 11 September 2022; accepted 1 November 2022

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 92. Pub. date: May 2023.

https://doi.org/10.1145/3092703.3092718
https://doi.org/10.1145/3183519.3183540
https://doi.org/10.1109/ICSE.2017.45
https://doi.org/10.1016/j.infsof.2022.107043
https://doi.org/10.1109/IBF50092.2020.9034821
https://doi.org/10.1145/3106237.3106274
https://doi.org/10.1109/IBF.2019.8665475
https://arxiv.org/abs/1909.13694
https://doi.org/10.1609/aaai.v34i01.5466
https://doi.org/10.1007/s10664-018-9619-4
https://doi.org/10.1109/ASE.2019.00137

