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ABSTRACT
Path prediction is an essential task for many real-world Cyber-
Physical Systems (CPS) applications, from autonomous driving
and traffic monitoring/management to pedestrian/worker safety.
These real-world CPS applications need a robust, lightweight path
prediction that can provide a universal network architecture for
multiple subjects (e.g., pedestrians and vehicles) from different per-
spectives. However, most existing algorithms are tailor-made for a
unique subject with a specific camera perspective and scenario. This
article presents Pishgu, a universal lightweight network architec-
ture, as a robust and holistic solution for path prediction. Pishgu’s
architecture can adapt to multiple path prediction domains with
different subjects (vehicles, pedestrians), perspectives (bird’s-eye,
high-angle), and scenes (sidewalk, highway). Our proposed archi-
tecture captures the inter-dependencies within the subjects in each
frame by taking advantage of Graph Isomorphism Networks and
the attention module. We separately train and evaluate the efficacy
of our architecture on three different CPS domains across multiple
perspectives (vehicle bird’s-eye view, pedestrian bird’s-eye view,
and human high-angle view). Pishgu outperforms state-of-the-art
solutions in the vehicle bird’s-eye view domain by 42% and 61%
and pedestrian high-angle view domain by 23% and 22% in terms of
ADE and FDE, respectively. Additionally, we analyze the domain-
specific details for various datasets to understand their effect on
path prediction and model interpretation. Finally, we report the
latency and throughput for all three domains on multiple embedded
platforms showcasing the robustness and adaptability of Pishgu for
real-world integration into CPS applications.
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1 INTRODUCTION
Artificial Intelligence (AI) plays an essential role in many emerging
Cyber-physical Systems (CPS), such as smart-video surveillance,
traffic management, autonomous driving, anomaly detection, work-
ers’ safety, and many more. Path prediction is employed in many
real-world computer vision applications [4, 20, 28, 61], which need
real-time analysis of the subjects and proper proactive decision-
making working on CPS with limited resources [47]. It predicts the
paths of the subjects in a scene/frame based on their movement in
the past few seconds. A wide range of computer vision applications
for CPS in pedestrian safety, transportation safety, intelligent traffic
monitoring, and video surveillance can benefit from an accurate,
robust, and efficient path-prediction algorithm. The applications
vary from a bird’s-eye view for drone-related and environmental
monitoring applications to a high-angle view for safety, traffic mon-
itoring, and surveillance application for pedestrians and moving
vehicles. However, there is a considerable gap between the research
in this area and their real-world deployment on CPS; often, path
prediction architectures only target a narrow domain and cannot
generalize over different subjects and viewpoints. As a result, pre-
dicting the path for each domain, such as vehicle bird’s-eye view,
pedestrian bird’s-eye view, or pedestrian high-angle view, requires
a distinct architecture to work accurately. Each architecture has its
unique requirements and dependencies, increasing the stress on
the edge device’s hardware and software sides. On the other hand,
the research in this area needs to consider real-world limitations
since current designs often have huge model sizes with millions
of parameters, making their deployment on edge devices almost
impossible.

Path prediction as a whole has a set of universal objectives. All
path prediction algorithms are tasked to determine future trajecto-
ries based on the current/past trajectories across all subjects of inter-
est (e.g., vehicles or pedestrians). The algorithms must capture the
individual behaviors of all subjects and their complex interactions
with respect to each other (social interaction) and the surrounding
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environment (environmental interaction). Each context/domain of-
ten imposes unique requirements and nuances within these similar
objectives. For instance, a busy highway has hundreds of vehicles
in a scene, and their speeds will be around 30 meters per second
[12, 13]. The camera angles cover a large field of view from a very
high angle to capture the fast-moving vehicles early enough to
generate accurate predictions. In contrast, a surveillance camera
overlooking a campus sidewalk will rarely have over a hundred
people who move much slower, around 1.4 meters per second [3].
The camera will also be much closer to the ground, making the
view less bird’s-eye and more high-angle.

We observe a proliferation of algorithms [40, 44, 56, 57, 70] that
try to optimize the path prediction for a single context and per-
spective. Most existing approaches focus on an isolated domain
and fail to evaluate the generality of their solution over different
contexts and domains [10, 42, 56]. It is rare to see approaches that
are evaluated on both vehicles and pedestrians [10, 53], and only
recently have a few pedestrian-focused approaches started using
both bird’s-eye and high-angle views [21, 33, 37–39]. However, a
universal architecture that can be trained and accurately predict
pedestrians’ and vehicles’ paths across different views and perspec-
tives is highly desirable when it comes to real-world deployment
and applications.

At the same time, path prediction is inherently a real-time task
with a demand for one single accurate prediction for all subjects
of interest at any point of time [35, 44]. However, many existing
path predictions rely on a spectrum of predictions with significantly
largemodel sizes that heavily occupy the storage and computational
power of edge devices. Most works in this context predict multiple
future trajectories and choose the best to assess their accuracy and
performance [43, 63, 70]. Predicting a spectrum of possibilities and
picking the best one makes the real-world implementation of such
models infeasible and fruitless.

This paper introduces Pishgu, a universal path prediction ar-
chitecture for various applications. Using a single architecture for
multiple domains is a step toward solving a significant challenge in
developing CPS applications and ensures better utilization of edge
devices’ limited storage capacity and computational power. Pishgu
borrows Graph Isomorphism Network (GIN) [68] formulation for
capturing and modeling the relative information between subjects.
In addition to GIN, Pishgu goes further by leveraging efficient at-
tention mechanisms to create robustness against noisy data, a large
number of parallel path predictions, and environmental alterations
and help the predictor to focus on more informative features. With
this, Pishgu sets a new State-of-the-Art (SotA) for two crucial path
prediction domains, vehicle bird’s-eye view and pedestrian high-
angle view. We do not evaluate Pishgu for the vehicle high-angle
domain due to the lack of high-angle vehicle trajectory datasets. In
the vehicle domain, Pishgu achieves up to 2× improvement in Root
Mean Squared Error (RMSE) and 1.7× and 2.5× improvements in
Average Displacement Error (ADE) and Final Displacement Error
(FDE), respectively, when compared to the current SotA approach.
In the pedestrian high-angle view domain, Pishgu can improve
ADE and FDE by 1.3×. Additional evaluation on real-world em-
bedded platforms demonstrates Pishgu’s suitability for real-time
CPS applications, with the sample latency across all domains under

four milliseconds. Pishgu achieves between 50 and 190 FPS in the
pedestrian domain on embedded platforms.

In summary, this paper has the following contributions:

• We introduce Pishgu, a universal architecture for path pre-
diction with a novel formulation based on the graph isomor-
phism network and attention mechanism for a wide range
of CPS applications that demand robust, accurate, and light-
weight path prediction across different subjects and views.

• We provide an exhaustive domain analysis across the major
datasets and domains in the vehicle and pedestrian path
prediction to better understand the variations in Pishgu’s
accuracy with respect to the richness and characteristics of
datasets within each domain.

• We comprehensively evaluate Pishgu across multiple do-
mains, with respect to each domain’s characteristics, and
demonstrate Pishgu’s SotA accuracy in two major domains:
(1) Vehicle bird’s-eye view, and (2) Pedestrian high-angle
view.

• To verify Pishgu’s suitability for real-time CPS applications,
we report the latency and throughput on NVIDIA Jetson
Xavier NX and NVIDIA Jetson Nano, low-power embedded
platforms commonly used in real-world edge devices.

In the remainder of this paper, Section 2 reviews the crucial
works done in real-time path prediction with their innovations and
limitations. Section 3 explains the details of the design of Pishgu and
how it is aligned with our goal of introducing a universal architec-
ture for path prediction on CPS edge devices. Section 4 details the
challenges and requirements of each domain, and the statistics of
datasets used in this manuscript for evaluation. Section 5 presents
the results of our extensive experiments on selected datasets in
multiple domains. Section 5.5 demonstrates the performance of
Pishgu on multiple embedded platforms suitable for CPS edge ap-
plications. Finally, Section 6 concludes by highlighting our major
contributions and the future direction.

2 RELATEDWORK
Deep Learning based prediction architectures are rapidly becom-
ing an integral part of modern edge-based CPS [15, 23, 74]. The
Transportation CPS (TCPS) uses deep learning for predicting traf-
fic flow density [7, 25], work zone safety frameworks [5, 17, 52],
intelligent traffic monitoring [6], and autonomous driving [14,
22]. The industrial CPS (ICPS) and city-based CPS (CCPS) use
these prediction models for smart surveillance [23, 48, 66], hu-
man/pedestrian/worker safety [15, 62], anomaly detection and pre-
diction [26, 51], and path planning [18].

Path prediction algorithms are vital to the decision-making pro-
cess in TCPS, ICPS, and CCPS feedback systems. They are used
in safety applications for predicting future actions and potential
positions, autonomous vehicles for avoiding obstacles and defining
a safe path and velocity, and anomaly detection to predict future
anomalous behaviors from past trajectories. These algorithms are
used at the local edge nodes for real-time detection and prediction
[23, 24, 54]. However, as the path prediction architectures are often
designed for specific domains and subjects in focus, they struggle to
adapt to changes in the domain. In the following, we review exist-
ing path prediction approaches in three primary domains and their



challenges: (1) Vehicle Bird’s-eye View, (2) Pedestrian Bird’s-eye
View, and (3) Pedestrian High-angle View.

2.1 Vehicle Bird’s-eye View Path Prediction
The bird’s-eye view is utilized by TCPS [11, 27] and ICPS [36]
frameworks to generate a local map of the environment to com-
prehend the interdependencies of subjects moving at high speeds.
Many approaches focus on predicting the future path of vehicles
in a bird’s-eye view setting on highways [35, 40, 56]. These meth-
ods use real-world coordinates and measure the error in meters.
CS-LSTM [16], a pioneering paper in vehicle path prediction, used
Long Short-termMemory (LSTM) encoder-decoder model with con-
volutional social pooling. GRIP++ [35], an extension to [34], uses
fixed and dynamic graphs with an LSTM encoder-decoder model
to grasp the surrounding dynamics and predict the trajectories of
the vehicles in a scene. STA-LSTM [40] utilizes Spatio-temporal
attention along with LSTM to predict a vehicles’ future path and
increase the explainability of the predictions. [57] incorporates the
ego vehicle’s planned path into the prediction of the surrounding
vehicles’ future paths to enhance predictions in an autonomous ve-
hicle setting. [69] uses a graph self-attention network to understand
both spatial and temporal interactions among the many vehicles in
a scene and is used for both path prediction and lane-changing clas-
sification. In [45], a three-channel framework with a heterogeneous
edge-enhanced graph attention network is proposed to deal with
the inherent heterogeneity of the different vehicles in a given scene.
DeepTrack [27] introduces temporal and depthwise convolutions to
provide a more robust encoding of vehicle dynamics while reducing
computation and parameters, resulting in a faster, lighter-weight
network with competitive accuracy. [56] proposed recently, utilizes
a graph-based spatial-temporal convolutional network and a gated
recurrent unit to predict future vehicle paths. They also propose
a weighted adjacency matrix for understanding the intensity of
influence between different vehicles.

2.2 Pedestrian Bird’s-eye View Path Prediction
Like vehicle path prediction, pedestrian path prediction often relies
on a bird’s-eye view of real-world coordinates and measures the
error in meters. Many works have tackled the problem of path
prediction in recent years. Most of them only focus on multi-future
path prediction [43, 63, 70, 73] (k=5, 8, 15, 20, ..., where k shows the
number of predicted trajectories for each subject), and evaluate the
model by picking the best out of several predicted paths. However,
generating multiple outputs per subject in real-time scenarios is not
helpful in real-world applications. Therefore, we primarily focus
on the works that perform single future path prediction analysis.
[1] uses LSTM modules to predict the trajectories of all pedestrians
in a scene jointly. Several works have used attention mechanisms
to solve path prediction problems better. [59] introduces attention
to model the importance of social interactions without relying on
proximity. [72] also leverages a spatio-temporal attention mod-
ule to learn which social interaction has a more critical role in
predicting the pedestrian’s path. Trajectron++ [53], designed for
integration with robotic frameworks, utilizes a graph-structured
recurrent model and heterogeneous data. While the focus is on
pedestrians, Trajectron++ also predicts the future paths of vehicles

to understand better how pedestrians might react to them. [44] uti-
lizes graph isomorphism networks and a lightweight Convolutional
Neural Network (CNN) for path prediction, considerably reducing
computation and model size and targeting real-time applications.
SSAGCN [42] uses an attention graph convolutional network and
defines a new formulation to consider both social interactions and
environmental factors as they can change the path pedestrians may
choose.

2.3 Pedestrian High-angle View Path
Prediction

Applications that require pedestrian path prediction only some-
times have access to bird’s-eye view cameras or real-world coor-
dinates. It is logical to use high-angle views and pixel space (𝑥,𝑦)
coordinates in addition to the traditional bird’s-eye view models.
This is common for CCPS [23] and ICPS [9, 15] as the cameras are
often mounted at the top of buildings or traffic lights and on the
walls in respective systems. [33] integrates multiple graph-based
spatial transforms and trajectory smoothing to exploit temporal in-
formation and correct temporally inconsistent trajectories. SimAug
[37] utilizes synthetic data to improve the robustness of learned
representations with the goal of better generalization in unseen
contexts. Peeking into the Future [39] proposes a multi-task model
to predict both future paths and future activities, with the belief that
understanding the future activity is highly informative to the future
path. Multiverse [38] builds upon [39] by introducing synthetic data
and multi-scale location information and replacing graphs with Re-
current Neural Networks (RNNs). ScePT [10] proposes predicting
paths at the scale of "cliques" rather than for each individual. Similar
to Trajectron++ [53], and GAIN [41], ScePT predicts vehicle and
pedestrian trajectories.

Some of the works have tried to tackle the problem of path pre-
diction in more than one domain [39, 41, 53, 72]. However, they
prefer not to evaluate their model on all three discussed domains.
On the other hand, although path prediction has many CPS ap-
plications, more work needs to be done to benchmark the path
prediction architectures’ performance on edge devices. Works such
as [8, 50, 55, 60] report the inference time of the models on sophis-
ticated and powerful hardware resources such as GTX 2080Ti GPU,
NVIDIA Quadro RTX 6000 GPU, and Intel Core i9-9880H Processor.
To this end, it is not feasible for CPS edge-based applications to use
such a framework, as edge platforms have limited power and sys-
tem resources. Thus, previous approaches fail to generalize across
several different domains and adapt to the stringent requirements
of the CPS applications.

3 PISHGU
Path prediction in different domains inherently depends upon the
position, past movements, and end goals of the subjects present in
a scene. The end goals and movement patterns vary significantly
between different environments (highway, sidewalk, etc.) and sub-
jects (vehicle, pedestrian). However, graph neural networks assist
in understanding the varying patterns in the respective domains.
Pishgu uses GIN to grasp the interdependencies of all subjects in a
scene. Attention-based convolutions are utilized to highlight the
important interdependencies and predict the future paths of all



the subjects jointly. As we focus on real-time applications of our
approach, Pishgu is designed to predict a single path (𝐾 = 1) for
each subject present in the scene. The overall structure of Pishgu
can be seen in Figure 1.

3.1 Problem Formulation
Our goal is to predict the future paths of all the subjects in a scene,
regardless of the domain of prediction. Keeping that in mind, we use
both absolute and relative coordinates as inputs to Pishgu, defined
as follows:

𝑵𝒊 = [𝑁 𝑡−𝑇𝑖𝑛
𝑖

, 𝑁
𝑡1−𝑇𝑖𝑛
𝑖

, · · · , 𝑁 𝑡0
𝑖
] (1)

𝚫𝑵𝒊 = [Δ𝑁 𝑡−𝑇𝑖𝑛
𝑖

,Δ𝑁
𝑡1−𝑇𝑖𝑛
𝑖

· · · ,Δ𝑁 𝑡0
𝑖
] (2)

where 𝑁 𝑡
𝑖
=
〈
𝑥𝑡
𝑖
, 𝑦𝑡

𝑖

〉
is the position of subject 𝑖 (vehicle or pedes-

trian) at time 𝑡 and 𝑇𝑖𝑛 is the number of time steps that the model
observes for prediction. Δ𝑁 𝑡

𝑖
= 𝑁 𝑡

𝑖
−𝑁 𝑡−𝑇𝑖𝑛

𝑖
in equation 2 represents

the relative coordinates of subject 𝑖 in time 𝑡 with respect to the
location of the subject at time −𝑇𝑖𝑛 . This approach is specifically
adopted for exploiting the features of the graph-based architecture.
The model is aware of the surrounding environment which plays
a part in the path prediction process similar to humans’ decision-
making process while driving and walking.

As mentioned previously, Pishgu predicts a single path for each
subject at every time step, and the outputs of the model are formu-
lated as:

𝒀𝒊 =
[
𝑌𝑖

𝑡1
, 𝑌𝑖

𝑡2
, · · · , 𝑌𝑖

𝑇𝑜𝑢𝑡
]
, (3)

where 𝑌𝑖
𝑡 represents the predicted trajectory of subject 𝑖 at time t

in the future up to 𝑇𝑜𝑢𝑡 time steps.

3.2 Architecture
Pishgu’s architecture (see Figure 1) is relatively simple compared to
many modern path prediction models. This simplicity in our design
is intentional; with CPS applications in mind, optimizing the num-
ber of parameters can improve performance in real-world scenarios.
After the calculation of input features, 𝑵 and 𝚫𝑵 are concatenated
and passed through a single fully-connected layer 𝑓 𝑐 as shown in

Figure 1. In the next step, Pishgu leverages a Graph Neural Net-
work (GNN) for embedding the input features. There has been a
surge in curiosity towards Graph Neural Networks in recent years
because of their power to represent complex interactions, and non-
Euclidean data [30, 58, 68]. Many different approaches have been
proposed with neighbor aggregation and message-passing methods.
The final goal of GNNs is to construct a maximally discriminative
representation. This means that two nodes are mapped to the same
location in the embedding space only if they are identical. [68] came
up with a simple yet powerful new formulation of GNNs, namely
GIN that is shown to be as powerful as the Weisfeiler-Lehman
test [31] which is a test that answers the question of whether two
graphs are identical or not. We draw motivation from the work of
[68] and adapt the network to our specific requirements. Our model
constructs a fully connected graph G = (V, E) where the nodes (V)
are the subjects of interest present in the frame, and the edges (E)
represent their interactions. The fully connected structure assures
that all the possible interactions between subjects are considered,
and the network can extract all the important information from
other neighbors. Pishgu utilizes a modified version of the aggrega-
tion function introduced by [68] and constructs 𝑓 ′

𝑖
(the aggregated

feature for node 𝑖) as follows:

𝑓 ′𝑖 = 𝑀𝐿𝑃0 ((1 + \ ) · 𝑓𝑖 ) +𝑀𝐿𝑃1
©«

∑︁
𝑗 ∈V(𝑖)

𝑓𝑗
ª®¬ (4)

where 𝑖 is 𝑖𝑡ℎ subject in the scene, 𝑀𝐿𝑃0 and 𝑀𝐿𝑃1 are Multi-
layer Perceptron (MLP) operators each with a single hidden layer,
V(𝑖) is the set of node 𝑖 neighbors and \ is a trainable parameter.
𝑀𝐿𝑃0 and𝑀𝐿𝑃1 are applied to the features of node 𝑖 and the aggre-
gation of the features from neighbor nodes, respectively. Having
two separate MLPs improves the network’s ability to extract richer
features and better integrate neighboring nodes in the context [44].
Keeping the real-time performance in mind, a single graph opera-
tion is performed across the entire graph, which is enough since the
graph is fully connected and all the features can be propagated in
one step. Before the final task of path prediction, the output vector
of the GIN block (equation 4) for each subject is concatenated with
the respective relative coordinate (equation 2).
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Figure 1: Pishgu formulation visualization. The input 𝑁𝑖 refers to a vector of size𝑇𝑖𝑛 × 2 for each node/subject where𝑇𝑖𝑛 is the
input window size. Δ𝑁𝑖 is the relative vector for each node. 𝑓 𝑐 refers to a fully-connected layer. The output is a 𝑛 × 𝑇𝑜𝑢𝑡 × 2
vector, with 𝑇𝑜𝑢𝑡 being the output window size. Best seen in color.



Pishgu makes use of an attentive convolutional neural network
for the final path predictions. Studies have shown that adding at-
tention to CNNs can improve their representation power and help
them generalize better [64]. The attention enables the convolutional
predictor to dynamically decide the importance of embedded fea-
tures generated by the GIN Encoder in the previous step and how
much of this information should be used in the final prediction.
Keeping the computational complexity in mind for CPS applica-
tions, the predictor structure consists of only seven layers, with
three layers of 2D convolution each followed by a layer of attention
module [64] and a final 1 × 1 convolutional layer for forming the
predicted trajectories. The first convolutional layer uses a 2 × 2
kernel, and the subsequent two convolutional layers use a 2 × 1
kernel size. The architecture is designed to capture the fast and
slow movements of the subjects. The attention module works based
on two pillars: channel attention and spatial attention. Channel
attention tries to perceive what is essential in the input feature map
[46]. To accomplish this task, the channel attention module first
performs average pooling and max pooling on the input feature
map to encapsulate the input features. These pooling operations
improve the module’s efficiency by reducing the feature map size.

In the next step, pooled features are fed to an MLP with one
hidden layer to create the channel attention map. The formulation
of the channel attention module can be summarized as:

ATc (F) = 𝑀𝐿𝑃2 (𝑃𝑜𝑜𝑙𝑎𝑣𝑔 (F))
+𝑀𝐿𝑃2 (𝑃𝑜𝑜𝑙𝑚𝑎𝑥 (F))

(5)

Where F is the input feature map, 𝑀𝐿𝑃2 is an MLP with one hid-
den layer, and AT𝑐 is the channel attention module. On the other
hand, the goal of the spatial attention module is to locate the im-
portant features in the input [46]. For efficiency, average pooling
and max pooling are used again, but this time in the channel axis.
The pooled features are concatenated and passed to a convolutional
layer for generating the spatial attention map. In summary, the
spatial attention module works based on the following equation:

ATs (F)

= 𝜎

(
𝐶𝑜𝑛𝑣7×7 [(𝑃𝑜𝑜𝑙𝑎𝑣𝑔 (F)); 𝑃𝑜𝑜𝑙𝑚𝑎𝑥 (F)])

) (6)

where F is the input feature map, 𝜎 is the sigmoid activation
function, 𝐶𝑜𝑛𝑣7×7 is the convolutional layer with a kernel size of 7,
and AT𝑐 is the spatial attention module.

Incorporating channel attention and spatial attention sequen-
tially has shown significant improvements in the performance of
CNNs [65]. Thus, between each convolutional layer, there is an
additional module consisting of the channel and spatial attention
to improve the predictor’s performance while keeping the network
lightweight.

4 DOMAIN ANALYSIS
Challenges and requirements found in path prediction are often
domain-specific. The interactions and behaviors vary drastically
from predicting a vehicle’s path on a highway with hundreds of
vehicles in a scene to predicting the path of a single pedestrian
walking on a sidewalk with less than a dozen other people. A uni-
versal model should be able to adapt across these domains. Thus,
understanding each domain’s characteristics is vital for designing

a universal path prediction architecture. Table 1 highlights the
complexities of various domains by presenting the number of sub-
jects and samples available from widely adopted datasets in the
respective domains.

Table 1: The statistics of four datasets used for path pre-
diction. These parameters are reported after doing the con-
ventional preprocessing steps discussed in section 4. 𝑉𝐵 , 𝑃𝐵 ,
and 𝑃𝐻 refer to Vehicle Bird’s-eye view, Pedestrian Bird’s-
eye view, and Pedestrian High-angle view respectively. FPS
is Frames Per Second.

NGSIM
[12, 13]

ETH
[49]

UCY
[32]

ActEv/
VIRAT [3]

Domain 𝑉𝐵 𝑃𝐵 𝑃𝐵 𝑃𝐻

#Subjects 19,698 749 1,456 1,059
#Samples 13.3M 12,035 62,393 130,289
#Frames 108,033 2,044 4,397 41,199
FPS 5 2.5 2.5 2.5

4.1 Vehicle Bird’s-eye View
Most deep learning architectures used for predicting vehicle paths
in a highway environment [16, 19, 67] use NGSIM datasets [12, 13].
NGSIM provides complex real-world scenarios and driver behaviors
for various traffic patterns. In this paper, we use US-101 [13] and
I-80 [12] from NGSIM, each with millions of data samples in bird’s-
eye view. Using a bird’s-eye view for path prediction is natural as
it provides an overall perspective of the surrounding environment.
NGSIM data is collected from cameras mounted on the buildings
around the freeways. However, the final dataset provides the data
in bird’s-eye format. This conversion to a bird’s-eye view helps
deep learning models learn complicated driver behaviors and their
reactions to the surroundings. In this evaluation we exclude the
trajectories of vehicles going for exits and merging lanes for both
[12] and [13].

4.2 Pedestrian Bird’s-eye View
Two widely used pedestrian path prediction datasets are ETH [49]
and UCY [32]. They consist of bird’s-eye view annotations of several
crowded scenes with complicated nonlinear pedestrian paths. The
position of the pedestrians in these datasets is gathered in real-
world coordinates in meters. The data points generally used for
training are sampled at a rate of 2.5 Frames Per Second (FPS). ETH
looks at two different scenes, ETH and HOTEL, whereas UCY looks
at three different scenes, UNIV, ZARA1, and ZARA2. These datasets
are especially useful for training models that focus on drone-related
applications or environment monitoring. They do not include any
data for other points of view such as high-angle or side views.

4.3 Pedestrian High-angle View
It is unrealistic to assume that a bird’s-eye view angle is always
available. Most surveillance cameras are placed at a high location
(e.g. the side of a building, on a light pole) to have an overview
of the scene from a high-angle view. Thus, path prediction mod-
els in real-world scenarios should be able to work with different
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Figure 2: Distribution of number of samples in a frame for
ActEv/VIRAT [3], UCY [32], ETH [49] and NGSIM [12, 13]
datasets. X-axis shows the number of samples in the frame.
Please note that the box and whiskers are drawn in logarith-
mic space for better visualization, and the number of sam-
ples per frame can be translated to the number of unique
subjects in one frame.

camera views and angles specially if they want to cover normal
video surveillance setups. However, most of the works in the path
prediction field focus on the bird’s-eye view. On the other hand, in
end-to-end real-world environment monitoring and surveillance
systems, real-world coordinates are unavailable and the locations
of subjects are represented in pixel space. This disconnect between
real-world scenarios and most existing algorithms makes many
proposed methods ill-suited for realistic path prediction. To address
this issue, works such as [33, 37–39] have used ActEv/VIRAT [3] for
path prediction. Since then, it has become a standard benchmark for
path prediction in pixel space and high-angle view. The primary use
of ActEV/VIRAT is activity recognition in challenging real-world
scenarios in the surveillance domain. However, the diversity of
camera angles and locations in this dataset is advantageous for real-
world path prediction as well. Following the same preprocessing
steps as Next [39], we downsample the frame rate to 2.5 FPS. The
center of the bounding box for a person is used for the extraction
of the subject’s location.

Looking at Table 1, we can see that in the human bird’s-eye view
domain, the two publicly available datasets ETH [49] and UCY [32]
are relatively small compared to datasets available in other domains.
NGSIM [12, 13] has the most number of samples by far and is a

much more crowded dataset in terms of the number of samples in
each frame. Figure 2 clearly shows that the number of samples in
the frame for ETH and UCY datasets is more than ActEv/VIRAT [3],
but still much less than the number of samples in NGSIM dataset
which even goes up to 248 vehicle in a single frame. Due to these
distinctive characteristics that each domain has, a general path
prediction method should be able to adapt to each domain to be
able to satisfy each domain’s requirements.

5 EXPERIMENTS
This section evaluates our path prediction method in all three do-
mains discussed in Section 4. We compare Pishgu with SotA models
that report their performance in the respective domains in three
different error measurements and model sizes. All of the evalua-
tions in this article have been conducted on a server containing an
NVIDIA Tesla V100 GPU, 2x AMD EPYC 7513 CPUs, and 256GB
of RAM. Additionally, to prove the usability of our architecture for
CPS applications, latency and throughput through real-time infer-
ence are reported on NVIDIA Jetson Xavier NX and Jetson Nano
embedded platforms. The following sub-sections discuss the defi-
nitions of each error measurement and the performance of Pishgu
against current path prediction approaches in all the domains.

5.1 Evaluation Metrics
Average Displacement Error (ADE): The average 𝐿2 distance
between the predicted coordinates (𝑌 ) and the ground truth coor-
dinates (𝑌 ) over all 𝑇𝑜𝑢𝑡 predicted time steps and all subjects of
interest (N) available in the scene:

ADE =

∑𝑁
𝑖=1

∑𝑇𝑜𝑢𝑡
𝑡=1

𝑌 𝑡
𝑖
− 𝑌 𝑡

𝑖


2

𝑁 ∗𝑇𝑜𝑢𝑡
(7)

Final Displacement Error (FDE): The average 𝐿2 distance
between the predicted coordinates (𝑌 ) and the ground truth coordi-
nates (𝑌 ) of the last predicted time step over all subjects of interest
(N) available in the scene:

FDE =

∑𝑁
𝑖=1

𝑌𝑇𝑜𝑢𝑡𝑖
− 𝑌𝑇𝑜𝑢𝑡

𝑖


2

𝑁
(8)

Root Mean Square Error (RMSE): The RMSE at time 𝑡 is the
square root of the mean square error between the predicted path
(𝑌 ) and the ground truth path (𝑌 ) of the subjects of interest in the

Table 2: Vehicle path prediction error and complexity comparison of Pishgu with contemporary approaches. Best is in bold
text. Second best is underlined.

RMSE (m)
1s 2s 3s 4s 5s ADE (m) FDE (m) Params (K)

CS-LSTM [16] 0.63 1.27 2.09 3.10 4.37 2.29 3.34 191

DeepTrack [27] 0.47 1.08 1.83 2.75 3.89 2.01 3.25 109

GRIP++ [35] 0.38 0.89 1.45 2.14 2.94 1.61 - -

Pip [57] 0.55 1.18 1.94 2.88 4.04 2.18 - -

GSTCN [56] 0.44 0.83 1.33 2.01 2.98 1.52 - 49.8

STA-LSTM [40] 0.37 0.98 1.71 2.63 3.78 1.89 3.16 124

Pishgu (Ours) 0.15 0.46 0.82 1.25 1.74 0.88 1.96 132



Table 3: Path prediction error comparison of Pishgu in pedestrian bird’s-eye view domain with contemporary approaches.
ADE and FDE are reported in meters. Best is in bold text. Second best is underlined.

ETH HOTEL UNIV ZARA1 ZARA2 AVG
ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE Params (M)

Linear 1.33 2.94 0.39 0.72 0.82 1.59 0.62 1.21 0.77 1.48 0.79 1.59 -

LSTM 1.09 2.41 0.86 1.91 0.61 1.31 0.41 0.88 0.52 1.11 0.70 1.52 -

Social-LSTM [1] 1.09 2.35 0.79 1.76 0.67 1.40 0.47 1.00 0.56 1.17 0.72 1.54 -

Next [39] 0.88 1.98 0.36 0.74 0.62 1.32 0.42 0.90 0.34 0.75 0.52 1.14 3.95

ST-Attention [72] 0.85 1.85 0.32 0.66 0.63 1.33 0.42 0.91 0.34 0.73 0.51 1.10 1.98

CARPe [44] 0.80 1.48 0.52 1.00 0.61 1.23 0.42 0.84 0.34 0.69 0.54 1.05 0.10

Trajectron++ [53] 0.71 1.66 0.22 0.46 0.44 1.17 0.30 0.79 0.23 0.59 0.38 0.93 -

ScePT [10] 0.19 1.33 0.18 1.12 0.19 1.19 0.18 1.10 0.19 1.20 0.19 1.19 -

SSAGCN [42] 0.30 0.59 0.22 0.42 0.25 0.47 0.20 0.39 0.14 0.28 0.22 0.43 -

Pishgu (Ours) 1.10 2.24 1.17 2.17 0.67 1.37 0.45 0.91 0.36 0.73 0.75 1.48 0.11

scene:

𝑅𝑀𝑆𝐸𝑡 =

√√√
1
𝑁

𝑁∑︁
𝑖=1

(𝑌 𝑡
𝑖
− 𝑌 𝑡

𝑖
)2 (9)

We report and compare the complexity of our model against the
SotA approaches in terms of number parameters. In Section 5.5, we
calculate the latency of prediction per sample in milliseconds and
the throughput in FPS.

5.2 Vehicle Bird’s-eye View
Recent works [2, 56, 71] have used the NGSIM public datasets
for vehicle path prediction as it provides many complex highway
scenarios. The dataset is split into a 70% training set, 10% validation
set, and 20% test set. Pishgu has been trained for 40 epochs with a
learning rate of 0.01 and the Adam optimizer [29].

As shown in Table 2, we review the performance of Pishgu in
terms of RMSE, ADE, FDE, and model size against best-in-class
models [16, 27, 35, 40, 56, 57] in vehicle bird’s-eye view domain.
Reporting RMSE is crucial in vehicle path prediction as autonomous
vehicles evaluate the future trajectories of surrounding subjects for
every second up to a few seconds. Pishgu, like the other models,
observes the input for 15-time steps (3 seconds) and predicts the
path of all the vehicles in a scene for 25-time steps (5 seconds).
Regarding RMSE, Pishgu performs better at all the time steps than
the other models. It reduces the RMSE by 44%, 38%, and 37% for 2𝑛𝑑 ,
3𝑟𝑑 , and 4𝑡ℎ sec as compared to [56]. Compared to best-performing
models for 1𝑠𝑡 and 5𝑡ℎ sec, Pishgu reduces the RMSE by 50% and
40%. Similar performance is observed in ADE and FDE, where we
improve the SotA error rates by 42% and 61%, respectively. As most
of the frames in NGSIM are crowded, it helps the attention module
grasp the most important relational behaviors between the subjects
for path prediction. Thus, the attention module is the most effective
for the NGSIM dataset.

In model size, Pishgu is comparable to most contemporary deep-
learningmodels. However, [56] reports less than half the parameters
than Pishgu. The smaller size of GSTCN is due to using a simple
CNN for path prediction and restricting the graph to two laterally

adjacent lanes and ±100 meters. In contrast, Pishgu uses attention-
based CNN with a graph of the entire scene to grasp the overall
environment provided by the NGSIM dataset.

5.3 Pedestrian Bird’s-eye View
In the pedestrian bird’s-eye view domain, we evaluated our model
on ETH [49], and UCY [32], the characteristics of which were de-
tailed in Section 4. We will adopt the same strategy for evaluation
as previous works in this domain [21] and train our model with a
leave-one-out approach on combined ETH and UCY datasets. As
input, the model observes 8-time steps (3.2 seconds) and predicts
the coordinates of the pedestrian for the future 12-time steps (4.8
seconds). The model has been trained for 80 epochs with a learning
rate of 0.01 and Adam optimizer [29].

In the field of path prediction, it is common for models to gen-
erate 20 outputs (k=20) for each subject in the scene and report
the ADE and FDE based on the best of the 20 predicted paths for
each pedestrian. However, this method is unsuitable for real-time
scenarios, especially those deployed on embedded platforms with
limited resources. Thus, we will compare our model only to the ap-
proaches that report their single-future path prediction evaluation
in the pedestrian bird’s-eye view domain. In our comparisons, we
include a simple Linear regressor used for path prediction. Another
baseline method we consider is LSTM, a simple LSTM encoder-
decoder model used for path prediction. Table 3 shows that Pishgu
struggles with path prediction in this domain. This is due to the fact
that ETH[49] and UCY [32] are relatively small datasets and can
not provide a sufficient amount of training data for the convolution
attention mechanism to be trained well, as discussed in Section 4.

We also report the model complexity in terms of the number of
parameters, but most previous works do not examine this crucial
factor. Looking at Table 3, we can see that Pishgu has a competitive
model size compared to [44] and around 36× smaller model size
compared to Next [39].



Table 4: Experiment results on ActEV/VIRAT [3] dataset. The results are reported in pixel space. Best is in bold text. Second
best is underlined.

Social-LSTM
[1]

Social-GAN
(V) [21]

Social-GAN
(PV) [21]

Next
[39]

Multiverse
[38]

SimAug
[37]

ST-MR
[33]

ST-Attention
[72]

Pishgu (Ours)

ADE 23.10 30.40 30.42 19.78 18.51 21.73 18.58 18.39 14.11

FDE 44.27 61.93 60.70 42.43 35.84 42.22 36.08 38.11 27.96

Params (M) - - - 3.95 - - - 1.98 0.11

5.4 Pedestrian High-angle View
Following the previous works [33, 37–39], we analyze the efficacy
of Pishgu by training and testing it on the ActEV/VIRAT [3] chal-
lenge dataset discussed in Section 4. We report ADE and FDE for
evaluating the displacement error. The official training and valida-
tion sets have been used for collecting the mentioned evaluation
results. As input, the model observes 8-time steps, or 3.2 seconds
and predicts the path for the future 12-time steps or 4.8 seconds.

We compare our model to other models that make single-future
path predictions in this domain since having multiple predicted
paths per pedestrian in real-time applications is unrealistic. Results
reported in pixel space can be seen in Table 4. Social-LSTM [1],
and Social-GAN (both V and PV variants) results are based on
the tests performed by [39]. Comparison with other approaches
makes evident the advantage of Pishgu with a 23.6% and 22.6%
decrease in ADE and FDE with respect to the previous SotA model.
These results push Pishgu to the top position in single-future path
prediction by a large margin and show the benefit of an attentive
CNN predictor in grasping the meaningful features generated by
the GIN in the embedding stage.

Regarding the number of parameters, we can only compare
Pishgu to Next [39] and ST-Attention [72] since other works do
not mention their model sizes. Pishgu, with around 18× smaller
model size compared to ST-Attention and the outstanding ADE and
FDE results, is much more suitable for real-time deployment than
previous works.

5.5 Real-time Evaluation
Real-time path prediction applications are often implemented on
resource-constrained embedded devices. Limited memory, limited
power, and real-time implementationmake lightweight, low-latency
models necessary. We report the latency performance of Pishgu

on multiple embedded platforms: Nvidia Jetson Xavier NX with
a 15W dual-core Nvidia Carmel processor with 8GB of RAM and
Jetson Nano with the 10W quad-core ARM Cortex-A57 processor
with 2GB of RAM. We report the performance of two embedded
platforms to demonstrate the adaptability of Pishgu in different
resource-constrained environments. Both platforms are utilized at
their respective highest power capacities. All the results on embed-
ded platforms are calculated for the batch size. We test Pishgu for
all three domains and report the latency per subject in milliseconds
(ms) and throughput in terms of FPS.

The number of samples per frame is utilized to calculate the
throughput to demonstrate the performance of Pishgu in real-world,
real-time applications. As shown in Table 5, high numbers of ve-
hicles in each frame of the NGSIM datasets ensure dense graphs,
and millions of data samples help attention mechanism in feature
map refinement [64]. However, the number of path predictions for
the NGSIM dataset using Pishgu goes to more than 200 vehicles for
a single frame. This, in turn, affects the overall throughput of the
model even with low latency per sample. As the number of samples
per frame for all the other datasets is meager compared to NGSIM,
the throughput for other datasets is considerably higher.

The throughput of NGSIM for the Jetson Xavier NX platform
is 2.35 FPS which is 29.83% better than 1.81 FPS for the lower-
power Jetson Nano platform. Similarly, for pedestrian tracking,
the throughput for UCY [49], ETH [32], and ActEv/VIRAT [3] on
the Jetson Xavier NX is 67.55%, 17.72%, and 20.15% better than
that on Jetson Nano embedded platform respectively. The superior
performance of the Jetson Xavier NX can be credited to a higher
operating power capacity of 15W with a higher clock frequency of
1.9 GHz. On the other hand, Jetson Nano with ARM cortex operates
at 10W with a frequency of 1.5 GHz. Higher power distribution
among the dual-core of Carmel processors also plays a role in

Table 5: Latency and throughput evaluation on Jetson Xavier NX CPU and Jetson Nano CPU in milliseconds and FPS, respec-
tively. Samples per Frame is an average. FPS is Frames Per Second, and𝑉𝐵 , 𝑃𝐵 , and 𝑃𝐻 refer toVehicle Bird’s-eye view, Pedestrian
Bird’s-eye view, and Pedestrian High-angle view, respectively.

Samples Jetson Xavier NX Jetson Nano
Domain per Latency FPS Latency FPS

Frame (ms) (ms)

NGSIM [12, 13] 𝑉𝐵 158 2.69 2.35 3.50 1.81

UCY [49] 𝑃𝐵 8 1.44 86.81 2.41 51.81

ETH [32] 𝑃𝐵 3 1.75 190.48 2.06 161.81

ActEv/
𝑃𝐻 5 2.83 70.67 3.40 58.82

VIRAT [3]



justifying its performance. The average latency per sample for a
bird’s-eye vehicle view on Jetson Xavier NX is 2.69 ms, which is
23% better than that of the Jetson Nano platform. Similar trends
are observed in all the latency improvements comparison between
two embedded platforms in pedestrian bird’s-eye and high-angle
view datasets. Hence, we demonstrate that Pishgu can be utilized in
real-world applications using embedded platforms with reasonable
latency and throughput performance.

6 CONCLUSION
This paper proposes Pishgu, a universal path prediction architec-
ture that leverages graph isomorphism networks and attention
mechanisms for real-time CPS applications. We evaluate the com-
petency of our architecture in three domains and present extensive
domain analysis with their effects on the performance of our ar-
chitecture in terms of error and complexity. The advantage of the
proposed architecture is that it can adapt to multiple domains with
best-in-class performance when trained and inferred on datasets in
three different domains without any changes in the architecture.
This is beneficial for the CPS applications as single architecture
can be used for different application domains just by adjusting the
model weights. Moreover, Pishgu is designed to be integrated at the
local nodes of the real-world edge-based applications in mind, per-
forming in real-time on embedded platforms. Pishgu achieves SotA
performance for path prediction in vehicle bird’s-eye and pedestrian
high-angle view domains on NGSIM [12, 13], and ActEV/VIRAT [3],
respectively, by a considerable margin. Although vehicle high-angle
view domain path prediction has many CPS applications, such as
traffic monitoring and safety, there needs to be more work done
in this domain. As a next step, we plan to focus on the vehicle
high-angle view domain for path prediction.
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