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ABSTRACT
Learning analytics sits in the middle space between learning the-
ory and data analytics. The inherent diversity of learning analytics
manifests itself in an epistemology that strikes a balance between
positivism and interpretivism, and knowledge that is sourced from
theory and practice. In this paper, we argue that validation ap-
proaches for learning analytics systems should be cognisant of
these diverse foundations. Through a systematic review of learning
analytics validation research, we find that there is currently an
over-reliance on positivistic validity criteria. Researchers tend to
ignore interpretivistic criteria such as trustworthiness and authen-
ticity. In the 38 papers we analysed, researchers covered positivistic
validity criteria 221 times, whereas interpretivistic criteria were
mentioned 37 times. We motivate that learning analytics can only
move forward with holistic validation strategies that incorporate
“thick descriptions” of educational experiences. We conclude by out-
lining a planned validation study using argument-based validation,
which we believe will yield meaningful insights by considering a
diverse spectrum of validity criteria.

CCS CONCEPTS
• Applied computing → Learning management systems; •
Human-centered computing→ Collaborative and social comput-
ing design and evaluation methods.
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1 INTRODUCTION
In a recent survey among learning analytics experts [16], validity
was ranked as the third-most important theme relating to the future
of learning analytics, behind power (i.e., control over data) and ped-
agogy. Ferguson et al. [16] state that validation approaches should
always take “context into account when reporting results”. Recog-
nising that each instructional context is different is seen by Gašević
et al. [20] as a prerequisite for an acceptable validation strategy.
Kitto et al. [34] agree, arguing that validationmust address both pos-
itivistic (e.g., performance metrics) and interpretivistic (e.g., student
experience) elements. They conclude that “work on developing new
validation criteria that emphasise learning outcomes” is vital. This
conclusion is in agreement with the experts in Ferguson et al. [16],
who state that “research in this space should be tied to pedagogical
outcomes.”

Thus, validation is a critical topic for learning analytics research.
There is agreement that validation should go beyond performance
metrics and that an additional emphasis on learning outcomes
would help to yield a contextualised approach. Yet, there is little
consensus on which validity criteria are essential in learning analyt-
ics research. In a recent special issue on the potential links between
learning analytics and educational assessment, Gašević et al. [21]
raised the concern that “existing learning analytic methods do not
meet all of the criteria” for validation we encounter in educational
assessment. However, Gašević et al. [21] do not discuss to which
criteria they are referring. The learning analytics literature lacks
an in-depth analysis of the validity criteria that are currently in use
and the criteria that deserve emphasis. We will address this gap in
this paper.

With the previous paragraphs in mind, we formulate the follow-
ing main research question and sub-questions:
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• RQ: Which validity criteria should be considered in a contex-
tualised validation strategy for learning analytics systems?
– RQa: Which validity criteria have emerged in the learning
analytics domain that emphasise learning outcomes?

– RQb: How has learning analytics validation research in-
corporated interpretivistic perspectives that recognise con-
textual differences?

Through an analysis of the epistemological foundations of learn-
ing analytics (Section 2) and a systematic review of the learning
analytics validation literature (Section 3), we will construct an
overview of emerging validity criteria to answer RQa. An in-depth
analysis of our systematic review results (Section 4) will help us in
answering RQb. We discuss the implications for our main research
question in Section 5 and conclude in Section 6.

2 BACKGROUND: EPISTEMOLOGY AS A
FOUNDATION FOR VALIDATION

How we approach validation depends on our underlying episte-
mology, specifically relating to our view on the concept of truth.
A purely interpretivist researcher will attach little value to perfor-
mance metrics when validating since they reject the concept of
objective truth in social contexts. Similarly, positivist researchers
are unlikely to engage in what Geertz [22] termed “thick descrip-
tion” of social contexts, as they believe in the generalisability of
more efficiently obtainable quantitative evidence. We posit that
learning analytics epistemology is positioned in the middle space
between interpretivism and positivism. In this section, we will pro-
vide further intuition for this observation and motivate that the axis
of truth is not the only epistemological axis relevant to building a
solid foundation for validation.

Pragmatism is one of the cornerstones of today’s learning ana-
lytics literature. As envisioned by Dewey [9], pragmatism takes a
moderate position in the interpretivism versus positivism debate.
Kuhn [37] describes the scientific process as “a process whose suc-
cessive stages are characterised by an increasingly detailed and
refined understanding of nature.” A process of moving “from primi-
tive beginnings,” yet not “towards anything.” This contradicts the
positivist view that the scientific method enables us to consistently
hone in on truths and thereby expand our knowledge. Dewey [10]
avoids the term knowledge altogether, preferring “warranted as-
sertability.” This phrase connects the past (warranted) and the future
(assertability). Dewey’s pragmatism, therefore, blends views that
aim to build from a common past (interpretivism) with those that
aim to move towards a common future (positivism).

However, the axis of truth is not the only relevant epistemolog-
ical axis when laying the foundations for validation. Pragmatists
claim that “our conception of some given thing is bound up in our
understanding of its practical application” [36]. Not only a definition
of what constitutes knowledge is crucial, but also a consideration
of possible sources of knowledge. Pragmatism posits that practical
use should be the primary source of knowledge, which juxtaposes
it with rationalism which states that theoretical reasoning is the
summum bonum when it comes to knowledge gathering. Wise et al.
[59] propose a similar classification regarding learning analytics
design knowledge. They state that design knowledge can originate
from the design process, which is guided by theory, and from the

implementation process, which is coupled with the introduction of
learning analytics in the learning environment.

Dewey helped develop a version of pragmatism, known as trans-
actionalism, that emphasises contextual interactions as a vital source
of knowledge [11]. Transactionalism merges ideas from pragma-
tism and constructivism, with Dewey’s version of pragmatism being
considered “as the most important precursor for social construc-
tivism” [47]. Social constructivism is the variant of constructivism
most often encountered in learning analytics research today. So-
cial constructivists argue “that learners arrive at what they know
mainly through participating in the social practices of a learning
environment” [60]. Social constructivism focuses on meaningful
interactions in authentic contexts. However, in today’s world, many
educational interactions involve technological assistance. Although
there is a role for social constructivism in technology-enhanced
learning [60], its focus on social interactions as the primary source
of knowledge makes it ill-suited to assess the consequences of to-
day’s socio-technical systems. Siemens [51] aimed to solve this
issue with connectivism.

Connectivism is perhaps the philosophical stance most closely
associated with learning analytics. Connectivism is similar to social
constructivism, but it reserves an explicit place for “learning that
occurs outside of people (i.e. learning that is stored and manipu-
lated by technology)” [51]. Connectivism, like learning analytics
itself, states that theory is a valid source of knowledge. This brings
us, finally, to the place that learning analytics epistemology occu-
pies within the epistemological plane of Figure 1. We propose that
learning analytics epistemology is positioned in the middle space
between positivism and interpretivism on the axis of truth, but also
in the middle space between theory and practice on the knowledge
source axis.

Theory Practice

Positivism

Interpretivism

Trustworthiness Authenticity

Rigour Relevance

Figure 1: Our epistemological plane of validity, divided into
four quadrants. Learning analytics occupies themiddle space
between positivism and interpretivism (the truth axis), and
themiddle space between theory and practice (the knowledge
source axis).

Figure 1 introduces the overarching terms we use within this
paper to refer to the four quadrants created by the axes of our
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epistemological plane. In the positivistic tradition, it is common to
distinguish between rigour and relevance in research [25]. Rigour is
connected to theory as a source of knowledge and can be “achieved
by appropriately applying existing foundations and methodolo-
gies” [25]. Research is relevant when it addresses “the problems
faced and the opportunities afforded by the interaction of people,
organisations, and information technology” [25]. On the side of
interpretivism, Guba [24] proposed the concept of trustworthiness
as a parallel to rigour. Lincoln and Guba [38] later introduced au-
thenticity as a more practice-oriented validity conceptualisation,
noting that “conventional criteria refer only to methodology and
ignore the influence of context.”

Figure 1 only presents four overarching validity quadrants, pro-
viding an incomplete answer to RQa on emerging validity criteria.
Many more criteria are considered in the learning analytics litera-
ture, each with its own place within the epistemological plane. To
investigate which criteria are considered and whether specific areas
of the epistemological plane are underrepresented, we conducted a
systematic review of the learning analytics validation literature.

3 METHODOLOGY
For our systematic review, we queried three databases: ACMDigital
Library, Web of Science, and PubMed. We searched for all papers
with abstracts containing the phrase ‘learning analytics’ and either
‘validation’ or ‘validity’. After deduplicating the query results, 83
papers remained. Of these papers, 21 formed the initial set of inclu-
sions after excluding work that did not discuss validation or was
unrelated to the field of learning analytics (as defined by SoLAR
[53]). For each of these 21 included papers, we scanned all the ref-
erences and citations to find potential new inclusions. This process
is known as ‘snowballing’ and is a recommended step in systematic
review methodologies [56]. The snowballing phase resulted in a
further 17 inclusions, meaning our final set comprised 38 papers.

Before proceeding to analyse our inclusions, we identified four
papers which would allow us to construct a holistic set of potential
validity criteria. We first looked towards educational measurement
(sometimes referred to as educational assessment). Educational
measurement is a field where validity considerations naturally take
centre stage, and several learning analytics researchers have ar-
gued that we should strengthen the bond with this field [21]. The
argument-based validation approach of Kane [31] has been influen-
tial in the educational measurement and learning analytics fields in
recent years [12, 41]. Kane [31] stresses the importance of address-
ing traditional validity criteria such as rigour, construct validity,
content validity, and criterion validity. However, Kane’s framework
also recognises that theoretical considerations alone are insuffi-
cient, and that validation must investigate how results are used in
practice. Kane captures this idea in the concept of consequential
validity.

The fields of design science and information systems offer a
second source of inspiration in the validity considerations made
by learning analytics researchers. Mingers and Standing [42] pro-
vide an extensive overview of the validation literature in these
fields, while highlighting the importance of the interpretivistic
perspective. The criteria external validity (sometimes termed gener-
alisability), internal validity, reliability, replicability, and statistical

validity occupy the rigour quadrant. Mingers and Standing [42]
additionally propose consistency (relevance quadrant) and elegance
(authenticity quadrant) criteria.

Our third external source of validity terminology is the sem-
inal interpretivistic work of Lincoln and Guba [38]. Their paper
introduced the concept of authenticity as a counterbalance to trust-
worthiness. Lincoln and Guba [38] discuss various dimensions of
trustworthiness that parallel positivistic criteria: confirmability
(related to replicability and content validity), credibility (internal
validity), dependability (reliability), and transferability (external
validity). They additionally discuss several dimensions of authentic-
ity, but we select to include authenticity as a single criterion in this
paper as this is generally how the construct is viewed in learning
analytics research. Lastly, Lincoln and Guba [38] introduce fairness
as a vital consideration during validation.

Finally, certain validity considerations are quite unique to the
learning analytics field. To provide sufficient coverage of these va-
lidity criteria, we looked towards the work of Ali et al. [2]. They
propose a diverse selection of validity criteria covering the rele-
vance quadrant (relevance, actionability, understandability, usabil-
ity, and usefulness) and the authenticity quadrant (meaningfulness
and parsimony/simplicity).

4 RESULTS
Figure 2 depicts the assembled validity criteria within their respec-
tive quadrants. Criteria are positioned according to how they are
defined and treated in the literature, thereby acting as a Learning
Analytics Validation Assistant (LAVA). Researchers can use LAVA
to determine whether the validity criteria they are considering are
sufficient and appropriate for their epistemological stance. A crite-
rion’s quadrant is determined by how it is defined in one of the four
core papers mentioned in the previous section. The exact placement
of a criterion within a quadrant should not be interpreted as an
indisputable truth. Rather, we positioned criteria relative to each
other based on how they were treated and measured in the learning
analytics literature.

Figure 2 additionally visualises the prevalence of the validity
criteria in our included papers. In 38 inclusions, a total of 258
validity criteria were discussed. Criteria in the rigour quadrant were
mentioned 146 times (56.6%), in the relevance quadrant 75 times
(29.1%), in the trustworthiness quadrant 11 times (4.3%), and in the
authenticity quadrant 26 times (10.1%). Hence, researchers covered
positivistic criteria 221 times, whereas interpretivistic criteria were
mentioned only 37 times.

Statistical validity and external validity are the criteria men-
tioned most often within our inclusions. For statistical validity, we
noticed that most papers focus on statistical significance, whereas
Saqr and López-Pernas [49] point out that researchers should addi-
tionally consider effect size. External validity is another problematic
criterion within learning analytics research. Of the 27 times exter-
nal validity was mentioned in one of our inclusions, 24 times the
authors concluded that the external validity of their study was
lacking. We observed a similar pattern with the interpretivistic
counterpart to external validity: transferability. Of the three times
transferability was considered, the authors stated on two occasions

554



LAK 2023, March 13–17, 2023, Arlington, TX, USA Van Haastrecht, et al.

Positivism

Interpretivism

Theory Practice
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Figure 2: The Learning Analytics Validation Assistant (LAVA), depicting the prevalence of validity criteria observed in the
learning analytics literature. Terms are positioned along the two axes (truth: positivism versus interpretivism; knowledge
source: theory versus practice) of our epistemological plane.

that more work was necessary to assess the transferability of their
results.

Figure 2 provides an answer toRQa: Which validity criteria have
emerged in the learning analytics domain that emphasise learning
outcomes? Criteria on the ‘practice’ half of the diagram relate to
outcomes of the learning process. Criteria positioned on the ex-
treme right of the theory-practice axis correspond to an advanced
internalisation of learning analytics outcomes. Learning analytics
researchers evidently attach importance to relevant, usable, action-
able, and useful solutions. Additionally, several papers recognised
that authentic, meaningful learning experiences are not simply a
luxury, but a goal to strive for.

Table 1 lists the combinations of validity criteria quadrants ob-
served in our inclusions. Four out of 38 papers covered criteria from
all four quadrants. Papers tended to consider criteria from at least
two quadrants, with only one inclusion not covering a criterion

from the rigour quadrant. Conversely, the criteria in the trustwor-
thiness quadrant, along with parsimony, authenticity, and fairness,
are mentioned least often. Many of these criteria can only be as-
sessed through “thick descriptions” of social contexts [22], possibly
pointing to barriers to engaging in such activities within learning
analytics research. Moreover, although meaningfulness was dis-
cussed in 11 papers, only one of these papers conducted qualitative
interviews during validation. All other papers used either quantita-
tive data analysis or structured questionnaires in their evaluation.
Concerning RQb, we can conclude that although interpretivistic
validity criteria are considered in learning analytics research, their
treatment is often too superficial to provide in-depth insight into
contextual learning experiences.
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Table 1: Combinations of the four validity criteria quadrants (rigour, relevance, trustworthiness, and authenticity) observed in
the 38 inclusions of our systematic review, sorted by number of related inclusions. Only observed combinations are listed.

Quadrant combination Related inclusions

Rigour, relevance [4, 7, 13, 14, 17, 18, 23, 27, 50, 54]
Rigour, relevance, authenticity [3, 29, 32, 43–45, 49, 57, 61, 63]
Rigour [5, 30, 39, 40, 46]
Rigour, authenticity [8, 15, 33, 35, 52]
Rigour, relevance, trustworthiness, authenticity [2, 55, 59, 62]
Rigour, relevance, trustworthiness [6, 48, 58]
Relevance [19]

5 DISCUSSION
Our results lead to three main findings related to the learning
analytics validation literature, which we will cover in this section.

5.1 Troubling External Validity
Learning analytics researchers seem to have a troubling relationship
with external validity. Together with statistical validity, external
validity was the criterion mentioned most often in our inclusions.
Yet, 24 out of the 27 papers that mention external validity conclude
that there are limitations to the generalisability of their results. At
times, the limited scale of studies is listed as the cause for gen-
eralisability concerns (e.g., [7, 54, 59, 62]). Elsewhere, researchers
provide a general warning that more research is necessary should
one want to generalise the results (e.g., [14, 33, 48]). Transferability,
the interpretivistic parallel of external validity, suffers from the
same issue. Researchers state that results could be transferred to
other contexts, but that more research is required to confirm this
claim [2, 6].

The reader should not interpret the previous paragraph as a
critique of the cited research. If there are limitations to the gen-
eralisability of findings, these should be mentioned. However, we
should avoid a situation in the learning analytics field where gen-
eralisability becomes an afterthought that can always be left for
future work. External validity and transferability are valued validity
criteria that should guide learning analytics research a priori, not a
posteriori. Replication studies that aim to understand the validity
of learning analytics solutions in new contexts should receive more
attention.

5.2 A Need for Thick Descriptions
We noted in Section 4 that even papers that recognise interpretive
validity criteria (e.g., meaningfulness) often resort to quantitative
methods during validation. Geertz [22] believes that the analysis of
social culture and context requires qualitative methods “in search
of meaning” rather than quantitative methods “in search of law.”
In other words, we require “thick descriptions” of the educational
contexts being considered in learning analytics research. Thick
descriptions that cannot be obtained through data analysis or ques-
tionnaires, but that require qualitative methods.

The advantages of using qualitative methods go beyond a deeper
understanding of the educational context. As Guba [24] recognises,
“to determine the extent to which transferability is probable, one

needs to know a great deal about both the transferring and receiv-
ing contexts.” Guba [24] states that thick descriptions are essential
if we wish to achieve transferable results. Thus, thick descriptions
provide deeper insight into interpretivistic validity criteria and
concurrently act as a catalyst in facilitating generalisable learning
analytics research. Researchers looking to produce more gener-
alisable results will benefit from employing qualitative research
methods such as qualitative interviews and action research.

5.3 The Potential of Argument-Based Validation
To conclude this section, we will discuss a validation approach
uniquely suited to facilitate the diverse validity criteria and re-
search methods covered in this paper: argument-based validation.
Kane [31] originally introduced this approach in the educational
measurement field. Gašević et al. [21] argue that learning analytics
research can profit from the vast validity experience within educa-
tional measurement and psychological assessment, and argument-
based validation has started to see use within the learning analytics
domain [12, 41].

In general, research uses inferences to make warranted claims
based on data. Argument-based validation proceeds by constructing
arguments to provide evidence for the assertability of these claims.
Once evidence has been assembled in structured arguments, we
assess the validity of the overall inference chain. The benefit of
this approach is that it gives a balance of flexibility and structure,
allowing researchers to recognise “legitimately diverse arguments”
[1] while avoiding the open-ended nature of validation. The orig-
inal framework of Kane [31] has been extended to allow for an
increased focus on practical consequences [26] and to explicitly
address fairness in artificial intelligence (AI) enhanced assessments
[28]. Argument-based validation is a promising avenue for learning
analytics researchers looking to address diverse validity criteria
and produce rigorous, relevant, trustworthy, and authentic results.

6 CONCLUSION AND FUTUREWORK
Within this paper, we have investigated which validity criteria
should be considered in a contextualised validation strategy for
learning analytics systems. We proceeded by first analysing the
epistemological foundations of learning analytics research, con-
cluding that learning analytics epistemology is positioned in the
middle space between positivism and interpretivism and between
theory and practice. We then conducted a systematic review to
uncover which types of validity criteria are employed by learning
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analytics researchers. We visualised the results to create a Learning
Analytics Validation Assistant (LAVA).

We uncovered an over-reliance on positivistic criteria. Interpre-
tivistic criteria that were covered (e.g., meaningfulness), were often
investigated using quantitative rather than qualitative methods.
In Section 5, we analysed the LAVA results and delineated a need
for more focus on “thick descriptions” of educational experiences.
Such thick descriptions help to foster a deeper understanding of
the context being studied and can act as a catalyst in facilitating
generalisable research.

In future work, we will apply our LAVA insights within an ed-
ucational research project. As suggested in Section 5.1, we intend
to employ an argument-based validation approach incorporating
diverse arguments and validity criteria. We recognise that we are
bound to encounter limitations in our future work and want to
stress that no single approach can function as a validation panacea.
Nevertheless, we believe that LAVA can stimulate researchers to
evaluate whether their validity criteria are sufficient and appropri-
ate for their epistemological stance.
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