
The Progression of Students’ Ability to Work With Scope,
Parameter Passing and Aliasing

Filip Strömbäck
Department of Computer and Information Science

Linköping University
Linköping, Sweden

filip.stromback@liu.se

Pontus Haglund
Department of Computer and Information Science

Linköping University
Linköping, Sweden

pontus.haglund@liu.se

Aseel Berglund
Department of Computer and Information Science

Linköping University
Linköping, Sweden

aseel.berglund@liu.se

Erik Berglund
Department of Computer and Information Science

Linköping University
Linköping, Sweden
erik.berglund@liu.se

ABSTRACT
Students need the ability to reason about the behavior of programs
when working with advanced concepts like concurrency and ab-
straction. To achieve this, students require core programming skills
that allow them to trace and predict the outcome of a program.
While previous research indicates that teachers cannot expect stu-
dents to acquire all core programming skills after their introductory
CS course, less is known of students’ progression in later years.
In this study, we investigate 397 students’ ability to predict the
outcome of short computer programs. The participants are from
different programs and progressions in their studies. We find that
students, regardless of program and year, struggle with predicting
the outcome of short programs that require an accurate mental
model of some less readily apparent concepts, such as references.
Further, we discover that there is no significant improvement in the
first three years. Finally, we propose further avenues of research to
improve these learning outcomes.

CCS CONCEPTS
• Applied computing→ Education; • General and reference
→ Empirical studies.

KEYWORDS
mental model, tracing, CS1, computer science education

ACM Reference Format:
Filip Strömbäck, Pontus Haglund, Aseel Berglund, and Erik Berglund. 2023.
The Progression of Students’ Ability toWorkWith Scope, Parameter Passing
and Aliasing. In Australasian Computing Education Conference (ACE ’23),
January 30-February 3, 2023, Melbourne, VIC, Australia. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3576123.3576128

This work is licensed under a Creative Commons Attribution International
4.0 License.

ACE ’23, January 30-February 3, 2023, Melbourne, VIC, Australia
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9941-8/23/01.
https://doi.org/10.1145/3576123.3576128

1 INTRODUCTION
In an environment where software systems growmore complex and
where concurrent systems grow ever more prolific, it is increasingly
important for students of computer science (CS) to develop a solid
understanding of their core programming skills.1 In particular, skills
related to the datamodel of the programming language, in part since
a solid understanding of these skills form an important foundation
for more advanced topics.

For example, the ability to reason about scope, parameter passing
and aliasing is critical in order to properly reason about the behavior
of abstractions in large systems (e.g., accidentally “leaking” internal
data through a reference), or to identify shared data in a concurrent
program. One reason for students’ struggles with these concepts
may be that their semantics are not readily visible to students.
Previous research has shown that this kind of hidden semantics
often leads to misconceptions [21]. For this reason, we refer to these
skills as subtle concepts in this paper. Later courses typically treat
these concepts as prerequisites, and students whose mental models
do not accurately describe their semantics tend to struggle with
understanding or applying the more advanced concepts.

While students need to have some proficiency with these subtle
concepts in order to understand more complex topics, it is un-
realistic to expect that students have mastered them after their
introductory course(s). Rather, previous research has found that
students’ programming skills in general are weak after their first
CS course [13, 15], both concerning reading and writing computer
programs. As such, it is more reasonable to expect that students
only have a basic understanding of the core programming concepts
after their first CS course and that their proficiency with them in-
creases throughout their education, while they are studying other
programming-related subjects.

This paper aims to explore students’ grasp of these subtle con-
cepts and students’ ability to predict the results produced by pro-
grams that require an understanding of these concepts. We do this
using the same statistical methods as Haglund et al. [8], who investi-
gated students’ mental models using a survey where students were

1Fundamental concepts, core concepts, fundamental skills, etc. are all expressions used
in this field of research, however, in this paper we will use core programming skills
when referring to basic knowledge/skills/understanding within programming.

39

https://doi.org/10.1145/3576123.3576128
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3576123.3576128
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576123.3576128&domain=pdf&date_stamp=2023-01-30


ACE ’23, January 30-February 3, 2023, Melbourne, VIC, Australia Filip Strömbäck, Pontus Haglund, Aseel Berglund, and Erik Berglund

asked to trace small Python programs. This previous study was lim-
ited in that it only investigated students after their first CS course.
This paper extends this research by including more students, both
from different programs and from different years in their education.
By doing this, we aim to determine if students’ understanding of the
data model (i.e., scope, parameter passing and aliasing) improves
throughout their education, and if the earlier findings hold across
different programs and programming languages. Based on these
results we will then propose further areas of research to improve
learning outcomes for the development of students’ mental models.

The remainder of this paper is structured as follows: Section 2
introduces related work, Section 3 presents the method, and Section
4 presents the results. The results are then discussed in Section 5,
and a conclusion is presented in Section 6.

2 RELATEDWORK
2.1 Misconceptions
Students’ misconceptions and the relation between misconceptions
and core programming skills are subjects with research dating back
to the 1980s [2, 3]. In computer science, the term misconeption is
used to refer to an inaccurate understanding of some aspect of
programming [19]. Many misconceptions relate to aspects that are
not readily visually apparent to students, such as the semantics
of references [21]. Sirkiä and Sorva [21] explain that it is valuable
to have a cognitive conflict between students’ understanding of
a concept and their observations by making these aspects visible.
Further, Qian and Lehman [19] underline the importance of not
only documenting misconceptions but to strive for research that
is oriented towards improving learning outcomes. Ma et al. [14]
also studied how students understand references in the early stages
of their CS education. Rather than examining the misconceptions
in isolation, the authors studied them in the context of what non-
viable mental models students used to reason about references.
Within this framework, they found a correlation between non-
viable mental models and performance among students. They also
found that it is difficult to rectify problems in students non-viable
mental models, since these non-viable models are accurate enough
to describe many (but not all) situations that might arise. Finally,
they concluded that a large portion of the students did not apply
their mental models consistently when working with reference
assignments.

2.2 Core Programming Skills
McCracken et al. [15] summarizes the topics that students are ex-
pected to learn during their first year in a computer science pro-
gram. The skills are summarized in the form of categories that
represent critical skills a student needs to be able to solve program-
ming problems. The categories are 1) abstract a problem from its
description, 2) generate sub-problems, 3) transform sub-problems
into sub-solutions, 4) re-compose those sub-solutions into working
programs, and 5) evaluate and iterate. In the study, students were
found to lack these skills after their first year, regardless of the edu-
cation system, country, or programming language used. Lister et al.
[13] found that students often lack more rudimentary skills related
to code comprehension. In particular, the students were not even
able to read and understand code well enough to trace an existing

program. Haglund et al. [8] investigated students’ use of abstrac-
tion for problem-solving and grasping basic programming skills
necessary for abstracting problems. They found that many of their
students did not use abstraction well while solving problems. Fur-
ther, they found that students generally lacked the understanding
of subtle concepts necessary to understand and apply abstractions.
Fisler et al. [7] describe the concepts of scope, mutation, aliasing,
and parameter transfer as core skills. They find that these skills
are not automatically internalized by students, nor can they be
expected to be accrued fully during students’ first year of studies
in computer science. They suggest that courses need to teach and
assess these skills beyond the first year. In addition, they found that
knowledge transfer between languages does not occur naturally
for students.

2.3 The Importance of Understanding Subtle
Concepts

Abstraction is one topic in computer science where it is important
for students to have a solid grasp of certain core programming
skills [8], including those referred to here as subtle concepts. Ab-
straction is vital in order to build large and robust software, but it
is difficult to teach [1, 9]. Part of this challenge is that abstraction,
and other soft ideas within computer science, do not have rigid
rules and is not possible to teach in relation to a single topic [9].
Abstraction is also discussed in a wider sense, for example in terms
of refactoring code [1] or as a way of understanding algorithms [18]
at varying levels. Further, Statter and Armoni [22] claim that stu-
dents not only have to understand a certain level of abstraction but
also must be able to move between the different levels to be able to
work with abstractions efficiently. Abstraction is something that
is learned over time, thus it is important to start early and teach it
continuously to students [11].

Another topic where core programming skills, specifically the
subtle concepts, matter is concurrency, which is typically covered
later in a CS education. As noted by Kolikant [10], a formal com-
puter science education is a meeting point of two computer-literate
cultures: the user culture and the academic culture. Kolikant further
argues that learning concurrency is an entry point for students to
transition from the user culture into the academic culture due to
the non-deterministic nature of concurrent programs. The author
observed that many students use a trial-and-error approach when
solving concurrency problems. This behavior categorizes the user
culture and is generally not a viable approach when working with
concurrent programs. Instead, students need to adopt the academic
culture that relies more on (formal) reasoning compared to the
user culture. The students thus need to shift their focus from the
observed behavior of a program to also include a deeper under-
standing of the computational model in order to be able to reason
about the behavior of concurrent programs properly. This compu-
tational model is closely related to mental- or conceptual models
as defined by Fincher et al. [6].

Further, Strömbäck et al. [23] found that while most students
in their study managed to correctly identify concurrency issues
by their symptoms, only about half of the students were able to
address them properly. The authors hypothesize that one reason for
this discrepancy is a lacking understanding of the computational

40



The Progression of Students’ Ability to Work With Scope, Parameter Passing and Aliasing ACE ’23, January 30-February 3, 2023, Melbourne, VIC, Australia

Table 1: Overview of the amount of CS courses taken by each
of the two cohorts at different points in their program. The
table shows the number of credits for courses where pro-
gramming is a central part of achieving the course goals. An
asterisk (*) indicates that additional CS courses are available
as electives.

Total CS credits accrued at the end of...
Cohort 1st course 1st year 2nd year 3rd year

CS masters 6 24 41 49*
6 34 51 68*

CS bachelors 6 20 44* 52*

model, as it is exceedingly difficult to identify and protect shared
data without the ability to reason about the behavior of programs.
The same authors further explore students’ understanding of the
computational model and abstractions in concurrency [24], and
find several potential shortcomings students might have with their
computational model.

In summary, a solid understanding of core programming skills
(including those related to subtle concepts) is important. Otherwise,
students are not able to understand the computational model and
are thus not able to transition from the user culture of trial-and-
error to the academic culture where (formal) reasoning is more
prominent.

3 METHOD
3.1 Cohort Description
The data in this studywas gathered from 397 CS students at Linköping
University. The students all attend one of three CS programs at the
university. For the purposes of this study, we divide these students
into two cohorts. Students of the Master of Science in Computer
Science and Engineering and students of the Master of Science in
Computer Science and Software Engineering programs make up the
first cohort, henceforth referred to as CS masters. Students of the
Bachelor of Science in Computer Engineering make up the second
cohort, henceforth referred to as CS bachelors. These cohorts re-
flect two broad types of computer science programs in terms of the
degree they pursue and in the length of their studies. This grouping
also reflects the first programming course taken by each of the pro-
grams, meaning that the CS masters all take the same introductory
CS course and that the CS bachelors take a different introductory
CS course. The CS bachelors are expected to finish their studies
after 3 years (180 credits) and the CS masters are expected to finish
their studies after 5 years (300 credits).

As seen in Table 1 the number of credits2 students take in courses
where programming is a central part varies slightly between the co-
horts. The CS masters and CS bachelors are similar, but they accrue
their credits at different stages of their education. It is worth noting
that the number of credits in CS starts varying in the latter years
due to electives. The introductory programming courses offered
to both cohorts is 6 credits. Three different languages are used in
the introductory course. The CS masters use Python exclusively,

2Linköping University university adheres to the ECTS, where 60 credits equals a full
year of studies and 1.5 credits equals 1 week (40 hours) of work.

and the CS bachelors start learning the fundamentals in Ada (i.e.,
basic programming constructs) and then transition to C++. These
courses are overseen by 2 different teachers at the same department
of computer and information science at the university.

After the first course, the two cohorts study different sets of
languages. The CS bachelors mainly use C++ throughout the re-
mainder of their education (with some exceptions, e.g., C in their
operating systems course). The CS masters have more variation in
the languages used. They start in Python, and then have courses in
for example C, C#, Java and JavaScript.

3.2 The Survey
The survey consisted of a number of questions that each contained
a piece of code and asked students what up to three variables would
contain after executing the code. As can be seen from the questions
in Fig. 1, multiple choice questions were not used. Rather, the stu-
dents were free to enter whatever value they feel was correct for
each variable. The survey was designed to focus on scope, parame-
ter passing, aliasing (through references) and classes. The Python
version of the survey (Fig. 1) was given to the CS masters, as their
introductory course is taught in Python. The CS bachelors were
given a C++ version of the survey as they mainly work with C++.
The C++ version aims to preserve the semantics from the Python
version by utilizing appropriate language constructs in C++. In par-
ticular, parameters were passed by value or reference as appropriate.
In question 5, the variable c is a copy of b rather than a reference to
the same instance. This was done mainly to preserve the similarity
between the initializations. While this means that students do not
have to realize that c is a reference in the C++ version, they still
need to keep track of the separate instances of the class. The C++
version is available in full in Fig. 3 at the end of the paper.

For the CS masters, the survey was administered once to all
students in the first three years. Students in this cohort were asked
to answer the survey under teacher supervision during a session in
a course that spans the first three years of this program. Students
were provided with a paper copy of the survey and were asked to
answer the questions by writing on their copy. The survey was also
administered once to the CS bachelors. This time the survey was
provided digitally in the form of a web-page. The first year students
were asked to complete the survey under teacher supervision during
a session of a smaller version of the course the CS masters take.
Since this version of the course does not span multiple years, the
second-year students were asked to complete the survey during a
lecture of another course, supervised by the lecturer. The survey
was given in the spring for all participants and any responses that
did not answer the two last questions were considered incomplete
and thus discarded.

The first page of the survey (both the paper- and the digital
versions) contained information about the purpose of the survey. It
also informed students that participation was voluntary, and that
they would remain anonymous since no personal identifiers would
be collected. This means that it is impossible to trace answers back
to an individual, and as such this type of research does not need
ethics approval in Sweden.

41



ACE ’23, January 30-February 3, 2023, Melbourne, VIC, Australia Filip Strömbäck, Pontus Haglund, Aseel Berglund, and Erik Berglund

Figure 1: The five questions in the survey (Python version).

Table 2: Results from coding the prerequisites of each of
the questions. Note: All questions include simple statements,
assignments, tracing, and operators. These are not included
in the table.

Part ar
ra
y
ite

ra
tio

n

ar
ra
ys

co
nd

iti
on

al
s

di
ct
io
na
rie

s

fu
nc
tio

ns
:p

ar
am

et
er
s

fu
nc
tio

ns
:r
et
ur
n

fu
nc
tio

ns
:r
et
ur
n
va
lu
es

fu
nc
tio

ns
:s
co
pi
ng

in
di
re
ct
io
n

lo
op

co
ns
tr
uc
ts

va
lu
es

an
d
re
fe
re
nc
es

ob
je
ct
s:
sc
op

in
g

1a ✓ ✓ ✓

1b ✓ ✓ ✓

1c ✓ ✓ ✓ ✓

2a ✓ ✓ ✓

2b ✓ ✓ ✓

3a ✓

3b ✓

3c ✓ ✓

4a ✓ ✓ ✓

4b ✓ ✓ ✓

4c ✓ ✓ ✓

5a ✓

5b ✓ ✓ ✓ ✓ ✓

5c ✓ ✓ ✓ ✓ ✓

3.3 Measuring Skills
We explore differences in individual core programming skills by
using the model proposed by Haglund et al. [8]. This model allows
comparing students’ proficiency with individual skills between
different programs and years. Since this paper does not use the
same questions as Haglund et al. we need to find which skills are
necessary to answer each question correctly. For this, we use the
method and the codebook proposed by Nelson et al. [17]. Two
researchers independently coded the skills required to solve each
question. After this, they compared their findings and discussed
any differences until they reached an agreement. The result of this
process is presented in Table 2. For the questions that were identical
to those used in [8], the coding from Haglund et al. was used.

These skills were then used to model students’ responses in
terms of their skills using a generalized linear model (GLM) [16].
We denote each student’s proficiency with a particular topic as
𝑝𝑖 (0 ≤ 𝑝𝑖 ≤ 1). Using these proficiencies, we can then model the
probability of the student answering a particular part of a question
correctly as 𝑐 𝑗 . Using this notation, we can model the relation
between the two as follows:

𝑐 𝑗 ∼ Bernoulli

(
𝑛∑︁
𝑖=1

𝑝𝑖𝑠𝑖 𝑗

/ 𝑛∑︁
𝑖=1

𝑠𝑖 𝑗

)
Here, we use 𝑠𝑖 𝑗 to denote whether part 𝑗 assesses the topic 𝑖 .

Thus, 𝑠𝑖 𝑗 = 1 if the part assesses the topic, and 0 otherwise. As we
are interested in finding the proficiencies, 𝑝𝑖 , for a particular group

42



The Progression of Students’ Ability to Work With Scope, Parameter Passing and Aliasing ACE ’23, January 30-February 3, 2023, Melbourne, VIC, Australia

1a 1b 1c 2a 2b 3a 3b 3c 4a 4b 4c 5a 5b 5c
0%
20%
40%
60%
80%
100%

Question

Co
rr
ec
ta

ns
w
er
s

CS masters
CS bachelors

Figure 2: Overview of the two cohorts’ answers to the questions.

and are interested in comparing groups of students, we extend the
model to include different individuals and groups. Thus, we let 𝑐 𝑗𝑥𝑦
denote whether student 𝑥 in group 𝑦 answered part 𝑗 correctly.
This means that the full model is as follows:

𝑐 𝑗𝑥𝑦 ∼ Bernoulli

(
𝑛∑︁
𝑖=1

𝑝𝑖𝑦𝑠𝑖 𝑗

/ 𝑛∑︁
𝑖=1

𝑠𝑖 𝑗

)
We then fit the model to the data using a logistic link function to

find the values 𝑝𝑖𝑦 , which can be interpreted as a measure of group
𝑦’s proficiency with topic 𝑖 . We then compare different cohorts by
testing the pair of hypotheses 𝐻0 : 𝑝𝑖𝑦1 = 𝑝𝑖𝑦2 vs. 𝐻1 : 𝑝𝑖𝑦1 ≠ 𝑝𝑖𝑦2
for all 𝑖 .

3.4 Correlation of Incorrect Answers
To further investigate what weaknesses caused incorrect answers,
we computed the most common incorrect answers for all questions
in the survey. For the questions where more than 50% of all students
answered incorrectly we also examined if incorrect answers to these
questions were correlated with each other. To test for correlations,
we performed pairwise 𝜒2 tests on the results of the questions. As
such, for each pair of questions, 𝑎 and 𝑏, we examined whether a
correct answer to question 𝑎 correlated with a correct answer to
question 𝑏.

4 RESULTS
Table 3 contains an overview of the performance of each cohort.
From the table, we can see that the performance of the two cohorts
were similar. Comparing the performance using a Mann-Whitney
U-test shows no significant differences between the performance
of the cohorts on the survey as a whole.

Table 3: Overview of the answers from the two cohorts. The
table shows the number students who answered in each co-
hort along with the total number of active students in each
cohort along with the average percentage of questions an-
swered correctly.

Active Answers
Cohort students Total Incomplete Score
CS master 397 326 11 63%
CS bachelor 126 69 10 65%
Total 523 395 21 63%

Students’ performance on the individual questions are shown in
detail in Fig. 2. The figure shows that less than 50% of all students an-
swered 1a, 1c, 4c, and 5c correctly. Comparing the performance on
individual questions (again, using a Mann-Whitney U-test) shows
no significant differences between the two cohorts, except for ques-
tions 1 and 5. The CS masters performed significantly worse than
the CS bachelors on both these questions (𝑝 = 0.0010 for question
1 and 𝑝 = 0.0092 for question 5).

Table 4 shows the performance of students in different years
of their education. As shown in the table, there is no significant
difference between the years in either of the two cohorts. Rather,
the high p-value suggests that the distributions are likely the same.
This means that students hardly improve their ability to predict the
outcome of short programs that include these subtle concepts dur-
ing their first three years. A slight but not significant improvement
is visible for the CS bachelors who almost exclusively use C++.

4.1 Measuring Skills
Using the model to compare skills between the different years of
the CS masters, we found that the return values skill decreased
significantly between year 1 and year 2 (𝑝 = 0.0029), and that
the arrays skill decreased significantly between year 1 and 3 (𝑝 =

0.0355). For the CS bachelors, we observed an increase in objects:
scoping (𝑝 = 0.0223) between year 1 and year 2. Considering the
many tests conducted, these 𝑝-values are relatively high, and the
results should therefore be considered to be fairly weak, as indicated
by the tests on the overall scores.

Comparing the two cohorts using the model revealed that CS
masters performed better than CS bachelors on the set of skills that
were common to all questions, namely tracing, operators, simple
statements and assignments (𝑝 = 0.0004). This suggests that the CS
masters performed better than the CS bachelors overall. Accounting
for this difference, however, the CS bachelors outperformed the CS
masters in questions that involvedn the following skills:

• values and references (𝑝 < 0.0001)
• functions: parameters (𝑝 = 0.0059)
• functions: scoping (𝑝 = 0.0142)
• return values (𝑝 = 0.0492)

4.2 The Most Common Incorrect Answers
The most common incorrect answers are presented in Table 5. The
table also contains the frequency of incorrect answers overall (To-
tal), and how common the most incorrect answer were out of all
incorrect answers (Freq.). Since more than 50% of the answers to

43



ACE ’23, January 30-February 3, 2023, Melbourne, VIC, Australia Filip Strömbäck, Pontus Haglund, Aseel Berglund, and Erik Berglund

Table 4: Correlation between students’ performance between different years. As can be seen, the differences are too small to be
significant.

Year 1 Year 2 Year 3
Cohort 𝑛 Perf. 𝑛 Perf. 𝑛 Perf. Trend Significance
CS masters 123 62% 113 63% 78 64% → 𝑝 = 0.96
CS bachelors 28 63% 30 67% - - ↗ 𝑝 = 0.62

questions 1a, 1c, 4c, and 5c were incorrect, we consider these ques-
tions in further detail in this section. In spite of the two cohorts
using different programming languages, the most common incor-
rect answer was the same for all but 5c. To further examine what
misconceptions students might have when arriving at these incor-
rect answers, we examine each of the four questions in further
detail:

Question 1a Almost all students that answered incorrectly
stated that the variable would contain the value 6. This indi-
cates that students who answered this question incorrectly
did not understand that the variable a inside and outside
the function were different variables. This is particularly
surprising for the students doing the survey in C++ since
the passing of a reference is explicit.

Question 1c The majority of CS masters thought that c would
be modified outside of the function’s scope. Even though the
CS bachelors performed better on this question, the most
common incorrect answer was the same in the two cohorts.
It is not surprising that the CS bachelors performed better
on this question since C++ is more explicit regarding which
parameters are passed by reference.

Question 4c The most common incorrect answer to this ques-
tion shows that students failed to realize that c and a refer
to the same list. This particular incorrect answer was far
more prevalent among the CS masters than among the CS
bachelors.

Question 5c For CS masters, the most common incorrect an-
swer to this question was that students failed to realize that
variable c is a reference to variable b, instead believing that
c was a copy of the contents of b. For the CS bachelors,
most students realized that it was a copy. The most common
answer was that it was undefined (4 students), but many
other incorrect answers were present as well. For example,
2 students believed that c would be a reference to b, as was
the case in Python.

In summary, the most common incorrect answers to these ques-
tions can be described by a model where modifications to function
parameters are always visible to the caller, and where assignments
make copies of the assigned value. This model describes the most
common incorrect answers to some of the other questions (e.g.,
3b) as well, while the most common incorrect answers to other
questions are described by an opposite model. For example, the
most common incorrect answer to question 1b (while still being
fairly rare) indicates that parameters are always copies, rather than
always references.

Tables 6 and 7 correlate students’ ability to answer these four
questions correctly. Since 6 tests were performed for each cohort,
we treat pairs where 𝑝 < 0.05

6 ≈ 0.008 as significant. For the CS

Table 5: The most common incorrect answers for both co-
horts. Answer contains the most common incorrect answer.
Freq. is the frequency of the answer out of all incorrect an-
swers. Total is the percentage of incorrect answers out of all
submitted answers. Note: in the C++ version of question 1,
the line b.append(1) was changed to b.append(2).

CS master CS bachelor
Question Answer Freq. Total Answer Freq. Total

1a 6 100% 74% 6 91% 56%
1b [1] 71% 9% [2] 50% 24%
1c [1, 2] 96% 79% [1, 2] 46% 44%
2a [1] 82% 45% [1] 76% 49%
2b [2] 77% 36% [2] 70% 46%
3a 10 75% 18% 10 80% 34%
3b 20 91% 41% 20 81% 36%
3c 40 35% 12% 20 100% 2%
4a [5] 43% 18% [5] 62% 36%
4b [] 44% 14% [7] 46% 22%
4c [] 83% 63% [] 36% 56%
5a [2, 4] 14% 23% [2, 2] 12% 29%
5b [4, 5] 26% 40% [3, 5] 14% 36%
5c [3, 4] 61% 74% (und.) 17% 41%

Table 6: Correlation between questions 1a, 1c, 4c and 5c for
the CS masters. Each cell contains the 𝑝-value. Significant
values are marked in bold.

1a 1c 4c 5c
1a 0.0000 0.0000 0.0000 0.0000
1c 0.0000 0.0000 0.0670 0.0051
4c 0.0000 0.0670 0.0000 0.0000
5c 0.0000 0.0051 0.0000 0.0000

Table 7: Correlation between questions 1a, 1c, 4c and 5c for
the CS bachelors. Each cell contains the 𝑝-value. Significant
values are marked in bold.

1a 1c 4c 5c
1a 0.0000 0.0002 0.5819 0.5656
1c 0.0002 0.0000 0.1182 0.0362
4c 0.5819 0.1182 0.0000 0.0296
5c 0.5656 0.0362 0.0296 0.0000

44



The Progression of Students’ Ability to Work With Scope, Parameter Passing and Aliasing ACE ’23, January 30-February 3, 2023, Melbourne, VIC, Australia

masters, Table 6 shows that there is a strong correlation between
all questions, except between questions 1c and 4c. The situation is
different for CS masters. As shown in Table 7, only 1a and 1c are
correlated. This lesser degree of correlation might partially be due
to the smaller number of CS bachelors, but also due to differences
between Python and C++.

5 DISCUSSION
The results in Table 3 show that students answer between 63% and
65% of the questions correctly, and that this is true for students
in the first three years of studying CS. Thus, students are not able
to predict the outcome of short computer programs that involve
understanding the subtle concepts to the extent we had hoped. As
previously mentioned in Section 2, these concepts are important
later in the education [5] when approaching topics like abstrac-
tion [1, 8, 12] and concurrency [23]. The low number of correct
answers thus suggests that students will struggle when learning
more advanced topics.

In the remainder of this section we discuss the validity of the
results and the method, and the results considering our objective.
Finally, we present future avenues for extending the work presented
in this paper.

5.1 Validity
While the data set used in this paper is fairly large (395 students),
the slight differences in the data collection might impact the quality
of the data. For example, some of the supervisors that supervised
the CS masters when completing the survey allowed limited dis-
cussions in the small groups while others did not. Regardless, the
same trends are visible througout the data set which suggests that
most students answered the survey individually and without test-
ing the code as instructed. In particular, even though some of the
CS masters were allowed to discuss the questions to some extent,
they still performed worse on some of the most difficult questions
compared to the CS bachelors, who were not allowed to discuss
their solutions. Furthermore, Chamillard and Braun [5] argue that
individual assessments with time constraints, such as the survey
used in this paper, correlate well with students’ performance on a
final exam. This observation further strengthens the reliability of
the results.

Another aspect worth considering is the potential selection bias
within the cohorts. While the number of students who did not
complete the survey were low among the cohorts, a larger portion
of the CS bachelors chose not to participate compared to the CS
masters. It is therefore possible that the students who chose to
participate were the stronger portion of students in the cohort.
Further, comparing the performance among those who participated
and completed the survey to those who participated and did not
complete it showed that the performance on the completed portion
was similar. Among the CS bachelors, it was more common not
to participate in the survey. This might be due to not all students
attending the particular lecture where the survey was administered,
or that they used the allotted time for an extra break in the lecture.
Since more than half of the students participated (56%) and since
the overall performance of the CS bachelors were similar to that
of the CS masters (where a vast majority answered and completed

the survey), we are confident that the trends visible in our data are
representative despite these potential issues.

5.2 Development of Core Programming Skills
In this section, we examine the data related to the development of

students’ grasp of subtle concepts. Since Lister et al. [13] found that
students lack rudimentary code comprehension skills after their
first CS course, we expected to find that students’ skills (includ-
ing those related to subtle concepts) would increase throughout
their education. While students likely improve their programming
skills in general, the data from Table 4 shows that this is not the
case when it comes to their ability to predict the outcome of short
programs that require grasping these subtle concepts. From Fig. 2
we can further see that the four questions with a total of less than
50% correct answers (1a, 1c, 4c and 5c) all require a good under-
standing of scope, aliasing and indirection. These concepts have
previously been found to be problematic by Fisler et al. [7], who
found that students do not develop a solid understanding of them
during their first year of studying CS. Further they are concepts
where the behavior is not readily apparent, thus being a common
area of student misconceptions [21]. As such, our results suggest
that students’ mental models of these subtle concepts do not im-
prove after the first year. However, most would agree that a third
year student is generally a stronger programmer than a first year
student. Therefore it is important to not interpret these results to
mean that students do not improve in their core programming skills
at all. Students do improve in the sense that they are able to solve
more complex problems with less guidance. Their mental models
do, however, not significantly improve in a way that allows them
to better predict the behavior of programs where scope, aliasing
and indirection are important. These results also support the claims
by Ma et al. [14], that it is difficult for students to re-consider the
mental models they use when they are accurate enough to predict
some, but not all, situations correctly. This is precisely what we see
in the data presented in this paper: students have a mental model
that is accurate enough to predict some of the behavior of some of
the programs in the survey. Since it is accurate enough, students
are not motivated to revise their model to address the remaining
inaccuracies.

Since Fisler et al. [7] also found that students’ understanding of
scope, aliasing and indirection do not transfer between languages,
one explanation for the lack of improvement could be that the CS
masters only work with Python in their introductory course(s), and
then mainly work with other languages. Since these skills do not
transfer between languages, any progress made in other languages
would not be visible as the survey was conducted in Python. This
could also explain why the CS masters’ answers to one of the 4 most
difficult questions had a strong correlation to their ability to answer
the other ones correctly. Furthermore, not working with Python for
an extended period might mean that students have forgotten some
details of the semantics. Reimer et al. [20] found some evidence of
this five months after an intensive introductory course. Some of
the participants mentioned that they no longer remembered certain
details since they had not worked with Python in a long time, which
indicates that this aspect has some impact at least.

45



ACE ’23, January 30-February 3, 2023, Melbourne, VIC, Australia Filip Strömbäck, Pontus Haglund, Aseel Berglund, and Erik Berglund

However, since we saw no significant improvement in the CS
bachelors, who almost exclusively work with C++ during their first
two years, the above issues related to not working with Python is
likely not the main reason for the lack of improvement, even though
more exposure to the language may be beneficial. Furthermore,
since the survey for both the CS master and CS bachelors was
administered in the spring, any improvements during the first year
are not visible.

As such, our results concur with the conclusions of Fisler et al.
[7]: that these skills need to be taught explicitly and throughout
the curriculum. This observation is similar to the suggestions by
Koppelman and van Dijk [11], that abstraction also needs to be
taught throughout the curriculum. As it is often difficult for novices
to realize the importance of all details of the semantics of program-
ming languages, it is a good idea to illustrate the implications of
the rules in the context of new topics. For example, illustrating
why the scoping rules are sensible when introducing abstraction
through functions and/or objects. This approach helps students to
see the reason for certain behaviours and thus avoid the situation
where students simply try to memorize all rules, which has been
shown to decrease retention [4]. Fisler et al. [7] further suggests
that implementing these concepts in a small programming language
aids students’ understanding of them.

5.3 Differences Between Programs
In this section, we examine the data that relates to the difference

in performance between the two programs. As described in Section
3, there are a number of differences between the two cohorts. They
attend different introductory courses that are given in different
programming languages, and with different goals to reflect the
long-term objectives in their respective programs. In spite of these
differences, we found no significant difference in the overall per-
formance of the two cohorts.

The lack of difference in overall performance was particularly
surprising since the CS masters received the survey in Python while
the CS bachelors received it in C++. Since Python does not require
type declarations there is no clear indication in the source code of
the semantics of parameter passing and assignments. Python is even
inconsistent to some extent: the statement a += b that appends
elements to a list is not equivalent to a = a + b as one might
expect, since the += operator modifies the list that a refers to, rather
than creating a new list, and assigning a a reference to that list (this
is why we preferred a.append() in the survey). In contrast, C++
makes this information explicit in the type declarations. For this
reason, we initially thought the C++ version of the survey would be
much easier than the Python version, in particular question 1. To
our surprise, this turned out not to be true, since the two cohorts
performed similarly on almost all questions. In particular, more
than 50% of the CS bachelors answered question 1a incorrectly.

By comparing the most common incorrect answers for the two
cohorts (Table 5) we find that the most common incorrect answers
to all questions except for 3c, 4b, 5a, 5b and 5c were the same
for both cohorts (taking into account the change to question 1b
in the C++ version). This suggests that students struggle with a
similar set of concepts regardless of which programming language
was used. We can, however, see that the CS bachelors performed

slightly better on three of the most difficult questions (1a, 1c and
4c) compared to the CS masters. Since all of these questions require
a good understanding of references, this slight increase is likely
either due to the more explicit nature of C++ (i.e., references are
denoted explicitly in the source code), or that the CS bachelors
have focused on C++ in their first years rather than using different
languages as was the case with the CS masters.

While the most common incorrect answers were similar between
the two cohorts, the correlation between correct answers to dif-
ferent questions revealed an interesting difference between the
two cohorts. For the CS masters (Table 6), we found a correlation
between all of the four most difficult questions (1a, 1c, 4c and 5c)
except between 1c and 4c. As described in Section 4.2, the most
common incorrect answers for these questions all correspond to
a model where modifications to parameters are always visible to
the caller, and where assignments make copies of data. As such,
these results suggest that CS masters at least had some level of
consistency when answering the questions. Other questions with
a higher number of correct answers, such as 1b, show that some
students used other models. This particular incorrect answer can
be explained with a model where parameters are always copied, for
example. We saw some consistency in this type of answers as well,
but we have not analyzed all possible models in detail as it was not
the main focus of this paper.

Table 7 shows that the CS bachelors seem to be less consistent
when answering the questions. For this cohort, we only found a
correlation between questions 1a and 1c. This may, of course, be in
part due to the smaller number of students in this cohort, but it is
likely not the only factor. In this case, a likely explanation is that
students have not yet realized the similarities between different
situations. For example, question 1 utilizes references in parameter
passing. The students seem to understand this fairly well, perhaps
since it is important to consider the impact of using reference
parameters in C++. Questions 4c also utilizes references, but in this
case for variables instead of function parameters. This situation
is less common, at least in early stages of learning C++, and the
lack of correlation to questions 1a and 1c suggests that students
have not yet realized that reference variables behave the same as
reference parameters. Finally, that correct answers to question 5c
are not correlated to other questions is not entirely surprising as
the code in this version of the survey makes a copy of the class.
Based on the results to question 4c, it seems like this is the behavior
students expect, regardless of whether or not references are used.
However, since question 5c in C++ is fairly simple (the answer is
the values in the code), we would have expected that students had
performed better on this question. In summary, our findings for the
CS bachelors are similar to those of Ma et al. [14]: that this cohort
does not necessarily apply their mental model of these concepts
consistently. However, the CS masters seem to do so to a larger
extent.

Finally, the comparison between the different programs using
the statistical model (Section 4.1) indicated that the CS bachelors
performed worse overall compared to the CS masters, but that the
CS bachelors were stronger in some areas, for example values and
references. Interestingly enough, these areas roughly correspond to
the aspects where C++ is more explicit than Python (i.e., functions:
parameters, functions: scoping, and values and references).

46



The Progression of Students’ Ability to Work With Scope, Parameter Passing and Aliasing ACE ’23, January 30-February 3, 2023, Melbourne, VIC, Australia

Figure 3: The five questions in the survey (C++ version). Includes and using namespace std; are omitted for brevity. Note that
questions 1 and 5 differs slightly from the Python version. In question 1, 2 is appended to b instead of 1 to be able to differentiate
incorrect answers. In question 5, the variable c is a copy and not a reference.

6 CONCLUSION
As argued in the introduction, it is important that students are able
to properly reason about the data model when working with differ-
ent types of abstractions or with concurrent programs. Otherwise,
students will have difficulties with identifying situations where
aliasing occurrs, which will lead to situations where abstractions
will fail to work as intended, or failure to properly synchronize
shared data properly. As such, acquiring this ability is an important
desired outcome of a computer science education. The findings
of this study reinforce previous findings [7] that students’ mental
models are not accurate enough to allow them to reason about
and predict the behavior of short programs involving parameter
passing, references, indirection, and scoping after their first com-
puter science course. Further, the findings of this study show that
students further on in their academic pursuits do not significantly
improve in their ability to reason about and predict the behavior
of programs that utilize these subtle concepts, even in their third
year of studying computer science. This should not, however, be
interpreted as students not progressing in their programming skills.
These findings relate to students’ ability to predict the outcome

of programs that include subtle concepts and not their general
ability to write programs of greater complexity. It does however
indicate that students do not develop mental models that can ac-
curately predict the semantics of these kinds of short programs.
They likely develop strategies to overcome this shortcoming as
most would agree that a third-year student is in general a stronger
programmer than a first-year student. Though, as discussed, this
has implications, especially when working with problems where
trial-and-error is impossible or impractical (e.g., refactoring of large
code bases). While the nature of this study does not allow us to
answer the question of how to improve these outcomes, it compels
us to ask it.

To this end, we propose the application of a framework known
as constructive alignment to study how the activities students take
part in and the assessments administered to them align with desired
outcomes. The goal is to better understand why these misconcep-
tions, relating to subtle concepts exist, and how to improve the
actual outcomes. We propose conducting the following studies:

47



ACE ’23, January 30-February 3, 2023, Melbourne, VIC, Australia Filip Strömbäck, Pontus Haglund, Aseel Berglund, and Erik Berglund

(1) A phenomenographic analysis of teaching staff (TAs and
Teachers) views of these subtle concepts in their courses
with regard to activities.

(2) A phenomenographic analysis of teaching staff (TAs and
Teachers) views of these subtle concepts in their courses
with regard to assessments.

(3) An analysis of current activities provided to students with a
focus on how they relate to these subtle concepts.

(4) An analysis of current assessments provided to students with
a focus on how they relate to these subtle concepts.

REFERENCES
[1] Russ Abbott and Chengyu Sun. 2008. Abstraction Abstracted. In Proceedings of

the 2nd International Workshop on The Role of Abstraction in Software Engineering
(Leipzig, Germany) (ROA ’08). Association for Computing Machinery, New York,
NY, USA, 23–30. https://doi.org/10.1145/1370164.1370171

[2] Piraye Bayman and Richard E. Mayer. 1983. A Diagnosis of Beginning Program-
mers’ Misconceptions of BASIC Programming Statements. Commun. ACM 26, 9
(sep 1983), 677–679. https://doi.org/10.1145/358172.358408

[3] Benedict Du Boulay. 1986. Some Difficulties of Learning to Program. Journal of
Educational Computing Research 2, 1 (1986), 57–73. https://doi.org/10.2190/3LFX-
9RRF-67T8-UVK9 arXiv:https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9

[4] Naomi R. Boyer, Sara Langevin, and Alessio Gaspar. 2008. Self Direction &
Constructivism in Programming Education. In Proceedings of the 9th ACM SIGITE
Conference on Information Technology Education (Cincinnati, OH, USA) (SIGITE
’08). ACM, New York, NY, USA, 89–94. https://doi.org/10.1145/1414558.1414585

[5] A. T. Chamillard and Kim A. Braun. 2000. Evaluating Programming Ability
in an Introductory Computer Science Course. In Proceedings of the Thirty-First
SIGCSE Technical Symposium on Computer Science Education (Austin, Texas, USA)
(SIGCSE ’00). Association for ComputingMachinery, New York, NY, USA, 212–216.
https://doi.org/10.1145/330908.331857

[6] Sally Fincher, Johan Jeuring, Craig S. Miller, Peter Donaldson, Benedict du Boulay,
Matthias Hauswirth, Arto Hellas, Felienne Hermans, Colleen Lewis, Andreas
Mühling, Janice L. Pearce, and Andrew Petersen. 2020. Notional Machines in
Computing Education: The Education of Attention. In Proceedings of the Work-
ing Group Reports on Innovation and Technology in Computer Science Education
(Trondheim, Norway) (ITiCSE-WGR ’20). Association for Computing Machinery,
New York, NY, USA, 21–50. https://doi.org/10.1145/3437800.3439202

[7] Kathi Fisler, Shriram Krishnamurthi, and Preston Tunnell Wilson. 2017. Assessing
and Teaching Scope, Mutation, and Aliasing in Upper-Level Undergraduates. In
Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Ed-
ucation (Seattle, Washington, USA) (SIGCSE ’17). Association for Computing Ma-
chinery, New York, NY, USA, 213–218. https://doi.org/10.1145/3017680.3017777

[8] Pontus Haglund, Filip Strömbäck, and Linda Mannila. 2021. Understanding
Students’ Failure to use Functions as a Tool for Abstraction – An Analysis of
Questionnaire Responses and Lab Assignments in a CS1 Python Course. Infor-
matics in Education 20, 4 (2021), 583–614. https://doi.org/10.15388/infedu.2021.26

[9] Orit Hazzan. 2008. Reflections on Teaching Abstraction and Other Soft Ideas.
SIGCSE Bull. 40, 2 (June 2008), 40–43. https://doi.org/10.1145/1383602.1383631

[10] Yifat Ben-David Kolikant. 2004. Learning Concurrency as an Entry Point to
the Community of Computer Science Practitioners. Journal of Computers in
Mathematics and Science Teaching 23, 1 (2004), 21–46. https://www.learntechlib.
org/p/12871

[11] Herman Koppelman and Betsy van Dijk. 2010. Teaching Abstraction in Intro-
ductory Courses. In Proceedings of the Fifteenth Annual Conference on Innova-
tion and Technology in Computer Science Education (Bilkent, Ankara, Turkey)
(ITiCSE ’10). Association for Computing Machinery, New York, NY, USA, 174–178.
https://doi.org/10.1145/1822090.1822140

[12] Barbara Liskov and John Guttag. 2000. Program Development in Java: Abstraction,
Specification, and Object-Oriented Design (1st ed.). Addison-Wesley Longman
Publishing Co., Inc., USA.

[13] Raymond Lister, Elizabeth S. Adams, Sue Fitzgerald, William Fone, John Hamer,
Morten Lindholm, Robert McCartney, Jan Erik Moström, Kate Sanders, Otto
Seppälä, Beth Simon, and Lynda Thomas. 2004. A Multi-National Study of
Reading and Tracing Skills in Novice Programmers. InWorking Group Reports
from ITiCSE on Innovation and Technology in Computer Science Education (Leeds,
United Kingdom) (ITiCSE-WGR ’04). Association for Computing Machinery, New
York, NY, USA, 119–150. https://doi.org/10.1145/1044550.1041673

[14] Linxiao Ma, John Ferguson, Marc Roper, and Murray Wood. 2007. Investigating
the Viability of Mental Models Held by Novice Programmers. In Proceedings of
the 38th SIGCSE Technical Symposium on Computer Science Education (Covington,
Kentucky, USA) (SIGCSE ’07). ACM, New York, NY, USA, 499–503. https://doi.
org/10.1145/1227310.1227481

[15] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan,
Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and Tadeusz
Wilusz. 2001. A Multi-National, Multi-Institutional Study of Assessment of
Programming Skills of First-Year CS Students. In Working Group Reports from
ITiCSE on Innovation and Technology in Computer Science Education (Canterbury,
UK) (ITiCSE-WGR ’01). Association for Computing Machinery, New York, NY,
USA, 125–180. https://doi.org/10.1145/572133.572137

[16] J. A. Nelder and R. W. M. Wedderburn. 1972. Generalized Linear Models. Journal
of the Royal Statistical Society. Series A (General) 135, 3 (1972), 370–384. https:
//doi.org/10.2307/2344614

[17] Greg L. Nelson, Filip Strömbäck, Ari Korhonen, Marjahan Begum, Ben Blamey,
Karen H. Jin, Violetta Lonati, Bonnie MacKellar, and Mattia Monga. 2020. Differ-
entiated Assessments for Advanced Courses That Reveal Issues with Prerequisite
Skills: A Design Investigation. In Proceedings of the Working Group Reports on
Innovation and Technology in Computer Science Education (Trondheim, Norway)
(ITiCSE-WGR ’20). Association for Computing Machinery, New York, NY, USA,
75–129. https://doi.org/10.1145/3437800.3439204

[18] Jacob Perrenet and Eric Kaasenbrood. 2006. Levels of Abstraction in Stu-
dents’ Understanding of the Concept of Algorithm: The Qualitative Perspec-
tive. In Proceedings of the 11th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education (Bologna, Italy) (ITICSE ’06). As-
sociation for Computing Machinery, New York, NY, USA, 270–274. https:
//doi.org/10.1145/1140124.1140196

[19] Yizhou Qian and James Lehman. 2017. Students’ Misconceptions and Other
Difficulties in Introductory Programming: A Literature Review. ACM Trans.
Comput. Educ. 18, 1, Article 1 (oct 2017), 24 pages. https://doi.org/10.1145/3077618

[20] Yolanda J. Reimer, Michael Coe, Lisa M. Blank, and Jeffrey Braun. 2018. Effects
of Professional Development on Programming Knowledge and Self-Efficacy. In
2018 IEEE Frontiers in Education Conference (FIE). 1–8. https://doi.org/10.1109/
FIE.2018.8659041

[21] Teemu Sirkiä and Juha Sorva. 2012. Exploring Programming Misconceptions:
An Analysis of Student Mistakes in Visual Program Simulation Exercises. In Pro-
ceedings of the 12th Koli Calling International Conference on Computing Education
Research (Koli, Finland) (Koli Calling ’12). Association for Computing Machinery,
New York, NY, USA, 19–28. https://doi.org/10.1145/2401796.2401799

[22] David Statter and Michal Armoni. 2020. Teaching Abstraction in Computer
Science to 7th Grade Students. ACM Trans. Comput. Educ. 20, 1, Article 8 (jan
2020), 37 pages. https://doi.org/10.1145/3372143

[23] Filip Strömbäck, Linda Mannila, Mikael Asplund, and Mariam Kamkar. 2019.
A Student’s View of Concurrency - A Study of Common Mistakes in Intro-
ductory Courses on Concurrency. In Proceedings of the 2019 ACM Conference
on International Computing Education Research (Toronto ON, Canada) (ICER
’19). Association for Computing Machinery, New York, NY, USA, 229–237.
https://doi.org/10.1145/3291279.3339415

[24] Filip Strömbäck, Linda Mannila, and Mariam Kamkar. 2021. The Non-
Deterministic Path to Concurrency – Exploring how Students Understand the
Abstractions of Concurrency. Informatics in Education 20, 4 (2021), 683–715.
https://doi.org/10.15388/infedu.2021.29

48

https://doi.org/10.1145/1370164.1370171
https://doi.org/10.1145/358172.358408
https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9
https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9
https://arxiv.org/abs/https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9
https://doi.org/10.1145/1414558.1414585
https://doi.org/10.1145/330908.331857
https://doi.org/10.1145/3437800.3439202
https://doi.org/10.1145/3017680.3017777
https://doi.org/10.15388/infedu.2021.26
https://doi.org/10.1145/1383602.1383631
https://www.learntechlib.org/p/12871
https://www.learntechlib.org/p/12871
https://doi.org/10.1145/1822090.1822140
https://doi.org/10.1145/1044550.1041673
https://doi.org/10.1145/1227310.1227481
https://doi.org/10.1145/1227310.1227481
https://doi.org/10.1145/572133.572137
https://doi.org/10.2307/2344614
https://doi.org/10.2307/2344614
https://doi.org/10.1145/3437800.3439204
https://doi.org/10.1145/1140124.1140196
https://doi.org/10.1145/1140124.1140196
https://doi.org/10.1145/3077618
https://doi.org/10.1109/FIE.2018.8659041
https://doi.org/10.1109/FIE.2018.8659041
https://doi.org/10.1145/2401796.2401799
https://doi.org/10.1145/3372143
https://doi.org/10.1145/3291279.3339415
https://doi.org/10.15388/infedu.2021.29

	Abstract
	1 Introduction
	2 Related Work
	2.1 Misconceptions
	2.2 Core Programming Skills
	2.3 The Importance of Understanding Subtle Concepts

	3 Method
	3.1 Cohort Description
	3.2 The Survey
	3.3 Measuring Skills
	3.4 Correlation of Incorrect Answers

	4 Results
	4.1 Measuring Skills
	4.2 The Most Common Incorrect Answers

	5 Discussion
	5.1 Validity
	5.2 Development of Core Programming Skills
	5.3 Differences Between Programs

	6 Conclusion
	References

