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ABSTRACT
Prior work analyzing tutoring sessions provided evidence that
highly effective tutors, through their interaction with students and
their experience, can perceptively recognize incorrect processes
or “bugs” when students incorrectly answer problems. Researchers
have studied these tutoring interactions examining instructional
approaches to address incorrect processes and observed that the
format of the feedback can influence learning outcomes. In this
work, we recognize the incorrect answers caused by these buggy
processes as Common Wrong Answers (CWAs). We examine the
ability of teachers and instructional designers to identify CWAs
proactively. As teachers and instructional designers deeply under-
stand the common approaches and mistakes students make when
solving mathematical problems, we examine the feasibility of proac-
tively identifying CWAs and generating Common Wrong Answer
Feedback (CWAFs) as a formative feedback intervention for ad-
dressing student learning needs. As such, we analyze CWAFs in
three sets of analyses. We first report on the accuracy of the CWAs
predicted by the teachers and instructional designers on the prob-
lems across two activities. We then measure the effectiveness of the
CWAFs using an intent-to-treat analysis. Finally, we explore the
existence of personalization effects of the CWAFs for the students
working on the two mathematics activities.

CCS CONCEPTS
• Applied computing→ Computer-assisted instruction; In-
teractive learning environments; E-learning.
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1 INTRODUCTION
Learning mathematics is a cognitively complicated process. For
many mathematics-based questions designed to help students prac-
tice math syntax, rules, and operations, students may demonstrate
their knowledge by applying procedural skills to synthesize solu-
tions. Analyzing the synthesis processes can be particularly chal-
lenging as the underlying mechanisms of the individual steps taken
to reach a solution are not obvious. As a result of gaps in stu-
dent knowledge or misconceptions, students may make errors on
one or more steps in solving a problem due to a misconception
or “slip" [8] that can lead to a variety of potential incorrect an-
swers. Conversely, gaps in student knowledge or shallowly-learned
concepts may cause students to guess at answers or otherwise ap-
ply the wrong approach, resulting in an entirely different set of
incorrect answers. Regardless the cause, the experience of errors
during problem-solving without directed feedback as to how to
rectify those errors may impede a student’s learning progress. Un-
derstanding the common errors that are experienced by students as
they interact with math problems is critical for guiding the design
of effective instructional practices to help students learn correct
mathematical processes and problem-solving strategies. The diag-
nosis and examination of “Common Wrong Answers” (CWAs) is
important for understanding learning processes in the context of
mathematics, and may be utilized to develop better educational
technologies that, in conjunction with teachers, can better meet
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the needs of individual students–educational technologies often
referenced as Computer Aided Learning Platform (CALP), Online
Learning Platform (OLP), or Intelligent Tutoring Systems (ITS).

Despite the complexity of the synthesis process in mathematics
learning, teachers’ knowledge of mathematics and ability to antici-
pate areas of potential difficulty or struggle among their students is
correlated with student learning outcomes [13]. Within this, many
teachers are able to use experiential knowledge to recognize the
types of mistakes, sometimes referred to as “bugs” [3], and miscon-
ceptions produced by their students. Researchers have explored
teacher approaches modeling student knowledge states by decon-
structing their process and reverse engineering such models for pro-
cedural skills in mathematics (c.f., [3]). Brown and colleagues ([3])
investigated the use of procedural networks in constructing diag-
nostic models. These models provided teachers and instructional
designers with learning and assessment value. A deeper understand-
ing of the incorrect processes causing the incorrect answers can be
leveraged in designing a more effective learning and assessment
activity [18]. A fundamental takeaway from the diagnostic model is
the recognition of many teachers’ ability to address faulty processes
performed by the students that result in these incorrect responses.
However, not all these bugs and faulty processes can be addressed
and adequately explained by teachers. The task of diagnosing the
students’ errors in itself is a procedural skill that is challenging
and is often susceptible to misidentification by the teachers [3, 25].
Furthermore, describing these common processes can be compli-
cated as several different incorrect processes can generate the same
outcome resulting in misjudgment when justifying and addressing
such student misconceptions. Therefore, proper tools and methods
are essential to facilitate the diagnosis and analysis of CWAs. With
the analysis and diagnosis of these CWAs, it is equally important
to address the cause of these CWAs effectively. We can address
student needs through tailored instructions to avoid misconcep-
tions or provide feedback/hints to the students as they make these
common mistakes.

In this paper, we examine two experiments that were designed to
leverage teachers’ and instructional designers’ ability to construct
diagnostic models to identify common bugs in student processes,
while working on problems, that resulted in CWAs. The teachers
were also asked to construct Common Wrong Answer Feedback
(CWAF) messages based on the inferred bugs in the diagnostic
model that resulted in the CWAs. First, we explore the fidelity of
proactively identifying CWAs by leveraging the diagnostic models.
If the diagnostic models can help teachers and instructional de-
signers correctly identify the majority of the CWAs, then a similar
approach can be adopted by various educational technologies in
the identification of CWAs and their remediation through CWAFs.
Second, we measure the effectiveness of these CWAFs by examin-
ing the learning outcomes of students working on mastery-based
assignments. We compare the mastery rates between students who
receive a CWAF when making a CWA with those who don’t receive
CWAF. We posit that the use of CWAFs will enhance the student
learning experience by helping them identify the bugs or address
their misconceptions resulting in higher mastery rates. Finally, We
extend our analysis to explore heterogeneous treatment effects to
explore potential opportunities for personalized interventions for
high- and low-performing students. While the primary objective

of this work is to examine the efficacy of CWAFs in general, we
additionally explore the benefits of two different design approaches
by comparing the effectiveness of short and concise CWAFs against
more elaborate CWAFs.

With this, the main research questions we address in the paper
are:

RQ 1 Can teachers and instructional designers identify common
wrong answers on math problems?

RQ 2 Does receiving common wrong answer feedback improve
short-term learning outcomes?

RQ 3 Do high- and low-performing students benefit differently
from common wrong answer feedback?

2 RELATEDWORKS
In most mathematics-based questions, CWAs typically arise from
a buggy rule, a lack of knowledge among the students, or a com-
mon misconception about the topic. There are various prior works
investigating the common errors made by students during their
mathematical thinking process [3–5, 19, 27, 28]. Others have also fo-
cused on rectifying these errors through instruction [7, 23]. As such,
Brown and colleagues [3] analyzed students’ incorrect responses to
multi-digit subtraction problems to build a diagnostic model that
helps detect and explain the incorrect responses in students’ work.
Furthermore, in [4], they explain the known/common bugs with
a set of formal principles called the “generative theory of bugs,”
that transforms a procedural skill to generate all the possible buggy
processes for that skill. Sison and colleagues [24] present several
studies involving student modeling and to explain the significance
of recognizing a “bug library” in student modeling tasks; this library
is defined as the collection of the most common misconceptions
or errors made by a population of students in the same domain.
Further, they present the challenges in the construction of these
libraries, as a different population of students may exhibit different
types of bugs during the synthesis of mathematics solutions.

While the fundamental mechanism behind the CWAs is ex-
plained by the principles of learning theory and cognitive skill
acquisition, various researchers have explored the likelihood of
algorithmically identifying these buggy procedures to rectify the
incorrect processes or buggy processes resulting in incorrect re-
sponses. A study from Selent et al. [23] proposes the use of machine
learning techniques to predict CWAs and their causes in students’
work and suggests using buggy messages to remedy these wrong
answers. They further measured the reduction of help-seeking be-
havior (i.e. characterizing student learning as needing less help over
time by the learning system) by leveraging these buggy messages
within an online learning platform.

Various other researchers have explored the effectiveness of feed-
back in rectifying student errors [16, 17]. A study from Vanlehn
and colleagues [26] observes the interaction between expert human
tutors and physics students to study the effect of tutor explanations
to address errors. This study found only some tutor explanations
to be associated with improved learning when students exhibited
difficulty, indicating that the effectiveness of the feedback varied
with the content and the question. Furthermore, short and concise
explanations were observed to be more effective in comparison
to more elaborate explanations. Other research has identified an
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inability of guided instructions to remediate errors emerging from
student misconceptions among previously learned skills [22]; this
suggests that deeply ingrained misconceptions may be more diffi-
cult to rectify over time. Other works [10, 15, 21] explored the use
of error analysis methods by studying students’ ability to identify
and explain exhibited errors. These studies have explored present-
ing erroneous examples to students by asking them to detect and
explain the error in the examples. Rushton et al. [21], report on the
approach of error analysis leading to better knowledge retention
over the traditional methods of learning mathematics.

3 METHODOLOGY
For all of our analyses, we utilize data that was collected from a
randomized controlled trial designed to measure the learning im-
pacts of CWAF. In this section, we first describe the study design
and characteristics of the dataset. We then discuss the analysis
conducted to address our first research question examining how
well teachers and instructional designers can proactively identify
the CWAs for two mathematics concepts. As teachers and instruc-
tional designers were asked to write CWAFs we then describe and
report on the results of the randomized controlled trial to measure
the impacts of CWAF on two short-term measures of learning. Fi-
nally, we examine interaction effects within this study to measure
heterogeneous treatment effects among high- and low-performing
students.

3.1 Study Design
Exploring the effectiveness of CWAFs uses two activities on the AS-
SISTmetns platform[12]; both problem sets have a mastery-based
design which provides students with practice problems until they
are able to demonstrate sufficient knowledge of the given concept.
While some systems utilize a model-based measure of mastery us-
ing Knowledge Tracing [6] or similar approaches, the designers
of the two activities in our analysis used an arbitrary threshold
of N-Consecutive Correct Responses (N-CCR) with N = 3; that is,
students must answer three consecutive problems correctly with-
out the use of system-provided on-demand tutoring (e.g. hints), in
order to complete the assignment. Kelly et al. [14] compared the
performance of N-CCR (N=3) against a BKT model and found the
performance of the two approaches to be comparable. Furthermore,
Prihar et al. [20] have reported on studies extending the N-CCR
experiments by exploring the benefits of N = 2, 3, 4, and 5 as thresh-
olds and found N = 3 to be the optimal threshold for mastery-based
math activities.

The instructional designers designed the content used in the
study to align to the Common Core State Standards [1] for grade
7. The first activity focuses on the “Number System” (7.NS.A.3),
and the second focuses on “Expressions & Equations” (7.EE.B.4).
Students working on the activities get randomly assigned to a treat-
ment or control condition–students in the treatment condition get
feedback if their attempt is a CWA whereas the students in the
control condition do not get any feedback. The students are as-
signed 10 random problems from a pool of ∼50 problems. Students
in both conditions must answer 3 consecutive problems correctly
to demonstrate mastery over the material. There is a daily limit of
10 problems per condition unless the student answers the 9𝑡ℎ or

10𝑡ℎ problem correctly; in such cases, the daily limit is extended to
11 and 12 problems, respectively. If the student cannot demonstrate
mastery within the ten problems, they must wait until the next day
to work on the problem set (this feature is intended to encourage
students to seek help rather than continue to struggle on the assign-
ment). Demonstrating mastery is the primary measure of success
in both the activities, but also observe reaching this daily limit as a
measure of wheel-spinning [2].

Instructional designers and teachers collaborated to design two
problem templates per activity for both “2-Step Equations” and
“Order of Operations” with the aim of generating problems that
adequately addressed the objectives of the activities. Teachers can
build problem templates in ASSISTments such that teachers can
generate multiple problems using the same template. The templates
used in generating the problems and an example per template are
presented in 1. Teachers and instructional designers analyzed the
generated problems to construct diagnostic models that postulate
the approaches students could take when solving the problems
along with the steps where bugs can occur in their approach due
to “guess”, “slip”, or “misconception”. The bugs were used to pre-
dict CWAs and generate templates for CWAFs. In the interest of
preserving space and adhering to the conference’s page limit, the
templates for the CWAF and examples have been provided with the
supplementary materials of this paper1. While we do not elaborate
on the templates used in generating the CWAFs within this paper,
we will briefly describe the two design approaches for CWAFs. As
exemplified in figure 2, the students in the treatment condition of
“2-Step Equations” activity get a CWAF when their attempt is a
CWA, whereas students in the control condition do not get feed-
back. The CWAF consists of three main sections: (a) in blue, the core
idea required to answer the problem; (b) in green, the correct steps
the students likely took to synthesize an answer; and (c) in red, the
crucial buggy step where the student made an error. Alternatively
as shown in figure 3, the students in the treatment condition of
“Order of Operations” activity get a CWAF that is more short and
succinct in design. In our analysis of these two studies we explore
the general effectiveness of CWAFs by analyzing their general ef-
fectiveness as well as exploring their effectiveness on their own
as they have different designs. We analyze the two designs sepa-
rately as prior works analyzing human tutor feedback in physics
have suggested that a simpler and shorter explanations are more
beneficial to students in contrast to more elaborate explanations
resulting in the motto, “Ask more and tell less”[26].

3.2 Description of Dataset
The data was collected across 9 academic years and their respective
summer sessions in the United States (the academic year 2013-14
to the Summer of 2022)2. During this period, the teachers accessed
the two mastery-based activities as assignments for their students.
Both activities fit the lesson plan as they align with Illustrative
Math curricula under the Common Core Standards [1]. During this
period, 587 middle school teachers in the United States assigned one
or both mastery-based activities to 1283 of their classes resulting in

1The templates for the CWAFs are publicly available at https://osf.io/gjst9/
2The dataset and all the code used in this work is publicly available at
https://github.com/AshishJumbo/LAK_CWAF

401



LAK 2023, March 13–17, 2023, Arlington, TX, USA Gurung, et al.

Figure 1: The two templates used to generate the problems across the two activities “Order of Operations” and “2-Step Equations”
respectively along with an example for each template.

Figure 2: Example problems in treatment (problem on the left) and control (problem on the right) condition for “2-Step
Equations” activity. The CWAF is provided to students when they provide a CWA in the treatment condition.

23,655 students working on the activity. The assignment-to-class
ratio in the dataset is not one-to-one. Some teachers using the
CALP prefer to divide their students into subgroups and assign
them separate assignments within a single classroom. Another
reason for the discrepancy in the one-to-one relationship is the
Learning Tool Interoperability (LTI) integration within Canvas, a
Learning Management System (LMS). School districts using Canvas
occasionally group all students at a grade level into a single group

and divide them into subgroups according to their classes. This
grouping structure is problematic as the entire grade level now
appears as a single class during LTI integration; this is a known
issue with Canvas LTI integration.

As this is an in-vivo study, there were a few occasions where a
teacher gave out the same activity to their student if their students
initially performed poorly on the assignment. For instances where
students worked on the mastery-based activity more than once,
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Figure 3: Example problems in treatment (problem on the left) and control (problem on the right) condition for “Order of
Operations” activity. The CWAF is provided to students when they provide a CWA in the treatment condition.

we only analyzed the instances where the students worked on
the activity for the first time and dropped all the other instances.
Additionally, there were some instances where the students worked
on both activities (i.e., the students was assigned to the treatment
in the first activity and control in the second activity)–in such
scenarios, we dropped the student record for the second activity
to avoid spillover effects within the study. Table 1 lists the number
of teachers, classes, assignments, and students after implementing
the filtration procedures on the data.

4 DEFINING COMMONWRONG ANSWERS
In this section, we analyze the incorrect answers provided by stu-
dents while working on the mastery-based assignment and explore
how common these common wrong answers actually are. We then
extend our analysis to explore the ability of teachers and instruc-
tional designers in CALPs to predict CWAs. We analyzed all the
instances when a student provided an incorrect response on their
first attempt to help explore our first research question (RQ1) to
evaluate teachers’ and instructional designers’ ability to anticipate
and identify CWAs effectively. We limit our analysis to the first
attempt, as all other attempts combine a corrective step to account
for the incorrectness of the first attempt in the formulation of a
solution.

Teachers and instructional designers analyzed mathematical
problems using the Common Core State Standards and inferred
diagnostic models of students synthesizing solutions to these prob-
lems. Table 2 presents the number of CWAs teachers and designers
proactively predicted by analyzing the possible incorrect answers.
The teachers and instructional designers analyzed the incorrect
answers and processes for their likelihood of occurring based on
experience and understanding of student approach to solving the
problems. The incorrect answers that were considered the most
likely were labeled CWAs. The teachers and instructional designers
provided CWAFs to address the incorrect process that led to the
CWAs. An example of a CWA and the associated CWAF is shown
in the example provided in treatment problem in figures 2 & figure
3.

4.1 Identifying & Analyzing CWAs
The mastery-based activity had similar problems between treat-
ment and control conditions, albeit not the same. In order to identify
the CWAs, we analyzed all the first attempts where the students’
answers were incorrect. As the aim is to explore the ability of
instructional designers and teachers to leverage their teaching ex-
perience and insight into predicting the CWAs, we only analyze
the problems in the treatment condition as the teachers had only
predicted the CWAs for the treatment problems. We analyzed the
CWAs using two arbitrary thresholds of N= 5 and 10–the answer is
a CWA if N or more students submitted the answer.

Table 3 analyzes the CWAs across mastery-based activities where
5 or more students provide the incorrect answer. The instructional
designers were able to predict CWAs for the problems in the “Order
of Operations” where ∼85% of the CWAs were correctly predicted
and had associated feedback. Of the incorrect responses of the
students, 2528 responses were CWAs with feedback from the in-
structional designers; however, only 2361 of the incorrect responses
crossed the threshold of 5, indicating that certain incorrect mes-
sages were misclassified as common. Additionally, there were 81
instances where students provided CWAs were not identified by
the teacher. Predicting CWAs for problems in the “2-Step Equations”
was more challenging as only ∼54% of the CWAs were correctly
identified. Furthermore, identifying CWAs in “2-Step Equations”
was more challenging as the teachers failed to identify 192 CWAs
that occurred more than five times, resulting in 2037 instances
where we failed to provide CWAFs.

Table 4 analyzes the CWAs across mastery-based activities us-
ing a higher threshold of 10 or more incorrect attempts. With a
higher threshold, the instructional designers were more effective at
predicting the CWAs for the problems in the “Order of Operations”
activity. While the teachers accurately predicted all of the CWAs
that occurred, the teachers identified 270 CWAs, of which only
57 (∼21%) were common, i.e., N ≥ 10. Identifying CWAs for the
problems in the “2-Step Equations” even at a higher threshold still
presented challenges as only 143 (∼72%) CWAs that occurred were
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Table 1: Filtered list of teachers, classes, assignments and student working on the two problem set.

Order of Operations 2-Step Equations Combined

Teachers 202 458 587
Classes 386 954 1282
Assignments 497 954 1282
Students 6679 16976 23655

Table 2: CWAs identified by teachers by analyzing the problems.

problems Teacher Identified CWAs

Order of Operations 54 270
2-Step Equations 52 359

Table 3: Analyzing CWAs that were made by the students with a threshold N ≥ 5.

Teacher Identified Observed
CWAs CWAs

Order of Operations
CWAs identified by teacher 270 88

CWAs not identified by teacher – 15
2-Step Equations

CWAs identified by teacher 359 228
CWAs not identified by teacher – 192

correctly identified. In contrast, teachers were unable to identify 54
(∼21%) CWAs and provide appropriate CWAFs.

4.2 Results of Identifying CWAs
From our analysis of the CWAs using the arbitrary threshold of
N = 5 or 10, we observed that the ability to predict CWAs varies
across topics. While the instructional designers were more effective
at predicting the CWAs for the “Order of Operations” compared
to the “2-Step Equations”, the general accuracy of the predicted
CWAs was relatively low. When the threshold for commonality
was 5: ∼32% of the teacher predicted CWAs were actually made by
the students working on the “Order of Operations”, and teachers
were unable to predict 15 of the new CWAs from students. For “2-
Step Equations”, ∼63% of the teacher predicted CWAs were actually
made by the students, and 192 new CWAs were observed which
was not previously predicted by the teacher.

Likewise, when the threshold for commonality was 10: ∼21% of
the teacher predicted CWAs were made by the student for “Order
of Operations,” and students did not make any new CWAs on this
problem set. For “2-Step Equations”, ∼39% of the teacher predicted
CWAs were actually made by the students and 54 new CWAs were
observed. While the instructional designers had some success in
proactively identifying CWAs, upon accounting for the time and
effort required to identify the CWAs and their inaccuracy, the ap-
proach taken in identifying CWAs in the paper appears to be highly
inefficient. Further analysis and re-evaluation of the CWAs is re-
quired before exploring the utilization of CWAFs in math-based
activities.

5 ANALYSIS OF THE EFFECTIVENESS OF
CWAFS

In this section, we evaluate the effect of CWAFs relative to no
CWAFs in helping students learn the underlying concept addressed
in the problem sets to explore our second research question (RQ2).
We hypothesize that the CWAFs will positively impact learning
by helping students understand gaps in their knowledge. Our hy-
pothesis is based on the intuition that students who make a CWA
are closer to the answer. An appropriately designed CWAF has a
higher likelihood of helping the student answer the problem, i.e.,
recognizing the bug and reevaluating their answer formulation
process can help the student answer the problem and learn from
their mistakes. We examine student mastery and wheel-spinning
learning outcomes for our analysis. Wheel-spinning is described as
an unproductive learning behavior characterized by high student
persistence while making very little progress towards mastering the
given skill on concept [2]; analogous to a car getting stuck in the ice
or mud, the student is “spinning their wheels” and applying effort to
learn, but unable to make progress due to a gap in their knowledge.
For our analysis, wheel-spinning is operationalized as students
failing to exhibit mastery by answering 3 consecutive problems
correctly before reaching the daily threshold of 10 problems.

5.1 Descriptive Statistics
We evaluated the student data on the mastery-based activities and
compared the problems to mastery, hint usage, average problem
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Table 4: Analyzing CWAs that were made by the students with a threshold N ≥ 10.

Teacher Identified Observed
CWAs CWAs

Order of Operations
CWAs identified by teacher 270 57

CWAs not identified by teacher – 0
2-Step Equations

CWAs identified by teacher 359 143
CWAs not identified by teacher – 54

difficulty, and average student scores on the problems. This explo-
ration was done to develop our intuition regarding the effect of
CWAFs onmastery rates, average hint usage, problem difficulty, and
average student performance on the assignment. Table 5 presents
the descriptive statistics across conditions for the two activities.
We observed that students in the treatment condition (CWAFs) of
the “2-Step Equations”, on average, needed more problems to reach
mastery, asked for more hints, found the problems more difficult,
and performed poorly. Simultaneously we observed that students
in the treatment condition (CWAFs) of the “Order of Operations”,
on average, needed relatively more problems to reach mastery,
asked for fewer hints, earned higher scores per problem, and had
better performance. As the treatment and control problems were
generated using a template, the problems are similar in structure.
However, while the problems are similar, they could be different in
difficulty; we cannot separate the effect of the CWAFs, the problem
difficulty, or a combination of the two on students’ performance
on the assignment. From our exploration, we intuit that the two
different designs of the CWAFs appear to have differing effects on
student performance, with lower performance on the treatment
condition of the “2-Step Equation” and higher performance on the
treatment condition of the “Order of Operations”. The CWAFs pro-
vided for “2-Step Equation” were more verbose, whereas the CWAFs
provided for “Order of Operations” were short and concise.

5.2 Methods to Examine Effects of CWAF on
Learning

To evaluate the effects of CWAF on student learning behaviors, we
estimated mastery of knowledge component and wheel-spinning as
learning outcomes using a series of multi-level logistic regressions.
For each outcome, we ran three models, one of which included
data from both the activities (2-step Equations and Order of Opera-
tions), and then two others analyzed the effect of CWAFs for each
activity individually. This approach allows us to estimate the effect
of CWAFs in general and separately for each activity as the two
CWAFs have different designs, i.e., “2-Step Equations” had more
elaborate CWAFs, whereas “Order of Operations” had moreconcise
CWAFs. We included random intercepts for students’ teachers as
much of the variance in outcomes was associated with students’
teachers. Prior to accounting for the treatment effects, the teacher
accounted for the following variances in the learning outcomes:
mastery (ICC = 0.37) and wheel-spinning (ICC = 0.27). The p-values
of our analysis were adjusted using Benjamini-Hochberg to adjust

for the potential inflation of false discovery rates due to multiple
comparisons [9].

The logitsic regressions were estimated because mastery and
wheel spinning are binary outcomes. Equation 1 is the base model
used to address this research question. For any given assignments
completed by student i, the equation for the likelihood of the out-
come (mastery or wheel spinning) is 1 where 𝛾00 is the fixed in-
tercept and `0𝑡 is the random intercept for each teacher. CWAF𝑖
is a binary indicator for whether a student is in the CWAF condi-
tion, and the coefficient for the effect of the CWAF problem sets
condition is 𝛾10.

𝑙𝑜𝑔𝑖𝑡 (Outcome is True for Student 𝑖 with teacher 𝑡)
= 𝛾00 + 𝛾10CWAF𝑖 + `0𝑡 (1)

5.3 Results on the Effectiveness of CWAFs
Overall, we observed that the CWAFs significantly impacted both
the likelihood that they exhibit mastery and the likelihood that
they would wheel-spin. Figure 4 presents the treatment effects for
each activity and learning outcome. In table 6 & table 7 we present
our analysis exploring the effect of CWAFs on mastery and wheel-
spinning behavior. CWAFs had an overall negative effect on the
likelihood that students would master the knowledge component
(𝛾1 = -1.30, SE = 0.06, p = 0.027) and a positive effect on the likelihood
that students would wheel-spin during the activity (𝛾1 = 0.51, SE
= 0.09, p < 0.001). Although the effects were significant for both
outcomes when both activities were combined, the patterns of
significance varied by activity. For the “2-Step Equations” activity,
the effects of CWAF were for both mastery (𝛾1 = -0.51, SE = 0.09, p
= 0.001) and wheel-spinning (𝛾1 = 0.21, SE = 0.06, p < 0.001). Yet, for
the “Order of Operations” activity, neither of the effects on mastery
(𝛾1 = 0.22, SE = 0.14, p = 0.144) nor wheel-spinning (𝛾1 = 0.30, SE =
0.27, p = 0.264) were significant. Notably, the point estimate for the
CWAF effect on the likelihood of mastery was positive, along with
most of the confidence interval. This suggests that a more precise
estimate to form a future study may produce a positive result.

6 EXPLORING PERSONALIZATION EFFECTS
6.1 Identifying Heterogeneous Treatment

Effects
To determine whether the effect of CWAF on mastery and wheel
spinning differs based on students’ general knowledge of math
concepts, we added an interaction between students’ prior percent
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Table 5: Descriptive Statistics of the experiment across the control and treatment condition for the two activites.

2-Step Equation Order of Operations

Control Treatment Control Treatment

Mean SD Mean SD Mean SD Mean SD

Average problems to mastery 4.28 2.66 4.68 3.52 4.48 1.95 4.53 2.11
Average total hints access on assignment 0.27 0.69 0.31 0.73 0.15 0.55 0.08 0.39
Average score per problem 0.82 0.08 0.79 0.06 0.82 0.10 0.85 0.08
Average student score (%) 87.67 20.43 86.04 20.27 86.39 21.12 88.38 19.45

Table 6: Effect of CommonWrong Answer Feedback (CWAF) on Mastery by Activity

Both Activities 2-Step Equations Order of Operations

Predictors Log-Odds SE Log-Odds SE Log-Odds SE

Intercept 2.95*** 0.08 2.68*** 0.09 3.66*** 0.17
CWAFs (Treatment) -1.30** 0.06 -0.21** 0.06 0.22 0.14

Random Effects
𝜎2 3.29 3.29 3.29
𝜏00 1.93𝑡 1.83𝑡 1.68𝑡
ICC 0.37 0.38 0.36
N 587𝑡 458𝑐 202𝑐

23604𝑖 16926𝑖 6678𝑖

Table 7: Effect of CommonWrong Answer Feedback (CWAF) on Wheel-Spinning by Activity

Both Activities 2-Step Equations Order of Operations

Predictors Log-Odds SE Log-Odds SE Log-Odds SE

Intercept -4.32*** 0.10 -3.99*** 0.11 -5.25*** 0.29
CWAFs (Treatment) 0.51*** 0.09 0.55*** 0.09 0.31 0.28

Random Effects
𝜎2 3.29 3.29 3.29
𝜏00 1.18𝑡 1.03𝑡 0.76𝑡
ICC 0.26 0.24 0.19
N 587𝑡 458𝑐 202𝑐

23604𝑖 16926𝑖 6678𝑖

correct in the CALP platform and the CWAF condition to the base
model used in Section 5 (Equation 1). For students who completed
problems in the CALP platform prior to working on the experiment,
we have data on their prior performance i.e their prior percent
correctness.We use students’ average scores in these problems as an
estimate of students’ math ability. Prior percent correct was added
as a standardized score to the model to improve interoperability.
The standardization was calculated using group mean centering
based on the activity (using the mean and standard deviation of
the sample form each activity) as students in the activities had
significantly different prior accuracy (t = 7.65, DF = 10941, p <
0.001).

Of the original sample, 21,793 students had completed at least
ten (10) problems in the CALP before the experiment. We excluded
students who had completed fewer than ten problems in the CALP
platform prior to our study fewer than this amount of data would
provide poor estimates of math ability. The exclusion criterion
was balanced as 8.45% students from the CWAF condition and
6.98% students from the control condition were dropped. Therefore,
the exclusion does not bias our estimates of the CWAF. The prior
percent correct of this analytic sample ranged from 0% to 100% with
a mean of 72.16% and a deviation of 14.07%.
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Figure 4: Comparing the effect of Common Wrong Answer Feedback (CWAFs) on mastery and wheel spinning behavior of
students.

6.2 Results Exploring Personalization
Overall there was a significant interaction between students’ prior
percent correct and the CWAFs condition. Table 8 displays the
results for these models. For students with the mean prior accuracy,
the effect of CWAF was negative (𝛾1 = -0.17, SE = 0.07, p = 0.017).
The interaction effect was also negative (𝛾2 = -0.11, SE = 0.05, p =
0.047), showing that the effect of CWAF was greater in the negative
direction as students prior percent correct compared is higher.

When both the activities (“2-Step Equations” and “Order of Op-
erations”) were modeled separately, an interesting pattern emerged.
For the “2-Step Equations” activity, the treatment effect was sig-
nificant (𝛾1 = -0.18, SE = 0.08, p = 0.019), but the interaction was
not significant (𝛾2 = -0.08, SE = 0.06, p = 0.192), showing that the
CWAF had a consistently negative effect regardless of students prior
percent correctness. Alternatively, for the Order of Operations ac-
tivity, the main effect was not significant (𝛾1 = -0.06, SE = 0.18, p
= 0.756), but the interaction was significant (𝛾2 = -0.36, SE = 0.14,
p = 0.013). Figure 5 displays this interaction. Hence, in the “Order
of Operations” activity, there was no significant effect of CWAF
for students with average prior percent correct, but the treatment
effect became greater in the negative direction for students with
higher prior percent correct.

There were no significant interactions between the treatment
effects and prior percent correct in any of the models predicting
wheel-spinning. This is not surprising as the prevalence of wheel
spinning is fairly low (described in detail in Section 5), and wheel
spinning is more common among low-performing students with
lower prior percent correct. Therefore it makes sense that the effect
would not vary by prior percent correct.

7 DISCUSSION AND FUTUREWORKS
Our analysis did find that a substantial number of students com-
monly provide the same incorrect answer to problems. However,
teachers can be inaccurate in identifying the CWAs and, from the
randomized trial, the CWAFs did not seem to help address gaps
in students’ knowledge, on average. From our exploration of our
first research question, we posit that further analysis is required

in defining CWAs. The approach to proactively identifying CWAs
seems inefficient and inaccurate, even for experienced mathemat-
ics teachers and instructional designers. While many teachers are
able to identify some CWAs, many incorrect answers were missed
by teachers while other answers that teachers suspected may be
common were found to be less frequent in practice.

From our first analysis, we highlight that the definition of CWAs,
determined by the chosen frequency threshold, may be further opti-
mized to help bring greater attention to the most prominent errors
made by students. While raising this threshold helps to identify the
overall most common errors, this may also result in many errors be-
ing overlooked by teachers. Conversely, lowering the threshold may
require teachers to spend more time providing individual feedback
on more scarce errors instead of focusing on other instructional or
tutoring methods that may be more effective. Furthermore, there is
a limited understanding of CWAs and how to remedy them. His-
torical data on CWAs can play a pivotal role in answering various
questions regarding CWAs. Do CWAs change over time? What are
the factors that can drive changes in CWAs? How often should
we be analyzing CWAs and generating CWAFs? Do certain types
of feedback lead to better learning outcomes than other types of
feedback? Future works exploring feedback could examine the ef-
fects of different features within the feedback messages and release
guidelines for teachers and instructional designers on CWAFs.

Upon implementing these CWAFs, we observed that the feed-
back, on average, led to lower mastery and higher wheel-spinning
among students working on mastery-based activities. If we factor in
the negative effects of the CWAFs with the inaccuracy of teachers at
predicting CWAs and the amount of time and effort that went into
identifying and generating the CWAs and CWAFs, the approach
of proactively identifying the CWA taken by the instructional de-
signers of the two activities presented in this paper seems highly
inefficient. Furthermore, the teachers also failed to identify several
CWAs the students made while working on the problems, especially
on the “2-Step Equations”. Brown et al. [3] observed that students
working on basic arithmetic problems can reach the same incorrect
answer using different approaches, which required the tutors to
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Table 8: Models Estimating Interactions Between Prior Performance and Common Wrong Answer Feedback (CWAF) Effects on
Mastery by Activity

Both Activities 2-Step Equations Order of Operations

Predictors Log-Odds SE Log-Odds SE Log-Odds SE

Intercept 3.34*** 0.09 3.06*** 0.09 4.29*** 0.17
CWAFs (Treatment) -0.17* 0.07 -0.18* 0.08 -0.06 0.18
Prior Problem Correct (Z-Score) 0.77*** 0.04 0.80*** 0.05 0.79*** 0.10
Treatment X Prior Problem Correct -0.11* 0.05 -0.80 0.06 -0.36* 0.14

Random Effects
𝜎2 3.29 3.29 3.29
𝜏00 1.62𝑡 1.45𝑡 2.03𝑡
ICC 0.33 0.31 0.38
N 564𝑡 443𝑐 191𝑐

21793𝑖 15835𝑖 5958𝑖

Figure 5: Interaction between students’ prior percent correct and the predicted probability of mastery for the “Order of
Operations activity” by condition.

first identify the wrong approach before providing the appropri-
ate feedback. The process of identifying the students’ approach
was the primary factor in facilitating learning among students. It
is our belief and recommendation that all future work exploring
CWAs should leverage historical data when analyzing CWAs and
generating CWAFs.

The study measuring the effectiveness of CWAFs adopts an
intent-to-treat analysis where we examined the learning outcomes
based on all students. We did not have information on the CWAs for
the problems in the control condition as the problems were similar
but not the same. As such, it is difficult to determine whether the
effects we observe can be attributable to differences in the number
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of common wrong answers experienced by students across the two
conditions; given the large sample size of the study, this is likely to
have little effect overall on our results, but can still be viewed as a
limitation. Ideally, future studies could more accurately measure
effects by comparing students who received CWAF in the treatment
with students in the control group who would have received CWAF
if they had been randomized to treatment.

It is also not clear from our current analyses whether students
truly attended to the feedback they were given within the treat-
ment condition. Recent work by Gurung and colleagues [11] uti-
lized response time decomposition to identify students who are
likely devoting attention and effort to tutoring and feedback they
receive through the system. Student attention and consideration
of feedback could be a large factor that mediates the overall effec-
tiveness of CWAF. As prior work [26] found that learning gains
were impacted by the length of the feedback, it may be the case
that this attribute could also interact with a student’s likelihood to
read the CWAF; conversely, however, there is likely a trade-off in
that shorter messages may be insufficient to provide students with
enough information to effectively remedy the gap in knowledge.
Similar to this, recognizing from other prior work [3] that differ-
ent student errors may result in the same CWA, it is also possible
that teachers authoring such feedback may misidentify the more
prominent cause for the error. If the CWAF addresses an error that
the student did not produce, it may cause greater confusion and
ultimately cause students to lose trust or disengage with the system.
Regardless, as it is found in our study that the CWAF was either
ineffective or even negatively impact student learning, such a find-
ing emphasizes a need to closely examine aspects of this feedback
to understand what might be contributing to these outcomes.

We implore researchers in the domain of learning analytics to use
our findings in this paper to explore the detection of CWA further
and generate CWAFs to, with caution, explore the effectiveness of
different feedback structures. At the same time, our findings in this
paper indicate that CWAFs, on average, have a negative effect on
student learning outcomes. Further analysis and additional research
are required before the learning analytics community can reach
an informed consensus on the effectiveness of CWAFs, given the
counter-intuitive nature of this finding in light of other works
recognizing the benefits of feedback for learning.

8 CONCLUSION
This paper presents additional evidence in line with prior work
in the education domain, highlighting the nuanced challenges in
identifying CWA and generating effective CWAFs that can remedy
the various factors that resulted in the CWA. Our analysis under-
scored the risks of a proactive approach in identifying CWAs and
generating the CWAFs as a large portion of the CWAFs that the
teachers and instructional designers predicted were not made by
the students. We also observed that CWAFs, on average, can lead to
lower mastery and higher wheel-spinning amongst students–both
undesired learning outcomes. Furthermore, we analyzed the person-
alization effects of CWAFs. While the effects were not significant,
the data indicated that high-performing students were less likely
to benefit from the CWAFs, resulting in lower mastery and higher
wheel-spinning. While these findings add noteworthy value to the

field of research exploring CWAs and the use of CWAFs in CALPs,
researchers exploring CWAFs should not be discouraged by our
findings. As mentioned in our discussion and recommendation sec-
tions, we believe that the learning analytics community will need
to explore CWA and CWAFs further before we, as a community,
can reach an informed opinion on CWAs and CWAFs.
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