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ABSTRACT
Engaging students in argument from evidence is an essential goal of
science education. This is a complex skill to develop; recent research
in science education proposed the use of simulated classrooms to
facilitate the practice of the skill. We use data from one such simu-
lated environment to explore whether automated analysis of the
transcripts of the teacher’s interaction with the simulated students
using Natural Language Processing techniques could yield an ac-
curate evaluation of the teacher’s performance. We are especially
interested in explainable models that could also support formative
feedback. The results are encouraging: Not only can the models
score the transcript as well as humans can, but they can also pro-
vide justifications for the scores comparable to those provided by
human raters.
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1 INTRODUCTION
Engaging students in argument from evidence is an essential goal of
science education. However, effective facilitation of argumentation-
focused discussion is a complex, multifaceted activity. It requires
∗TN was the Educational Testing Service consultant at the time of the research.
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a teacher to master leading a coherent conversation while attend-
ing to student ideas, encouraging student-to-student communica-
tion, and developing students’ conceptual understanding of natural
phenomena. Previous research on practice-based teacher educa-
tion suggests that teachers need to experience approximations of
practice to master facilitating argumentation-focused discussions
and that feedback is essential to support their learning from these
approximations. However, providing meaningful feedback is a chal-
lenging task requiring substantial human expertise. It is also time-
consuming and hard to scale across many teachers. Advances in
Artificial Intelligence (AI) and Natural Language Processing (NLP)
have great potential for analyzing instructional discourse and pro-
viding substantive feedback.

This research is part of our ongoing effort to explore applica-
tions of AI and NLP to support teachers in engaging students in
productive scientific argumentation. We used transcriptions of 157
discussions conducted in a simulated classroom with five elemen-
tary student avatars. The teachers aimed to engage these students
in a meaningful argumentation-focused science discussion. Hu-
man raters scored the discussions based on a holistic rubric that
focused on teachers’ ability to elicit significant contributions from
all students, to attend to student ideas equitably, and to use student
ideas to move the discussion forward. The raters were also required
to justify their scores through students’ and teachers’ discussion
moves. We employed a supervised machine learning approach and
pre-trained state-of-the-art Transformer models (BERT) to predict
holistic scores and identify utterances that could serve as score
justifications.

The main contributions of this research are answers to the fol-
lowing two research questions:

• RQ1: Can AI-powered models accurately score an elemen-
tary teacher’s ability to attend to student ideas in a simulated
argumentation-focused discussion?

• RQ2: Can AI-powered models support automated person-
alized feedback to the teachers to help them improve in
attending to students’ ideas?

The rest of this paper is organized as follows. We first give an
overview of the related work (Section 2). Next, in Sections 3 and 4
we describe the simulated environment used for data collection and
the collected data. In Section 5, we explain the experimental setup.
Then, we present the methodology, analysis, and findings for the
two research questions (Sections 6 and 7, respectively). Section 8
provides a discussion, followed by the summary and conclusions
in Section 9.
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2 RELATEDWORK
2.1 Argumentation in the teaching of science
Engaging students in argument from evidence helps to develop
their scientific thinking skills and understanding of scientific phe-
nomena and how scientific knowledge is constructed [2, 17, 37].
Productively engaging in scientific argumentation requires stu-
dents to participate in both argument construction and argument
critique [6]. Argument construction involves students generating
and refining scientific claims and evidence-based reasoning, while
argument critique focuses on comparing arguments, offering rebut-
tals, and considering counterarguments. Research has shown that
supportive classroom environments where students have frequent
opportunities to engage in argument construction and critique are
essential for building K-12 students’ argumentation skills [5, 47].

However, previous research has shown that learning how to
create and maintain classroom environments that support students’
engagement in scientific argumentation can be challenging for
teachers [32, 40]. Teachers in K-12 settings need opportunities
themselves to learn how to engage their students in scientific argu-
mentation. Research in science education across studies has shown
positive outcomes in terms of using varied interventions to develop
teachers’ argumentation skills, knowledge, and perceptions [26, 46].
However, changes to teachers’ actual instructional practice have
been harder to achieve [14, 18], albeit a few studies have shown
promise in this area too [15, 39]. One promising approach is using
simulated classrooms to serve as practice spaces where teachers
can try out new instructional skills, but in situations of reduced
complexity and with no potential for risk to actual students [27].

2.2 Simulated environments for teacher
education

During the last decade, approximations of practice have been grow-
ing in use within teacher education and professional development
settings to provide opportunities for teachers to learn how to engage
in core teaching practices, like facilitating argumentation-focused
discussions, eliciting and using student ideas, and analyzing student
thinking, with some approximations using simulated classrooms
to support teacher learning [3, 9, 12, 16, 21]. To support teacher
learning using approximations of practice, including those with
simulations, research has suggested the critical importance of cycles
of preparation for, engagement in, and reflection on the simulated
teaching experiences [4, 30]. However, the existing simulation plat-
forms typically do not provide any real-time formative feedback
to support teacher reflection and improvement. The feedback still
comes from a coach or throughwritten feedback provided by human
raters after reviewing video records from the simulated teaching
sessions [7] and it is hard to scale across many teachers [38].

2.3 Automated evaluation of classroom
discourse

Advances in Artificial Intelligence (AI) and Natural Language Pro-
cessing (NLP) have great potential for analyzing instructional dis-
course and providing substantive feedback to support teacher learn-
ing. Possible applications include identifying different types of class-
room activities [13, 43, 44, 52] and providing automated feedback

on various teacher discourse moves, such as moves designed to (a)
guide discussion and ensure students’ participation [20, 50], (b) ask
authentic questions; namely, questions for which the answers are
not presupposed by the teacher [1, 22] or (c) restate and use student
ideas [10]. Traditional approaches to automated analysis of class-
room discourse typically employ supervised machine learning (ML)
methods combined with manual feature engineering and human
expert annotation of collected data according to evaluation rubrics.
As so, these methods usually require the collection of substantial
corpora of annotated datasets, which is challenging and both time-
and cost-expensive.

Recent advances in NLP (transformer deep-learning architec-
ture) have introduced a new method of few shot learning, which
refers to the practice of fine-tuning ML models on a very small
amount of annotated data [51] and utilizing the power of state-of-
art ready-for-use language models (e.g., Google’s BERT model and
its variations [11, 48]) pre-trained on huge amounts of textual data
using substantial computational power. For example, this method
was recently applied to identify intent in dialog data [19], model
teacher discourse in classrooms [20], and provide teachers with
personalized feedback on their classroom discourse [49] and has
been shown to outperform traditional ML methods while using
relatively small datasets. In this research, we employ the few shot
learning approach.

3 A SIMULATED CLASSROOM FOR
EDUCATORS

The data used in this study was collected as part of two previ-
ously funded National Science Foundation research projects. In
each project, elementary science teacher educators integrated the
use of simulated teaching experiences into their science methods
courses with one class of elementary preservice teachers [28, 33].
To examine whether using the simulated teaching experiences de-
veloped the elementary preservice teachers’ ability to facilitate
argumentation-focused discussions, we used one performance task
– the Mystery Powder science task – as a pre/post measure at the
beginning and end of the semester. In the Mystery Powder sci-
ence task, each preservice teacher had an opportunity to lead an
argumentation-focused discussion with five upper elementary stu-
dent avatars in a simulated classroom (see Figure 1). The goal of the
discussion was for the preservice teachers to support the students
in coming to a consensus about what the mystery powder is and
which properties were most useful to make this determination [29].
Prior to leading the discussion in the simulated classroom, each pre-
service teacher received a written packet that provided them with:
(a) information about the discussion’s goal, (b) details about what
the student avatars did in class prior to this discussion (including
the Mystery Powder science investigation they completed), and (c)
access to written copies of the students’ written work indicating
their initial ideas about the mystery powder’s identity and the prop-
erties the students thought were useful to identifying the mystery
powder. Each preservice teacher used the Mystery Powder task
packet to plan and then lead an up to 20-minute discussion with the
five student avatars in the simulated classroom. Each discussion
was video recorded and then transcribed for analysis purposes;
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in the transcription, each utterance was time-stamped and iden-
tified by the speaker (either the preservice teacher or one of the
five student avatars). In an earlier study, findings indicated that
the preservice teachers had significant growth in their ability to
facilitate discussions from the beginning to the end of the semester
across five dimensions of this practice [31].

Figure 1: Teacher Interaction with Upper Elementary Stu-
dent Avatars in the Simulated Classroom. Image courtesy of
Mursion, Inc.

4 DATASETS
4.1 Data
We used transcripts of 157 discussions conducted in a simulated
classroom with five elementary student avatars. 81 teachers par-
ticipated in the study. All teachers (except five) led two simulated
sessions each. The data was collected in two previous studies: S1
(𝑛 = 88 transcripts) and S2 (𝑛 = 69 transcripts). [31, 33]. The distri-
butions of the number of utterances per transcript and number of
words per utterance for each discussion participant (Carlos, Emily,
Jayla, Mina, and Will are the student avatars) are presented in Table
1.

Utterances Words
per transcript per utterance

Participant median 25-75% range median 25-75% range
Carlos 13 10-16 12 5-25
Emily 6 4-9 9 3-19
Jayla 10 7-13 9 3-20
Mina 11 8-14 9 3-17
Will 9 6-12 8 4-17
Teacher 42 34-51 16 9-30
Total 94 79-111 12 6-24

Table 1: The distributions of the number of utterances per
transcript and number of words per utterance per each dis-
cussion participant

4.2 Performance Rubric
One aspect of the performance rubric was focused on teachers’
ability to attend to student ideas equitably [45]. It involved being
responsive to students and focused on making sure that the dis-
cussion was grounded in students’ ideas and that all students were
engaged in a meaningful component of the discussion. It included
three categories: (a) all the key ideas that appear in the students’
written work are incorporated into the discussion; (b) all student
voices are heard in some non-trivial way, and (c) each of the rele-
vant student ideas is attended by the teacher and made a part of the
discussion. These categories are hereafter referred to as Indicator
𝑎, Indicator 𝑏, and Indicator 𝑐 , correspondingly.

4.3 Dataset Annotation and Inter-Rater
Agreement

To recruit raters, research project team members on the two pre-
vious projects reached out to current and retired K-12 teachers
through their professional networks. Interested raters with exper-
tise in STEM teaching were offered positions as scorers on the
previous projects. Each rater engaged in extensive scoring train-
ing to learn about the five dimensions of this teaching practice –
one of those dimensions (attending to student ideas) is the focus
of this study. Raters watched webinars to learn about the scoring
indicators in each dimension and the evidence used to determine
the scoring level for each indicator and dimension. In addition, each
rater had opportunities to practice scoring using video clips and
full discussion videos, as well as received feedback on their scoring
prior to starting their scoring assignments. Each rater was required
to provide the following:
(1) Total score. The S1 project was graded using an ordinal scale

with 3 levels (Beginning, Developing and Well-Prepared). For
the S2 project, the third level was divided into 2 sub-levels (Well-
Prepared and Commendable). The distribution of total scores
is presented in Figure 2. We collapsed the two top levels in S2
data; hence all transcripts are rated on a 3-level scale in our
experiments.

(2) Indicator 𝑎, 𝑏 and 𝑐 scores. The S1 project was graded using
an interval scale from 1 to 3. Similarly to the total score, the
highest level was extended for project S2 to the range from 1
to 4. These scores were used as intermediate auxiliary aids for
the raters to decide on the total score. See Figure 2 for score
distributions.

(3) Indicator 𝑏 justifications. The indicator 𝑏 justifications in-
cluded student utterances that exemplify their substantial con-
tribution to the discussion. Usually, each rater gave one or two
examples for each student, such as: "Carlos (09:34): Yeah. So
weight is not an important property to identify the mystery
powder. It just tells you how much of something you have."
Some raters did not provide particular utterance examples while
mentioning that a student provided substantial contributions.
Raters were asked to write "none" if a student did not signifi-
cantly contribute to the discussion.

(4) Indicator 𝑐 justifications. The indicator 𝑐 justifications in-
cluded teacher utterances to exemplify teacher usage of student
ideas tomove the discussion forward. The raters were instructed
to briefly describe which student ideas the teacher made use
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of during the discussion and how those ideas were used in a
way that helped to understand the indicator 𝑐 score they as-
signed. In particular, the raters were asked to provide specific
examples, quotes, and/or details to justify their indicator score.
Usually, each rater gave from one to three separate examples for
a teacher, such as: "The teacher frequently used student ideas
and responses to move the discussion forward and consistently
withheld her own ideas. For example, she noted that Carlos did
not need to use weight and said, "And you didn’t need to weigh
it? So, why didn’t you need to weigh it? Can you explain to your
classmates?" She later asked the class to explain to Carlos why
they thought weight was an important property. Some raters
did not provide utterance examples while mentioning that the
teacher effectively used student ideas in a meaningful way. In
other cases, raters decided that the teacher missed opportunities
to use student ideas, and they indicated this by writing "none."

1

2

3

4

Indicator a Indicator b Indicator c Total

S
co

re

Figure 2: The distributions of evaluation rubric scores: Indi-
cators 𝑎, 𝑏, 𝑐, and total score.

The 157 transcripts were rated in the following way:
• Two transcripts were rated by twelve human raters each. These
two transcripts are hereafter referred to as multi-rated transcripts
T1 and T2.

• 56 transcripts were rated by two human raters each.
• The rest of the transcripts (𝑛 = 99) were rated by one rater each.

The inter-rater agreement for the total score and indicators 𝑎,
𝑏, and 𝑐 scores was evaluated using 56 double-rated transcripts.
The inter-rater Pearson correlation between the total scores was
𝑟 = 0.379, indicating fair level of agreement between the raters [8].
The inter-rater correlations for indicators 𝑎, 𝑏, and 𝑐 were 𝑟 = 0.127,
𝑟 = 0.516, and 𝑟 = 0.527, respectively. The latter two values indicate
moderate agreement, as suggested in [8]. The low agreement for
indicator 𝑎 guided our decision to not use indicator 𝑎 in further
analyses. In addition, wemeasured the correlation between the total
score and indicator 𝑏 and 𝑐 score. The correlations were 𝑟 = 0.812
and 𝑟 = 0.835, correspondingly, indicating a clear alignment of both
the intermediate scores with the total score.

The evaluation of inter-rater agreement on justifications pro-
vided for indicators 𝑏 and 𝑐 was challenging due to the human

variation in the selection of examples. The data collected from the
56 double-rated transcripts was not rich enough, as in most cases
the two raters chose different examples from the same transcript.
Asking people to select a few examples of good engagement with
student ideas from a dozen or more utterances per participant is
somewhat akin to asking people to pick important information in a
document for a summary. In both cases, there are many valid solu-
tions, although one would hope that instances that are clearly very
good examples or important would be picked more often. These
observations suggested the idea of using utterance justification
examples collected from multiple human raters (in our case, twelve
raters) who rated the same two transcripts and evaluating them
using the Pyramid score [36] originally developed for evaluating
summaries. We describe the Pyramid evaluation process and the
human-human and human-machine agreement result in Sections
5.2.3 and 7 below.

4.4 Pre-processing of the Dataset for Machine
Learning

We created four datasets to separately measure our method’s ability
(1) to predict the total score and the scores of rubric indicators;
(2) to identify if a student utterance is an example of a substantial
student contribution to the discussion; and (3) to identify if a teacher
utterance is an example of a teacher making a meaningful usage of
student ideas to move the discussion forward. Below we describe
the datasets and corresponding labels in more detail.
• Dataset DS1. Unlabeled dataset (𝑛 = 20, 813) of all student and
teacher utterances automatically collected by parsing 157 tran-
script MS Documents. There are 9, 833 teacher utterances and
10, 974 student utterances.

• Dataset DS2. Utterance-level labeled dataset (a subset of DS1,
𝑛 = 1, 613) with binary labels indicating if an utterance was
chosen by at least one of the raters as an example of a student
making a substantial contribution to the discussion (class 1). The
examples were collected semi-manually1 from raters’ indicator 𝑏
justifications. If a rater indicated that a student did not contribute
substantially to the discussion by writing "none" for justification,
all the student utterances were inserted into the dataset as neg-
ative examples (class 0). In total, 1, 004 class 1 and 609 class 0
examples were collected. So, only about 15% of all student utter-
ances (𝑛 = 10, 974) were labeled as class 1 or class 0 for indicator
𝑏.

• Dataset DS3. Utterance-level labeled dataset (a subset of DS1,
𝑛 = 693) with binary labels indicating if an utterance was used
by at least one of the raters as an example of a teacher using
a student’s idea to move the discussion forward (class 1). The
examples were collected semi-manually1 from raters’ indicator 𝑐
justifications. In case a rater indicated that a teacher did not make
use of student ideas to move the discussion forward by writing
"none" under "Indicator 𝑐 justifications", all the utterances of the
teacher were inserted into the dataset as class 0 instances. In
total, 330 class 1 and 363 class 0 instances were collected. So, only
about 7% of all teacher utterances (𝑛 = 9, 833) were labeled as
class 1 or class 0 for indicator 𝑐 .

1Sometimes parts of an utterance were cited by raters, so automated alignment of
examples to transcript utterances had to be manually adjusted.
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• Dataset DS4. Transcript-level labeled dataset (𝑛 = 157) with
3 labels: one for the total score, and two for indicators 𝑏 and 𝑐 ,
respectively. For the 56 double-scored transcripts, we averaged
the scores of the two raters.

5 EXPERIMENTAL SETUP
5.1 Data Partitioning
As described in Subsection 4.3, most teachers contributed two tran-
scripts to the study. To make sure that models do not pick up on
teacher-specific linguistic idiosyncrasies, we divided all the datasets
used to address RQ1 into training and test sets (80% and 20% re-
spectively) randomly by the teacher rather than by transcript.

To address RQ2, for amore comprehensive evaluation of utterance-
level predictions on DS2 and DS3 we utilized the two transcripts
evaluated by twelve raters. So, all the student and teacher utter-
ances originating from these two transcripts comprised the test sets
for datasets DS2 (𝑛 = 95) and DS3 (𝑛 = 88). The rest of the labeled
student and teacher utterances were assigned to the corresponding
training sets. There were no transcripts from the two teachers who
contributed the test transcripts in the training data. This approach
allowed us to utilize “the wisdom of the crowd" for evaluating pre-
dictions of our utterance-level models using the Pyramid method
[36] designed to evaluate summaries against multiple partially over-
lapping model summaries. The method is described in more detail
in Subsection 5.2.3 below.

5.2 Machine Learning Methods
5.2.1 BERT. Weemployed a supervisedmachine learning approach
and pre-trained state-of-art deep neural network BERT models
[11, 19] to classify utterances (into good examples of indicator
scores or not) and generate utterance level embeddings. The BERT
architecture was implemented using PyTorch API [41] with Tensor-
Flow 2 backend. Namely, the Hugging Face DistilBERT base model
(uncased) 3 [48] was used: (i) for utterance level embeddings gener-
ation and (ii) for text classification. In the latter case, we fine-tuned
the pre-trained models end-to-end (including all transformer layers,
the pooling layer, and the final dense output layer) with the Adam
optimizer [23] (learning rate = 1e-5, learning warmup = 600) to
minimize the binary cross-entropy loss, which is consistent with
typical BERT fine-tuning for text classification [19]. The models
were trained with batch size 1 for 5 epochs.

As a typical utterance in our dataset was quite short (median =
12, 25-75% range = 6-24, see Table 1), we decided to enrich BERT
input by using the previous utterance concatenated with the name
of the speaker of the previous utterance as a context, since the
previous utterance most probably contains information important
for classification of indicators 𝑏 and 𝑐 justifications. In rare cases,
if the input was longer than 512 tokens it was truncated to fit the
corresponding BERT model restriction.

5.2.2 Regression methods. In the context of RQ1, for total score
and indicator 𝑏 and 𝑐 scores we used several shallow machine learn-
ing architectures, namely Multi-layer Perceptron Regressor (MLP),
Linear Regression (LR), Decision Tree Regressor (DT) and Bayesian

2https://www.tensorflow.org/
3https://huggingface.co/docs/transformers/model_doc/distilbert

Ridge Regressor (BR) implemented using scikit-learn [42] Python
package 4. Hyper-parameters of the aforementioned regression
models were fine-tuned using 5-folds cross-validation grid search
over the parameters relevant to each type of the regressor5 and
the best performing model was chosen for each regression type
separately. Then, we compared the mean cross-validation Mean
Squared Error (MSE) values of the best MLP, LR, DT, and BR re-
gressor and chose the winning model. Next, we retrained the best
regressor over the entire training set.

5.2.3 Evaluation Measures. For RQ1, we used Cohen’s Kappa, F1,
and Accuracy on validation data for preliminary evaluation of bi-
nary models for predicting indicators 𝑏 and 𝑐 justifications on ut-
terance level. For evaluating predictions of the total score and indi-
cators 𝑏 and 𝑐 scores we used MSE and Pearson correlation (𝑟 ).

For RQ2, we used a Pyramid score for a more comprehensive
evaluation of utterance-level predictions of indicators 𝑏 and 𝑐 justi-
fications. The Pyramid method can be applied if multiple ratings of
the same unit of analysis (in our case, an utterance) are available
and it assigns higher weights to utterances used as justifications by
more human raters [36].

Applying the Pyramid method includes several steps. First, each
utterance is assigned a weight corresponding to the number of
raters who used this utterance as a justification. Second, the pyra-
mid is created for each transcript and each indicator separately.
The pyramid consists of the number of tiers equal to the maximum
weight given in the first step, and each utterance is assigned to
the 𝑛𝑡ℎ tier if it was chosen by n raters. There are usually a few
examples with high weights (placed at the top of a pyramid) and
a large number of examples used by only one rater (placed at the
base of a pyramid) [36], creating the pyramid form. The pyramids
created based on the two multi-rated transcripts are presented in
Figure 3 (the letters in the circles are a variation we introduced to
the ‘vanilla’ Pyramid method to account for the selection of utter-
ances per participant and will be explained later). Third, to evaluate
a new rating, it is compared to the pyramid as follows. Let 𝑘 be
the number of utterances selected as possible justifications by the
new rater. The raw score of the new rating is the sum of tiers to
which the 𝑘 utterances belong according to the pyramid; utterances
not in the pyramid are assigned zero weight. For example, for the
10-tier pyramid in Figure 3, disregarding the letters, if the new
rating has 𝑘=4 and picked the two utterances at tier 9, the single
utterance at tier 6, and an utterance that is not in the pyramid, its
raw pyramid score is 9 + 9 + 6 + 0 = 24. Next, the raw score of the
best possible 𝑘-utterance selection is computed; in our example, it
is 10 + 9 + 9 + 8 = 36. Finally, the Pyramid score of the new rating is
calculated as the ratio between its raw score and the best possible
score for a 𝑘-utterance selection. It is 24/36 = 0.67 in the example.
So, the Pyramid score is always between 0 and 1 and higher values
indicate higher agreement of the new rater with the pyramid.

In this study, due to the nature of the evaluation rubric that
explicitly asked raters to choose justifications for each discussion
participant separately, it was important to take into account who

4https://scikit-learn.org/stable/index.html
5MPL hyperparameters: number of hidden layers, activation function, alpha, DT hy-
perparameters: max depth, max number of features, and BR hyperparameters: alpha,
lambda, tol
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delivered each utterance inserted into the pyramid (the letters in-
side the circles in Figure 3) and consider that while calculating
the Pyramid score. Let 𝑘 be the number of utterances selected as
possible justifications by the new rater. For the 10-tier pyramid in
Figure 3, taking into account the letters, if the new rating has 𝑘 = 4
and picked the two utterances of Carlos (C) and Mina (M) at tier 9,
the single Emily’s utterance at tier 6 (E), and Will’s utterance that is
not in the pyramid, its raw score is 9+9+6+0 = 24 (same as before).
However, the score of the best possible 𝑘-utterance selection is
different as we now consider the participants. In our example, the
utterances of Carlos (at tier 9), Mina (at tier 9), Emily (at tier 8), and
Will (at tier 3) are the best possible scores for these participants,
which is 9+9+8+3 = 29, yielding the Pyramid score of 24/29 = 0.83.

6 RQ1: EXPERIMENTS AND RESULTS
The goal of these experiments is to build and evaluate models
for the prediction of total and indicator scores per transcript. We
investigate two approaches. The first, text-to-score, utilizes solely
the text of the transcript for the prediction. The rationale for this
method is the track record of the strong performance of out-of-the-
box pre-trained language models on a variety of meaning-focused
tasks. The second, evidence-to-score, first identifies teacher and
student utterances that could serve as justifications, or evidence,
for indicator scores, then combines the justifications in accordance
with the indicator scoring rubric to derive the score. The rationale
for this method is two-fold: (a) it uses additional information –
justifications provided by raters for their scores, and (b) its scoring
mechanism mimics the human rater scoring rubric.

Our experiment design is presented in Figure 4; it consists of
four stages.

(1) Utterance-level BERT classifier fine-tuning. Train BERT
classification models for predicting indicators 𝑏 and 𝑐 justifica-
tions; these would serve to identify evidence for the evidence-
to-score models.

(2) Utterance-level BERTmodels prediction.Generate utterance-
level features for the entire DS1. Under the text-to-score design,
we generate a 768-dimensional embedding (namely, a contextu-
alized meaning representation) for every student and teacher
utterance using the pre-trained BERT. Under the evidence-to-
score design, we generate a binary prediction of whether the
utterance can serve as evidence of attending to student ideas
using the BERT classification models from Stage 1. Labels for
student utterances are generated using indicator 𝑏 BERT clas-
sifier, and labels for teacher utterances are generated using
indicator 𝑐 BERT classifier.

(3) Feature creation from utterance-level to transcript level.
Combine utterance-level features into meaningful transcript-
level features. Under the text-to-score design, we average em-
beddings for all utterances per participant per transcript. Under
the evidence-to-score design, we attempted to mimic the eval-
uation rubric and generated features that would capture, for
example, whether there is at least one piece of evidence for each
of the students.

(4) Transcript-level model training and model selection. Use
the transcript-level features crafted in Stage 3 to predict the
total score for the transcript. We used several regression models

(MLP, LR, DT, and BR, hereafter referred to as Regressors) in two
variants of machine learning architecture: (i) direct prediction
of the total score from the transcript-level features; and (ii) two-
steps prediction: first prediction of indicator 𝑏 and indicator
𝑐 scores, followed by prediction of total scores based on the
indicators’ scores. These approaches were evaluated for both
text-to-score and evidence-to-score models.

Below, we present each stage in more detail.

6.1 Stage 1: Utterance-level BERT classifier
fine-tuning

Indicator 𝑏 justifications:We fine-tuned pre-trained BERT classi-
fication model end-to-end [19] on the training set of dataset DS2.
We performed a small hyper-parameter search over the number of
epochs (max epochs = 5) using 7-fold cross-validation andmeasured
the mean values of Cohen’s Kappa, F1, and Accuracy measures over
a validation set, which led to 7-best performing models trained over
5 epochs.

Indicator 𝑐 justifications: The same procedure was utilized to
train the best predicting models for indicator 𝑐 over DS3 dataset
over 4 epochs.

Validation-set evaluations were conducted to get a sense of the
model’s ability to identify utterances with substantial contribu-
tion (indicator 𝑏) and those where the teacher is making use of a
student’s idea (indicator 𝑐). We present results for each of the indi-
cators in Table 2. Results appear sufficiently promising to attempt
to use the utterance-level predictions in transcript-level models,
as described in the next section. We defer a more comprehensive
evaluation of the utterance-level models to the discussion of RQ2.

6.2 Stage 2: Utterance-level BERT models
prediction

For the evidence-to-score design, the predictions for indicators 𝑏
and 𝑐 were calculated as soft voting (the class with the highest av-
erage probability) over the predictions of the corresponding seven
cross-validation models. The models predict a binary label for each
utterance. Using the indicator 𝑏 models, we predict one of “a sub-
stantial contribution" or “not a substantial contribution" for each
student utterance. Using the indicator 𝑐 models, we predict one
of “effective use of a student’s idea" or “not an effective use of a
student’s idea" for each teacher utterance. For the text-to-score
design, pre-trained BERT models were used as-is to generate the
embeddings (dimension size = 768) for each utterance. Both types of
predictions were generated for the entire set of unlabeled utterances
DS1.

6.3 Stage 3: Feature creation from
utterance-level to transcript level

(1) Features based on pre-trained embeddings. To create fea-
tures at the transcript level for the text-to-score models, we
calculated the average values over the embedding of each par-
ticipant (5 students and a teacher) separately. The resulting
dataset contained 6 × 768 features for each transcript.
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Figure 3: Pyramids for the two multi-transcripts used to evaluate the classifiers that predict whether the given utterance can
serve as a justification for the indicator score. Each circle represents an utterance picked as a justification by at least one of the
12 human raters; tier placement is described in the text. The letters denote the first name initials of the five simulated students
(Jayla, Will, Emily, Carlos, and Mina) and the teacher (T). Pyramids for indicators 𝑏 and 𝑐 are merged for ease of visualization;
the sub-pyramid with just students’ utterances is used for indicator 𝑏 and the sub-pyramid with the teacher’s utterances is used
for indicator 𝑐.

Dataset Justification of indicator Optimal epochs Accuracy F1 Kappa
DS2 𝑏 5 0.848 ± 0.024 0.845 ± 0.025 0.660 ± 0.057
DS3 𝑐 4 0.751 ± 0.039 0.751 ± 0.040 0.503 ± 0.077

Table 2: Validation-set evaluations (7-fold cross validation) for indicator 𝑏 and indicator 𝑐 justification predictions.

(2) Features based on predictions of the utterance-level mod-
els. For the evidence-to-scoremodels, we used the binary utterance-
level predictions from Stage 2 to calculate the total number of
utterances per participant and transcript and the number of
class 1 labeled utterances (“substantial contribution" for stu-
dents and “effective use of a student’s idea" for the teacher)
per participant and transcript. Based on these numbers, we
calculated the following 7 features:
• Student’s substantial contribution (5 features). A binary
feature per student with the value set to 1 if the student has
at least two class 1 indicator 𝑏 utterances, otherwise it was
set to 0.

• Teacher’s ability to elicit substantial contribution from
the students (1 feature). This feature has 3 ordinal levels.
Level 3 was assigned if a teacher succeeded in eliciting sub-
stantial contribution from all of the students; level 2 – from
at least three students; level 1 was assigned in all other cases.

• Teacher’s effective usage of student ideas (1 feature). A
binary teacher feature with the value set to 1 if at least 40%
of teacher utterances per transcript were labeled as class 1
for indicator 𝑐 .

These features and the rules for value assignment were based on
the corresponding evaluation rubric instructions. For example,
the rubric instruction mentioned that the teacher should have
elicited substantial contribution from all the students to get a

score of 3 on the holistic indicator-level rubric (see item 2 in
Subsection 4.3).

6.4 Stage 4: Transcript-level model training and
selection of the best model

6.4.1 Experimental design. In this study we used two types of
models: (i) models to predict the total score directly, and (ii) models
to predict the intermediate scores (indicators 𝑏 and 𝑐 scores) and
use these scores as features to predict the total score. The latter was
inspired by the very high correlation between human intermediate
scores (indicators 𝑏 and 𝑐) with the total score (Subsection 4.3) and
by the desire to create more interpretable models.

We conducted a separate experiment for each pairing of model
type (text-to-score and evidence-to-score) and experiment design
(direct prediction of total scores and prediction via intermediate
indicator scores.) The following models for predicting the total
score were trained and evaluated:
• Auxiliary step.An auxiliary model for total score prediction using
human indicator𝑏 and 𝑐 scores as features.Wewill plug predicted
indicator scores instead of the human ones for the evaluations
with intermediate scores.

• Experiment 1. An evidence-to-score model for total score predic-
tion using utterance label-based features.

• Experiment 2. Two evidence-to-score models for indicator 𝑏 and
𝑐 scores prediction (as intermediate scores) using utterance label-
based features, followed by the auxiliary model.
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Figure 4: RQ 1 experimental design pipeline. The green boxes represent datasets. The white boxes represent machine learning
models.

• Experiment 3. A text-to-score model for total score prediction
using utterance embedding-based features.

• Experiment 4. Two text-to-score models for indicator 𝑏 and 𝑐

scores prediction (as intermediate scores) using utterance embedding-
based features, followed by the auxiliary model.
All the models (including the auxiliary one) were trained and

evaluated on dataset DS4 using the same division into the training
and test sets as described in Subsection 5.1. The test set results of the
four experiments are presented in Table 3. The results indicate that
the two evidence-to-score models based on 7 features generated

using automatically predicted utterance-level labels of indicators 𝑏
and 𝑐 performed similarly and were able to achieve a fair correlation
with human total scores, which was even better than human inter-
rater Pearson correlation (𝑟 = 0.379, Subsection 4.3).

7 RQ2: EXPERIMENTS AND RESULTS
The goal of this set of experiments is to analyze system perfor-
mance on the prediction of indicator 𝑏 and 𝑐 justifications. Strong
performance on this task would both support the validity argument
for the evidence-to-score holistic scoring systems developed for
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Experiment Regressor MSE Pearson’s 𝑟
1 BR 0.237 0.439
2 DT 0.287 0.421
3 BR 0.240 0.290
4 DT 0.341 0.016

Table 3: Stage 4 test-set results for evidence-to-score (Ex-
periments 1 and 2) and text-to-score (Experiments 3 and 4)
models.

RQ1 and provide a basis for personalized formative feedback to the
teacher. The experiment design consisted of three steps.

Utterance-level BERT classifier fine-tuning. We followed
the procedure described in Subsection 6.1 (Stage 1); however, the
division into the training and test sets was different (see Subsection
5.1). Namely, all the labeled utterances that belong to themulti-rated
transcripts were assigned to the test set to allow the Pyramid-based
evaluation.

Utterance-level BERT classifier prediction.We calculated
the predictions for the indicators 𝑏 and 𝑐 justifications as soft voting
(the class with the highest average probability) over the predictions
of the seven cross-validation models. For each utterance in the test
set, we calculated two numbers: the prediction itself (0 or 1) and
its probability. We sorted, per participant, the class 1 (‘can serve
as a justification’) prediction probabilities from highest (the most
confident class 1 prediction) to lowest (the least confident class 1
prediction).

Utterance-level BERT classifier Pyramid evaluation. First,
we calculated the pyramids for the two multi-rater transcripts T1
and T2 as described in Subsection 5.2.3. The results are presented
in Figure 3. Next, we calculated the human raters’ Pyramid scores
per transcript for each rater and compared them to the Pyramid
scores of the classifier. Namely, for each of the 12 raters and each
transcript (n=24):

(1) As the pyramids in Figure 3 were constructed using the data
of all 12 raters, it was not fair to calculate the rater’s score
using these pyramids as-is. So, to pretend that a rater under
analysis is a ’new’ rater, we reduced by one the weights of all
the utterances selected by this rater, yielding a slightly modified
pyramid 𝑀𝑜𝑑𝑃𝑟𝑎𝑡𝑒𝑟 . Then, we calculated the rater’s Pyramid
score against the pyramid𝑀𝑜𝑑𝑃𝑟𝑎𝑡𝑒𝑟 as described in Subsection
5.2.3.

(2) Next, we calculated the Pyramid score of our automated predic-
tion against the pyramid𝑀𝑜𝑑𝑃𝑟𝑎𝑡𝑒𝑟 . To make a fair comparison
with the ‘new’ human rater, the automated rater included the
same number of utterances per participant as the human. The
utterances with the highest class 1 probabilities, by the partici-
pant, were selected as automated predictions for the comparison
with the ’new’ rater.

The process above was run twice, for student utterances (indicator
𝑏) and for teacher utterances (indicator 𝑐). For indicator 𝑐 it resulted
in 24 pairs of Pyramid scores – one for each rater and each transcript
vs the automated score, while for indicator 𝑏 it resulted in 23 pairs
because one of the raters did not provide any examples for indicator
𝑏 justifications for one of the transcripts.

The distribution of human Pyramid scores for indicator 𝑏 (M
= 0.843, SD = 0.085) does not differ significantly from that of the
automated system (M = 0.833, SD = 0.069), paired two-tailed t(23)
= 0.959, p = .348. The distribution of human Pyramid scores for
indicator 𝑐 (M = 0.671, SD = 0.163) also does not differ significantly
from the automated predictions (M = 0.783, SD = 0.129), paired
two-tailed t(24) = -2.06, p = .051. We consider these results as an
indication that the automated models can pick justifications that
are as good as those picked by human raters.

8 DISCUSSION
In response to RQ1, our results show that automating the holistic
scoring of teacher-led argumentation practice is feasible, as some of
our models achieved human-level performance on the task.We built
and evaluated two types of systems: text-to-score, where the scores
are predicted from the raw text of the transcript using powerful pre-
trained language models, and evidence-to-score, where the system
additionally utilized rater justifications for the scores created during
the human rating process. The latter models showed substantially
stronger performance. This finding is particularly encouraging from
the point of view of effective utilization of human-produced arti-
facts, and score justifications in this case, even if those were not set
up as systematic annotations to support automation. While teams
of technologists and science educators might be increasingly com-
mon, it is encouraging that rich but only partly systematic human
data generated in a science education context can be effectively
utilized, post factum, for automation purposes.

Previous research has shown that transparency of AI-powered
technology (e.g., providing not only a ‘bottom line’ but also explain-
ing why a decision was made) plays a critical role in practitioners’
willingness to use automated recommendations [24, 34, 35]. Our
best-performing scoring system also has the best explainability. In
particular, a direct evaluation of the scores’ evidence identification
step suggests that not only can the system find relevant evidence, it
can pinpoint the strongest evidence for the score as well as a human
rater. This finding points towards an answer to RQ2 – the system’s
ability to identify evidence for the score could serve as a basis for
formative feedback to the teacher. For example, the system could
point out that the teacher has successfully engaged Jayla and Car-
los in the discussion but has not done so for Will – either to guide
reflection at the end of the interaction or as real-time feedback.
Developing a personalized formative feedback mechanism based
on these automated models is a major goal of future work.

Limitations. So far we have a relatively small amount of data
for training transcript-level models; more data will need to be col-
lected from additional studies with teachers. Second, while there is
a strong alignment between total and indicator human scores (𝑟 >
0.8), there is only moderate inter-rater agreement on the total and
indicator scores (𝑟 = 0.4-0.5). We plan to both improve the rubric
scoring and to collect more human ratings per transcript to allow
distillation of the average human judgment as well as identification
of cases that are more or less controversial for human raters; [25] we
argue that evaluation on uncontroversial (exemplar) cases provides
important information for understanding system performance. Pre-
vious research provides evidence that machine learning models
are sometimes able to ignore biases and idiosyncrasies of specific
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human raters and agree with humans better than humans agree
with each other. Providing additional human-scored data labeled by
various raters could improve the automated system performance.

9 SUMMARY AND CONCLUSION
Engaging students in argument from evidence is an essential goal of
science education. This is a complex skill to develop; recent research
in science education proposed the use of simulated classrooms to
facilitate the practice of the skill. We used data from one such
simulated environment to explore whether automated analysis
of the transcripts of the teacher’s interaction with the simulated
students using Natural Language Processing techniques could yield
an accurate evaluation of the teacher’s performance.

Teacher performancewas assessed as a total score for the teacher’s
ability to facilitate an argumentation-based science discussion, as
well as indicator scores for specific sub-skills, such as ‘elicit sub-
stantive contributions from all students’ or ‘engage with students’
ideas’. For the latter, raters were asked to provide score justifica-
tions. We used these data to create (a) text-to-score models that use
state-of-the-art pre-trained Transformer models (BERT) to predict
the scores directly from the text of the transcripts, and (b) evidence-
to-score models that included an intermediate step of identifying
utterances that could serve as justifications/evidence for the scores.
We found that the latter models performed better and comparably
to humans, both in terms of total scores and in the justifications for
these scores.

These findings open up the possibility of generating automated
scores paired with formative feedback with concrete evidence for
the scores. The unique affordances of being automatically generated
provide an opportunity to share such formative feedback at scale
with each teacher who uses the simulated classroom environment
during or shortly after each session.
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