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Industrial elevator systems are commonly used software systems in our daily lives, which operate in uncertain
environments such as unpredictable passenger traffic, uncertain passenger attributes and behaviors, and
hardware delays. Understanding and assessing the robustness of such systems under various uncertainties
enable system designers to reason about uncertainties, especially those leading to low system robustness,
and consequently improve their designs and implementations in terms of handling uncertainties. To this end,
we present a comprehensive empirical study conducted with industrial elevator systems provided by our
industrial partner Orona, which focuses on assessing the robustness of a dispatcher, i.e., a software component
responsible for elevators’ optimal scheduling. In total, we studied 90 industrial dispatchers in our empirical
study. Based on the experience gained from the study, we derived an uncertainty-aware robustness assessment
method (named UncerRobua) comprising a set of guidelines on how to conduct the robustness assessment and
a newly proposed ranking algorithm, for supporting the robustness assessment of industrial elevator systems
against uncertainties.
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tion; Software testing and debugging; - Computer systems organization — Embedded and cyber-
physical systems.
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1 INTRODUCTION

An elevator system is a complex Cyber-Physical System (CPS) responsible to efficiently transport
passengers between floors of a building, while ensuring the reliability of its operation and main-
taining the passengers’ comfort at all time. Such an elevator system is equipped with a dispatcher
- a software component for this purpose. Such a dispatcher operates in a constantly changing
environment; thus, it is expected to be robust even when facing all kinds of uncertainties such as
passengers’ uncertain attributes (e.g., Mass), and behaviors (e.g., Loading and Unloading Times)
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robustly. Moreover, the dispatcher’s implementation constantly evolves throughout its entire life
cycle due to, e.g., addition of new functionality.

Even though, various software engineering methodologies (e.g., [15, 44]) have been applied to
assess, optimize and test the robustness of elevator dispatchers, the state of the art and practice still
lack systematic ways of assessing the robustness of industrial elevator systems in terms of their
capabilities of dealing with various uncertainties.

For example, in our industrial context, we observed that testing in Software in the Loop (SiL)
simulation setup of industrial elevators is performed. However, during such simulation-based
testing, fixed values for passengers’ attributes, e.g., passengers’ Masses being all 75 KG (an average
person Mass in Europe recommended by the Chartered Institution of Building Services Engineers
(CIBSE) Guide D [8]) are used. However, as we all know, in practice, values of the passengers’
attributes and also behaviors cannot be fixed, and it is very difficult (if possible) to predict the exact
Mass and Loading/Unloading Time of a passenger, at which floor a passenger will register a call and
which floor the passenger’s destination will be. All these uncertainties have impact on the Quality
of Service (QoS) of elevator systems, which also reflects the robustness of their dispatchers against
such passengers’ uncertainties.

To this end, we first investigated passengers’ uncertainties for systematically assessing the
robustness of industrial elevators’ dispatchers from various aspects with a comprehensive empirical
study performed with 90 dispatchers provided by our industrial partner - Orona'. Note that we
focus exclusively on a dispatcher — an essential software responsible for optimally scheduling
elevators, and 89 versions of it. The dispatcher is a real software component from Orona, whereas
the rest (e.g., hardware) was simulated with a commercial simulation tool - Elevate?. The goal of
the empirical study is to understand the robustness of the 90 dispatchers (the original one plus its
89 versions) when facing passengers’ uncertainties from the point of view of elevator engineers in
the context of SiL simulations with Elevate.

Results of the empirical study indicate that it is very necessary to 1) assess the robustness
of different dispatcher versions across various uncertain situations and across multiple traffic
templates (e.g., UpPeak, which models the traffic flow of morning rush hours in an office building),
such that elevator engineers can select the most robust dispatcher version for deployment; 2)
investigate which uncertain situation(s) lead to the degradation of the robustness of dispatchers
more than others, so as to prioritize optimization scenarios, e.g., designing specific uncertainty
handling strategy; and 3) prioritize QoS metrics for the purpose of optimizing the robustness of a
dispatcher in terms of those QoS metrics that are mostly impacted by uncertainties.

Based on these observations from the empirical study, we derive an Uncertainty-aware Robustness
assessment method, named UncerRobua, which contains a set of guidelines derived based on a
comprehensive empirical study and a novel statistical ranking algorithm. We expect UncerRobua
will be valuable for elevator designers to systematically study the robustness of elevator systems
under various uncertain situations and design highly dependable dispatchers.

Contributions. 1) We conducted a comprehensive empirical study with 90 dispatchers from
Orona for assessing their robustness against passengers’ uncertainties in a systematic and com-
prehensive manner. The empirical study was enabled with an uncertain traffic profile generator, a
robustness quantifier, and a newly-proposed statistical difference-based grouping algorithm (SD-G);

2) Based on the results of the empirical study, we derived UncerRobua consisting of a set of
guidelines for guiding practitioners to assess the robustness of industrial elevator systems against
passengers’ uncertainties.

!https://www.orona-group.com/
https://peters-research.com/index.php/elevate/
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Paper Structure. The rest of the article is organized as follows. Section 2 provides background
details on the industrial elevator system from Orona, and a running example. Section 3 presents all
the details about the design of the empirical study. Results of the empirical study are reported in
Section 4. UncerRobua’s guidelines and generalization to other domains are presented in Section 5.
Sections 6 and 7 present the threats to the validity and related work, respectively. We conclude the
article in Section 8.

2 BACKGROUND

In this section, we first discuss the industrial elevator system from Orona (Section 2.1), followed by
the presentation of a running example (Section 2.2).

2.1 Industrial Elevator Systems from Orona

With more than 250,000 elevator installations worldwide, Orona? is one of the leading elevator

manufacturers in Europe. As the majority of CPSs, most of the functionality of a system of elevators
is implemented through software. Fig. 1 depicts a simplified version of a system of elevators. In
such a system, there are different computing devices, each of them aiming to carry out one or more
task. The communication among these devices is done through a Controller Area Network (CAN)
bus. At each floor of the building, there is at least one pushbutton panel. Conventional elevator
systems include pushbuttons indicating the direction in which a passenger intends to travel (i.e.,
to up floors or to down floors), whereas destination control elevator systems include pushbuttons
with the exact floor at which a passenger intends to travel. In addition, each elevator cabin has
a microcontroller in charge of controlling 1) the engines and drives for transporting passengers
vertically and 2) the opening and closing of doors. Lastly, there is a component named Traffic Master
that controls the elevator assignment to each call. A Traffic Master has a dispatcher deployed -
the key software component for scheduling elevators. The dispatcher receives passengers’ calls
from the pushbutton panel through the CAN bus and assigns an elevator to each call. To make this
assignment optimal, the dispatcher uses information of each elevator (e.g., the estimated number of
passengers inside the elevator, the direction of the elevator, doors’ status). Note that, in this paper,
we focus exclusively on assessing the robustness of dispatchers, i.e., software.

Orona has an extensive suite of dispatchers to provide solutions to the different demands
of their customers. Moreover, the software constantly evolves to deal with implementing new
functionalities, hardware obsolescence, correction of bugs, etc. The current testing process of the
different dispatchers’ versions contemplates three main levels. The first level refers to the SiL test
level, for which a tool named Elevate is used for simulation-based testing. In this case, both the
software and the hardware components of the elevators are simulated on a personal computer. The
second level refers to the Hardware in the Loop (HiL) test level. At this level, on the one hand, the
software is integrated into the real-time target processor, along with all the real-time infrastructure
(e.g., real-time operating system, drivers). On the other hand, most of the hardware is the one used
in the real installation. In addition, some mechanical and electrical parts (e.g., engines, drives) are
emulated through real-time test benches. The last step is the validation in operation. When the new
software version is considered to be ready (i.e., thoroughly tested at the SiL and HiL test levels), a
software maintainer goes to the installation and carries out a set of manual tests.

In this paper, we focus at the SiL test level. As mentioned above, tests at this level are executed
through the domain-specific simulator Elevate. A test case in the context of Orona consists of 1)
building installation and 2) passenger file. The former refers to the characteristics of a building,
and includes information like the number of floors, number of elevators, capacity of each of the

Shttps://www.orona-group.com/
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Fig. 1. A simplified elevator system

elevators, maximum speed of each elevator, etc. The latter refers to a list of passengers in a building
traveling from one floor to another. Each passenger has a set of attributes (explained in Section 2.2),
which includes the time at which they arrive at the floor, their Mass, Loading and Unloading Times,
etc. Some of the attributes in the passenger file of a test case are fixed as recommended by different
elevator industry guidelines (e.g., CIBSE Guide D[8]). For instance, the Mass of all passengers is set
to 75 KG, and the Loading and Unloading Times to 1.2 seconds. However, in practice, such attributes
are uncertain to the dispatcher (e.g., the dispatcher does not know the Mass of the passenger behind
a call). In this paper, we conjecture that such uncertain attributes may have an influence on the
robustness (see Definition 1) of the elevator systems.

DEFINITION 1. Robustness, in our context, refers to the degree to which a dispatcher’s functional
performance is not affected in the presence of passengers’ uncertainties. The functional performance
of elevator systems is measured with the quality of service provided to an individual passenger (see
Definition 2) and all passengers together (see Definition 4).

In this domain, QoS metrics are defined based on how passengers in an installation perceive
whether elevators perform well. For instance, studies have shown that psychologically, the time
that passengers spend waiting for an elevator is a critical aspect for them in the perception of the
quality of provided services [24]. Generally, most elevator systems are dedicated to optimize various
times while providing services so as to improve passenger’s satisfaction. The time that determines
passenger’s satisfaction are: Waiting Time (WT), Transit Time (TT) and Time to Destination (TD),
which are metrics of QoS provided to a single passenger, as defined in Definition 2. Based on all
passengers’ WT, TT and TD in a certain period of time (Time List, see Definition 3), various metrics
can be calculated, i.e., AWT, LWT, ATT, LTT, ATD and LTD (see Definition 4) [8].

DEFINITION 2. Metrics of QoS provided to an individual passenger (Q0S;,4ivp )

e Waiting Time (WT) is the time between the passenger registering a call on a certain floor until
the elevator arrives and its door begins to open. If the elevator door is already opened when the
passenger arrives, then the WT of this passenger is 0.

o Transit Time (TT) is the time between the elevator door begins to open until the elevator
reaches the passenger’s destination floor and begins to open elevator door again.
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e Time to Destination (TD) is the sum of passenger’s waiting time and transit time.

DEeFINITION 3. Time List is a sequence of all passengers’ WT, TT or TD within a certain period
of time, represented as TL = {TLs|s = 1,2,3}, where TLs is the sth Time List. More specifically,
TL; = {wtc|c = 1,..,NP}, TL, = {tt.|c = 1,.., NP} and TL; = {td.|c = 1, ..., NP}, where, wi., tt,
and td. are the waiting time, transit time and time to destination of the cth passenger, NP is the
number of total passengers requested services within the time period.

DEFINITION 4. Metrics of QoS derived from all passengers together (QoS,11p )

o AWT is the average waiting time of all passengers whose calls have been answered within a
certain period of time, represented as AVERAGE(TL,).

o LWT is the longest waiting time experienced by a passenger within a certain period of time,
represented as MAX (TL,).

e ATT is the average transit time of all passengers who completed their journeys within a certain
period of time, represented as AVERAGE(TL).

o LTT is the longest transit time experienced by a passenger who completed her/his journey within
a certain period of time, represented as MAX(TL,).

e ATD is the average time to destination of all passengers within a certain period of time, repre-
sented as AVERAGE(TL3).

e LTD is the longest time to destination experienced by a passenger within a certain period of
time, represented as MAX (TLs).

2.2 Running Example

Table 1 presents an excerpt of the UpPeak” traffic profile with ten passengers provided by Elevate,
which we use as the running example to illustrate various concepts and calculations in the rest of the
paper. Note that passenger traffic values (i.e., values for Arrival Time, Arrival Floor and Destination
Floor) are generated based on a selected traffic template (e.g., UpPeak), while values for Mass,
Capacity Factor, Loading Time and Unloading Time) are consistently configured the same for all the
passengers. From the table, one can see that most passengers with different destinations arrive on
the first floor, e.g., in the morning during a weekday in an office building. For example, the arrival
time of the first passenger is 30691, also denoted as 08:31:31. The conversion is: 8X60X60+31X60+31.
Once the simulation is completed, Elevate outputs simulation reports. Table 2 and Table 3 show
key results corresponding to the UpPeak traffic profile in Table 1. Table 2 presents details of each
passenger’s journey in the simulation reports. Results include: (1) which elevator responded to
the call (e.g., the 2nd elevator responded to the first passenger’s call, as shown in the first row of
column Elevator Used); (2) at which time an elevator arrived or reached a destination (shown in
columns Time Elevator Arrived and Time Reached Destination). For instance, for the first passenger,
the 2nd elevator arrived at 8:31:31 and the passenger reached the destination floor at 8:31:45. In
addition, Table 2 also provides derived time information: WT and TT. For instance, for the first
passenger, the WT and TT are 0s and 14.1s, respectively. Moreover, in Table 3, we present results
of all the six QoS,;;p metrics. Note that TD can be derived from WT and TT (see Definition 3) and
consequently all the QoS,;;p metrics can be calculated with the formulas in Definition 4.

3 DATASET PREPARATION AND EXPERIMENT DESIGN

In this Section, we present, in detail, the dataset preparation and the experiment design and
execution of the empirical study. Fig. 2 shows the overall process of the empirical study. In the
rest of this section, we first introduce how we prepared the dataset used for the empirical study

“https://elevate.helpdocsonline.com/peters-research-cibse-modern-office-up-peak
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Table 1. Running Example: Passenger data of ten passengers during UpPeak. Mass is in KG; Capacity Factor is
in percentage; Loading Time and Unloading Time are in seconds. Column ID distinguishes different passengers,
which is added for better illustration and it does not exist in files produced by Elevate.

ID Arrival Time Arrival Floor Destination Floor Mass Capacity Factor Loading Time Unloading Time

Pal 30691 (8:31:31) 1 2 75 70 1.2 1.2
Pa2 30703 (8:31:43) 6 1 75 70 1.2 1.2
Pa3 30705 (8:31:45) 1 13 75 70 1.2 1.2
Pa4 30712 (8:31:52) 1 3 75 70 1.2 1.2
Pa5 30727 (8:32:07) 1 12 75 70 1.2 1.2
Pa6 30727 (8:32:07) 1 2 75 70 1.2 1.2
Pa7 30735 (8:32:15) 1 6 75 70 1.2 1.2
Pa8 30737 (8:32:17) 1 14 75 70 1.2 1.2
Pa9 30738 (8:32:18) 1 5 75 70 1.2 1.2
Pal0 30742 (8:32:22) 2 1 75 70 1.2 1.2

Table 2. Running Example: Partial simulation results corresponding to Table 1. WT and TT are in seconds.
The ID column is added to distinguish different passengers.”

ID Passenger Attributes Elevator Used Time Elevator Arrived Time Reached Destination WT TT

Pal - 2 8:31:31 8:31:45 0 141
Pa2 - 3 8:31:55 8:32:16 12.2 204
Pa3 - 4 8:31:45 8:32:36 0.1 509
Pa4 - 4 8:31:52 8:32:08 0.1 159
Pa5 - 5 8:32:07 8:33:11 0.1 64.2
Pa6 - 5 8:32:07 8:32:31 0.1 234
Pa7 - 3 8:32:15 8:32:49 0.1 343
Pa8 - 3 8:32:15 8:33:27 0 702
Pa9 - 3 8:32:16 8:32:36 0 178
Pal0 - 2 8:32:22 8:32:36 0.1 14.1

*Passenger Attributes of each passenger (uniquely identified with its ID) are provided in Table 1.

Table 3. Running Example: values of QoS,;;p metrics corresponding to Table 1 and Table 2. All the QoS;;p
values are in seconds.

AWT LWT ATT LTT ATD LTD

1.3 12.2 32.5 70.2 33.8 70.2

(Section 3.1). Then we discuss our research questions (Section 3.2), followed by the evaluation
metrics (Section 3.3). Next, we present the SD-G test (Section 3.4), which we used, as part of the
evaluation metrics, for addressing the research questions. Finally, we describe the parameter settings
and how we conducted the empirical study (Section 3.5).

3.1 Dataset Preparation

This paper focuses on uncertainties related to passengers while analyzing the robustness of dis-
patchers in the SiL simulation from various aspects. To explain how we use the SiL simulation to
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Fig. 2. Overview of the Empirical Study. Note that us; represents the ith (i = 1, .., 15) uncertain situation;
Steps 1-4 are presented in Sections 3.1.2, 3.1.3, 3.5, and 3.3, respectively.

generate the dataset required for the robustness analysis, first, we provide definitions of the key
terminologies in Section 3.1.1, followed by the generation of the 89 versions of the dispatcher in
Section 3.1.2. We then present our algorithm for the generation of the uncertain traffic profiles
in Section 3.1.3, and present the settings for the dataset generation in Section 3.1.4. Finally we
describe how we perform the generation with simulations in Section 3.1.5.

3.1.1 Terminology.

DEFINITION 5 (UNCERTAIN FACTOR). All the attributes in Table 1 that define a traffic profile are
uncertain factors (Section 2.2). For example, it is uncertain when a passenger arrives at a specific floor;
thereby Arrival Time is an uncertain factor.

DEFINITION 6 (UNCERTAIN TRAFFIC PROFILE). An uncertain traffic profile is a traffic profile
with uncertainty, i.e., uncertain values of one or more uncertain factor(s). For example, an update to
column Mass in Table 1 with uncertain values can generate an uncertain traffic profile caused by single
uncertain factor Mass.

DEeFINITION 7 (UNCERTAIN SITUATION). An uncertain situation represents uncertainties due
to a single uncertain factor or an interaction among two or more uncertain factors. Assuming an
uncertain factor set U with un (un > 1) number of uncertain factors, all the t-way interactions (i.e.,
t = {1,2,... un}) among all the uncertain factors in U means },i*, C.,, number of total uncertain
situations. We use, in the rest of the paper, usx to represent an uncertain sztuation, * is the abbreviation(s)
of the uncertain factor(s).

3.1.2  Generation of the Dispatchers (Step 1 in Fig. 2). We employed 90 dispatchers (one original
dispatcher and its 89 generated versions). The 89 versions were manually generated by a domain
expert based on the original program with a small syntactic variation, such as a relational operator
change (e.g., “<” changed by “>=") or an arithmetic operator change (e.g., “+” by “-”). The dispatcher
was implemented in C, therefore, classical mutation operators for C language [1] were used. The
domain expert initially generated 99 versions in a uniform manner throughout relevant sections
of the source code for the simulation environment. All dispatcher versions were reviewed by
another domain expert to ensure that the generated versions were not semantically equivalent to
the original program. Ten out of the 99 versions led the test execution not to finish, e.g., due to not
assigning certain calls, thus are faulty versions. Therefore, these 10 versions were removed, having
a final set of 89 versions, which are executable, to be employed for our experiments. Note that
these 89 versions have no functional failures, e.g., leaving a call unattended, but rather resulting in
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possibly sub-optimal elevator assignments affecting QoS. In other words, these generated versions
can return an assignment for each call that may not provide optimal QoS. In the rest of the paper,
we use D01-D89 to represent the 89 generated versions of the original dispatcher (D00).

Note that the implementation of a dispatcher is deterministic, i.e., given the same input and
configuration, the dispatcher always outputs the same elevator assignment. Thus, there is no
inherent uncertainty in the dispatcher. On the other hand, the same inputs and configurations
given to different dispatchers would likely produce different elevator assignments of different QoS.

3.1.3 Generation of Uncertain Traffic Profiles (Step 2 in Fig. 2). As shown in Fig. 2, we need to
generate uncertain traffic profiles based on captured (or interested) uncertain factors with Uncertain
Traffic Profiles Generator. Taking an example of uncertain factor Mass, it takes a value within an
interval with the min and max values, e.g., being 60 KG and 90 KG, respectively. Other uncertain
factors are also captured as intervals. We implemented a mechanism by setting an interval around
the recommended average values of these factors for a certain region (e.g., Europe). For instance, a
widely used CIBSE Guide D [8] recommends to use 75 KG as the average Mass for the passengers
for the simulation of elevators in Europe.

Algorithm 1 presents the step-wise details for generating uncertain traffic profiles. Assuming
an uncertain factor set U = {y;|i = 1,2, ..., un}, where u; is the ith uncertain factor (e.g., uncertain
factor Mass, see Definition 5), and un is the total number of uncertain factors. Correspondingly,
all uncertain situations caused by single uncertain factor and t-way interactions (see Definition
7) among several uncertain factors in uncertain factor set U can be represented by set US =
{usolo = 1,2, ..., NS}, where us, is the oth uncertain situation caused by U, NS is the number of
uncertain situations, there are NS = }¥, C},, = 2“" — 1 uncertain situations in total, which can be
simulated by 2*" — 1 types of uncertain traffic profiles (see Definition 6). For example, to investigate
uncertain factor set U with three uncertain factors {u; = Mass (M), uz = Loading Time (L), us =
Unloading Time (U)}, the total number of uncertain situations caused by U is 7, of which 3 (C})
are caused by single uncertain factor {us; = usM, us, = usL,us3 = usU}, 3 (Cg) are caused by
2-way interactions {usy = usM — L,uss = usM — U, us¢ = usL — U} and 1 is (Cg) caused by 3-way
interactions {us; = usM — L — U}. Studying interactions among uncertain factors is important
since effects (e.g., degraded QoS) might only be visible when a dispatcher faces uncertainties from
a less number of uncertain factors simultaneously. This is because such effects might be masked
by certain uncertain factors involved in some uncertain situations. Thus, we study and provide
evidence of how robustness is affected by various interactions among uncertain factors in this
empirical study.

We generate uncertain traffic profiles of an uncertain situation by generating values of its
uncertain factors corresponding to their respective predefined intervals around the recommended
values in CIBSE Guide D [8] (e.g., the recommended value for Mass in Europe is 75 KG). With
the recommended values, a set of intervals for the uncertain factors are defined, represented as
I ={L|i = 1,2,..,un}, where, I; = [aj, b;] is the interval for uncertain factor u;. The minimum
and maximum values of the interval are chosen by +x based on the recommended value. For
example, an interval [60, 90] for uncertain factor Mass can be obtained by choosing +15 based on
the recommended value of Mass (75 KG).

For a set of uncertain factors U, all the generated uncertain traffic profiles can be represented as
P ={Pys,lo =1,.., NS}, where Py, is the set of generated uncertain traffic profiles corresponding
to uncertain situation us,. For each uncertain situation, we repeat the generation NR times. This
means that each uncertain situation us, has NR uncertain traffic profiles, represented as P,s, =
{Pus,klo =1,..,NS;k =1, .., NR}, where P,;_ | is the kth uncertain traffic profile corresponding
to the oth uncertain situation us,. Each uncertain traffic profile contains NP number of passengers
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Algorithm 1: Uncertain Traffic Profiles Generation

Input: Uncertain factors U, Intervals I, number of repetitions per generation NR, baseline profile Py,
Output: Uncertain traffic profiles P

1 for us, inUS do

2 for k < 1to NR do

3 Pys,k < Pp // Initialize the uncertain traffic profile with the baseline profile

4 SatisfyConstraint < FALSE // Initialize the variable marking the constraint state

5 while ! SatisfyConstraint do

6 for Pays, k¢ in Pys, i do

7 for u; inus, do

8 L L generate value of u; for Pays, k . using Eq. 1

9 Avey; — ﬁzgg v;c // Calculate the average value of the ith uncertain factor
(u;) of all the passengers

10 if Avey; of Pys, i equals to the value of u; in Py, then // Check if the generated profile
satisfies the constraint on the average

11 save Py, &

12 L SatisfyConstraint < TRUE

(see example in Table 1), represented as Py, x = {Pays, kclo =1,...NS;k=1,..,NR;c=1,..,NP},
where Pay,, i is the cth passenger in uncertain traffic profile Py, k.

As shown in Lines 2-8 in Algorithm 1, to generate an uncertain traffic profile, for each passenger,
we generate a value for each uncertain factor forming the uncertain situation (e.g., the columns in
Table 1). Formally, the value of uncertain factor u; of the cth passenger Pays_ k. in uncertain traffic
profile P, can be generated within its predefined interval I;, represented as Eq. 1.

v = Generate(x) (1)
a; <x<b;

To ensure that generated uncertain traffic profiles do not deviate too much from the baseline
profile which has fixed values of the uncertain factors for each passenger, we check the average of
all the generated values for each uncertain factor, and keep the generated profile having the same
average value of each uncertain factor as the baseline profile. Otherwise, we iterate the generation
process until obtaining a matching profile (Lines 5-12 in Algorithm 1). Taking the example profile in
Table 1 for instance, if we want to generate an uncertain traffic profile corresponding to uncertain
situation usM, we need to generate 10 Mass values for the 10 passengers and check whether the
generated profile has the average value of the 10 Mass values equal to 75 KG. If not, we iterate the
generation process until we obtain a profile that satisfies the constraint on the average value.

3.1.4 Dataset Generation Settings ($2.1 in Fig. 2). We used an office building configuration from
Section 4.8 of the CIBSE Guide D [8], which contains 6 elevators, 14 floors, and 1120 persons (80
persons per floor). Each elevator has settings as shown in Table 4.

Table 4. Elevator Configuration

Capacity (KG) Car area (m?) Speed (m/s) Acceleration (m/s?) Jerk (m/s%)

1600 3.56 2.5 0.8 1.0
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We used two traffic templates: modern office lunch peak® (LunchPeak) and modern office up
peak® (UpPeak) to generate two baseline traffic profiles. LunchPeak models the passenger traffic
during lunch peak. More specifically, it models the traffic flow between 12:15 and 13:15 with
nearly half incoming, half outgoing and minimum inter-floors traffic, comprising 1409 passengers.
Different from LunchPeak, UpPeak models the traffic flow between 08:30 and 09:30 with a majority
of incoming traffic, comprising 1150 passengers. Passenger activities of LunchPeak and UpPeak
generated by Elevate are shown in Fig. 3 and Fig. 4, respectively. Obviously, the traffic flows during
LunchPeak and UpPeak are completely different. That’s because most people came to the offices for
work around 9:00am, went out for lunch, then came back after lunch during the lunch break.

6 No. 1600 kg elevators @2.50 mis 6 No. 1600 kg elevators @250 m's

Average ofall uns Total Passenger Activity Average of all

Total Passenger Activity
Incoming - green; Interfloor - yellow; Outgoing - red ing - green; Interfloor - yellow; i d

150
140

% population per five minutes
9% population per five minutes

) 0
8 8
7 7
3 6
5 5
4 4
3 3
2 2
: :
2 :

)
1215 1220 1225 1230 1235 1240 1245 1250 1255 1300 1305 1310 1315 132X 30 0835 0840 0845 0850 0855 0900 0905 090 095 0920 0925 09:30 093

time (hrsmin) time (rrsmin)

Fig. 3. LunchPeak Passenger Activity. Fig. 4. UpPeak Passenger Activity.

In addition to configuring building and elevators, and selecting traffic templates, passenger details
are also needed for simulations. We set Mass to 75 KG (i.e., the average Mass in Europe [8]), Loading
and Unloading Times to 1.2 seconds (i.e., the average time to enter and exit an elevator according
to [8]). Given that the maximum Capacity Factor is usually 80% [8], we set the Capacity Factor to
70% based on examples from [8]. After completing all the settings, we ran Elevate and obtained the
baseline profiles (for the LunchPeak and UpPeak), which were used to generate uncertain traffic
profiles. Note that a set of values for passengers’ Arrival Time, Arrival Floor and Destination Floor
are generated by Elevate based on a selected traffic template, which models passengers’ activities
in reality based on multiple surveys of operational elevators in buildings conducted by Peters
Research Ltd 7. Therefore, the distribution of traffic follows a real-world distribution. Consequently,
in our study, we keep their default values in Elevate for all the simulations. Therefore, in our study,
these three factors are not considered as independent variables. Instead, Mass (M), Capacity Factor
(C), Loading Time (L) and Unloading Time (U) of each passenger in the generated traffic profile are
kept the same by Elevate. This is also the current practice at Orona. Thus, in our study, we consider
these four parameters as the uncertain factors and varied their values to study their impact on the
robustness of dispatchers. Note that these are the only four uncertain factors related to passengers
that can be controlled in Elevate and are modeled as numerical values. We also like to emphasize
that the real distributions of Mass, Capacity Factor, Loading Time and Unloading Time do not exist
in our industrial context since elevators do not record these for individual passengers.

3.1.5 Dataset Generation ($2.2 in Fig. 2). With the baseline profiles, we generate uncertain traffic
profiles based on the studied uncertain factors. We generate values of uncertain factors Mass,

Shttps://elevate. helpdocsonline.com/peters-research-cibse-modern-office-lunch-peak

Shttps://elevate.helpdocsonline.com/peters-research-cibse-modern-office-up-peak
"https://peters-research.com
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Loading Time and Unloading Time, based on their intervals (Table 5). These intervals are obtained
by setting their lower and upper bounds as -20% and +20% of their baseline values recommended in
CIBSE Guide D [8]. For instance, the lower and upper bounds of Mass’s interval is 75—20% X 75 = 60
and 75 + 20% X 75 = 90, respectively. For Capacity Factor, its maximum value is usually 80% [8] and
the value of the baseline is 70%. To avoid generated values exceeding 80%, we use +10 to define its
interval. All these intervals have been discussed and confirmed with Orona, to ensure that they are
realistic. Consequently, the four uncertain factors lead to NS = 15 uncertain situations (i.e., the
size of US being 15), which are all the uncertainty cases being considered in our study, including 4
single-way (¢=1) and 11 multiple-way (¢>1) interactions. For each uncertain situation, we generated
NR = 10 traffic profiles. Correspondingly, each type of traffic template (i.e., LunchPeak and UpPeak)
has 150 uncertain traffic profiles. We obtained 300 (150X2) uncertain traffic profiles in total.

Note that, in practice, elevator engineers use fixed values from the standards, e.g., CIBSE Guide
D [8], to set passengers’ attributes in Elevate. Moreover, there are not any recommendations on
distributions of these attributes available with which the four uncertain factors should conform to.
More specifically, for Mass, existing studies on human Mass distributions are subject to various
conditions such as being specific to occupation [23], age, and gender [25, 26]. Passengers’ Loading
Time and Unloading Time have been studied in two real scenarios in [16], but their distributions
were not investigated. Regarding Capacity Factor, the related works (e.g., [35, 48, 58]) used fixed
values.

Table 5. Intervals of Uncertain Factors

Uncertain Factors Baseline Interval

Mass (KG) 75 [60, 90]
Capacity Factor (%) 70 [60, 80]
Loading Time (s) 1.2 [0.96, 1.44]
Unloading Time (s) 1.2 [0.96, 1.44]

3.2 Goal and Research Questions

We employed the Goal-Question-Metric (GQM) method proposed by Wholin et al. [52] to describe
goals, research questions, and metrics for our empirical study.

Goal. The purpose of this study is to understand the robustness of the dispatchers in the presence
of passengers’ uncertainties from the point of view of elevator engineers in the context of SiL
with industrial dispatchers deployed. Based on this goal, we aim to answer the following research
questions (RQs).

¢ RQ1: How robust are dispatchers under passengers’ uncertainties when measured
with QoS based on the quality of service provided to all the passengers together?

Note that in the rest of the paper, we call this type of robustness as QoS,;;p robustness to be

concise. This RQ is further answered with the following three sub-RQs:

- RQ1.1: How does the QoS,;;p robustness of the dispatchers vary when dealing
with passengers’ uncertainties? This RQ aims to provide elevator engineers an overview
of the assessment of each dispatcher’s robustness, such that they are more informed when
choosing dispatcher(s) with the best QoS,;;p robustness for targeted application contexts.

- RQ1.2: Do the dispatchers perform differently under the various uncertain situa-
tions in terms of the Qo0S,;;p robustness? With this RQ, we want to investigate whether
the different uncertain situations have different degrees of impact on the QoS,;;p robustness
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of the dispatchers. If so, which uncertain situation has the most or the least impact. In
addition, we study the correlation of the number of uncertain factors in the uncertain
situations with the QoS,;p robustness observed. Overall, with this RQ, we aim to provide
elevator engineers information about under which uncertain situations, the dispatchers
might exhibit a degraded QoS,;p robustness.

— RQ1.3: Is the robustness of the dispatchers different when measured with differ-
ent Qo0S,;;p metrics, when dealing with passengers’ uncertainties? With this RQ,
we aim to investigate to which degree each QoS,;p metric is impacted by passengers’
uncertainties by providing a ranking of the QoS,;p metrics. This RQ is important for
elevator engineers to know which QoS,;;p metric(s) should be targeted when optimizing
dispatchers.

RQ2: How robust are the dispatchers under passengers’ uncertainties when mea-
sured with QoS based on the quality of service provided to each passenger individu-
ally? We call this type of robustness as the Q0S;,4i,p robustness in the rest of the paper. Note
that RQ1 studies the robustness of the dispatchers with QoS,;;p (which considers the quality
of services provided to all the passengers as a whole), whereas RQ2 studies the Q0S;,4i,p
robustness (from the perspective of each individual passenger). This RQ is further answered
with the following three sub-RQs below:

- RQ2.1: How does the Qo0S;,4,,p robustness of the dispatchers vary in terms of
handling passengers’ uncertainties? This RQ aims to provide elevator engineers an
overview of the assessment of their dispatchers’ Q0S;,4i,p robustness such that they are
more informed when choosing dispatcher(s) with the best Q0S;,,4;,p robustness for targeted
application contexts.

- RQ2.2: Do the dispatchers perform differently under the various uncertain sit-
uations with respect to the Q0S;,4;,p robustness? With this RQ, we first want to
investigate whether the different uncertain situations have different degrees of impact on
the Q0S;n4i,p robustness of the dispatchers. If so, we further investigate which uncertain
situation has the most or least impact on the QoS;,,4;,p robustness. Furthermore, we study if
there is a correlation between the number of the uncertain factors involved in the uncertain
situations and the Q0S;,4i,p robustness of the dispatchers. Same as for RQ1.2, with this RQ,
we aim to provide elevator engineers information about under which uncertain situations,
the dispatchers have a higher chance of showing a degraded QoS;,4;,p robustness.

— RQ2.3: Is the robustness of the dispatchers different when measured with the dif-
ferent Q0S;,4i,p metrics? Here, we aim to investigate which Q0S;,4;,p metric is impacted
the most or least. Same as for RQ1.3, answering this RQ provides elevator engineers insights
about which QoS;,4i,p metric(s) should be the next optimization target.

3.3 Evaluation Metrics

We define a set of evaluation metrics for answering RQ1 and RQ2 in Section 3.3.1 and Section 3.3.2,

respectively. The mapping of the RQs and the metrics is summarized in Table 6.

3.3.1

Evaluation Metrics for RQ1. Recall from Section 3.2 that RQ1 studies the robustness based

on the QoS,yp metrics, i.e., AWT, LWT, ATT, LTT, ATD, and LTD. Each dispatcher is evaluated by
comparing its robustness under each of the 15 uncertain situations (corresponding to a generated
traffic profile with uncertainties introduced on the involved uncertain factors together forming the
particular uncertain situation) with the baseline traffic profile of no uncertainty (see Section 3.1.4),
in terms of the Qo0S,;;p metrics.
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First, based on Algorithm 1, we generate a certain number of uncertain traffic profiles, i.e., NR
(10 in our experiments) for each uncertain situation and simulate them and the baseline profile
with fixed values for all the uncertain factors (see Section 3.1.5). For each uncertain situation,
we got NR values corresponding to each QoS,;p metric (e.g., 10 AWT values). For the baseline
profile, one value corresponding to each QoS,;p metric (e.g., 1 AWT value) is obtained. Next, we
compare the NR values corresponding to a QoS,;;p metric with its respective one value with the
one-sample Wilcoxon signed rank test, e.g., 10 AWT values corresponding to 10 repetitions of an
uncertain situation are compared with one AWT value produced by the baseline traffic profile
with no passengers uncertainties. We chose the one-sample Wilcoxon signed rank test (see Eq.
3) since our data meet all the prerequisites of the test. We chose the typical significance level of
0.05. A resulting p-value less than 0.05 indicates that the uncertain situation significantly worsens
the Qo0S,;p metric, though some of the QoS,;;p values may still be acceptable to passengers. The
significant degradation of the robustness of the dispatcher under uncertainties implies the low
QoS41p robustness.

For each sub-research question of RQ1, we assess robustness with two types of metrics from three
different perspectives. First, we count the number of cases that p-values are less than 0.05 to study
robustness by: 1) considering both the uncertain situations and QoS,;;p metrics together for each
dispatcher (RQ1.1), 2) each uncertain situation (RQ1.2), 3) each Qo0S,;;p metric. Note that we count
the number of cases that p-values are less than 0.05 to make conclusions at a high-level and do not
apply further statistics on them to compare different dispatchers, uncertain situations, or QoSyp
metrics. A dispatcher with a higher number of cases where p-values are less than 0.05 indicates a
lower robustness, and the counts are comparable across all the dispatchers. The quantification of
the Qo0S,p robustness is visualized in the upper row in Fig. 5. Second, we perform three types of
robustness rankings with the SD-G test, i.e., ranking of dispatchers (see Definition 8 and Section
4.1.1), uncertain situations (see Definition 9 and Section 4.1.2), and QoS,;;p metrics (see Definition
10 and Section 4.1.3). The detailed calculations of the metrics are provided in Appendix A for
reference. The SD-G test is described in Section 3.4.

3.3.2  Evaluation Metrics for RQ2. As described in Section 3.2, RQ2 focuses on studying dispatcher
robustness with respect to the QoS;q;,p metrics (i.e., WT, TT, and TD, as defined in Section 2.1).
Different from RQ1, in RQ2, we assess the robustness of a dispatcher in a more fine-grained manner,
i.e., from the perspective of each passenger in terms of the quality of services she/he has received,
when the dispatcher operates under situations of with and without uncertainties.

We used the simulation results, i.e., a set of values of the Q0S;,4;,p metrics for each passenger
(see an example in Table 2), generated by the same dataset (see Section 3.1.5) as for RQ1. For each
Q0Sindiop metric, we obtained NR Time Lists® (i.e., NR samples and 10 in our experiments, see
Definition 3) corresponding to NR repetitions for each uncertain situation and one sample file
corresponding to the baseline profile with fixed values for passengers’ uncertain factors. Next, we
compare each sample corresponding to an uncertain situation with the sample of baseline profile
using a paired Wilcoxon signed rank test (see Eq. 4) at the significance level of 0.05. As a result, we
obtained NR p-values (i.e., 10 in our experiments), based on which the three sub-research questions
are answered, as described below.

First, we count the number of cases that p-values are less than 0.05 to quantify the robustness
of each dispatcher (RQ2.1, see Eq. 6 and Eq. 17), by an uncertain situation (RQ2.2, see Eq. 20 and
Eq. 21), and by a QoS;p4iyp metric (RQ2.3, see Eq. 25). The calculations are visualized in the row
below in Fig. 5. In principle, higher the number of cases that p-values are less than 0.05, higher
the likelihood that a dispatcher is less robust. Second, we perform robustness rankings (with the

8Note that Elevate only generates WT and TT, from which TD is derived.
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SD-G test) of the dispatchers (RQ2.1, see Section 4.2.1), uncertain situations (RQ2.2, see Section
4.2.2), and the QoS;,qi,p metrics (RQ2.3, see Section 4.2.3). Detailed calculations of the metrics are
provided in the Appendix A, whereas the employed SD-G test is described in Section 3.4.

Table 6. Mapping of the Evaluation Metrics to RQs

Goal: Understanding the robustness of dispatchers in the presence of passengers’ uncertainties

RQ # QoS Metric Comparison Baseline Evaluation Metrics (Definition #) = Measurements (Equation #)
(Statistical Test)
11 Comparing Q0Sayp QoSg,ip robustness for each dis- Count of p-value< 0.05 (5, 7)
. a
s . of a dispatcher with patcher (8)
Q0Sap metrics and without uncertain Ranking of dispatchers (8) SD-G test for dispatchers (8, 9)
1 ~AWT, LWT, ATT, traffic profiles
12 LTT, ATD, LTD (One—SI;mple Wilcoxon Qo0Sgi1p robustness of all the dis-  Count of p-value< 0.05 (10, 11)
’ Signed-rank test) patchers under each uncertain situa-
tion (9)
Ranking of uncertain situations (9) SD-G test for uncertain situations

(12, 13)

All dispatchers’ robustness in terms  Count of p-value< 0.05 (15)

13 of each Q0S,y1p metric (10)
Ranking of QoS,;p metrics (10) SD-G test for QoS,yp metrics
(16)
21 Comparing Q0Sindiop QoS}indivp robustness for each dis- Count of p-value< 0.05 (6, 17)
of a dispatcher with patcher (11)
, Q0S;naiop metrics and without uncertain Ranking of dispatchers (11) SD-G test for dispatchers (18, 19)
- WT, TT, TD traffic profiles . .
22 (Paired Wilcoxon Qo0Sindivp robustness of all_the. dis-  Count of p-value< 0.05 (20, 21)
Signed-rank test) patchers under each uncertain situa-
tion (12)
Ranking of uncertain situations (12) SD-G test for uncertain situations
(22, 23)
23 All dispatchers’ robustness in terms  Count of p-value< 0.05 (25)

of each Q0S;nqiyp metric (13)

Ranking of Q0S;,qi,p metrics (13) SD-G test for QoS;pdinp metrics
(26)

3.4 Statistical Difference based Grouping Test (SD-G)

The Scott-Knott test [41] was proposed to rank and group means of a set of variables. However,
using this test requires that input data fulfills the ANOVA assumptions, i.e., normality of distribution,
homogeneity of variance, and independence of observations [22]. To relax this prerequisite, the
Scott-Knott ESD V1 [46] was proposed, which applies log-transformation to correct the non-normal
distribution of the input data. However, as reported in [22], the log-transformation may not make
the data conform to the normal distribution in some cases and even might lead to a negative impact
on the accuracy of the Scott-Knott test [41]. Given the negative impact of the log-transformation
employed in the Scott-Knott ESD V1, the Scott-Knott ESD V2 [47] does not, anymore, apply any
data pre-processing (e.g., using the log-transformation) to relax the normal distribution prerequisite.
The non-parametric Scott-Knott ESD test [45] was; however, proposed to handle data with non-
normal distributions. Considering that some of our data does not fulfill the ANOVA assumptions,
we, thus, opted for the non-parametric Scott-Knott ESD test. However, we observed that in some
cases, variables with negligible difference were grouped into different groups while variables with
non-negligible difference were grouped into the same group. For example, Fig. 6 (a) presents a
simple example of applying the non-parametric Scott-Knott ESD test, with the inputs shown in
Table 7. We can see that variables V2 and V4 (also variables V6 and V8) are grouped into different
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Fig. 5. Quantification of Q0S,;;p (D - @) and Q0S;,4ivp (B - ®) robustness. A grid represents the quantified
robustness of a dispatcher under a specific uncertain situation in terms of a specific QoS,;;p metric (Eq. 5) or
Q0S;pdiop Metric (EQ. 6). For QoS,;p robustness, (1) shows the robustness of one dispatcher under a specific
uncertain situation in terms of all the QoS,;;p metrics; 2 and Q) represents all dispatchers’ robustness under
a specific uncertain situation in terms of a specific QoS,;;p metric, and all the QoS,;;p metrics, respectively;
@ reflects all dispatchers’ robustness in terms of a specific Q0S,;;p metric. Similarly, ® - ® show the
corresponding QoS;,,4;,p robustness.

groups, but the difference between them is negligible based on the Cliff’s Delta effect size, i.e.,
|d| = 0.111 (negligible) for both variable pairs. The Cliff’s Delta estimate [14] is calculated with:

Zﬁill Zj\fzzl ([xi > y]] - [xi < y]]) 9
- N; X N, ( )
where [-] is the Iverson bracket, which is 1 when the statement - is true, and 0 otherwise. N; and N,
are the observation sizes of the two variables being compared (e.g., the observation size of each
variable is three in Table 7), respectively, and x; and y; are the ith and jth observations of the
two variables, respectively. Correspondingly, the Cliff’s Delta effect size can be obtained using the
thresholds provided by Romano et al. [39], i.e., negligible (|d| < 0.147), small (0.147 < |d| < 0.33),
medium (0.33 < |d| < 0.474), and large otherwise. Take the variable pair V2 and V4 for instance,

the Cliff’s Delta effect size is calculated as: (_1)+(_1)+(;i)3+(_1)+1+1+1 = 0.111 (negligible), the

d

corresponding dominance matrix is shown in Table 8.

Moreover, V13 and V1 have non-negligible difference (i.e., |d| = 0.222 (small)), but were grouped
into the same group. Similarly, V7 and V9 (i.e., |d| = 0.222 (small)), also V9 and V14 (i.e., |d| = 0.222
(small)), V12 and V6 (i.e., |d| = 0.222 (small)), with non-negligible differences, were grouped into
the same group. More obviously, variable pairs V6 and V13, and V2 and V7, are the pairs that two
variables have the same effect (i.e., distributions of the three observations are the same, |d| = 0),
but were grouped into different groups. Thus, we further investigated the partition function of the
non-parametric Scott-Knott ESD test, and found that the use of the Kruskal-Wallis chi-squared
statistics to identify a partition that maximizes the median values between variables might put
variables with negligible differences into different groups. In addition, they performed a follow-up
comparison using the Cliff’s Delta effect size, if the follow-up comparison of the variable pair has
non-negligible difference then the group is split into two groups based on the identified partition,
otherwise keep the one group. However, we found that, in their implementation, for the follow-up
comparison, they only compare the first variable sample and the last variable sample rather than
each variable pair. And if the difference between the first and last variables is negligible, the group
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is not split into two. Doing so might put variables into the same group (e.g., V13 and V1 in our
example), thereby incorrectly indicating non-negligible differences.

Table 7. A simple set of running samples with 15 variables (treatments), each of which has three observations.

Vi V2 V3 V4 V5 Ve V7 V8 V9 V10 Vi1l Vi2 Vi3 Vi4 V15
2 1 2 2 4 3 1 4 3 4 4 2 2 2 4

2 6 2 5 4 2 6 1 4 4 4 3 3 4 4

1 2 1 2 2 1 2 1 2 2 2 2 1 2 2

2 2 5
1-1[-1]-1
0|0]-1
61|11
o <

1.6 3.0
1 |
e
_e—
e
16 3.0
L L
—e—
_e—
e

0.3
0.3

V14
V12
V1
V3 -

(a) Non-parametric Scott-Knott ESD test. (b) SD-G test.

Fig. 6. The partition of the variables in Table 7 with the non-parametric Scott-Knott ESD test and the SD-G
test. The x-axis shows the sorted variables according to their observations. The same color of the adjacent
variables indicates the same group. Each dot represents the average observations.

To this end, we developed our own grouping method (Algorithm 2) to fix the limitation in the
non-parametric Scott-Knott ESD. Assuming a set of treatments T = {T,|e = 1,2, ..., nt}, where T, is
the eth treatment; nt is the number of treatments, same as the Scott-Knott ESD V2, we first sort the
treatment means (Line 1). The sorted treatments are ST = {ST¢|f = 1,2, ..., nt}, where STy is the fth
treatment after sorting. Then, we use a sliding window to find the partition where all the treatment
pairs that fall in the same group are statistically similar, i.e., the statistical difference of each pair in
the group are negligible. Lines 2-9 define a function for the comparison of all the treatment pairs in
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the sliding window, we use the Cliff’s Delta effect size [14], which does not require the ANOVA
assumptions, to analyse the difference between two treatments. The comparison function returns
TRUE when each treatment pair in all the treatments has negligible difference, otherwise it returns
FALSE.

Lines 10-16 define a function that calls the comparison function for partitioning, which returns
the number of treatments grouped by the sliding window each time. The sliding window with an
initial size of 2 will be used to group the sorted treatments, if all the treatment pairs located in the
sliding window have negligible difference, then the algorithm increases the sliding window size and
performs the comparison again. If the non-negligible difference is found in the sliding window or
the sliding window is bigger than the number of the treatments to be grouped, then the algorithm
returns to the previous sliding window size. Lines 17-26 group all the treatments into several groups.
The sliding window starts from the left side of the sorted treatments (i.e., BeginIndex = 1, nt is the
total number of treatments) and performs the partitioning by calling the Partition function. Once all
the treatments are grouped, we can get the ranked groups G = {(STf, rf) |f =1,2,..,nt}, where re
is the group/rank number of STy (e.g., 1 = r» = 1 means both ST; and ST; are grouped into the first
group). For the running example (with the inputs in Table 7), results of the SD-G test are presented
in Fig. 6 (b), from where we can see that the grouping problems in the non-parametric Scott-Knott
ESD test (Fig. 6 (a)) are resolved with our SD-G test.

3.5 Parameter Settings and Experiment Execution (Step 3 in Fig. 2)

We experimented with the 90 dispatchers. To ensure a fair comparison, we used the same settings
and the same traffic profiles for each dispatcher. The building configuration is the same as we used
to generate the uncertain traffic profiles (see Section 3.1.4). We ran all the generated uncertain
traffic profiles (see Section 3.1.5) corresponding to the 15 uncertain situations. After all the traffic
profiles were executed with all the dispatchers, we performed the robustness analysis based on
the QoS,yp and QoS;nqivp generated by each dispatcher. To answer the RQs, we analyzed all the
QoS.p and QoS;pgiyp produced by each dispatcher, and conducted the SD-G test (see Section 3.4)
from various aspects (see Section 3.3), the analysis results will be presented in Section 4.

4 EXPERIMENT RESULTS AND ANALYSIS
4.1 Results of RQ1

4.1.1 RQ1.1: Comparing all the 90 dispatchers in terms of QoS,yp robustness. We conducted the
SD-G test with Eq. 8 to rank all the 90 dispatchers in terms of each QoS,;;p robustness for LunchPeak
and UpPeak. The results are provided in Fig. 14 in Appendix B for reference. In general, we observe
that, for LunchPeak, the 89 generated versions exhibit worse or similar robustness than the original
dispatcher in terms of each Qo0S,;;p metric. For UpPeak, all the generated dispatchers performed
less robust than or similar to the original dispatcher in terms of AWT, ATT, ATD and LTD, while
some generated dispatchers performed more robust than the original one in terms of LWT and
LTT. One possible explanation could be that some changes to the original dispatcher may favor the
longest waiting and transit times among all the passengers, which, however, may also degrade its
robustness in terms of other QoS,;;p metrics. For example, for UpPeak, D58 performed quite robust
in terms of LWT, while performed the least robust in terms of AWT.

To compare the robustness of all the dispatchers in terms of all the QoS,;;p metrics, we first
quantified the robustness of each dispatcher in terms of all the QoS,;;p metrics under each uncertain
situation with Eq. 7. Results are summarized in the left two subplots in Fig. 15 in Appendix B. We
observe that most of the generated dispatchers are less robust than the original one when dealing
with passengers’ uncertainties. In addition, some generated dispatchers exhibit various extents of

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.



18 Han et al.

Algorithm 2: Statistical Difference based Grouping Algorithm (SD-G)

Input: Treatments T
Output: Groups G

1 /* Sorting the treatment means */
2 ST « Sort(T)
3 /x Partitioning with sliding window */

4 Function CompareAll (ST, Beginlndex, WinSize):
5 negl « TRUE

6 for y < BeginIndex to (BeginIndex + WinSize —2) do // Compare all pairs in the sliding
window
7 for z « BeginIndex + 1 to (BeginIndex + WinSize — 1) do
8 ef « Clif fsDelta(STy, ST;)
9 if ef # "negligible” then
10 L negl «— FALSE
11 | return negl

12 Function Partition(ST, Beginlndex, nt):

13 WinSize < 2

14 while CompareAll(ST, BeginIndex, WinSize) do // Increase window size when the difference of
each pair is negligible

15 WinSize < WinSize +1

16 if WinSize > (nt — BeginIndex + 1) then

17 L break

18 return WinSize — 1

19 rank <0
20 while BeginIndex < nt do

21 num « Partition(ST, Beginlndex, nt)

22 rank « rank +1

23 for w < BeginIndex to (BeginIndex + num — 1) do

24 L ryvw < rank

25 BeginIndex < BeginIndex + num // Update the position of the sliding window

26 if BeginIndex = nt then // If there is only one treatment left, then itself forms a group
27 rank < rank + 1

28 rnt < rank

robustness across the two templates. For instance, D25 performed very robust in LunchPeak, while
showed poor robustness in UpPeak. It tells that the QoS,;;p robustness of a dispatcher might be
specific to templates, i.e., related to passenger traffics.

To further compare the QoS,,;;p robustness of the 90 dispatchers across the 15 uncertain situations,
we then conducted a ranking with Eq. 9 based on the counts visualized in the left two subplots
in Fig. 15. The template specific ranking of all the 90 dispatchers are shown in Fig. 7 (a) and (b).
For LunchPeak, 84 out of 89 (94%) generated versions are less robust than the original
dispatcher in terms of Qo0S,;;p metrics; 5 out of 89 (6%) generated versions are statistically
similar to the original dispatcher in terms of QoS,;p metrics; and D65 and D69 are the least
robust against passengers’ uncertainties. For UpPeak, 41 out of 89 (46%) generated versions
performed worse than the original dispatcher; 43 out of 89 (48%) generated versions performed
better than the original dispatcher; 5 out of 89 (6%) generated versions have statistically similar
robustness as the original dispatcher; and D71 and D72 are the least robust ones. For both templates,
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D02 shows relatively better robustness than the other generated versions. The reason why some
generated versions performed better than the original dispatcher could be that the introduced
change makes the dispatcher improve specific situations. For instance, one change is about favoring
the parking of the elevators in the base floor, which has a positive impact on the UpPeak profile,
but not for other situations.
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Fig. 7. The SD-G ranking of the 90 dispatchers across the 15 uncertain situations in terms of all the QoS,;;p
metrics - RQ1.1. The x-axis shows the generated (D01-D89) and the original (D00) dispatchers sorted according
to their counts under all the uncertain situations in terms of all the QoS,;;p metrics, whereas the same color
of the adjacent dispatchers indicates the same group, implying that the difference of the robustness of these
dispatchers across the 15 uncertain situations in terms of all the QoS,;;p metrics are negligible. Each dot
represents the average count across the 15 uncertain situations on each sample, and the length of each line
indicates twice of the standard deviation of each sample.
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To compare the overall robustness of the 90 dispatchers on both templates, we conducted ranking
again with Eq. 9, based on the quantified robustness of each generated version and the original
dispatcher on both templates (i.e., summing the counts visualized in the left two subplots in Fig.
15), as shown in Fig. 7 (c). Overall, 75 out of 89 (84%) generated versions are worst than the
original dispatcher in terms of Qo0S,;;p robustness; 11 out of 89 (12%) dispatcher versions are
more robust than the original dispatcher; and 3 out of 89 (3%) generated versions have statistically
similar robustness as the original dispatcher. We carefully studied the 11 dispatcher versions that
showed better robustness than the original dispatcher and confirmed with the domain experts that
there is no false positive in the observation. The reason for the 11 generated versions performing
better than the original one could be two-fold. First, the generated versions affect certain parameters
that better fit in the selected building. Second, some changes favour UpPeak and LunchPeak traffic
templates, but could negatively impact other types of traffic templates (e.g., DownPeak) as well as
the dispatcher in a non-simulated environment, which we did not test in this empirical study. We
have reported these 11 versions to Orona for them to investigate which change made the dispatcher
more robust during LunchPeak and UpPeak. The investigation results tell us that most of these
changes are related to threshold values that activate certain functionalities more frequently, helping
the dispatcher behave better under certain circumstances.

Conclusion for RQ1.1: 1) The Qo0S,;p robustness of the dispatchers varies from template to
template; 2) Overall, most of the 89 generated versions (84%) are less robust than the original
dispatcher in terms of QoS,;p metrics, implying that a majority of changes reduce the
original dispatcher’s QoS,;;p robustness against passengers’ uncertainties.

4.1.2 RQ1.2: Comparing Uncertain Situations in terms of QoSgy;p Robustness. To investigate the
impact of the different uncertain situations on the QoS,;p robustness of the 90 dispatchers, we
quantified the QoS,;;p robustness of all the 90 dispatchers under each uncertain situation (see Eq.
10 and Eq. 11) on each template. Results are summarized in Table 12 in Appendix B.

Overall, we observed that the difference in the impact of the uncertain situations on the QoSy;p
robustness of the 90 dispatchers, in most cases, is relatively small. For instance, the difference in
the Qo0S,;p robustness in terms of AWT, under the 15 uncertain situations, during LunchPeak, is
small as indicated by the counts ranging from 12 to 20, out of 90, which is less than (20-12)/90
= 9% of difference across the uncertain situations. However, there are exceptions. For instance,
for LTT under UpPeak, the counts range from 9 to 77, which is 76% of difference across all the 15
uncertain situations. In addition, the maximum count, i.e., 77 for usC-L in UpPeak, reaches the 86%
of the total. When comparing LunchPeak and UpPeak, we can observe that the QoS,;;p robustness
of the 90 dispatchers under the 15 uncertain situations during UpPeak fluctuates more
than during LunchPeak, implying that the impact of the uncertain situations on the QoSy;p
robustness of the 90 dispatchers varies for different templates.

To further compare the impact of the uncertain situations on the QoS,;;p robustness of the 90
dispatchers, we ranked all the uncertain situations with Eq. 12 for LunchPeak and UpPeak. Results
are shown in Fig. 8 (a)-(1). We can observe, from Fig. 8 (a)-(f), that, for LunchPeak, the 15 uncertain
situations were ranked into either one or two groups (except for LTT having usL-U classified as
the third group). This indicates that most uncertain situations do not have many differences in
terms of influencing the QoS,;p robustness across the 90 dispatchers. However, for UpPeak, as
shown in Fig. 8 (j), in terms of LTT, the uncertain situations were categorized into four groups.
A plausible explanation might be that the traffic flow during UpPeak is mostly incoming. As we
can see from Fig. 4 that the majority of the passenger activities from 08:30 to 09:30 are incoming
(the green part), and the incoming activities peaked around 09:00. It means that most people come
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to work around 9:00 am and take elevators from the entrance floor to different floors of the office
building. This pattern might lead to a higher transit time for those who work on top floors, as
the elevator needs to frequently unload passengers at various floors. This is prominent for transit
time related QoS,;;p metrics, especially LTT. This may happen due to two main reasons. Firstly,
the dispatchers we investigated were configured to optimize passengers’ waiting times. However,
LTT does not consider the waiting time of passengers. Secondly, the type of traffic pattern may
lead to not favoring some QoS,;p metrics. In this case, during up peak, elevators tend to travel
upwards with cabins full of people. Conversely, unlike during lunch peak patterns, when traveling
downwards during an up peak, the cabins travel empty. When arriving on the base floor, people
traveling upward enter to different elevators. However, in a conventional elevator  which is the
type of elevators we use, passengers heading to the same floors are not grouped. Thus, many
elevators travel to the same floor, resulting in long transit times for passengers traveling to the top
floors.

To compare the impact of the 15 uncertain situations on the robustness of the dispatchers in
terms of all the QoS,;;p metrics, we performed ranking with Eq. 13 on each template. Results of
the ranking for LunchPeak, UpPeak and Overall are shown in Fig. 8 (m)-(0), respectively. From the
overall ranking, we can observe that, in general, usC, usM-C and usM have relatively large impact
on the QoS,;p robustness of the 90 dispatchers, while usC-L-U, usU, usL-U and usM-L-U have
relatively small impact on the QoS,;p robustness. It indicates that uncertain factors Capacity Factor,
Mass, and their interactions have more impact on the QoS,;;p robustness of the 90 dispatchers,
whereas Unloading Time and its interactions with some other uncertain factors (e.g., Loading Time)
have relatively less impact on the QoS,;p robustness of the 90 dispatchers. That’s because a lower
Capacity Factor may lead a passenger not to enter in an elevator and therefore need to wait to
another one. In the case of the Mass, the elevator may not be prepared to lift an additional passenger
that was in the dispatching plan of the algorithm if the Mass of the passengers that are inside
the elevator is higher than expected. In both of these cases, the passenger would need to wait for
another elevator, which takes much longer time than typical Loading and Unloading times (in a
few seconds).

Based on the QoS,;p robustness of the 90 dispatchers under each uncertain situation, we further
investigated the correlation between the number of uncertain factors and the QoS,;p robustness
of the 90 dispatchers, e.g., 2-way vs. 3-way. We noticed that interactions of a higher number of
uncertain factors do not necessarily lead to poorer QoS,;;p robustness. For example, as we can
see from Fig. 8 (a) and (b), interactions between more uncertain factors have similar impacts as
interactions between fewer uncertain factors on the QoS,;;p robustness across the 90 dispatchers.
We can also observe, from Fig. 8, that some uncertain situations caused by single uncertain factor
are ranked into the first group (e.g., usC and usM in Fig. 8 (m)), while some are ranked into the last
group (e.g., usU in Fig. 8 (n) and (0)), which is the same for other cases such as interactions between
two or three uncertain factors. We therefore recommend elevator engineers to systemically test
dispatchers’ robustness against passengers’ uncertainties under each uncertain situation, which
can provides engineers insights to design uncertain situation-oriented robustness optimization
strategy.

Conclusion for RQ1.2: 1) The impact of the uncertain situations on dispatchers’ QoS,;p
robustness varies from template to template. For instance, the 15 uncertain situations exhibit
15% of the difference in the impact on the QoS,;;p robustness for LunchPeak and 25% for UpPeak;
2) Overall, uncertain factors Capacity Factor, Mass, and their interactions have relatively

9For a conventional elevator, its dispatcher is not aware of the final destinations of its passengers.
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Fig. 8. The SD-G ranking of the 15 uncertain situations across the 90 dispatchers in terms of each QoS,;;p
(Fig. 8 (a)-(1)) and all the QoS,;;p (Fig. 8 (m)-(0)) metrics - RQ1.2. An x-axis shows the uncertain situations
sorted according to their counts in terms of a specific QoS,;;p (see Count columns of the six QoS,y;p in Table
12) or all the QoS yp (see column Overall in Table 12), whereas the same color of the adjacent uncertain
situations indicates the same group, implying that the robustness difference across the 90 dispatchers under
these uncertain situations are negligible. A lower count (y-axis) indicates a higher robustness under a specific
uncertain situation. Each dot represents the average count across the 90 dispatchers on each sample, and the
length of each line indicates twice of the standard deviation of each sample.
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large impact on the QoS,;p robustness of the 90 dispatchers, whereas Unloading Time and
its interactions with some other uncertain factors (e.g., Loading Time) have relatively less
impact on the QoS,;;p robustness across the 90 dispatchers; 3) Uncertain situations with more
uncertain factors’ interactions do not necessarily have more negative impact on the QoS,;;p
robustness.

4.1.3  RQ1.3: Rank QoS,y;p metrics. To investigate to which degree each Q0S,;;p metric is impacted
by passengers’ uncertainties, we quantified the robustness of all the 90 dispatchers against pas-
sengers’ uncertainties in terms of each Qo0S,;;p metric with Eq.15 on LunchPeak and UpPeak. The
sorted QoS,;;p metrics on the two templates for all the 90 dispatchers are shown in Table 9. We can
see that for LunchPeak, the 90 dispatchers have the highest count in terms of ATT, whereas they
have the lowest count in terms of AWT. For UpPeak, the 90 dispatchers are least robust in terms of
LTT, whereas they are relatively more robust in terms of ATD.

Table 9. QoS,p robustness of the dispatchers - RQ1.3. For each QoS,;;p metric, there are, in total, 90
(dispatchers) x 15 (uncertain situations) = 1350 p-values. Each Sorted QoS cell tells the count calculated with
Eq.15. A lower count indicates a higher robustness.

Template Sorted Qo0S,;;p Metrics Total Count
LunchPeak ATT (433) LTT(431) LTD (426) LWT(382) ATD (270) AWT(230) 2172
UpPeak LTT (664) LTD (505) LWT (482) AWT (301) ATT (271) ATD (234) 2457

We further investigated the difference in the QoS,;;p robustness across all the 90 dispatchers on
each template by conducting a ranking with Eq. 16. Results are shown in Fig. 9 (a) and (b). We also
performed the overall ranking by combining the two templates. Results are shown in Fig. 9 (c). Fig.

10.9
|
12.9
|
19.0

7.7
I
9.2
14.1
I

44
9.2

12
I
4.3

Counts across 90 dispatchers
18

Counts across 90 dispatchers
55
Counts across 90 dispatchers

-21
L

-1.9
L

-0.6
L

B

T T T T T 1 T T T T

S BB 5 oE 5 2 s S
(a) Template specific ranking - Lunch-  (b) Template specific ranking - Up- (c) Overall ranking.
Peak. Peak.

Fig. 9. The SD-G ranking of the six QoS j;p metrics across the 90 dispatchers - RQ1.3. The x-axis shows the
QoS,y1p metrics sorted according to their counts, whereas the same color of the adjacent QoS,;;p metrics
indicates the same group (e.g., ATD and AWT in Fig. 9 (a) are in the same group), implying that the difference
of the robustness across the 90 dispatchers in terms of these QoS,;;p metrics are negligible. A lower count
(y-axis) indicates a higher robustness in terms of a specific Qo0S,;;p metric. Each dot represents the average
count across the 90 dispatchers on each sample, and the length of each line indicates the twice of the standard
deviation of each sample.

9 (a) and (b) show that for LunchPeak, the difference of the robustness across the 90 dispatchers

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.



24 Han et al.

in terms of ATT, LTT, LTD and LWT are negligible, and the 90 dispatchers have relatively better
robustness in terms of ATD and AWT than ATT, LTT, LTD and LWT. For UpPeak, LTT is the only
QoS,yip included in the group at the first place, indicating that the 90 dispatchers are the least
robust in terms of LTT. A possible reason is that LTT, being the longest transit time, is relatively
more sensitive to passengers’ uncertainties during UpPeak. Since during UpPeak, passengers with
diverse destinations often take an elevator at the entrance floor to their respective working floors.
As a result, the elevator needs to stop frequently to unload passengers on different floors while
going upwards, which consequently increases the transit time of passengers with the top floor
as their destination, making the longest transit time relatively more susceptible to passengers’
uncertainties. In addition, we can find that AWT, ATT and ATD are ranked into the last group,
which means that the 90 dispatchers are statistically similar and relatively more robust in terms of
the average time-related QoS,;;p metrics (i.e., AWT, ATT and ATD) during UpPeak. From the overall
ranking (Fig. 9 (c)), we can first observe that the average counts across all the dispatchers in terms
of the longest time-related QoS,;;p metrics are higher than that of the average time-related QoS,;;p
metrics, implying that the average time-related QoS,;;p metrics are relatively impacted less than
the longest time-related QoS,;;p metrics. Second, we can observe that LTT and LTD are ranked
into the first group, LWT and ATT are ranked into the second group, and AWT and ATD are also
ranked into the last group. A possible explanation is that the dispatchers we used is intended to
optimize average waiting time of passengers, which is also considered by ATD. Therefore, their
robustness is less affected by passengers’ uncertainties.

Conclusion for RQ1.3: 1) AWT and ATD are ranked into the last group in all the three
rankings, implying that the 90 dispatchers have statistically similar and relatively better
robustness against passengers’ uncertainties in terms of AWT and ATD than the other QoS,;;p
metrics. This might be because the dispatchers we used mainly focus on optimizing average
waiting time; 2) LTT is ranked into the first group in all the three rankings, which tells
that the 90 dispatchers are relatively less robust in terms of LTT; 3) Overall, the average
time-related QoS,;;p metrics (i.e., AWT, ATT and ATD) are relatively less impacted,
by passengers’ uncertainties, than the longest time-related QoS,;;p metrics (i.e., LWT,
LTT and LTD).

4.2 Results of RQ2

4.2.1 RQ2.1: Comparing all the 90 dispatchers in terms of Q0S;nqiyp robustness. We conducted the
SD-G test to rank all the 90 dispatchers in terms of each Q0S;,4,p robustness (Eq. 18). Results are
provided in Fig. 16 in Appendix B for reference. In summary, we observed that most of the generated
versions performed less robust than the original dispatcher in terms of WT and TD, while more
generated versions exhibit better robustness than the original dispatcher in terms of TT, during
LunchPeak. Conversely, for UpPeak, a majority of the generated versions performed less robust
than the original dispatcher in terms of TT, while there are relatively more generated versions that
performed more robust than the original dispatcher in terms of WT and TD. These observations
tell that the robustness of the dispatchers in terms of a specific Q0S;,4i,p metric is also
related to the traffic template. For example, D65, in terms of WT, is the most robust during
UpPeak, while the least robust during LunchPeak. Similarly D77 shows the best robustness in terms
of TT on LunchPeak, which is opposite on UpPeak.

We compare the 90 dispatchers in terms of all the Qo0S;,4i,p metrics by first quantifying the
robustness of each dispatcher in terms of all the QoS;,4;,p metrics under each uncertain situation
(Eq. 17) on each template. Results are summarized in the right two subplots in Fig. 15 in Appendix B.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.



Uncertainty-aware Robustness Assessment of Industrial Elevator Systems 25

In summary, we observed that some dispatchers were less robust under most uncertain situations,
whereas some dispatchers were very robust under almost all the uncertain situations. In addition, we
also observed that some dispatchers show completely different robustness on the two templates. For
example, D65 was less robust on LunchPeak, while performing very robust on UpPeak, implying that
the Qo0S;n4iup robustness of the dispatchers is also related to the templates. A potential explanation
for this might be that some specific dispatcher versions provoke an improvement in specific traffic
templates. For instance, one generated version might constantly send an elevator to the base floor
benefiting the UpPeak traffic template. Another explanation could be that a dispatcher relies on
different parameters. For instance, a parameter might be related to the number of parked elevators
to be sent to the base floor. A change in the code may influence one parameter, which favors a
particular dispatcher under certain circumstances.

We further ranked the Q0S;,4i,p robustness of all the 90 dispatchers across the 15 uncertain
situations for each template with Eq. 19. Results are shown in Fig. 10 (a) and (b), respectively. For
LunchPeak, 75 out of 89 (84%) generated versions performed less robust than the original
dispatcher in terms of Q0S;,,4i,p robustness; 10 out of 89 (11%) generated versions (e.g., D34
and D19) performed better than the original dispatcher; 4 out of 89 (4%) generated versions (i.e., D74,
D78, D02 and D25) have statistically similar QoS;,4i,p robustness as the original dispatcher; and D69
performed the least robust. For UpPeak, 55 out of 89 (62%) generated versions performed less
robust than the original dispatcher; 24 out of 89 (27%) generated versions performed better than
the original dispatcher; 10 out of 89 (11%) generated versions have statistically similar QoS;,gi,p
robustness as the original dispatcher; whereas D44, D71 and D72 performed the least robust against
passengers’ uncertainties.

To further compare the overall robustness of the 90 dispatchers on both templates, we conducted
ranking (Eq. 19) based on the quantified robustness of each dispatcher under each uncertain
situation in terms of all the Q0S;,4i,p metrics on both templates (i.e., combining the Q0S;,4ixp
robustness shown in the right two subplots in Fig. 15 together), as shown in Fig. 10 (c). Overall, 74
out of 89 (83%) generated versions performed worse than the original dispatcher in terms
of Q0S;n4iyp robustness; 11 out of 89 (12%) generated versions performed better than the original
dispatcher; and 4 out of 89 (4%) generated versions have statistically similar Q0S;,4;,p robustness
as the original dispatcher.

Conclusions for RQ2.1: 1) The QoS;,4i,p robustness of the dispatchers is also related to the
templates, thus we recommend elevator engineers to assess a new version with as diverse
templates as possible to gain more comprehensive insights of its quality before deploying; 2)
Overall, most of the generated versions (83%) performed less robust than the original
dispatcher in terms of Q0S;,4i,p metrics, implying that a majority of changes in code
downgrade the original dispatcher’s QoS;,4i,p robustness against passengers’ uncertainties.

4.2.2 RQ2.2: Comparing Uncertain Situations in terms of Qo0Sin4i,p Robustness. We assess the
impact of each uncertain situation on dispatchers’ Q0S;,4;,p robustness by quantifying the QoS;,gi.p
robustness of all the dispatchers under each uncertain situation (see Eq. 20 and Eq. 21) for LunchPeak
and UpPeak. Results are summarized in Table 13 in Appendix B. In summary, we observed that
the 15 uncertain situations have different extents of impact on the QoS;,4;,p robustness of the 90
dispatchers. For instance, the difference in the impact of the uncertain situations on the Q0S;,4i.p
robustness in terms of WT during LunchPeak is small, as reflected by the counts ranging from 102 to
157, out 0of 900 ((157 —102) /900 = 6%). In contrast, the counts in terms of TT during UpPeak ranging
from 7 to 492, which is more than 53% of difference across all the uncertain situations, implying
that the uncertain situations have various impact on the QoS;y4;,p robustness of the 90 dispatchers
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Fig. 10. The SD-G ranking of the 90 dispatchers across the 15 uncertain situations in terms of all the Q0S;,,4;,p
metrics - RQ2.1. The x-axis shows the 89 generated versions (D01-D89) and the original dispatcher (D00)
sorted according to their counts under all the uncertain situations in terms of all the Q0S;,,4;,p metrics,
whereas the same color of the adjacent dispatchers indicates the same group, implying that the difference
of the Q0S;,,4iup robustness of these dispatchers across the 15 uncertain situations are negligible. Each dot
represents the average count across the 15 uncertain situations on each sample, and the length of each line
indicates twice of the standard deviation of each sample.

in terms of TT during UpPeak. When we compare LunchPeak and UpPeak (see Table 13 for detailed
results), we observed that the counts for UpPeak are higher than for LunchPeak, and the counts
fluctuate more during UpPeak. This is clearly reflected by column Overall, where the minimum and
maximum counts are 284 and 615 (out of 2700) for LunchPeak, and 524 and 1137 for UpPeak, and
(615 — 284) /2700 = 12% of differences across all the uncertain situations for LunchPeak and 23%
for UpPeak. These observations imply that the uncertain situations have different impacts on the
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Q0S;naivp robustness of the 90 dispatchers for different templates, especially having a relatively
large impact on the Q0S;,4i,p robustness for UpPeak. In addition, we can observe that for both
LunchPeak and UpPeak, usL has the highest count in terms of WT, and usM-C have the highest
counts in terms of TT.

We further compare the impact of the uncertain situations on the QoS;,4;,p robustness by ranking
them with Eq. 22 for each template. Results are summarized in Fig. 11 (a)-(f). The figure shows
that the uncertain situations were ranked into either two or three groups for LunchPeak, and more
than three groups for UpPeak. Especially, as shown in Fig. 11 (e), the 15 uncertain situations were
categorized into nine groups in terms of TT for UpPeak. This indicates that the uncertain situations
have more diverse impact on the Q0S;,4i,p robustness for UpPeak than for LunchPeak, especially for
TT during UpPeak, as shown in Table 13 ((492-7)/900=54% difference). This might be caused by the
special traffic pattern during UpPeak in the office building, which has the following characteristics:
the passenger activities are mostly incoming in the morning to the offices (as shown in Fig. 4).
Therefore, many passengers register calls and wait for the elevators on the entrance floor. On the
other hand, some do not even need to wait since they often hurry to the entrance floor, and luckily
an elevator door is already open. For these passengers, their waiting time (WT) is 0. Moreover, as
we observed, in most cases, each elevator loads passengers until there is no spare space. Then it
closes the door and transits from the entrance floor to the different upper floors according to the
passengers’ requests. Correspondingly, the elevator needs to stop frequently to unload passengers,
which makes TT relatively more sensitive to passengers’ uncertainties than WT and TD during
UpPeak. This is because the transit time of the passengers whose destinations are on higher floors
is more likely affected by passengers’ uncertainties.

To study the 15 uncertain situations in terms of all the Q0S;,4;,p metrics, we performed ranking
with Eq. 23. Results for LunchPeak, UpPeak and Overall (combing the two templates together) are
shown in Fig. 11 (g), (h) and (i), respectively. Fig. 11 (g)-(i) show that for the two template-specific
rankings (Fig. 11 (g) and (h)) and the overall ranking (Fig. 11 (i)), both usM-C-L-U and usC-L-U
were categorized into the last group, whereas usM and usC were categorized into the first group.
It indicates that uncertain factors Mass and Capacity Factor have more impact on the Q0S;,4i,p
robustness of the 90 dispatchers, while interactions between uncertain factors Capacity Factor,
Loading Time and Unloading Time, and interactions between all the four uncertain factors have
relatively small impact on the Q0S;,4;,p robustness of the 90 dispatchers.

From the QoS;,4i,p robustness in Table 13 and Fig. 11, we also noticed that the Qo0S;,4;,p r0-
bustness of the 90 dispatchers is not correlated to the number of interacting uncertain factors,
i.e., interactions of a higher number of uncertain factors do not necessarily worsen the QoS;,4i,p
robustness. For instance, as we can observe from Table 13 and Fig. 11, some uncertain situations
caused by a single uncertain factor (e.g., usM and usC) have relatively higher impact than the
uncertain situations with more interacting uncertain factors (e.g., usM-C-L-U) on the Qo0S;n4ivp
robustness. Recall from Section 3.1 that to generate an uncertain traffic profile for, e.g., usM-C-L-U,
values of the four uncertain factors Mass, Capacity Factor, Loading Time and Unloading Time are
varied around the recommended values. In other words, each of them might take a value that is
higher or lower than their respective recommended values for each passenger, but the average
values of the uncertain factors for all the passengers across each generated uncertain traffic profile
are maintained as the recommended values, to be realistic. Therefore, it is worth mentioning that an
uncertain situation such as usM-C-L-U is not a situation that has extreme values on Mass, Capability
Factor, Loading and Unloading Times. Consequently, interactions of a higher number of uncertain
factors does not necessarily worsen the Q0S;,4;,p robustness as we observed.
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Fig. 11. The SD-G ranking of the 15 uncertain situations across the 90 dispatchers in terms of each Q0S;,,4i,p
metric (Fig. 11 (a)-(f)) and all the Q0S;,,4;,p metrics (Fig. 11 (g)-(i)) - RQ2.2. An x-axis shows the uncertain
situations sorted according to their counts in terms of a specific Q0S;,4i,p (see Count columns of the three
Q0S;divp Metrics in Table 13) or all the Q0S;,4;,p Mmetrics (see Overall column in Table 13), whereas the same
color of the adjacent uncertain situations indicates the same group, implying that the robustness difference
across the 90 dispatchers under these uncertain situations are negligible. A lower count (y-axis) indicates a
higher robustness under a specific uncertain situation. Each dot represents the average count across the 90
dispatchers on each sample, and the length of each line indicates twice of the standard deviation of each
sample.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.



Uncertainty-aware Robustness Assessment of Industrial Elevator Systems 29

Conclusions for RQ2.2: 1) The impact of the 15 uncertain situations on dispatchers’ Q0S;,qiup
robustness is also related to the templates, and more differences observed on UpPeak (23%)
than on LunchPeak (12%); 2) The 15 uncertain situations exhibit highly diverse impact on the
Q0S;naivp robustness across the 90 dispatchers, in terms of TT, during UpPeak; 3) In general,
interactions among uncertain factors Capacity Factor, Loading Time and Unloading Time, and
interactions among all the four uncertain factors have relatively small impact on the QoS;,giup
robustness, while uncertain factors Mass and Capacity Factor exhibit relatively large impact
on the Q0S;,4i,p robustness, across the 90 dispatchers.

4.2.3 RQ2.3: Rank QoS;nginp metrics. We further studied the degree to which each Q0S;,4;,p metric
is impacted by passengers’ uncertainties by quantifying the robustness of all the 90 dispatchers in
terms of each Q0S;,4i,p metric with Eq. 25 on each template. The sorted Q0S;,4i,p metrics for the
90 dispatchers on the LunchPeak and UpPeak are shown in Table 10. We can observe that the 90
dispatchers achieved the highest count in terms of TT for LunchPeak, whereas they have the lowest
count in terms of TT for UpPeak. This might tell that the impact of passengers’ uncertainties on a
specific Q0S;,4i,p robustness of the dispatchers is also related to the templates.

Table 10. Q0S;p,4iup robustness of the 90 dispatchers - RQ2.3. For each Q0S;,,4i,p metric, there are, in total,
90 (dispatchers) x 15 (uncertain situations) X 10 (uncertain traffic profiles) = 13500 p-values. Each Sorted Time
List cell tells the count calculated with Eq. 25. A lower count indicates a higher robustness.

Template Sorted Q0S;,4ivp Metrics Total Count
LunchPeak TT(2728) WT (1999) TD (1880) 6607
UpPeak WT (4420) TD (3479) TT (3424) 11323
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Fig. 12. The SD-G ranking of the three Q0S;,4;,p metrics across the 90 dispatchers - RQ2.3. The x-axis shows
the Qo0S;,4iup metrics sorted according to their counts, whereas the same color of the adjacent Q0S;,,4;,p
metrics indicates the same group (e.g., TD and TT in Fig. 12 (b) are in the same group), implying that the
robustness difference in terms of these Qo0S;,4;,p metrics are negligible. A lower count (y-axis) indicates a
higher robustness. Each dot represents the average count across the 90 dispatchers on each sample, and the
length of each line indicates the twice of the standard deviation of each sample.
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To further compare the robustness across the 90 dispatchers in terms of the three QoS;,gi,p
metrics, we performed a ranking with Eq. 26 for each template. Results are shown in Fig. 12 (a)
and (b), respectively. We can see that for LunchPeak, the three Q0S;,4;,p metrics were categorized
into one group, implying that the robustness differences across the 90 dispatchers in terms of the
three Qo0S;,4iyp metrics are negligible. For UpPeak, WT was the only QoS;,4i,p metric categorized
into the first group, which means that the 90 dispatchers achieved the worst robustness in terms of
WT. One possible reason is that a majority of passenger activities during UpPeak are incoming,
i.e., most people come to the office around 9:00 am; they take elevator from the entrance floor to
their working floor, which might lead to the elevator frequently transit between the entrance floor
and the top floor, and frequently stop to unload passengers working at different floors. As a result,
the waiting time for the passengers increases. Consequently, the 90 dispatchers were relatively
more sensitive to passengers’ uncertainties in terms of WT. To compare the overall robustness
across the 90 dispatchers in terms of the three Q0S;,4i,p metrics on both templates, we conducted
ranking again with Eq. 26 by combing the two templates, as shown in Fig. 12 (c). It is clear that the
robustness of the 90 dispatchers when measured with the three different Q0S;,,4;,p metrics, have
negligible differences, as they are ranked into one group.

Conclusions for RQ2.3: 1) The impact of the passengers’ uncertainties on the Qo0S;ngiup
robustness of the 90 dispatchers varies from template to template; 2) The WT impacted
the most by passengers’ uncertainties on UpPeak across all the dispatchers; 3) Overall, the
robustness of the 90 dispatchers when measured with the three different Q0S;,,4;,p metrics
have negligible differences.

4.3 Overall Discussions

We further looked at the results from the overall combined perspective of both the Qo0S,;;p and
Qo0S;ngivp robustness. To do so, we summed the counts in terms of all the six QoS,;;p metrics with
Eq. 28 and the counts in terms of all the three Q0S;,4i,p metrics with Eq. 30, on each template.
Results are summarized in the Total Count column in Table 9 and Table 10, respectively. As we
can see, the total counts on UpPeak are higher than that on LunchPeak, consistently for both the
QoS.11p and QoS;pgiyp robustness. The main reason behind this could be that the UpPeak template
is more demanding than the LunchPeak.

For the impact of the different uncertain situations on the robustness of all the 90 dispatchers,
when we look at the overall ranking of the 15 uncertain situations in terms of the QoS,;;p robustness
(Fig. 8 (0)) and the QoS;y4i,p robustness (Fig. 11 (i)), we can observe that usC, usM and usM-C are
the only three uncertain situations categorized into the first group, while usC-L-U was categorized
into the last group, in both rankings. It means that uncertain factors Capacity Factor, Mass, and
their interactions have more impact on the robustness of the dispatchers. In contrast, interactions
among uncertain factors Capacity Factor, Loading Time and Unloading Time have relatively less
impact on the robustness across all the 90 dispatchers.

When looking at specific dispatchers, as shown in Fig. 7 (c) and Fig. 10 (c), dispatcher version D02
was categorized into the last group, while D44 was categorized into the first group, in the overall
rankings of both the QoS,;;p and Q0S;,4i,p robustness. It means that D02 has the best robustness
and even performed more robust than the original dispatcher when dealing with passengers’
uncertainties. We have confirmed with the domain experts in Orona that changes to the original
dispatcher, in most cases, might have negative impacts on its performance; however, it might also
be possible that a few changes may lead to better performance in certain situations. A reason for
this could be that the dispatcher highly relies on parameters to be adaptable to different types of
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buildings. These parameters are optimized for each type of building based on the building needs.
However our experiments used the original dispatcher with default parameter settings from Orona.
Possibly, the parameters of D02 are optimized both for the building we have studied as well as for
both traffic templates we have employed in our empirical evaluation. Conversely, D44 performed
the least robust among all the dispatchers. In addition, one can also observe that the original
dispatcher was categorized into the fifth group on the right in both overall rankings (Fig. 7 (c) and
Fig. 10 (c)), which implies that the original dispatcher performed more robust than a majority of
the 89 generated versions across the 15 uncertain situations.

We would also like to point it out that due to the current limitation of the simulator, we cannot
control any temporal characteristics of the generation and interaction of uncertain factors at the
simulation time. This is because the employed simulator, i.e., Elevate, requires previously generated
traffic profiles before executing the simulation.

Finally, we summarize key observations and corresponding a set of recommendations from RQ1
and RQ2 in Table 11 for elevator designers.

Table 11. Summarized observations from RQ1-2, and recommendations for elevator practitioners.”

ROQs Observations Recommendations

RO1 Different metrics, i.e., AWT, LWT, ATT, LTT, ATD,and  Test and optimize elevators’ robustness in terms of
LTD impact the robustness differently under passen- a specific QoS metric based on customer preferences.
gers’ uncertainties. Overall, the dispatchers’ robust- Otherwise, all the QoS metrics are recommended to
ness in terms of average time-related QoS metrics (i.e., be used for a comprehensive assessment, since we
AWT, ATT and ATD) are relatively less impacted than  observed that the optimized AWT might lead to the
in terms of the longest time-related QoS metrics (i.e., increased LTT, suggesting that the optimization pro-
LWT, LTT and LTD) by passengers’ uncertainties. cess may have to find the right balance of satisfying

more than one metric.

RQ2 The 15 uncertain situations exhibit highly diverse Prioritize assessing a dispatcher’s robustness in terms
impact on the robustness of the dispatchers in terms  of TT when evaluating on UpPeak.
of TT (than WT and TD) on UpPeak.

RQ1&2  The robustness of most dispatchers is affected by pas-  Assess the robustness of dispatchers in the presence

sengers’ uncertainties. The dispatchers’ robustness
in the presence of passengers’ uncertainties varies
from template to template. Overall, UpPeak impact
the dispatchers’ robustness more than LunchPeak.

of passengers’ uncertainties for a number of templates
given the time budget, and UpPeak should be priori-
tized for assessment.

There is no correlation between the higher number of
uncertain factors and the low robustness. Uncertain
situations with more interacting uncertain factors do
not necessarily lead to worse robustness.

All possible uncertain situations are recommended
for robustness assessment, if there is a sufficient time
available. Otherwise, start assessing the robustness
with a single uncertain factor first then gradually as-
sess with the interactions consisting of higher number
of uncertain factors. This will give an indication of
which uncertain factor(s) are affecting the robustness
the most.

Overall, uncertain factors Capacity Factor, Mass, and
their interactions have more impact, than the other
uncertain situations, on the dispatchers’ robustness
when evaluated on both templates.

Specific robustness optimization strategy for dealing
with passengers’ uncertain Capacity Factor, Mass, and
their interactions should be investigated.

*Note that RQ1 studies the robustness in terms of QoS provided to all the passengers as a whole, while RQ2
focuses on the robustness in terms of QoS provided to each individual passenger; Row RQ1&2 summarize the
observations derived from both RQ1 and RQ2, i.e., observations from both types of robustness.
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5 GUIDELINES AND GENERALIZATION OF UNCERROBUA

In this section, we first present the guidelines of UncerRobua in Section 5.1, followed by its general-
ization to other software domains in Section 5.2.

5.1 Guidelines of UncerRobua

The methodology of conducting our empirical study is a systematic way to assess a dispatcher’s
robustness against passengers’ uncertainties. This methodology is useful for guiding elevator
designers to assess and investigate elevator dispatchers’ robustness from various aspects, as the
feedback from our industrial partner tells. We therefore derive the UncerRobua methodology for
achieving the four objectives, as presented in Fig. 13.

01: Assess dispatcher | 03: Optimi
robustness | handllng highly uncertain snuatlons

|
|
. Ranking of uncertain
slluallons |
|
I

Rank uncertain situations
with the SD-G test

Generate uncertain
traffic profiles

Generated uncertain
traffic profiles

Simulate all the
generated profiles

" 702! Identify most robust
dispatchers

lerms of specific QoS metrics

Rankmg of QoS metrics %

Rank QoS metrlcs with the
SD-G test

Fig. 13. Guidelines for applying UncerRobua

Objective 1 (O1): Assessing dispatcher’s robustness. An elevator dispatcher usually goes
through a sequence of releases due to bug fixing, performance improvement, etc. Before each
release, testing is performed to ensure the quality of the dispatcher. One important aspect is to
test the robustness of the algorithm under various passengers’ uncertainties. Such testing checks
whether a new release has expected QoS,;;p and QoS;,4i,p robustness as determined by domain
experts. The essential activities of achieving OI are three steps: generating uncertain traffic profiles
with different templates using Algorithm 1, simulate them, and quantify robustness (Section A.1),
with the output being quantified robustness of the given dispatcher.

Objective 2 (02): Identifying most robust dispatchers. Doing so can help elevator designers
select the most robust dispatchers for a given building configuration. This is important because an
elevator company, such as Orona, typically has various dispatchers for different building types (e.g.,
airports and hospitals). Moreover, comparing the robustness of different dispatchers is also useful
to identify the weaknesses of the algorithms and therefore provide useful information for refining
the algorithms to make them more robust. The first step is to generate uncertain traffic profiles,
followed by simulating them with all the dispatchers that the elevator designer plans to investigate.
Based on the simulation results, the robustness of each dispatcher is quantified, results of which
are consequently used by the SD-G test to rank the robustness of the dispatchers in terms of all
the Qo0S,j;p metrics (with Eq. 9) and all the Qo0S;,4i,p metrics (with Eq. 19). Note that O1 checks
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whether a dispatcher satisfies the expected robustness determined by domain experts, or whether
the robustness of the dispatcher is degraded after, e.g., bug fixing; whilst O2 ranks the robustness
of all the dispatchers under investigation with the aim of identifying the most robust dispatcher(s).

Objective 3 (03): Optimizing dispatcher robustness in handling highly uncertain situ-
ations. When designing elevator systems, in addition to satisfying all functional requirements,
engineers need to empower elevator systems to elegantly deal with uncertainties from passengers
or those caused by hardware failures such as delays in opening a door. To do so, elevator engi-
neers need to systematically investigate various uncertain situations and their potential impact on
the elevator systems. Based on the results of the investigation, they can then focus on uncertain
situations that have a relatively large impact on the robustness of the systems. In addition to the
essential activities of 02, to achieve O3, one also needs to rank the uncertain situations with the
SD-G test. This resulted ranking of the uncertain situations provides elevator designers information
about which uncertain situation(s) should be focused on.

Objective 4 (04): Optimizing dispatcher robustness in terms of specific QoS,;p or
Q0S;ndivp metric(s). Different QoSyp and Q0S;,4i,p metrics are usually affected differently by
passengers’ uncertainties. To compare the overall robustness in respect to each Q0S,;;p/Q0Singivp
metric, the SD-G test can be performed to rank all the Q0S,;;p/Q0S;n4i,p metrics across multiple
executed results. The first three activities are the same as for O1, O2 and O3. The SD-G test is,
in the end, employed to rank all the Qo0S,;;p/Q0Singinp metrics. The obtained ranking provides
elevator designers the information on which QoS,j;p or Qo0S;,4;,p metric(s) are impacted the most
by passengers’ uncertainties such that they can be the targets for optimization.

It is worth noting that it is essential to generate uncertain traffic profiles with values of uncertain
factors within reasonable intervals without having the values deviating significantly from the
baseline profile. Otherwise, generated uncertain traffic profiles would not reflect real situations,
and consequently result in unreliable robustness assessment results. Nonetheless, in the real-world,
uncertain situations could possibly result in values of an uncertain factor deviating very much from
recommended values. Until now, we have not investigated how such situations could affect the
UncerRobua methodology. Furthermore, we assessed the robustness in the SiL setting, and further
experimentation is needed to see if UncerRobua is applicable in the HiL setting and could lead to
different results as for the SiL setting.

5.2 Generalization of UncerRobua

Similar to elevator systems, most CPSs have the following characteristics: operating in uncertain
environments; having directly (or indirectly) measurable QoS; and being required to handle uncer-
tainties robustly. We therefore think that UncerRobua can be generalized to assess the robustness
of other CPSs against uncertainties, and summarize the general process of applying UncerRobua as
follows:

Generating uncertain profiles. To investigate the robustness of a system against uncertainties,
uncertain factors that the system needs to handle during its operation should be firstly identified
and specified with specific data types, e.g., interval, distribution, or FuzzySet [62]. With specified
uncertain factors, uncertain profiles can be generated with UncerRobua to simulate uncertain
situations. However, our current generator only handles uncertainties modeled with interval data
types; therefore, other generators must be implemented depending on the data types. Note that
various types of uncertain profiles can be generated based on a single uncertain factor or interactions,
which has been focused on in many fields (e.g., [27, 64]), between multiple uncertain factors. Taking
an example of Autonomous Driving System (ADS), uncertain factors can be the weather, pedestrians
and surrounding vehicles, etc [29]. An uncertain situation can be caused by, e.g., only pedestrians,
or, e.g., interactions between pedestrians and weather conditions. Correspondingly, uncertain
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profiles can be generated by introducing only pedestrians, or both pedestrians and foggy weather,
for instance, to the environment configuration file.

Quantifying robustness. Executing generated uncertain profiles produces multiple outputs, and
values of QoS metrics thus can be derived. For example, the QoS metrics of the ADS can be time
to destination, trajectory offset and balancing of the car, etc. By comparing the values of the QoS
metrics of the system operating under a specific uncertain situation with that of the baseline
(without uncertainty) using, e.g., statistical tests, one can observe whether the QoS of the system is
significantly degraded in the presence of uncertainty, which reflects the robustness of the system
against a specific uncertain situation. Based on the observation, the robustness of the system in
terms of a specific QoS metric, against a specific uncertain situation, thus can be quantified. Multiple
uncertain situations (e.g., X) and QoS metrics (e.g., Y) correspond to multiple observations (e.g.,
X %Y in total). To systematically investigate and quantify systems’ robustness against uncertainties,
all the uncertain situations caused by all the captured uncertain factors (refer to Definitions 5 and 7
in the elevation domain), and comprehensive QoS metrics, are recommended to be studied.

Ranking with the SD-G test. To compare the overall robustness of, e.g., different software versions
of a system, the SD-G test can be used to rank all the compared versions across all the uncertain
situations based on the quantified robustness of each software version in terms of all the QoS
metrics under each uncertain situation. To investigate the robustness of a specific software version
under different uncertain situations, or in terms of different QoS metrics, with the final aim of
prioritizing optimization scenarios, the SD-G test is recommended. For example, ranking the
quantified robustness under each uncertain situation across multiple executions to prioritize
uncertain situations that have a high impact on the robustness, or ranking the quantified robustness
in terms of each QoS metric across all the uncertain situations to prioritize QoS metrics to be
optimized. Note that ranking with SD-G test is generic so it is applicable to other contexts.

6 THREATS TO VALIDITY

In this section, we discuss threats to the validity of our empirical study.

6.1 Internal Validity

Threats to the internal validity is related to the internal factors [40]. For our empirical study, the
first threat is the selection of parameter settings for the SiL simulation. To reduce this threat, we
used an office building settings from the CIBSE Guide D [8]. Correspondingly, we used two CIBSE
modern office templates from Elevate, which are based on multiple traffic surveys conducted by
Peters Research Ltd. The two traffic templates model passengers’ activities during UpPeak and
LunchPeak in an office building, respectively. We did not tune the traffic flow parameters, e.g.,
Arrival Floor, as changing them will make the traffic flow of the traffic template provided by Elevate
unrealistic. The second threat is that we only used one type of dispatchers. Orona, indeed, has
various types of dispatchers, and we used the type that has been widely used in many elevators.
In addition, the selection of the intervals for generating values of the uncertain factors (Section
3.1.5 ) might affect results of the empirical study, though we have no evidence of concluding it.
Considering the intervals as independent variables requires a dedicated empirical study, which,
unfortunately, we cannot afford currently.

6.2 Construct Validity

To minimize threats to the construct validity, first, we carefully selected QoS metrics. These metrics
have been widely used in practise and are also comparable across all the 89 generated versions
and the original algorithm. Second, to perform the ranking that considers the statistical difference
among variables, we used the Cliff’s Delta effect size. There exist other effect size measures such as

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.



Uncertainty-aware Robustness Assessment of Industrial Elevator Systems 35

Cohen’s d and Hedges’ g; however, applying these measures require that samples are normally
distributed [34], which is not the case for some of our data.

Another threat is that we generated uncertain values of the uncertain factors and controlled
the average value of the generated uncertain values being the same as the recommended value in
the standard [8] (e.g., 75 KG for Mass), to avoid deviating too much from the standard. There are
other ways of generating uncertainties, e.g., using Poisson distributions [44], which we intend to
investigate in the future work, if data are available.

6.3 Conclusion Validity

One threat to the conclusion validity is the number of uncertain traffic profiles we generated for
each uncertain situation. More uncertain traffic profiles will bring more confidence in the results. To
reduce this threat, for each uncertain situation, we generated 10 uncertain traffic profiles. Although
10 may not sound like a lot, it already resulted in a huge amount of simulations. In total, we
performed (15 X 10 + 1) X 2 X (1 + 89) = 27180 simulations, and each simulation simulated more
than 1000 passengers. Another threat is the modeled passengers’ uncertainties. Regarding this
threat, we used intervals around the recommended values from the CIBSE Guide D [8] to generate
values of the uncertain factors, which is close to passengers’ uncertainties in real life and does not
lead to unrealistic uncertainties. In the future, we plan to conduct more experiments with other
traffic templates and more uncertain factors.

6.4 External Validity

A common threat to the external validity in empirical studies is lacking real case studies. To reduce
this threat, we conducted the experiments with a real industrial elevator system from Orona. To
generalize the results and hence mitigate the threat to the external validity, we generated a set of
dispatcher versions by injecting small syntactic variations (check Section 3.1.2 for more details),
which allowed us carrying out a more thorough empirical study with a larger dataset. Here, we
want to acknowledge that, in an ideal situations, more real dispatchers could have been used.
However, due to practical challenges, we had no access to them.

Another external validity threat is the generalization of our approach to other systems. As
discussed in Section 5.2, some aspects of the approach, such as the ranking algorithm, can be used
in other contexts without modifications, whereas certain aspects such as uncertainty generation
need to be extended depending on the system. In the future, we plan to build generic and configurable
interfaces to ease its use in other contexts further.

7 RELATED WORK

We present the related work from three aspects: testing under uncertainty (Section 7.1), testing of
the elevator systems (Section 7.2) and elevator uncertainty (Section 7.3).

7.1 Testing under Uncertainty

Uncertainty is a growing concern in complex CPSs [11]. Accordingly, researchers have proposed
approaches for testing CPSs under uncertainty. For example, Zhang et al. proposed UncerTest
[61], a model-based testing tool for generating uncertainty-aware test cases to test CPS under
environmental uncertainties. Camilli et al. [9] proposed an online model-based testing approach that
dynamically generates test cases with the uncertainty sampling policy, which takes into account
the uncertain parameters of the Markov Decision Process (MDP) model built for the investigated
Tele Assistance System. Ali et al. [4] systematically investigated uncertainty-wise testing, in the
context of CPSs, from various aspects, e.g., uncertainty-wise model-based testing and uncertainty-
wise multi-objective test optimization, and presented a vision toward the research directions
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of uncertainty testing. To test CPS Simulink models, Menghi et al. [36] proposed SOCRaTeS for
generating test oracles, where white noise signals were employed to simulate the noise in the
inputs especially caused by sensor readings, and uncertain parametric values were used to model
unknown hardware choices that lead to undetermined model parameters. Walkinshaw et al. [50]
proposed a black-box testing framework, which infers behavioral models of the SUT using Genetic
Programming (GP) to select the most uncertain test cases for the inferred model for execution, thus
decreasing uncertainty about the correctness of a software system. Ul Haq et al. [49] proposed
SAMOTA for test suite generation, which considers uncertainty of surrogate models’ predictions.
When comparing the above works with UncerRobua, none of the above work assesses the robustness
of CPS against uncertainties. Instead most of them focus on the generation ([9, 36, 49, 61]) and
optimization ([4, 50]) of uncertainty-related test cases. Nonetheless, UncerRobua can be used to
generate uncertainty-aware robustness tests for CPSs uncertainty, which is one of our future works.

Ma et al. [32] proposed two algorithms to test the self-healing behaviors of CPSs: Fragility-
Oriented Testing (FOT) for faults detection and Uncertainty Policy Optimization (UPO) for uncer-
tainty generation. FOT utilizes the fragility to learn the optimal strategy for operation invocation,
once a sequence of operation invocations is selected, UPO is used to introduce uncertainty, i.e., learn
the optimal uncertainty values of the state variables to make the CPS behave under uncertainty,
based on the fragility obtained from test executions. To test the self-healing behaviors of CPSs
under environmental uncertainties, Ma et al. [30] proposed a model-based approach consisting
of a modeling framework of self-healing CPSs (MoSH) and a test model executor (TM-Executor).
Based on their previous works [32] and [30], Ma et al. [31] performed an empirical study, using
reinforcement learning algorithms to test self-healing CPSs under uncertainty. This work provides
an evidence about the cost-effectiveness of different reinforcement learning algorithms for test-
ing self-healing behaviors. To compare with the work of Ma et al. [30-32], we, however, take a
new uncertainty generation approach, which studies all possible interactions between different
uncertain factors instead of merging all uncertainties together, and particularly focus on passenger
uncertainties in the context of an industrial elevator system. It is worth noting that our approach
also ranks all the uncertain situations based on their impact on the system, which can be used to
prioritize uncertainty testing scenarios.

In summary, uncertainty test case generation and optimization are still the main focus of the
literature (e.g., [4, 9, 36, 49, 50, 61]). Furthermore, model-based testing (e.g., [9, 10, 12, 61, 63]) and
search-based algorithms (e.g., [4, 28, 42, 49, 59]) are widely used in uncertainty testing of CPSs.
These works have the risk of generating extremely uncertain and possibly unrealistic situations,
which are highly likely to affect the robustness of the system. In contrast, our work UncerRobua
systematically assess the robustness of CPSs against uncertainties that occur in realistic situations.
In our opinion, both lines of research and techniques have different aims but are complementary to
each other.

7.2 Testing Elevator Systems

Testing elevator systems has been investigated with various techniques, e.g., metamorphic testing
[6], machine learning [5, 56], and model-based development [37]. However, most of them focus on
testing functionalities, e.g., braking [20, 33], and doors [43] of elevator systems. For instance, Peng
et al. [38] proposed a dynamic braking torque test method to test both the static and emergency
braking torque. Wu et al. [54] proposed a thermal elastoplastic contact model. This model treats
the frictional sliding during braking as the interfacial failure of the contact material, for studying
the frictional braking of elevator safety gear. In terms of elevator brake failure, Wang et al. [55]
developed an elevator braking system evaluation model using fishbone diagrams for analyzing the
problems of elevator braking systems.
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A few works focus on testing the performance of elevator systems. Chen et al. [13] investigated
the cooling performance of the air conditioner of elevator cars and optimized the cooling capacity
by adjusting the input current. They increased the current from 1.5A to 9.9A and observed that the
maximum air-cooling capacity can be obtained at 9.4A. Al-Sharif et al. [3] proposed a paradigm
with three components for testing the performance of elevator group control algorithms using
idealized benchmarks, random scenario testing, and gradually making scenarios more realistic.
Wang et al. [51] tested the seismic performance of a functional traction elevator in a reinforced
concrete building under earthquake. The designed building can shake in east-west direction, which
takes advantage of the ground motions developed for a site in Southern California.

In summary, existing works mainly tested elevator systems’ functionalities, and a few works
focused on the performance testing. However, there is no relevant research on the robustness
assessment of elevator systems in dealing with passengers’ uncertainties. Our work is a novel
method for systematically assessing the robustness of elevator dispatchers against passengers’
uncertainties.

7.3 Elevator Uncertainty

Uncertainties in elevator systems have been increasingly investigated. For example, in [2], Monte
Carlo simulations were used to evaluate passengers’ average traveling time during up peak with
environmental uncertainties, e.g., floor populations and heights, and multiple entrances. In addition,
Fuzzy theory has also been used for various purposes, e.g., measuring passengers’ satisfaction
[57], minimizing waiting time [18], and optimizing energy consumption [17], in the presence of
uncertainties, i.e., passengers’ uncertain waiting time [57] and calls [17, 18]) in elevator systems.
To reduce elevator systems’ energy consumption in the context of uncertain traffic patterns, Zhang
et al. [60] proposed an energy-saving strategy for elevator dispatching. The strategy selects one of
their developed energy-saving dispatching models, i.e., up-peak, down-peak, up/down-mixed, and
night dispatching models, based on real time traffic pattern. Then the dispatching optimization
solutions can be obtained by solving the models using Linear Interactive and General Optimizer
software.

In a recent study on elevators’ brake systems, Wolszczak et al. [53] proposed an optimization
framework to improve the efficiency of the elevator’s brake system under braking force uncertainties,
which are caused by the brake cam angle and the spring reaction force. Passengers’ uncertainties
have also been investigated recently. For example, Sorsa et al. [44] investigated elevator dispatching
problem, in which passengers’ arrival uncertainty are modeled with Poisson and geometric Poisson
distributions. They formulated elevator dispatching problem as a stochastic optimal control problem,
for which they also designed a robust optimization approach by considering multiple parametric
values of all possible stops of the elevator across all the floors. Evaluation was performed by
comparing estimated values (e.g., passenger’s demand reflected as the number of waiting passengers
behind a call, and waiting time) with actual values generated with simulations. Results show that
the geometric Poisson process performs better than the Poisson process in estimating uncertainty.
Different from [44], we didn’t model passengers’ arrival uncertainty with distributions by ourselves.
Instead, we adopted template specific arrival data (i.e., Arrival Time and Arrival Floor) generated
by Elevate, which are based on multiple traffic surveys conducted on operational elevators in real
buildings, as also evidenced in Fig. 3 and Fig. 4.

Software uncertainty has also been considered recently. For instance, to reduce passengers’
waiting time, Bapin et al. [7] proposed an optimization algorithm for elevator dispatching using
the information obtained from a real-time surveillance video processed by an image processing
system, which estimates the number of passengers waiting for an elevator in hallway and predicts
passengers’ movement directions. The proposed method takes into account the uncertainty due
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to the possible errors caused by the image recognition software, e.g., misidentifying luggage as
passengers. This kind of uncertainty is solved utilizing the Bayesian network [19].

In summary, existing works mainly focused on designing optimization methods for elevator
systems under uncertainties, from different aspects such as energy consumption, braking efficiency,
and dispatching problems. In contrast, our work focuses on assessing the robustness of industrial
elevator dispatchers against passengers’ uncertainties from various aspects. Furthermore, the
uncertainties we studied cover more uncertain factors of passengers and we also investigated all
the possible interactions between multiple uncertain factors, which has not yet been investigated
in existing works.

8 CONCLUSION AND FUTURE WORK

Elevator systems transport passengers in the presence of various uncertainties, e.g., software, hard-
ware, and environment uncertainties. These uncertainties affect elevator systems in different ways,
such as decreasing dispatching efficiency, worsening systems’ robustness, and even threatening
systems’ security [21]. Among all the uncertainties, passengers’ uncertainties are the most common
and exist throughout the operating cycle of elevator systems.

To study the impact of passengers’ uncertainties on the robustness of elevator dispatchers
(i.e., software), we performed a comprehensive industrial case study. We investigated such uncer-
tainties in the form of various uncertain situations caused by passengers’ uncertain factors and
their possible interactions. With an industrial elevator dispatcher from Orona, we conducted an
empirical evaluation. During the assessment, both QoS,;;p robustness and QoS;,4i,p robustness
were investigated, each of which is further analyzed from the following aspects: 1) assessing each
dispatcher’s robustness against passengers’ uncertainties in terms of Q0S,;;p/Q0S;n4iop metrics;
2) investigating the impact of different uncertain situations on the Q0S,;;p/Q0S;p4ip robustness
of the dispatchers; and 3) investigating which Qo0S,;;p/Q0S;p4i0p metric(s) is impacted the most
by passenger uncertainties. To perform ranking, which takes into account statistical differences,
for various comparison purposes, e.g., ranking the uncertain situations, or the dispatchers, we
developed the SD-G test. Based on the experience learned in the empirical study, we finally derived
UncerRobua, a comprehensive Uncertainty-aware Robustness assessment methodology along with
a set of guidelines for elevator designers to systematically investigate the robustness of dispatchers.
To facilitate the application of UncerRobua by practitioners in other software domains, we also
discussed the generalization of UncerRobua.

In the future, we plan to 1) Investigate more uncertain factors as well as other types of uncertain-
ties such as hardware uncertainty; 2) Build a conceptual model covering all types of uncertainty in
elevator systems to provide guidance for elevator designers to systemically investigate elevator
systems’ uncertainties; 3) Classify various uncertain situations into different levels/categories based
on the degree of their impact on dispatchers, which can guide elevator designers in designing
uncertainty handling solutions, e.g., optimization strategies specific to certain types of uncertainties;
4) Investigate more traffic templates, e.g., DownPeak; 5) Study different uncertainty generation
methods, e.g. model passengers’ uncertain attributes with distributions; 6) Investigate advanced
uncertainty sampling methods such as with Monte Carlo simulation.
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A APPENDIX - DETAILED METRICS
A.1 Robustness quantification

A simulation of an uncertain traffic profile P, x with a dispatcher compiled in Elevate produces
values for the Time List'* (see the example in Table 2) and Qo0S,;;p metrics (see the example in Table
3). These values are represented as TLys, k = {TLsus, k| = 1,2,3} and Qus, k = {qrus, k|l = 1, ..., 6},
respectively, where TL; 5, i (see Definition 3) and q; s, « are the sth Time List value and Ith QoS,p
value for the kth uncertain traffic profile of the oth uncertain situation, respectively. For instance,
assume the simulation results shown in Table 2 and Table 3 are generated by executing the 3rd
uncertain traffic profile of the first uncertain situation us;. Correspondingly, the value of the second
QoSgp can be represented as gz 45, 3 (i-e., the LWT value in Table 3), and a set of values for the
second Time List can be represented as TL, s, 3 (i.e., the TT column in Table 2). After executing
simulations with all the generated uncertain traffic profiles of all the uncertain situations, we
obtained our dataset. We then performed corresponding analyses on the dataset to answer the RQs
(Section 3.2) with dedicated statistical tests.

To study the robustness of a dispatcher against passengers’ uncertainties, in terms of each QoS,;;p
metric, we used the one-sample Wilcoxon signed rank test (one tailed, at the significance level of
0.05) to compare the NR values of one specific QoS,;;p metric obtained for the NR uncertain traffic
profiles with one value produced by the baseline profile (with fixed values for all the passengers’
uncertain factors, see Section 3.1.4), which results the below p-value:

qosa

P}, = OneSampleWilcoxonTest (((ql, Q2> s qNR)us(,)l’ q;’) (3)
where, p;lzza is the p-value under the oth uncertain situation us, in terms of the Ith QoS,;;p metric;

((ql, Q2> s qNR)uso)lis an array composed of the values of the Ith Q0S,;p metric of the NR uncertain

traffic profiles under uncertain situation us,; qf’ is the value of the [th QoS,;;p metric of the baseline
profile. For example, to study the robustness of a dispatcher against the second uncertain situation
usy in terms of the first QoS,;p — AWT with 10 uncertain traffic profiles, the 10 produced AWT

values (((ql,qz, qu)usz)l) are compared with the one (qi’) of the baseline profile with Eq. 3

to obtain p-value p?‘;s;: A resulting p-value less than 0.05 means that the uncertain situation

significantly worsens the QoS,p attribute significantly, i.e., the dispatcher performed less robust
under a specific uncertain situation in terms of a specific QoS,;p metric. Taking the example
above, p?‘;ssz < 0.05 indicates that the 10 produced AWT values under uncertain situation us; are
significantly greater than the one produced by the baseline profile.

Similarly, the comparison of the sth Time List generated by the kth uncertain traffic profile
and the baseline profile is performed with the paired Wilcoxon signed rank test (one tailed, at a

significance level of 0.05), as shown below:
pzluso’k = PairedWilcoxonTest (TLs,uso,ks TLf) (4)

where TL; s, i is the sth Time List (with s being 1, 2 or 3, respectively, representing Time Lists for WT,
TT or TL (Section 2)) generated by the kth uncertain traffic profile under uncertain situation us,; TL?
is the sth Time List of the baseline profile; p! ’luso’ ¢ is the p-value corresponding to the kth uncertain
traffic profile of the uncertain situation us, in terms of the sth Time List. A resulting p-value less
than 0.05 indicates that passengers’ uncertainties have a significant impact on the Q0S;,4;,p, which
implies a relatively poor robustness of the dispatcher when dealing with passengers’ uncertainties.
For instance, the comparison between the first Time List (i.e., WT Time List) generated by the

19Note that Elevate only generates WT and TT, from which TD is calculated.
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baseline profile (TLb ) and the WT Time List produced by executing the 3rd uncertain traffic profile
corresponding to uncertain situation us; (T'Ly s, 3) may result in p1 us,3 < 0.05 with Eq. 4, which
implies a relatively poor robustness of the dispatcher in terms of WT under uncertain situation
usy.

Based on generated p-values with Eq. 3 and Eq. 4, we then quantify the QoS,;;p and QoS;pgivp
robustness of a dispatcher by counting the number of times that p-value<0.05 under each uncertain
situation. The robustness of a dispatcher under uncertain situation us, in terms of the Ith QoS,;;p
and the sth Q0S;,4;,p metrics can be quantified with Eq. 5 and Eq. 6, respectively:

Robustnesleos: = Count (p?zza < 0.05) (5)
RobustnesssQus‘ = Count (pS usg ke < 0-05, k=1,--- ,NR) (6)

Where, the QoS,;;p robustness measurements obtained with Eq. 5 can only be 0 or 1, with 1
indicating relatively poorer robustness, because a QoS,;;p metric (e.g., AWT) measures the quality
of service provided to all the passengers as a whole and hence one value is returned for each QoS,;;p
metric, after executing each traffic profile with Elevate. For QoS;,4i,p robustness, a quantification
result can take any value from 0 to NR (the total number of the uncertain traffic profiles) with a
higher value indicating a poorer robustness of the dispatcher against passengers’ uncertainties.
This is because, a Time List of each traffic profile (including the baseline profile) contains WT, TT
or TL values of all the passengers. For example, for the WT QoS;,4i,p robustness of the dispatcher
under us;, if six of the resulting p-values of all the ten comparisons (corresponding to the NR = 10
generated uncertain traffic profiles) are less than 0.05, the WT Q0S;,,4i,p robustness Robustness%ﬁ;
is then quantified as six.

A.2 Evaluation metrics

DEFINITION 8 (Q0S,;p BASED DISPATCHER RANKING). To measure the difference of the 90 dispatch-
ers, we first quantify their robustness under each uncertain situation in terms of each QoSg;p metric
(with Eq. 5), and all the QoS,y1p metrics with Eq. 7:

6
OneDlspatcherRobustnessA”QOS“ ZRobustnesleljf“ (7)
I=1

We then perform the SD-G test to rank all the 90 dispatchers across all the uncertain situations in terms
of each QoS ;p metric and all the QoS,;p metrics with Eq. 8 and Eq. 9, respectively:

DispatcherRank?*** = SD — Gtest(DQ"S“ DQ"S",- D;{;’f“) (8)
Dis patcher Rank?!'°5* = SD — Gtest(Df”Qasa, D;”QOS“, e, D;‘OHQOS”) 9)
QoSa QoSa QoSa T
where, D = (Robustness --- Robustness is the QoSgyp robustness of the mth
m,Lus; m,Lus;s
dzspatcher under each uncertain situation in terms of the Ith QoSyp metric; DA”QOS“ =
T
(OneDispatcherRobustnessf}l{lugsfsa . OneDispatcherRobustnessﬁﬁ‘fi") is the QoSqyp robustness

of the mth dispatcher under each uncertain situation in terms of all the QoS p metrics.

DEFINITION 9 (Q0S,;;p BASED UNCERTAIN SITUATION RANKING). The QoS p robustness of all
the dispatchers under each uncertain situation in terms of the Ith QoS,yp metric and all the QoSgp
metrics combined are calculated with Eq. 10 and Eq. 11, respectively:
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90
AllDispatchersRobustnessf;f: = Z Robustnessﬁf’fzso (10)
m=1
6
AllDispatchersRobustness{xiQosa = Z AllDispatchersRobustnessf:f; (11)
=1
QoSa

where Robustness " = is the quantified QoSayp robustness of the mth dispatcher under the oth
uncertain situation in terms of the [th QoS,;p metric (see Eq. 5). To rank the uncertain situations in

terms of each QoS,yp metric across all the dispatchers, we perform the SD-G test with Eq. 12:

UncertainSituationRank?osa =SD - Gtest(US?;’Sa, US;‘);’S", e, US%"?“) (12)
QoSa QoSa QoSa T
where US; ™" = (Robustnessl’l’uso . ~Robustnessgo,l,uso) consists of the QoSyyp robustness under

the oth uncertain situation in terms of the Ith QoS,;p metric of each dispatcher. The comprehensive
ranking of the uncertain situations concerning all the QoSgyp metrics can be obtained with Eq. 13:

UncertainSituationRank*''%°5® = sp — Gtest(USf”Q"S“, US;”Q"S", e, US;;”QOS") (13)

AllQoSa

where US2'1095¢ = (OneDispatcherRobustnessAllQosa -+ OneDispatcherRobustnessy,

.
Lus, ) com-
posed of the QoS,ip robustness under the oth uncertain situation in terms of all the QoS,y;p metrics of

all the 90 dispatchers, each of which can be calculated with Eq. 7.

DEFINITION 10 (Q0S,;p RANKING). Each dispatcher’s robustness and all the dispatchers’ robustness
under all the 15 uncertain situations in terms of each QoS,;p metric are quantified with Eq.14 and
Eq.15, respectively:

15
OneDispatcherRobustnesleGS“ = Z Robustnessf;f: (14)
o=1
9
AllDispatchersRobustnesleosa = Z OneDispatcherRobustnessslolsa (15)
m=1

IQ;’f” is the quantified QoS p robustness of a dispatcher under the oth uncertain
situation in terms of the Ith QoS,;p metric (Eq. 5); the m represents the mth dispatcher. With this
metric, we aim to obtain a high-level overview of the impact of the uncertain situations on each QoSg;p

metric. We further rank the QoS,;p metrics with the SD-G test (Section 3.4), as defined in Eq. 16:
QoS,11pRank = SD — Gtest (QoSay, QoSas, « + +, QoSag) (16)

where Robustness

Qo QoSa
1,1 90,1

vector composed of values of the robustness in terms of the [th QoS,p metric of each of the 90
dispatchers under all the uncertain situations. Notice that, to compare with AllDispatchersRobustness
(Eq. 15), this ranking is performed at the individual dispatcher level.

.
where QoSa; = (OneDispatcherRobustness 5¢... OneDispatcherRobustness ) is the column

DEFINITION 11 (Q0S;n4ivp BASED DISPATCHER RANKING). The robustness of each dispatcher under
each uncertain situation in terms of each Qo0S;nq;,p metric and all the three QoS;pqi,p metrics can be
measured with Eq. 6 and Eq. 17, respectively.

3
OneDispatcherRobustnessﬁéig"Si = Z RobustnessCyy. (17)

s=1
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Based on the quantified Q0S;nqivp robustness of each dispatcher under each uncertain situation, we
perform the SD-G test to rank all the dispatchers across all the 15 uncertain situations in terms of each
Q0S;naivp metric with Eq. 18, and all the Q0S;,4i,p metrics with Eq. 19.

DispatcherRank2®*' = sD — Gtest(DIQ,;’Si, DS:Si, e Dggo‘,’:i) (18)
Dispatcher Rank#"'9°5" = SD — Gtest(Df”QOSi, D?”Q"Si, e, D:JlQOSi) (19)

where, D,?,?fi and DA% are the quantified robustness of the mth dispatcher in
terms of the sth QoSiuqip and all the QoSingi,p metrics under each uncertain situa-

a
) si si si AllQoSi
tion, represented as Das' = (Robustness,%,’s,;s1 ---Robustness,%?s,;sls) , and D9

. AT
(OneDispatcherRobustnessﬁl{luQS‘l’S’ e OneDispatcherRobustnessﬁl,%:f’) , respectively.

DEFINITION 12 (Q0Sindinp BASED UNCERTAIN SITUATION RANKING). The Q0Singiyp robustness of
all the dispatchers under each uncertain situation in terms of each QoS;nqi,p metric and all the three
Q0S;naivp metrics combined can be measured with Eq. 20 and Eq. 21, respectively.

90
AllDispatchersRobustnessSQ,Zi’; = Z Robustnessg,f’;g’;so (20)
m=1
3
AllDispatchersRobustnessﬁéiQ”S' = Z AllDispatchersRobustnesseyy. (21)
s=1
QoSi

where Robustnessy, s s, is the Q0S;,qip robustness (Eq. 6) of the mth dispatcher under the oth uncertain
situation in terms of the sth QoSinqiyp metric. To study the QoS;ngiup specific ranking of the uncertain
situations across all the dispatchers, we perform the SD-G test with Eq. 22 shown below:

QoSi _ Qosi QosSi QoSi
USRanks ™' = SD — Gtest(USL: ' USz,: L USIS‘,’Sl) (22)
QoSi Qosi Qosi \ "
whereUSg s = (Robusl‘ness1 ous. - - Robustnessg)’”" ) contains each dispatcher’s robustness un-

der the oth uncertain situation in terms of the sth QoSinqiyp metric. The comprehensive ranking of
considering all the QoS;nqi,p metrics can be performed with Eq. 23:

USRankA"'9°5' = SD — Gtest(US{'2°%  Usfoo% ... usaliosh (23)
. i T
where US:;”QOSl = (OneDispatcherRobustnessiZsQnos' e OneDispatcherRobustnessgéf,iis') s

OneDispatcherRobustness’,?ll’luQS‘;Si is the quantified robustness of the mth dispatcher under the oth

uncertain situation in terms of all the QoS;n4i,p metrics, which can be obtained with Eq. 17.

DEFINITION 13 (Q0Sindivp RANKING). The Qo0Singivp robustness of each and all the dispatchers
under all the uncertain situations can be measured with Eq 24 and Eq 25, respectively:

15
OneDispatcherRobustness2®> = Z RobustnessCos. (24)
o=1
AllDispatchersRobustness;“)DSl = Z OneDispatcherRobustness,%?SSL (25)
m=1

where Robustnesssg,,jﬁ is the sth Q0S;,4i,p robustness of a dispatcher under the oth uncertain situation

(see Eq. 6 for its calculation). We further rank the QoS;nqi,p metrics across all the dispatchers under all
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the uncertain situations with the SD-G test, as shown in Eq. 26 below:
Qo0S;naivpRank = SD — Gtest(QoSiy, QoSiz, QoSis) (26)

QoSi T
90,s
vector composed of the robustness values of each of the 90 dispatchers in terms of the sth QoSingivp
metric.

QoS i

where QoSis = (OneDzspatcherRobustness -+ OneDispatcherRobustness is the column

DEFINITION 14 (TOTAL ROBUSTNESS). We use Eq. 28 to measure the robustness of all the dispatchers
under all the 15 uncertain situations in terms of all the six QoS,p metrics :
6 15
OneDispatcherRobustnessA!Q5a%AlUS — Z Z Robustnessfgjj (27)
I=1 o=1
90
AllDispatchersRobustness 1oSa&AlUS — Z OneDlspatcherRobustnessA”QOS“&A”US (28)
m=1
Similarly, the Q0S;,aiup robustness of all the dispatchers under all the 15 uncertain situations in terms
of all the three QoS;pqi,p metrics are quantified with Eq. 30:

315
OneDispatcherRobustness*!'Q°Si4AlUS — Z RobustnessSo, sy (29)
s=1 o=1
90
AllDzspatchersRobustnessA”Q"b'&A”Us = Z OneDlspatcherRobustnessA”QOSl&A”US (30)
m=1
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Table 12. QoS,jp robustness of the 90 dispatchers under each uncertain situation (UncerSitua) - RQ1.2. For
each uncertain situation, there are, in total, 90 (dispatchers) p-values for each QoS,;;p metric (e.g., columns
AWT and LWT) and 90 (dispatchers) X 6 (QoS,;;p) = 540 p-values for all the QoS ;;p metrics together (column
Overall). Each Count cell of each QoS,j;p column and the Overall column tells the count calculated with Eq.
10 or Eq. 11, respectively. A lower count indicates a higher robustness under a specific uncertain situation.

AWT LWT ATT LTT ATD LTD Overall
UncerSitua Count UncerSitua Count UncerSitua Count UncerSitu  Count UncerSitua Count UncerSitua Count UncerSitua Count
LunchPeak
usL 20 usM-C-L 30 usM 39 usM 44 usM-C 31 usC 37 usC 183
usC 19 usC 29 usM-C 38 usC-L 38 usC 30 usM-C 35 usM-C 183
usM-U 18 usM-C-U 29 usC 35 usM-C 35 usM-U 28 usM-C-L 34 usM 178
usC-U 17 usC-U 27 usC-U 33 usC 33 usC-U 25 usM-C-U 34 usM-U 165
usM-C 17 usM-C 27 usM-U 33 usM-U 33 usM 23 usM-L 32 usM-C-L 159
usM 16 usM 26 usC-L 30 usM-C-L 33 usM-C-L 21 usC-U 31 usC-U 152
usL-U 15 usM-U 26 usU 29 usM-C-L-U 32 usM-C-U 18 usM 30 usC-L 148
usM-C-U 15 usL 25 usM-L 28 usM-L 31 usU 16 usC-L 28 usM-L 142
usU 14 usM-C-L-U 25 usM-C-L 28 usM-L-U 30 usM-L 15 usC-L-U 28 usM-C-U 142
usC-L 14 usC-L 24 usM-C-U 27 usC-L-U 29 usC-L 14 usM-U 27 usM-C-L-U 128
usM-C-L-U 14 usL-U 24 usL 26 usU 23 usL-U 12 usM-C-L-U 26 usC-L-U 127
usC-L-U 13 usM-L 24 usC-L-U 25 usL. 20 usM-L-U 11 usU 22 usU 126
usM-C-L 13 usC-L-U 24 usM-C-L-U 23 usC-U 19 usL 10 usM-L-U 22 usL 121
usM-L-U 13 usU 22 usL-U 20 usM-C-U 19 usC-L-U 8 usL 20 usM-L-U 115
usM-L 12 usM-L-U 20 usM-L-U 19 usL-U 12 usM-C-L-U 8 usL-U 20  usL-U 103
UpPeak

usL 36 usC-U 52 usM-C 35 usC-L 77 usM 35 usC-L 44 usC 236
usC 32 usC-L 51 usC 32 usM-C 67 usC 29 usC 42 usM-C 217
usL-U 32 usM-C 49 usM 28 usC 55 usL 17 usM-C-U 39 usC-L 211
usM-C-U 32 usC 46 usC-U 25 usM-C-L 55 usM-C-L 17 usM-C-L 38 usM-C-L 209
usM-C-L 30 usM-C-L 46 usM-C-L 23 usM-C-L-U 53 usU 16 usC-U 37 usM-C-U 201
usM 28 usM-C-U 46 usC-L 20 usC-U 52 usC-U 14 usM-C 37 usM 197
usU 19 usM-C-L-U 44 usM-C-U 20 usM-C-U 51 usL-U 14 usM 34 usC-U 191
usM-C 15 usL 39 usM-L 17 usC-L-U 47 usM-C 14 usL 33 usM-C-L-U 164
usM-L-U 13 usM 28 usM-U 15 usM 44 usM-L 14 usM-L 33 usL 161
usM-U 12 usL-U 23 usC-L-U 14 usM-L 42 usM-U 13 usM-C-L-U 33 usM-L 126
usC-U 11 usC-L-U 19 usM-C-L-U 14 usM-U 37 usM-C-U 13 usL-U 32 usC-L-U 118
usM-L 11 usM-L-U 13 usL 8 usL. 28 usC-L 10 usM-L-U 32 usL-U 116
usM-C-L-U 11 usU 9 usU 8 usM-L-U 27 usC-L-U 10 usU 27 usM-U 111
usC-L-U 10 usM-L 9 usL-U 6 usU 20 usM-L-U 9 usM-U 26 usM-L-U 100
usC-L 9 usM-U 8 usM-L-U 6 usL-U 9 usM-C-L-U 9 usC-L-U 18 usU 99
M: Mass  C: Capacity Factor L: Loading Time U: Unloading Time

uss: uncertain situation caused by uncertain factor *. For example, usM-L represents the uncertain situation caused by
Mass and Loading Time.
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Table 13. Q0S;p,4iyp robustness of the 90 dispatchers under each uncertain situation (UncerSitua) - RQ2.2. For
each uncertain situation, there are, in total, 90 (dispatchers) x 10 (uncertain traffic profiles) = 900 p-values for
each QoS;p,4i,p metric (e.g., WT column) and 90 (dispatchers) X 10 (uncertain traffic profiles) X 3 (Qo0S;,4ivp)
= 2700 p-values for all the Q0S;,,4;,p metrics together (Overall column). Each Count cell of each Q0S;,,4i,p
metric column and the Overall column tells the count calculated with Eq. 20 or Eq. 21, respectively. A lower
count indicates a higher robustness under a specific uncertain situation.

WT TT TD Overall
UncerSitua Count UncerSitua Count UncerSitua Count UncerSitua Count
LunchPeak
usL 157 usM-C 278 usM-C 197 usM-C 615
usC 156 usM 255 usC 185 usC 594
usM-C-U 150 usC 253 usM 173 usM 567
usM-U 147 usM-U 226 usM-U 147 usM-U 520
usL-U 146 usU 217 usC-U 144 usU 491
usM-C 140 usC-U 198 usU 137 usC-U 475
usM 139 usC-L 184 usM-C-U 127 usM-C-U 448
usU 137 usM-C-L 183 usC-L 120 usC-L 429
usC-U 133 usM-C-U 171 usM-L 120 usM-C-L 404
usM-L 127 usM-L 156 usL 109 usM-L 403
usC-L 125 usM-L-U 148 usM-C-L 101 usL 391
usM-C-L 120 usL 125 usM-L-U 100 usM-L-U 358
usC-L-U 110 usM-C-L-U 120 usL-U 88 usL-U 339
usM-L-U 110 usC-L-U 109 usM-C-L-U 67 usM-C-L-U 289
usM-C-L-U 102 usL-U 105 usC-L-U 65 usC-L-U 284
UpPeak
usL 438 usM-C 492 usM 384 usM 1137
usL-U 390 usC-U 415 usC 343 usC 1065
usU 386 usC 396 usC-U 333 usC-U 1027
usM 361 usM 392 usM-C 294 usM-C 984
usM-C-U 331 usM-C-U 304 usM-C-U 249 usM-C-U 884
usC 326 usM-C-L 284 usL 240 usM-C-L 809
usM-L-U 318 usC-L 252 usM-C-L 226 usL 702
usM-C-L 299 usM-U 197 usU 202 usM-L 655
usC-U 279 usM-L 189 usM-L 196 usC-L 638
usM-L 270 usM-C-L-U 175 usC-L 192 usU 636
usC-L-U 223 usC-L-U 156 usM-L-U 185 usM-L-U 596
usM-C-L-U 209 usM-L-U 93 usM-U 177 usM-U 581
usM-U 207 usU 48 usL-U 169 usL-U 566
usM-C 198 usL 24 usC-L-U 145 usM-C-L-U 528
usC-L 194 usL-U 7 usM-C-L-U 144 usC-L-U 524

M: Mass  C: Capacity Factor L: Loading Time U: Unloading Time
us*: uncertain situation caused by uncertain factor . For example, usM-L represents the uncertain situation caused by Mass
and Loading Time.
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Fig. 14. The SD-G ranking of the 90 dispatchers across the 15 uncertain situations in terms of each QoS,;;p
metric - RQ1.1. The x-axis shows the 90 dispatchers sorted according to their counts under all the uncertain
situations in terms of a specific QoS,;;p metric, whereas the same color of the adjacent dispatchers indicates
the same group, implying that the difference of the QoS,;;p specific robustness of these dispatchers across
the 15 uncertain situations are negligible. Each dot represents the average count across the 15 uncertain
situations on each sample. The length of each line indicates twice of the standard deviation of each sample.
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The bluer the grid, the higher the count and the less robust a dispatcher performed. For QoS,;;p robustness,
the value in a grid ranges from 0 to 6 (corresponding to the 6 QoS,;;p metrics). For Q0S;,4i,p robustness, the

value in a grid ranges from 0 to 30 (3 Q0S;,4iup Metrics, each of which has 10 p-values).
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(a) LunchPeak-WT.

+*+§+*§0*++++++A¢¢¢¢&&»o

T

(f) UpPeak-TD.

Fig. 16. The SD-G ranking of the 90 dispatchers across the 15 uncertain situations in terms of each Q0S;,,4i,p
metric - RQ2.1. The x-axis shows the 90 dispatchers sorted according to their counts under all the uncertain
situations in terms of a specific Q0S;,,4;,p Mmetric, whereas the same color of the adjacent dispatchers indicates
the same group, implying that the difference of the QoS;,,4i,p specific robustness of these dispatchers across
the 15 uncertain situations are negligible. Each dot represents the average count across the 15 uncertain
situations on each sample, and the length of each line indicates twice of the standard deviation of each
AdiNpleans. Softw. Eng. Methodol,, Vol. 1, No. 1, Article . Publication date: January 2022.
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