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SwitchX: Gmin-Gmax Switching for Energy-efficient and

Robust Implementation of Binarized Neural Networks on

ReRAM Xbars

ABHIROOP BHATTACHARJEE and PRIYADARSHINI PANDA, Yale University

Memristive crossbars can efficiently implement Binarized Neural Networks (BNNs) wherein the weights are

stored in high-resistance states (HRS) and low-resistance states (LRS) of the synapses. We propose SwitchX

mapping of BNN weights onto ReRAM crossbars such that the impact of crossbar non-idealities, that lead to

degradation in computational accuracy, are minimized. Essentially, SwitchX maps the binary weights in such

a manner that a crossbar instance comprises of more HRS than LRS synapses. We find BNNs mapped onto

crossbars with SwitchX to exhibit better robustness against adversarial attacks than the standard crossbar-

mapped BNNs, the baseline. Finally, we combine SwitchX with state-aware training (that further increases

the feasibility of HRS states during weight mapping) to boost the robustness of a BNN on hardware. We find

that this approach yields stronger defense against adversarial attacks than adversarial training, a state-of-

the-art software defense. We perform experiments on a VGG16 BNN with benchmark datasets (CIFAR-10,

CIFAR-100 and TinyImagenet) and use Fast Gradient Sign Method (ϵ = 0.05 to 0.3) and Projected Gradient

Descent (ϵ = 2
255 to 32

255 , α =
2

255 ) adversarial attacks. We show that SwitchX combined with state-aware

training can yield upto ∼35% improvements in clean accuracy and ∼6–16% in adversarial accuracies against

conventional BNNs. Furthermore, an important by-product of SwitchX mapping is increased crossbar power

savings, owing to an increased proportion of HRS synapses, which is furthered with state-aware training.

We obtain upto ∼21–22% savings in crossbar power consumption for state-aware trained BNN mapped via

SwitchX on 16 × 16 and 32 × 32 crossbars using the CIFAR-10 and CIFAR-100 datasets.
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1 INTRODUCTION

Memristive crossbars have received significant focus for their ability to realize Deep Neural Net-

works (DNNs) by efficiently performing Multiply-and-Accumulate (MAC) operations using
analog dot-products [44, 48, 54]. These systems have been realized using a wide range of emerg-
ing Non-Voltalile-Memory (NVM) devices such as, Resistive RAM (ReRAM), Phase Change

Memory (PCM), Ferroelectric FET (FeFET), and Spintronic devices [9, 14, 35, 46]. These devices
exhibit high on-chip storage density, non-volatility, low leakage, and low-voltage operation and
thus, enable compact and energy-efficient implementation of DNNs [1, 7, 23].

In the recent years, Binarized Neural Networks (BNNs) have emerged as efficient and rea-
sonably accurate low-precision models to implement DNNs [21]. BNNs consist of binary synaptic
weights and activations, viz. {–1,+1}. The binarization enables lower computational complexity and
power consumption for MAC operations. BNNs are crossbar-friendly in the sense that they can be
implemented on crossbars in the manner shown in Figure 1 (see Normal Mapping). Here, the bi-
narized weights are programmed as conductances of the synaptic devices, such as ReRAMs, at the
cross-points. A weight value of “+1” corresponds to a Low Resistance State (LRS) while that of
“–1” corresponds to a High Resistance State (HRS). During inference, the activations of BNNs are
fed into each row i of the crossbar as analog voltages (generated using Digital-to-Analog Con-

verters (DACs)). As per Ohm’s Law, the voltages interact with the device conductances at the
cross-points Gi j and produce a current. Consequently, by Kirchhoff’s current law, the net output
current sensed at each column j is the sum of currents through each device, i.e.,:

Ij =
∑

i

Gi j ∗Vi . (1)

The above dot-product operation is depicted in Figure 2 (Left).
It is a known fact that memristive crossbar arrays possess non-idealities such as, intercon-

nect parasitics, process variations in the synaptic devices, driver and sensing resistances, and so
on. [6, 23]. These non-idealities manifest as imprecise dot-product currents causing accuracy degra-
dation when DNNs are mapped onto crossbars. Many previous works [6, 9, 23, 32, 33] have used
frameworks to capture the impact of circuit noise or non-idealities in crossbars and proposed noise-
aware retraining of DNNs to mitigate accuracy losses (see Table 1). However, [6, 9, 23, 32, 33] do
not study the impact of crossbar non-idealities on the robustness of neural networks against adver-
sarial attacks. Adversarial attacks are structured, yet, small perturbations on the input, that fool a
DNN causing high confidence misclassification. This vulnerability severely limits the deployment
and potential safe-use of DNNs for real-world applications [5, 39]. Recently there have been in-
vestigative works such as [3, 42, 43], wherein the authors have shown that crossbar non-idealities
while degrading performance, can improve the adversarial attack resilience of hardware-mapped
DNNs in comparison to baseline software DNNs without additional efficiency-driven hardware
optimizations (see Table 1). Furthermore, the authors in [16, 38, 39, 45] show that hardware opti-
mization techniques, such as quantization, model compression, and pruning can be leveraged to
improve the adversarial robustness of DNNs in addition to energy-efficiency.

In this work, we introduce SwitchX based mapping of BNN weights onto ReRAM crossbars (see
Figure 1 for SwitchX mapping), whereby we map the binarized weights in a manner such that
the number of HRS synapses always dominate every crossbar instance. We show that SwitchX
mapping interfere with hardware non-idealities to yield benefits in terms of adversarial robustness
when compared with normally-mapped BNNs (the baseline). This is achieved by boosting the
feasibility of HRS states in crossbars to tackle crossbar non-idealities and improve the natural
and adversarial performance (robustness) of BNNs for their secure deployment on edge-devices.
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Fig. 1. Pictorial representation of Normal Mapping and SwitchX approaches showing mapping of a 3 × 3
binary weight matrix on 3 × 3 crossbar with non-idealities. In the case of Normal Mapping, “+1”s are mapped
to LRS states, and “–1”s are mapped to HRS states to obtain Gideal . In the case of SwitchX, the mapping
depends on the mean of the weight matrix. If mean < 0, then the process is similar to Normal Mapping.
If mean > 0, then “+1”s are mapped to HRS and “–1”s to LRS. This ensures that HRS states are always in
majority in a crossbar array.

Fig. 2. (Left) A 2× 2 ideal ReRAM crossbar with weights programmed as synaptic conductances (Gi j s); (Right)
A 2 × 2 non-ideal crossbar with the resistive and device-level non-idealities marked. These non-idealities lead
to imprecise dot-product currents and that manifests as accuracy degradation when neural networks are
evaluated on crossbars.

It has been shown in earlier works that the weights of a BNN encoded as resistance states in
crossbars contribute significantly to the power dissipated by the crossbars [8, 18, 27]. An important
by-product of SwitchX mapping is the reduction in the overall power expended by the crossbar
instances during BNN inference, owing to an increased proportion of HRS synapses.

Contributions: In summary, the key contributions of this work are as follows:

(1) We comprehensively analyse how SwitchX mapping of binarized weights onto ReRAM
crossbars manifests as an increase in the robustness and adversarial stability of the mapped
networks. Note, although the results in this work have been presented typically for ReRAM
crossbars, the SwitchX approach and its benefits are not limited to ReRAM crossbars and
can be extended to crossbars with other NVM devices such as, PCM or FeFET.

(2) We carry out experiments on a state-of-the-art neural network architecture (VGG16) [49]
using benchmark datasets (CIFAR-10, CIFAR-100 [28], and TinyImagenet). We propose a
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Table 1. A Comparison Table to Show the Contributions of Previous Works and Our SwitchX Approach to
Mapping on Non-ideal Crossbars

Crossbar non-idealities included

Work

New

weight-mapping

strategy

Crossbar

energy-

efficiency

Non-ideality

aware

performance

(accuracy)

Non-ideality

driven

adversarial

robustness

Noise-aware

training or

fine-tuning

[6, 9, 23, 32, 33] × × � × �
[3, 42, 43] × × � � ×
[18, 19] � � × × ×
[12] × × � � �
NEAT [4] × � � � �
Our work (SwitchX) � � � � ×

novel graphical approach by plotting robustness maps to evaluate the adversarial robustness
of BNNs on crossbars and perform a fair comparison between SwitchX and Normal Mapping.

(3) We find that SwitchX approach when combined with state-aware training (explained in
Section 5) increases the feasibility of higher HRS mapping. This significantly boosts the
robustness (both clean and adversarial accuracies) of the mapped BNNs. Further, SwitchX
combined with state-aware training outperforms the case when SwitchX is combined with
Adversarial training, a state-of-the-art software defense against adversarial attacks.

(4) We also carry out ablation studies and ascertain that the SwitchX approach can unleash
robustness to BNNs mapped onto crossbars with various specifications and dimensions
ranging from 16 × 16, 32 × 32, 64 × 64 to 128 × 128.

(5) Apart from robustness benefits, we also find that the above approach can lead to significant
power savings (∼21–22% for 16 × 16 and 32 × 32 crossbars using CIFAR-10 and CIFAR-100
datasets) with respect to normally mapped BNNs on crossbars, thereby bringing in crossbar
energy-efficiency. Note, as we see later (in Section 6.3) that the crossbar energy-efficiency
via SwitchX mapping decreases on increasing the crossbar size, we thus report the overall
crossbar power savings of SwitchX BNNs only for 16 × 16 and 32 × 32 crossbars.

2 RELATED WORKS

BNNs have been widely explored as a hardware-friendly method to implement neural networks on
crossbar-based architectures. Particularly, early works such as [11, 36] have proposed optimized
hardware architectures using RRAM crossbars to facilitate BNN inference with higher energy-
efficiency, throughput and parallelism, and have been shown to be resilient against device-level
variations. Another work [20] has further proposed RRAM noise-aware retraining of a BNN model
to further improve noise-tolerance of crossbar-mapped BNNs on error-prone crossbar platforms.
Later works such as [51] have proposed a dual-activation and dual-synapse based implementa-
tion of BNNs on RRAM crossbar-arrays (referred to as Complementary Resistive Cell (CRC)
arrays). This helps perform device noise-resilient XNOR operations on the RRAM crossbars and
furthers the energy-efficiency and throughput during BNN inference. Furthermore, other works
focusing on energy-efficient implementations of BNN on crossbars include [57], which implements
an ADC-less RRAM accelerator to carry out BNN inference and outperforms standard state-of-the-
art crossbar-based inference accelerators such as ISAAC [47], Pipelayer [50], and FloatPIM [22].
However, in [57], RRAM device-noise models are not included during BNN inference and hence,
hardware-realistic BNN accuracies are not reported. Recent works such as [37, 52] include mature
RRAM noise models in addition to device-level variations such as stuck-at-fault defects and have
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proposed architectural modifications as well as noise-mitigation strategies for BNNs to achieve
similar accuracy on hardware with state-of-the-art multi-precision counterparts. However, major-
ity of the above works focus on energy-efficiency and throughput as the key goals to optimize for
BNN inference on crossbar-arrays. Moreover, none of the above works have explored the area of
adversarial robustness for BNNs on crossbars in presence of hardware non-idealities.

Our work SwitchX explores non-ideality aware adversarial robustness of BNNs in presence of
resistive crossbar non-idealities in addition to device-level variations. It should be noted that al-
though there has been a complementary work, called Non-linearity aware Training (NEAT) [4]
for non-ideality aware adversarial robustness of DNNs on crossbars, it involves additional training
cost of fine-tuning a pretrained software DNN model before deploying onto non-ideal crossbars.
In addition, NEAT focuses on robustness of multi-precision DNN models but does not take into
account the hardware overheads of implementation of multibit weights (or conductances) with an
ensemble of memristive devices (using bit-slicing) on crossbars. To this end, SwitchX uses binary
weights that are simple to program on crossbars with a single synaptic NVM device and hence,
are more crossbar-friendly. Furthermore, there have been previous works such as, [18, 19] (see
Table 1), introducing techniques that also increase the proportion of high resistance ReRAM states
in crossbars leading to better crossbar energy-efficiencies. But, none of them have focused on ad-
versarial robustness in presence of resistive crossbar non-idealities. It should also be noted that
SwitchX, unlike [4, 6, 9, 12, 23, 32, 33] in Table 1, is not noise-aware retraining or fine-tuning of
neural networks but rather is a simple weight-mapping strategy that helps mitigate the impact of
crossbar noise.

3 BACKGROUND

3.1 Memristive Crossbars and their Non-idealities

Memristive crossbar arrays have been employed to implement Matrix-Vector-Multiplications

(MVMs) in neural networks in an analog manner. Traditionally, a crossbar (see Figure 2 (Left)),
consists of a 2D array of synaptic NVM devices interfaced with DACs, Analog-to-Digital Con-

verters (ADCs), and a write circuit to program the synapses. The synaptic devices at the cross-
points are programmed to a particular value of conductance (Gi j ). The MVM operations during
inference are performed by converting the digital inputs to a neural network into analog voltages
on the Read Wordlines (RWLs) using DACs, and sensing the output current flowing through
the bitlines (BLs) using the ADCs [23]. For an ideal crossbar, if Vin is the input voltage vector,
Ioutideal is the output current vector and Gideal is the conductance matrix, then:

Ioutideal = Vin ∗Gideal . (2)

Non-idealities and equivalent conductance matrix: The analog nature of the computation
leads to various non-idealities resulting in errors in the computation of MVMs. These include
various linear resistive non-idealities in the crossbars. Figure 2 (Right) shows the equivalent cir-
cuit for a crossbar array accounting for various peripheral and parasitic non-idealities (Rdriver ,
Rwire_row , Rwire_col , and Rsense) modeled as parasitic resistances. The cumulative effect of all
the non-idealities results in the deviation of the output current from its ideal value (i.e., Equa-
tion (2)), resulting in an Ioutnon−ideal vector. The relative deviation of Ioutnon−ideal from its ideal
value is measured by non-ideality factor (NF) [6] as

NF = (Ioutideal − Ioutnon−ideal )/Ioutideal . (3)

Thus, NF is a direct measure of crossbar non-idealities, i.e., increased non-idealities induce a
greater value of NF, affecting the accuracy of the neural network mapped onto them [6, 23, 24].
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In this work, we take a trained BNN model with binary weights ({–1, +1}) and map onto ReRAM
crossbars using only two conductance states-GMI N (HRS) andGMAX (LRS) (details on mapping of
negative and positive weights of the BNN along with circuit implementation have been presented
in Section 4.1). From Figure 1, once the binarized weights of a BNN are mapped onto crossbars to
obtain Gideal , we integrate the resistive interconnect non-idealities of the crossbar and synaptic
device variations to convert Gideal into Gnon−ideal (see Section 4.2). This completes the mapping
of the weights of the BNN onto a non-ideal crossbar. Thus, we have

Ioutnon−ideal = Vin ∗Gnon−ideal . (4)

Unless otherwise stated, we carry out experiments on ReRAM crossbars with RMI N = 20kΩ
and device ON/OFF ratio of 10 [17]. The resistive are non-idealities as follows: Rdriver = 1kΩ,
Rwire_row = 5Ω, Rwire_col = 10Ω and Rsense = 1kΩ [6, 13, 23, 55]. The device-to-device vari-
ations in ReRAM conductances are modeled using a Gaussian distribution around the nominal
device conductances with σ/μ = 10% [10, 55]. For our experiments, by performing SPICE simula-
tions with the ReRAM device model [25], we identified that the binary analog voltages input to
the ReRAM crossbars for BNN inference can be +0.1/–0.1 V to maintain linear ReRAM I-V char-
acteristics [35]. In this work, we have assumed that the correct mapping of the BNN weights to
the memristive conductances (HRS or LRS) without stuck-at-fault defects is ensured post-training
[56]. We use a hardware evaluation framework in Pytorch [2, 23] to map the BNNs onto non-ideal
crossbars and investigate the cumulative impact of the resistive and device-level non-idealities on
networks mapped with SwitchX technique (explained in Section 4.1) on the robustness of neural
networks.

3.2 Adversarial Attacks and Defense

Neural networks are vulnerable to adversarial attacks in which the model gets fooled by applying
precisely calculated small perturbations on the input [39]. Goodfellow et al. [15] proposed Fast

Gradient Sign Method (FGSM) to generate adversarial attacks (Xadv ) by linearization of the loss
function (L) of the trained models with respect to the input (X ) as shown in Equation (5).

Xadv = X + ϵ × siдn(∇xL(θ ,X ,ytrue )). (5)

Here, ytrue is the true class label for the input X ; θ denotes the model parameters (weights,
biases, and so on). The quantity Δ = ϵ × siдn(∇xL(θ ,X ,ytrue )) is the net perturbation which
is controlled by ϵ . It is noteworthy that gradient propagation is a crucial step in unleashing an
adversarial attack. Furthermore, the contribution of a gradient to Δ would vary for different layers
of the network depending upon the activations [39]. In addition to FGSM-based attacks, multi-step
variants of FGSM, such as Projected Gradient Descent (PGD) [34] have also been proposed that
cast stronger attacks. The PGD attack, shown in Equation (6), is an iterative attack over n steps.
In each step i , perturbations of strength α are added to X i−1

adv
. Note, that X 0

adv
is created by adding

random noise to the clean input X . Additionally, for each step, X i
adv

is projected on a Norm ball
[34], of radius ϵ . In other words, we ensure that the maximum pixel difference between the clean
and adversarial inputs is ϵ .

Xadv =

n∑

i=1

X i−1
adv
+ αsiдn(∇xL (θ ,X ,ytrue )). (6)

To build resilience against small adversarial perturbations, defense mechanisms such as gradi-
ent masking or obfuscation [40] have been proposed. Such methods construct a model devoid of
useful gradients, thereby making it difficult to create an adversarial attack. Furthermore, adversar-
ial training [15, 29, 30, 34] is the state-of-the-art and strongest-known software defense against
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adversarial attacks. Here, the training dataset is augmented with adversarial examples so that the
network learns to predict them correctly. The authors in [3] have also shown that hardware non-
idealities can intrinsically lead to defense via gradient obfuscation against adversarial perturba-
tions, thereby making a neural network on hardware adversarially robust than baseline software
models.

In this work, we explore how SwitchX mapping of BNNs on non-ideal crossbars can yield
adversarial robustness when compared with Normal Mapping of BNN weights. Furthermore, we
show that when SwitchX is combined with state-aware training of BNN (discussed in Section 5),
it intrinsically unleashes even stronger defense on hardware than adversarial training.

4 METHODOLOGY

4.1 SwitchX Mapping

For the baseline or Normal Mapping of BNNs onto crossbars, “+1” weights are mapped to GMAX

or LRS and “‘–1” to GMI N or HRS as shown in Figure 1 (see Normal Mapping). In this work, we
perform switched-mapping of the weights of a BNN onto crossbars, termed as SwitchX. As shown
in Figure 1 for SwitchX, we compute the mean of the binarized weight matrix of the BNN to be
mapped onto a crossbar instance. If the mean is positive-valued (mean > 0), we switch the mapping
with “+1” values to HRS states and “–1” values to LRS states. If the mean is negative-valued or zero
(mean ≤ 0), we do not perform any switching and conduct Normal Mapping. This approach ensures
that the proportion of HRS states in a crossbar array is always higher when mapping BNN weights.
As noted in Figure 1, the ideal conductance matrix Gideal obtained from the switched mapping is
again converted into Gnon−ideal taking the crossbar non-idealities into account.

Circuit implementation of SwitchX for BNN inference: Figure 3 shows the manner in
which BNN inference is carried out accurately on an m × m crossbar via SwitchX approach. Stan-
dard techniques involve a dual-crossbar approach to map neural networks onto crossbars with neg-
ative weights. However, in this work, we follow a single crossbar-based approach similar to [26, 53]
for mapping both positive and negative BNN weights as ReRAM conductances, thereby reducing
hardware overheads. The binary digital inputs of a BNN (A1-Am ) are converted into analog volt-
ages (Vi1-Vim ) using DACs (level-shifters producing +0.1/–0.1 V) which are input to the crossbar.
The software model weights of a BNN are centered around zero, i.e., {–1, +1}. In the crossbars,
the binary weights of the BNN ({–1, +1}) are mapped as {GMI N , GMAX } synaptic conductances
that are not symmetrically centered around zero. Hence, to conduct accurate BNN inference, we
need to perform some transformations in hardware to ensure that the trained software weights
after being mapped to conductance values still remain symmetrically centered around zero, i.e.,

{
−(GMAX−GM I N )

2 , +(GMAX−GM I N )
2 }. To this end, an additional column of ReRAM devices with conduc-

tances of value G0 =
(GMAX+GM I N )

2 is added (highlighted in blue) and R0 = R is set to facilitate the
transformation. Note, this is viable for the case when the ReRAM devices under consideration can

be programmed to a level between GMI N and GMAX having a conductance equal to (GMAX+GM I N )
2 .

In case, the ReRAM devices are bimodal, we realize G0 = (GMAX +GMI N ) using a parallel combi-
nation of two devices- one in HRS state and the other in LRS state, and set R0 =

R
2 . The resulting

crossbar currents are sensed by the ADC unit consisting of transconductance amplifiers (generat-
ing voltages Vo1-Vom ) followed by comparators (with VREF = 0) to produce binarized activations.
However, for weights mapped onto crossbars via SwitchX transformation, wherein HRS and LRS
states are interchanged for the case when mean > 0, a corresponding inverse transformation is
also necessary in the end to ensure the correct activations (X1 −Xm ) at the output. This is done by
the digital module consisting of inverters and multiplexers (highlighted in violet). The SEL signal
input to the multiplexers is set to “0” for mean > 0 scenario to conduct switched-mapping and
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60:8 A. Bhattacharjee and P. Panda

Fig. 3. Circuit for SwitchX implementation during BNN inference shown for an m × m memristive crossbar
(highlighted in green). Here,Vi1 −Vim are analog voltages input to the crossbar and X1 −Xm are the output
binary activations.

“1” for mean ≤ 0 scenario to conduct Normal Mapping to produce the correct output activations
(X1 −Xm ). Effectively, during SwitchX implementation, based on the value of mean, the analytical
operations are governed by Equations (7) and (8).

For mean ≤ 0,
∑

i

ai ∗wi j =
∑

i

Vi ∗Gi j −
∑

i

Vi ∗G0. (7)

Here, the subtraction operation is needed to ensure that the trained binarized weights after
being mapped to conductance values in the crossbars remain symmetrically centered around zero,

i.e., {−(GMAX−GM I N )
2 , +(GMAX−GM I N )

2 }. Note, the above equation is also true for normally mapping a
BNN irrespective of the value of mean [26].

For mean > 0,
∑

i

ai ∗wi j = −
⎡
⎢
⎢
⎢
⎢
⎣

∑

i

Vi ∗Gi j −
∑

i

Vi ∗G0

⎤
⎥
⎥
⎥
⎥
⎦

. (8)

Basically, for switched-mapping in Equation (8), the additional inverse operation with respect
to Equation (8) is emulated using the digital inverse transformation module (highlighted in violet
in Figure 3).

Trends for non-ideality factor (NF): Figure 4 shows the variation in NF for different crossbar
sizes for a given binary weight matrix with a higher proportion of “+1” values (mean > 0) for
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Fig. 4. Box Plot of error bars to show variations in NF for various crossbar sizes for Normal and SwitchX

mapping.

Fig. 5. Hardware evaluation platform for mapping the BNN parameters onto non-ideal crossbars following
SwitchX technique.

a fully-connected layer of a neural network and a given set of input voltages drawn randomly
from a uniform distribution. It is observed that NF increases with increasing crossbar size (16 ×
16 to 64 × 64). Further for a given crossbar size, SwitchX results in a decrease in the value of NF
with respect to the case of Normal Mapping. This occurs because SwitchX increases the effective
resistance of a crossbar array, thereby minimizing the effect of interconnect parasitic resistances
and device-level variations, by increasing the proportion of HRS states. Thus, BNNs mapped onto
crossbars via SwitchX approach would suffer less interference from non-idealities on MVM operations
which would thereby lead to lesser accuracy degradation.

4.2 Hardware Evaluation Framework

As discussed in Section 3.1, we use a framework in Pytorch, based on RxNN [23], to map trained
BNNs onto non-ideal memristive crossbars via SwitchX technique and investigate the cumulative
impact of the circuit and device-level non-idealities on their adversarial robustness. Figure 5 il-
lustrates the overall simulation framework that is used for non-ideal crossbar evaluation using
SwitchX technique. The entire platform, being based on Python, enables better integration be-
tween the software model and the simulation framework. In the platform, a Python wrapper is
built that unrolls each and every convolution operation in the software BNN into MAC opera-
tions. The matrices obtained are then zero-padded (in case the size of the weight matrix is not an
exact multiples of the crossbar size) and partitioned into multiple crossbar instances consisting
of the binarized weights. The next stage (functional modeling) of the platform converts the bina-
rized weightsW to suitable conductance statesG (HRS or LRS as marked in green and blue colors,

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 4, Article 60. Pub. date: May 2023.
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Table 2. Table Showing Default Crossbar and NVM Device Specifications
for Non-ideality Aware Performance Evaluation of BNNs

Synapse characteristics Non-idealities

Parameter Value Parameter Value

RMI N 20 kΩ Rdriver , Rsense 1 kΩ, 1 kΩ
RMAX 200 kΩ Rwire_row , Rwire_col 5 Ω, 10 Ω
ON/OFF ratio 10 Synaptic variation 10%

Table 3. Baseline Software Models using VGG16 BNN with CIFAR-10, CIFAR-100 and TinyImagenet
Datasets Subjected to FGSM Attack

Dataset Clean Accuracy (%) Adversarial accuracies (%)

ϵ = 0.05 ϵ = 0.1 ϵ = 0.15 ϵ = 0.2 ϵ = 0.25 ϵ = 0.3

CIFAR-10 88.92 44.63 39.81 35.87 32.7 30.58 28.17

CIFAR-100 55.04 15.97 13.29 11.51 10.01 8.82 7.98

TinyImagenet 47.4 6.28 5.47 4.8 4.25 3.93 3.7

CIFAR-10 with state-aware training (|δ | = 1e − 3) 87.55 46.61 40.63 35.64 31.82 28.86 26.38

respectively) using SwitchX approach based on proportions of “+1”s and “–1”s in the crossbar
instances. Thereafter, the circuit-level parasitic non-idealities are integrated via circuit laws (Kir-
choff’s laws) and linear algebraic operations written in Python [2]. This integration is similar to
the numerical operations adopted in the RxNN framework, which is a recent work that accurately
models circuit non-idealities while evaluating DNNs on crossbars during inference. RxNN has been
shown to closely match the results obtained using SPICE models for interconnect parasitics and
achieves significantly high speed up during DNN inference on non-ideal crossbars. Furthermore,
the ReRAM device variations are included with gaussian profiling. The default specifications of
the NVM devices as well as the values of non-idealities have been listed in Table 2, which are used
for our experiments. The non-ideal synaptic conductancesG ′ are then integrated into the original
Pytorch-based BNN model to conduct inference. This framework, thus, enables us to analyze the
impact of intrinsic crossbar non-idealities on mapping BNNs with SwitchX.

5 EXPERIMENTS

We conduct experiments on a VGG16 BNN architecture with benchmark datasets- CIFAR-10,
CIFAR-100 and TinyImagenet. The CIFAR-10 and CIFAR-100 datasets consist of 50,000 training
and 10,000 test RGB images of size 32 × 32 belonging to 10 and 100 classes, respectively. The Tiny-
Imagenet dataset is a larger and complex dataset consisting of RGB images of size 64 × 64. It is
a subset of the Imagenet dataset having 100,000 training images and 10,000 test images from 200
different classes. After training the BNNs on software, we launch FGSM or PGD attacks by adding
adversarial perturbations to the clean test inputs and record the adversarial accuracies in each case.
This forms our baseline software models (first two rows in Table 3).

State-aware training: In standard scenarios, the binarization of weights during software-
training occurs with respect to a threshold (δ ) value of 0.0. That is, a weight value greater (or
lesser) than 0.0 is quantized as “+1” (or “–1”), respectively. State-aware training is a method
to make the distribution of binarized weights across a channel more non-uniform [18]. In
this approach, the threshold (δ ) is a hyperparameter assuming a positive value when there
are more negative weights in a channel and a negative value otherwise. The weights are now
quantized according to the new threshold value. For the VGG16 BNN, we found that a value
|δ | = 1e − 3 for CIFAR-10 and TinyImagenet datasets and |δ | = 5e − 4 for CIFAR-100 dataset
were optimal to retain the performance of the BNNs upon state-aware training on software and
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hence, selected for the upcoming experiments. Subsequently, SwitchX -mapping on such networks
increases the proportion of HRS states in the crossbar instances (implying a greater reduction in
crossbar non-ideality factor). State-aware training on VGG16 BNN with CIFAR-10 dataset yields
a baseline software model as shown in Table 3 (fourth row). Data for VGG16/CIFAR-100 and
VGG16/TinyImagenet with state-aware training have not been shown for brevity. We extensively
analyze the benefits of this approach in the upcoming sections.

Modes of adversarial attack: For the adversarial attacks (FGSM/PGD) on the crossbar-mapped
models of the BNNs, we consider two modes:

(1) Software-inputs-on-hardware (SH) mode: The adversarial perturbations for each attack are
created using the software-based baseline’s loss function and then added to the clean input
that yields the adversarial input. The generated adversaries are then fed to the crossbar-
mapped BNN. This is a kind of black-box adversarial attack.

(2) Hardware-inputs-on-hardware (HH) mode: The adversarial inputs are generated for each at-
tack using the loss from the crossbar-based hardware models. This is a kind of white-box
adversarial attack. It is evident that HH perturbations will incorporate the intrinsic hardware
non-idealities and thus will cast stronger attacks than SH.

For all FGSM attacks in this work, we have ϵ = {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. Also, we consider
PGD attacks iterated over 7 steps with α = 2/255 and ϵ = {2/255, 4/255, 8/255, 16/255, 32/255}.
Note, for all upcoming analyses which include the impact of interconnect parasitic non-idealities,
to have a feasible runtime for the simulations during BNN inference that are out by first mapping
weights on crossbars via SwitchX method and then integrating with non-idealities and variations
(see Figure 5), we have shown results on crossbar sizes of 16 × 16 or 32 × 32.

6 RESULTS AND DISCUSSION

6.1 Reduction in Adversarial Noise Sensitivity

Earlier works [31, 39] have identified a metric termed as Adversarial Noise Sensitivity (ANS) to
quantify the sensitivity of each layer of a neural network to adversarial perturbations. ANS for a
layer l in a neural network, subjected to an adversarial attack, is defined in terms of an error ratio
as follows:

ANSl =
| |Al

adv
−Al | |2

| |Al | |2
, (9)

where, Al and Al
adv

are respectively the clean and adversarial activation values of the layer l . ANS
is a simple metric to evaluate how each layer contributes to the net adversarial perturbation during
the gradient propagation.

In Figure 6 we show results for a VGG16 BNN (trained using state-aware training) mapped via
SwitchX, and a standard VGG16 BNN mapped normally onto 32 × 32 crossbars (RMI N = 20kΩ
and ON/OFF ratio = 10), both adversarially perturbed using HH mode of FGSM attack. We plot
the ANS values for all the convolutional layers and the final fully-connected layer (marked as FC).
For the case of SwitchX -mapped BNN we observe lower ANS values implying a reduced error am-
plification effect [31] and hence, lesser sensitivity and better stability to the induced adversarial
perturbations. However, the authors in [39] also agree that a lower value of ANS across the lay-
ers of a neural network would not necessarily imply improved adversarial robustness under all
circumstances. Hence, in Section 6.2, we propose a novel graphical approach by plotting “robust-
ness maps” to evaluate the adversarial robustness of BNNs upon SwitchX mapping onto non-ideal
crossbars.

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 4, Article 60. Pub. date: May 2023.



60:12 A. Bhattacharjee and P. Panda

Fig. 6. ANS values plotted across different layers of VGG16 BNN trained on CIFAR-10 for Normal Mapping
and SwitchX mapping on 32 × 32 crossbars. The SwitchX BNN is trained via state-aware training. Here, layers
3, 6, 11, and 16 denote the Pooling layers and FC marks the final fully-connected layer. Results are shown
for HH mode of FGSM attack with ϵ = 0.1, 0.2, 0.3.

6.2 Robustness Analysis

Earlier approaches to quantify adversarial robustness of neural networks have been based on
Adversarial Loss (AL) metric which is the difference between the clean accuracy and the
adversarial accuracy for a given value of ϵ [2, 38, 39]. Note, clean accuracy is the natural accuracy
of a neural network when not under attack. A reduction in the value of AL is said to improve
the adversarial robustness of the network. However, AL is not always a suitable metric for the
assessment of robustness since reduction in AL does not convey whether the cause is a decrease
in clean accuracy or an increase in adversarial accuracy or both. For instance, while evaluating a
network with CIFAR-10 dataset, we find the clean and the adversarial accuracies (for a particular
ϵ) to be 10% each. Then the value of AL is zero implying that the network is exceptionally robust.
However, this is absurd since a 10% accuracy is random for CIFAR-10 dataset implying that the
network is arbitrarily predicting and is not trained.

In this work, we evaluate robustness of the mapped BNNs on crossbars graphically as shown
in Figures 7 and 8. For a specific mode of attack (SH or HH) and a given crossbar size, we plot
Δ Clean Accuracy, the difference between clean accuracy of the mapped network in question and
the corresponding clean accuracy of the software baseline, on the x-axis. Δ Adversarial Accuracy
(for a particular ϵ value) which is the difference between the adversarial accuracy of the mapped
network in question and the corresponding adversarial accuracy of the software baseline is plotted
on the y-axis. We term this plot as a “robustness map”. The value of Δ Clean Accuracy is negative
since BNNs when mapped on hardware suffer accuracy loss owing to non-idealities. The region
bounded by the line y = −x and the y-axis denotes that the absolute increase in the adversarial
accuracy is higher than the absolute degradation in the clean accuracy. If a point lies in this region
closer to the y-axis, it implies greater adversarial accuracy with lower clean accuracy loss and
hence, greater robustness. Therefore, this is our favorable region. As we move farther away from
the y-axis in the favorable region, the robustness reduces as the neural network suffers from high
loss of clean accuracy, and this has been shown by the variation in color gradient from dark to light-
brown (dark shade implying higher robustness). Likewise, the region bounded by the line y = x
and the y-axis is where the mapped-network is highly vulnerable to adversarial attacks and hence,
the unfavorable region. Here, as we move farther away from the y-axis in the unfavorable region,
the robustness reduces and the degree of unfavorability increases. This has been shown by the
variation in color gradient from dark to light-yellow (darker shade implying higher robustness).
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Fig. 7. (a) and (b) Robustness maps for VGG16 BNN using CIFAR-100 dataset for SH and HH modes of FGSM
attack respectively; (c) and (d) Robustness maps for VGG16 based BNN using CIFAR-100 dataset for SH and
HH modes of PGD attack respectively.

Fig. 8. (a) and (b) Robustness maps for VGG16 based BNN using CIFAR-10 dataset for SH and HH modes
of FGSM attack respectively considering the case of SwitchX combined with state-aware training; (c) and
(d) Robustness maps for VGG16 based BNN using CIFAR-10 dataset for SH and HH modes of FGSM attack
respectively considering the case of SwitchX combined with adversarial training.

This approach to assess robustness of a network is comprehensive and accurate since, it takes
into account the cumulative impact of both clean accuracy and adversarial accuracy (which is a
strong function of the clean accuracy). The closer a point is to the region marked with dark-brown
color, the better the robustness of the neural network. Note, in Figures 7 and 8, the circular points
correspond to mappings on 16×16 crossbars while the triangular points correspond to mappings
on 32 × 32 crossbars. All the details pertaining to the baseline software models have been listed in
Table 3. Furthermore, the results in Figures 7 and 8 are for BNNs mapped onto crossbars having
ReRAM device ON/OFF ratio of 10 with RMI N = 20kΩ.

Figure 7 shows the robustness maps for BNNs based on VGG16 network with CIFAR-100 dataset
for both SH and HH modes of attack. Figure 7(a) and (b) pertain to FGSM attack with ϵ varying from
0.05 to 0.3 with step size of 0.05. We find that SwitchX imparts greater clean accuracy (∼3% for 32
× 32 crossbar) as well as better adversarial accuracies on hardware for both modes of attack, with
the points corresponding to SwitchX situated closer to the dark-brown portion favorable region
than the corresponding points for Normal Mapping. This is a consequence of the reduction in
non-ideality factor in case of SwitchX with respect to Normal Mapping as discussed in Section 3.1.
Note, the points for 32 × 32 crossbars are situated farther from the favorable region than the
corresponding points for 16 × 16 crossbars. This is owing to greater non-idealities that exist in
case of a 32 × 32 crossbar than a 16 × 16 crossbar (Figure 4). We further observe that the points for
SwitchX BNN for a given crossbar size are more closely packed than the corresponding points for
Normal BNN. This implies that even on increasing the perturbation strength (ϵ), lesser adversarial
loss is observed in case of SwitchX BNN.
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Fig. 9. Robustness maps for VGG16 BNN with- (a) CIFAR-100 dataset for HH mode of FGSM attack mapped
onto 32 × 32 crossbars with RMI N /RMAX = 20kΩ/200kΩ (circle), RMI N /RMAX = 50kΩ/250kΩ (diamond)
and RMI N /RMAX = 50kΩ/500kΩ (triangle); (b) TinyImagenet dataset for HH mode of FGSM attack mapped
onto 32 × 32 crossbars (triangle) and 16 × 16 crossbars (circle) with RMI N /RMAX = 20kΩ/200kΩ.

Figure 7(c) and (d) also present similar results but for a PGD attack with ϵ varying from 2/255
to 32/255 with step size of 2/255. In this case, the robustness is very high for SH mode of attack as
compared to HH mode of attack, with points corresponding to 16 × 16 crossbars situated inside
the favorable region. Similar to the case of FGSM attack, SwitchX outperforms a Normal BNN in
terms of robustness for both modes of attack. Here, points for different ϵ values, given a style
of mapping and crossbar size, are more closely packed than the corresponding points of FGSM
attack. This implies that hardware non-idealities interfere more with PGD attacks than FGSM
attacks resulting in lesser accuracy degradation.

Effect of varyingRMI N of ReRAM devices: Previous works such as [3, 6] have shown that the
impact of resistive crossbar non-idealities (or NF) decreases upon increasing RMI N of memristive
devices. To this end, we plot robustness maps in Figure 9(a) to compare Normal and SwitchX BNNs
upon increasing RMI N from 20 kΩ to 50 kΩ. We find that for both Normal and SwitchX BNNs, data
points corresponding toRMI N = 50kΩ (triangle) are closer to the favorable region than forRMI N =

20kΩ (circle) for the same ON/OFF ratio of 10, signifying reduced impact of non-idealities on the
crossbar-mapped network models. Further, for RMI N = 50kΩ, SwitchX BNNs show performance
improvement in terms of robustness over Normal BNNs (∼1% improvement in clean accuracy and
adversarial accuracies for HH based FGSM attack on 32× 32). Also, in Figure 9(a), we increaseRMI N

from 20 kΩ to 50 kΩ and reduce the device ON/OFF ratio to 5 (diamond-shaped points). We find
that even at a lower ON/OFF ratio of 5, SwitchX BNN outperforms the corresponding Normal BNN
in terms of robustness. Another important observation from Figure 9(a) is that robustness of a neu-
ral network on non-ideal crossbars is a stronger function of RMI N than RMAX . This is because for
both SwitchX and Normal BNNs, improvement in robustness is greater on traversing from the cir-
cular to the diamond-shaped points than from the diamond-shaped points to the triangular points.

Efficacy of SwitchX combined with state-aware training: Figure 8 shows the robustness
maps for BNNs based on VGG16 network with CIFAR-10 dataset for both SH and HH modes of
FGSM attack. Here, we find that there is a significant benefit in terms of improvement in clean
accuracy (∼10%) and adversarial accuracies (∼2–5%) due to SwitchX for a 32 × 32 crossbar with
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respect to Normal Mapping. Similar to the case for CIFAR-100 dataset, we find that SwitchX out-
performs a Normal BNN in terms of robustness for both modes of attack. We now analyze cases
when SwitchX is combined with state-aware training as well as adversarial training. The results
for FGSM attack are summarized:

6.2.1 With Adversarial Training. From Figure 8(c) and (d), we find that SwitchX combined with
adversarial training significantly boosts the robustness of the mapped BNN both in terms of clean
as well as adversarial accuracy improvement. For 16 × 16 crossbar, the points (in red) for different
ϵ lie in the close vicinity of the boundary of the favorable region while for 32 × 32 crossbar, the
rise in clean accuracy with respect to Normal BNN is very high (∼20%). Furthermore, given a style
of mapping and crossbar size, the points for adversarial training are more closely packed than the
corresponding points of standalone SwitchX BNN or Normal BNN, implying lesser accuracy losses
on increasing perturbation strength of the attack.

6.2.2 With State-aware Training. As discussed in Section 5, state-aware mapping combined
with SwitchX can lead to an increase in the proportion of HRS states in the crossbar instances,
and thus a reduction in the non-ideality factor of the crossbars. From Figure 8(a) and (b), we
find that this approach significantly boosts the robustness of the mapped BNN both in terms
of clean as well as adversarial accuracy improvements. For both 16 × 16 and 32 × 32 crossbars,
the points (in red) for different ϵ lie in the close vicinity of the boundary of the favorable re-
gion. We find that for 32 × 32 crossbar, the rise in clean and adversarial accuracies is so large
that it becomes comparable to the case of standalone SwitchX BNN mapped on a smaller 16 × 16
crossbar. Overall, we find the rise in clean and adversarial accuracies is ∼35% and ∼6–16% greater
than Normal BNN, respectively. In this case also, the points for different ϵ values, given a style
of mapping and crossbar size, are more closely packed than the corresponding points of stan-
dalone SwitchX BNN or Normal BNN, implying lesser accuracy losses on increasing perturbation
strength of the attack. Interestingly, we find that this approach emerges as a stronger defense
against adversarial attacks than SwitchX combined with adversarial training (a state-of-the-art
software defense), the defensive action being more pronounced for larger crossbar sizes (32 × 32 in
Figure 8(a) and (b)).

Furthermore, we observe similar results in Figure 9(b) using the large and complex TinyIma-
genet dataset with VGG16 BNN. For crossbar sizes of 16 × 16 and 32 × 32, we find SwitchX BNNs
to outperform the corresponding Normal BNNs in terms of both clean and adversarial accuracies.
There is ∼5.5% improvement in clean accuracies and ∼1–2% improvement in FGSM adversarial
accuracies for HH mode of attack. With state-aware training and SwitchX mapping combined,
the improvements on 16 × 16 and 32 × 32 crossbars shoot upto ∼21.2% for clean accuracies and
∼4.5–8.3% for adversarial accuracies.

Effect of varying device ON/OFF ratio in crossbars: The results in [6] show that on increas-
ing the ReRAM device ON/OFF ratio (increasing the value of HRS at a constant value of LRS) in
crossbars, the non-ideality factor decreases. This should translate to robustness benefits for our
SwitchX approach that in itself increases the feasibility of HRS states in crossbars. In Figure 10,
we map BNNs onto 32 × 32 crossbars having device ON/OFF ratios of 10 and 100 respectively. We
then compare the robustness of a standalone SwitchX BNN and a SwitchX BNN combined with
state-aware training for a VGG16 network with CIFAR-10 dataset for both cases. We find that
mapping BNNs on crossbars having higher ON/OFF ratios boosts the robustness of the mapped
BNNs against both SH and HH based adversarial attacks (∼2–4% for standalone SwitchX ). Further,
there are ∼6% and ∼2% improvements in clean accuracy respectively for standalone SwitchX and
SwitchX combined with state-aware training.
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Fig. 10. Robustness maps for VGG16 BNN with CIFAR-10 dataset for SH (Left) and HH (Right) modes of
FGSM attack respectively mapped onto 32 × 32 crossbars with device ON/OFF ratios of 10 (red) and 100
(blue) for both standalone SwitchX BNN and SwitchX BNN + state-aware training.

Fig. 11. Robustness maps for VGG16 BNN with CIFAR-10 dataset for SH (Left) and HH (Right) modes of
FGSM attack respectively mapped onto 64 × 64 (circle) and 128 × 128 (triangle) crossbars for both standalone
SwitchX BNN and SwitchX BNN + state-aware training.

Effect of synaptic device variations on larger crossbars with greater RMI N :

Here, we increase RMI N of the NVM devices to 200kΩ (at ON/OFF ratio of 10) so that the im-
pact of interconnect parasitic non-idealities can be minimized, thereby making simulations on
larger crossbar sizes with a modest runtime feasible. In this scenario, the synaptic device varia-
tions become predominant and determine the robustness of the crossbar-mapped BNN models.
For the robustness maps in Figure 11, we assume the NVM device variations to be Gaussian with
σ/μ = 20% and the BNN mappings are carried out on 64 × 64 and 128 × 128 crossbars. The results
are consistent with that in Figure 8(a) and (b), indicating that the SwitchX method is applicable to
BNN mapped onto larger crossbar sizes.

6.3 Impact of SwitchX on Crossbar Power Consumption

Owing to low leakage of the memristive devices, the V .I power consumption in the crossbars
constitutes a significantly large portion of the overall power expended in low-precision BNN
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Fig. 12. (a) Plot showing power savings in 16 × 16 crossbar for standalone SwitchX as well as SwitchX com-
bined with state-aware training with respect to the baseline of Normal BNN for VGG16 BNN; (b) Plot show-
ing layer-wise crossbar power consumption for the different convolutional layers in the VGG16 BNN using
CIFAR-10 and CIFAR-100 datasets in case of mapping on 16 × 16 crossbars.

Fig. 13. Plot showing power savings on various crossbar sizes with SwitchX mapping.

inference on ReRAM crossbars [8, 18, 27]. Thus, in this section, we show an interesting by-product
of SwitchX mapping, whereby we can also reduce the crossbar power consumption compared to
normally mapped BNNs (shown in Figure 12). Here, the simulations for estimating the V .I power
consumed by the crossbars during BNN inference has been performed using ReRAM devices with
RMI N = 20kΩ and ON/OFF ratio of 10 using the NeuroSim tool [41], and the analog voltages
input to the crossbar are +0.1/–0.1 V (obtained via SPICE simulations as specified in Section 3.1).

Trends for energy-efficiency in crossbars: Figure 13 shows a plot of the power savings ob-
served when randomly generated binary weight matrices with a higher proportion of “+1” values
are mapped via SwitchX onto crossbars of sizes ranging from 16 × 16, to 128 × 128. Here, input
voltages to the crossbars are drawn from a uniform distribution. The case of “90% HRS states” im-
plies that 10% of the values in the BNN weight matrix were “–1”, while “75% HRS states” implies
that 25% of the values were “–1”, i.e., the weight matrix is less non-uniformly distributed than
the former. Similarly, “60% HRS states” implies that 40% of the values in the BNN weight matrix
were “–1”. We find that the power savings (∼7–34% on 64 × 64 crossbars) increase when the distri-
bution of BNN weights becomes more non-uniform (from “60% HRS states” to “90% HRS states”)
for different crossbar sizes. A more non-uniform distribution would imply greater proportion of
HRS states on SwitchX mapping, thereby translating into greater crossbar power savings owing
to lower dot-product currents. Note, state-aware training in BNNs increases the non-uniformity
in the distribution of HRS-LRS synapses in crossbars when mapped using SwitchX.

From Figure 12(a) (data shown for a 16 × 16 crossbar), we find that standalone SwitchX approach
leads to ∼9% power-savings on an average with respect to Normal BNN for a VGG16 network with
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Table 4. Table Showing Comparison with Previous Works of BNNs on Crossbars

Work Type of non-ideality Energy-efficiency Adversarial Robustness (%)

REBNN [51] N.A. 4.26× N.A.

Lattice [57] N.A. 7.68× N.A.

[12] Device noise N.A. ∼6% ↑ (Black-box)

SwitchX Resistive and Device noises 1.21–1.22×∗ ∼6–16% ↑ (White-box)

The improvements in energy-efficiency and adversarial accuracy (wherever applicable) have been quoted as is from the

previous works. Here, N.A. stands for not applicable.
∗Crossbar energy-efficiency.

CIFAR-100 dataset. While for CIFAR-10 dataset, there is ∼8% power saving for standalone SwitchX,
it increases to ∼22% when SwitchX is combined with state-aware training. Furthermore, on carry-
ing out similar experiments on 32 × 32 crossbars, we obtain ∼21% power savings on combining
SwitchX with state-aware training (data not shown for brevity). For CIFAR-100 dataset, we ob-
tain ∼19% power savings on 16 × 16 crossbars on combining SwitchX with state-aware training.
Figure 12(b) shows the layer-wise normalized average power consumption by the network with
CIFAR-100 and CIFAR-10 dataset. We find that overall for each convolutional layer of the net-
work, the power consumed by the SwitchX BNN is lesser than the Normal BNN. Furthermore,
this reduction becomes even more significant between “conv7” and “conv8” layers when SwitchX
is combined with state-aware training (for CIFAR-10 dataset). This result is in accordance with
Figure 13 which shows that the power savings on crossbar arrays increase significantly when the
HRS-LRS state-distribution becomes more non-uniform.

6.4 Comparison with Previous Works

In Section 2, we have specified that there are several previous works on neural network implemen-
tations on RRAM crossbar-arrays, such as [51, 57], where the key goal is to obtain high energy-
efficiency and not adversarial robustness. Although recently, [12] proposed a RRAM device noise-
aware training methodology to generate BNN models that help improve natural as well as adver-
sarial robustness on crossbars with device variations, it does not take into account the impact of
circuit-level resistive non-idealities such as crossbar-interconnect parasitics. Also, the noise-aware
training methodology in [12] does not translate to any benefits in terms of energy-efficiency for
BNNs on crossbars. However, our SwitchX mapping strategy has an interesting by-product of
improving crossbar energy-efficiency in addition to providing better adversarial robustness (see
Section 6.3). In Table 4, we quantitatively compare our results with some of the prior works on
BNNs implemented on crossbars, including [12], to put our work in context. Since the scope of
this work is primarily to improve the adversarial robustness of BNNs on non-ideal crossbars, we
do not achieve the best of energy-efficiency. However, we obtain significantly better robustness
against stronger white-box adversarial attacks compared to [12] even upon the consideration of
resistive crossbar non-idealities, which have a larger disruptive effect on the performance of neural
networks.

7 CONCLUSION

In this work, we propose SwitchX -mapping of binary weights onto crossbars in such a manner
that a crossbar array always comprises of a greater proportion of HRS than LRS. We perform
a comprehensive analysis on crossbar arrays comprising of interconnect and device-level non-
idealities, whereby SwitchX reduces the overall impact of non-idealities during inference. This
effect manifests as reduced accuracy losses and increased robustness against adversarial attacks
for BNNs mapped onto crossbars. We also combine SwitchX with state-aware training that further
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increases the feasibility of HRS states during weight mapping to boost the adversarial robustness
of BNNs on crossbars. With an increase in the feasibility of HRS synapses on crossbars, SwitchX
also helps improve the crossbar energy-efficiencies, in addition to robustness.
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