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ABSTRACT

Due to the intermittent nature of solar energy, it has been increas-
ingly challenging for the utilities, third-parties, and government
agencies to integrate distributed energy resources generated by
rooftop solar photovoltaic (PV) arrays into smart grids. Recently,
there is a rising interest in automatically collecting solar installation
information in a geospatial region that are necessary to manage
this stochastic green energy, including the quantity and locations
of solar PV deployments, and their profiling information. Most
recent work focuses on using big aerial or satellite imagery data to
train machine learning or deep learning models to automatically
detect solar PV arrays. Unfortunately, these approaches are suf-
fering low detection accuracy due to the insufficient sample and
feature learning when building their models, and the separation
of rooftop object segmentation and identification during their de-
tection process. In addition, most recent approaches cannot report
accurate multi-panel detection results.

To address these problems, we design a new approach—
SolarDetector that can automatically detect and profile distributed
solar photovoltaic arrays in a given geospatial region without any
extra cost. SolarDetector first leverages data augmentation tech-
niques and Generative adversarial networks (GANs) to automati-
cally learn accurate features for rooftop objects. Then, SolarDetector
employs Mask R-CNN algorithm to accurately identify rooftop solar
arrays and also learn the detailed installation information for each
solar array simultaneously. In addition, SolarDetector could also in-
tegrate with large-scale data processing engine—Apache Spark and
graphics processing units (GPUs) to further improve its training
cost. We evaluate SolarDetector using 263,430 public satellite im-
ages from 11 geospatial regions in the U.S. We find that pre-trained
SolarDetector yields an average MCC of 0.76 to detect solar PV
arrays over two big datasets, which is ~ 50% better than the most
notable approach—SolarFinder. In addition, unlike prior work, we
show that SolarDetector can also accurately report the profiling
information for the detected rooftop objects.
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1 INTRODUCTION

Smart Grid, as a networked system that consists of more than
500 million sensors, advanced smart meters, and actuators, is the
foundation of modern society and one of the largest Internet of
Things (IoT) deployments in the world [2]. However, with electric-
ity demand and variable renewable energy—solar generated energy
adoption increasing across the U.S., the current smart grid is being
stretched to its capacity to provide reliable transmission and dis-
tribution of power [33]. To help manage increasing penetration of
solar energy generation while maintaining reliability, the grid could
be updated to a “smart grid”, a modernization which has accurate
distributed solar generation resources to help automate and control
the complex electricity needs of the 21st Century.

Due to the intermittent nature of solar energy, it has been increas-
ingly challenging for the utilities, third-parties, and government
agencies to integrate distributed energy resources generated by
rooftop solar photovoltaic (PV) arrays into smart grids. The num-
ber of solar-powered homes in the U.S. is rapidly increasing due to a
steep decline in solar module prices. The U.S. installed 4.6 gigawatts
(GWdc) of solar PV capacity in Q2 2022 to reach 130.9 GWdc of total
installed capacity, enough to power 23 million American homes.
And the U.S. officially surpassed 3 million installations across all
market segments. In particular, over 70% of solar deployments in
the U.S. are continuously small-scale photovoltaic (PV) arrays from
residential rooftops. For instance, government agencies (e.g., Mas-
sachusetts Applications for Cap Allocation [26]) started to place
limits on the amount of solar PV arrays that can be installed in a
geospatial region. The current management process highly relies on
accurate regional statistics of solar deployment generation capacity.
Thus, recently, there is a rising interest in automatically collecting
solar installation information in an area, including the quantity and
locations of solar PV deployments, and their profiling information.

Most recent work [7, 8, 12, 18-21, 28, 31] focuses on using big
aerial or satellite imagery data to train machine learning or deep
learning models to automatically detect solar PV arrays. The rooftop
satellite and aerial images in publicly accessible maps APIs are
taken by sensors and cameras in visible wavelengths on satellites
and aircraft, which collect each image at a specific date and time.
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However, these prior approaches typically require a significant
amount of very high resolution (VHR) images (0.3~0.8 per pixel) and
human handcrafted solar PV array templates to train a reasonably
accurate model. But, this kind of VHR data may cost as $15 per
km?, and is not available at every location in the U.S. To mitigate
these issues, most recent work [15] proposed a hybrid approach
that can automatically detect solar PV arrays using only regular
satellite imagery data. However, the two-step detection process of
the hybrid approach has limited its detection performance. The
process is built on top of insufficient samples and thus cannot
capture all the features when building its models. Specially, the
separation of rooftop object segmentation and detection processes
has caused the missing of rooftop contextual information, which
is critical for final solar PV arrays detection. Thus, this hybrid
approach is still suffering low detection accuracy. Since most prior
approaches [7, 8, 12, 15, 18-21, 28, 31] are detecting solar arrays
at contour level, none of them can accurately and reliably identify
multi-panel solar deployments.

To address the problem, we design a new automatic system—
SolarDetector that can accurately detect and profile distributed
solar photovoltaic arrays in a given region without any extra cost.
Specially, SolarDetector can integrate with large-scale data process-
ing engine—Apache Spark, and leverage graphics processing units
(GPUs) to further improve deep learning model (re)training cost.
Our hypothesis is that the new system—SolarDetector is capable of
detecting rooftop solar PV arrays more accurately and efficiently
when it combines the benefits from Deep Convolutional Generative
Adversarial Networks (DCGANs)-based data augmentation, Mask
R-CNN based solar PV array instance segmentation approaches, and
large-scale data processing engines(and hardware). In evaluating
our hypothesis, this paper makes the following contributions.
Identifying Gaps in the State-of-the-art. As reference points
for solar PV arrays detection, we examine prior approaches. We
find that prior ML-based and DL-based approaches are usually
trained using VHR images which are costly and not available at
every location, and thus cannot scale up. The separation of rooftop
object segmentation and detection processes in hybrid approaches
has caused the missing of rooftop contextual information, which is
critical for final solar PV arrays detection. Also, since most prior
ML-based, DL-based and hybrid approaches are detecting solar PV
arrays at image contour level, none of them can accurately and
reliably report multi-panel solar deployments.

Detection Challenge. We highlight the major challenges that we
met when designing for our SolarDetector that can automatically
detect and profile. Current approaches are suffering low detection
accuracy and low (re)training performance mainly due to the chal-
lenges from insufficient feature learning, inaccurate multiple-panel
detection,the separation of segmentation and detection, and non-
integrated data processing engines.

SolarDetector Design. We design a solar PV array detection
system—SolarDetector, which can automatically detect and profile
distributed solar photovoltaic arrays in a given geospatial region
with low (re)training costs. First, SolarDetector leverages Google
Maps API and OpenStreet Maps API to download and preprocess
the rooftop solar PV arrays in a given region. Second, SolarDetector
leverages data augmentation techniques and Generative adversar-
ial networks (GANS) to build large rooftop solar PV array satellite
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images that can enable us to learn the features and parameters of
solar PV array detection models more accurately. Then, SolarDetec-
tor employs Mask R-CNN-based algorithm to accurately identify
rooftop solar arrays and also learn the detailed installation infor-
mation for each rooftop solar panel deployment simultaneously.
Eventually, SolarDetector integrates its deep learning models with
data processing engines—Apache Spark and GPU to further opti-
mize detection and (re)training performance.

Implementation and Evaluation. We implement SolarDetector
in python using widely available open-source frameworks, includ-
ing OpenCV, Scikit-learn, PyCUDA, TensorFlow and PyTorch. We
evaluate SolarDetector using ~ 63, 430 public satellite images from
11 geospatial regions in the U.S. We find that pre-trained SolarDe-
tector yields an average MCC of 0.76 over two big datasets, which
is ~ 50% better than the most notable approach—SolarFinder. We
evaluate our new approach-SolarDetector using multiple ways: (1)
We compare SolarDetector’s results with the groundtruth data from
260,000 sites and show that it can accurately detect rooftop solar
installations and also learn installation characteristics of each solar
site. (2) We validate SolarDetector’s detection results using ground
truth data from 3,430 publicly-available solar PV array rooftop im-
ages using Google Maps APL (3) We validate SolarDetector’s accu-
racy for profiling local physical characteristics for ~4,000 solar sites
by examining the accuracy of rooftop object profiling(e.g., the size
and orientation of solar panels, the size of shadows on rooftops, and
multi-panel deployment). (4) We compare SolarDetector’s model
training costs using Spark and multiple GPUs acceleration.
Releasing Datasets and Code. We release all the datasets that are
comprised of over 63,430 satellite images and the source code of
SolarDetector on our website [29] so that researchers can use So-
larDetector to benchmark their future work. In addition to utilities
and their third parities, SolarDector can also provide supplemental
more up-to-date information for solar installers, smart city man-
agers, and other third parties who do not directly have the access
to electric gird smart meter data.

2 BACKGROUND AND RELATED WORK

Problem statement: Given a geospatial region, we first want
to build a new, low-cost approach that can automatically extract
rooftop satellite images from publicly-available low or standard
resolution satellite imagery APIs. We then present a new approach
that can detect rooftop solar arrays accurately and effectively. More-
over, for each of the detected rooftop solar arrays, we want to learn
the size, orientation, shading condition, and other physical charac-
teristics that are critical to predicting solar generation capacity per
solar site. We also want to learn the other objects on the rooftops,
such as trees, chimney, and shading. Note that, we do not assume
our system users have fully access to electric grid energy meter
data. In real practice, there is always a delay when the new solar
site can become online on the electric grid due to the waiting time
to get city permit and pass inspection process. Our work can be
used as a supplemental toolkit to help users to better inform the
new deployments.

We outline the design alternatives for detecting distributed
rooftop solar PV arrays using net meter data and big satellite im-
agery data, including machine learning (ML)-based approaches,
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Model True Positives | True Negatives | False Positives | False Negatives || MCC
SVMs 95.49% 55.50% 44.50% 4.50% 0.42
Logistic Regression 99.55% 31.12% 68.80% 0.45% 0.29
Random Forest 99.55% 31.20% 68.80% 0.45% 0.29
CNNs 14.41% 96.98% 3.02 % 85.59% 0.21
SolarFinder 90.09 % 80.77% 19.23% 9.91% 0.61

Table 1: The comparison of detection accuracy when employing different prior solar array detection approaches.

deep learning (DL)-based approaches, and a hybrid approach which
combines the benefits from both ML-based and DL-based ap-
proaches. In doing so, we review a wide range of the most recent
sophisticated solar array detection approaches based on logical re-
gression (LR), support vector machines (SVMs) and random forest
(RF) [18, 20, 21], convolutional neural networks (CNNs) [7, 19, 28],
and hybrid approach [15]. Table 1 quantifies the effectiveness of the
five approaches by showing the percentage of the approaches that
yield true positives (detect solar array and the rooftop does have
one), true negatives (detects no solar array and the rooftop does
not have one), false positives (detect solar array but the rooftop
does not have one), false negatives (detect no solar array but the
rooftop does have one). We also report the Matthews Correlation
Coefficient (MCC) metric for each approach, a standard measure of
a binary classifier’s performance, where its values are in the range
of -1.0 and 1.0, with 1.0 being a perfect solar array detection, 0.0
being random solar array prediction, and -1.0 indicating an always
wrong solar array detection. To report Table 1, we used a dataset
that has 3,430 satellite images using Google Maps APIs [10]. We use
the same dataset to benchmark the five different solar array detec-
tion approaches. Also, we trained all the models with a 70~30% split
of the training dataset to the testing dataset. In doing so, Table 1
shows the solar array detection accuracy comparison of 5 different
recent approaches in a “hold-out” manner.

2.1 Net Meter-based Approach

Prior approaches [13, 17, 25, 26, 26] typically leverage statistical
learning, machine learning and other data analytical techniques
to train accurate machine learning classifiers. These approaches
require significant amount of historical pure solar generation data,
which may not be available due to the new solar sites become
online, to calibrate their models, and also have the limitation of
distinguishing solar PV array profiling from other solar degradation,
e.g., shading, dust, snow, cloudy, and etc. In addition, smart net
meter traces are typically not publicly available and do not actually
scale up to all the locations. In real practice, there is always a delay
when new solar site become “online” due to the waiting time for
the city permit and inspection process.

2.2 Machine Learning-based Approach

Prior approaches [18, 21] leveraged ML models to identify solar PV
arrays from very high resolution (VHR) rooftop satellite images.
These VHR images typically have a resolution of 0.3 meters per
pixel and 8-bit in each RGB color channel. The insight of these
ML-based approaches is that solar PV arrays have unique physi-
cal shape features that allow us to train a ML classifier to predict
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the existence of solar PV arrays in a VHR image. The major chal-
lenge of these approaches is to empirically identify these unique
shape features using VHR images. The researchers in work [21]
used 100 manually selected VHR images and empirically extracted
principal features, including: prescreened confidence in foreground
color, color histogram of background pixels, the ratio of area to
perimetersz, and the mean, variance and Kurtosis of the grayscale
pixels per region. Then, the researchers leveraged the support vec-
tor machine (SVM) classifier to perform the binary classification. A
later work in [18] demonstrated a detection approach based on the
similar insight as in work [21], but leveraged random forest (RF)
classier to train their classification model.

Observation: Our results show that the prior ML-based approach
based on kernel of logical regression (LR), support vector machines
(SVMs) and random forest (RF) yields a very low MCC of 0.29, 0.42
and 0.29, respectively. These ML-based approaches are reporting
better True Positives (TP) and worse True Negatives (TN) than the
CNNs approaches. This is mainly due to the fact that although physi-
cal color and shape features are very effective when describing solar
arrays, these features cannot enable significant distinguishability
between solar arrays and trees, shades or shadows.

2.3 Deep Learning-based Approach

Significant recent research focused on using visual geometry group
networks (VGGNets) based deep convolutional neural networks
(CNNs) techniques [7, 19] to automatically detect rooftop solar
arrays using satellite images. The VGGNet architecture [27] is de-
signed to significantly increase the depth of the existing architec-
tures of CNNs with 16~19 layers using very small 3X3 convolution
filters. Since VGGNet is substantially deeper than the other CNN
models, the VGGNet is more susceptible to the vanishing gradient
problem and applicable to other image recognition datasets [4, 7, 19].
Broadly, these techniques all require a significant amount of training
data including very high resolution (VHR) imagery (0.3~0.8m/pixel)
and human handcrafted image templates to train their models.

For instance, the authors in [7] proposed a five layers CNN that
includes three convolutional layers and two fully connected layers.
The inputs are 3,347 three-channel satellite images with a size
of 200x200 pixels. The first convolutional layer is comprised of
neurons that connect to the subregions of the input images and
has 96 maps and each map contains 64x64 neurons. The second
convolutional layer contains 256 feature maps with 17x17 neurons
on each map. The third convolutional layer has 120 feature maps
with the size of 13x13 neurons per map. The major problem with
this approach is that the input rooftop satellite images have many
“outliers" rather than solar arrays, and the CNN model is not able
to reliably identify them.
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The work in [19] is an improvement to the approach in [7]. Their

architecture has two different modules, including VGG(x) modules,
and fully connected neuron FC(y) modules. The CNN is comprised
of two consecutive convolutional networks, and each has x filters
that are 33 pixels in size. And each convolutional layer is followed
by a rectified linear unit (ReLU) activation. The last part of the
CNN model is a 3x3 pixels max-pooling layer, with a stride of 2
pixels. The training dataset encompasses 135 km? of surface and has
2,794 PV array annotations. All the training data and ground truth
data are handcrafted by human annotators. Another work [20] is a
variant of the CNN model in the work in [19] and employs Random
Forest modeling to benchmark the performance of the proposed
CNN model.
Observation: Our results show that the VGGnet-based CNN ap-
proach yields a MCC of 0.21 as reported in Table 1. The CNN ap-
proach is reporting the True Positives percentage of 14.41% which
is ~80% worse than the ML-based approach using random forest
(RF) classifier, yielding at a True Positives percentage of 99.55%.
This is mainly due to the CNN approach possibly not being able
to reliably distinguish solar arrays from other rooftop objects (e.g.
shading generated by nearby tall buildings and trees) that have
similar features as solar arrays. Another significant drawback is
the general CNN approach requires very high resolution (VHR)
satellite images that are not available at every location.

2.4 Hybrid Approach

The most notable prior approach research—SolarFinder [15] lever-
aged a linear regression model to combine the benefits from both
ML-based and DL-based approaches. The key insight of this “hy-
brid” approach is that ML-based approaches are more accurate
when identifying solar PV arrays, while, DL-based approaches are
performing better to detect other rooftop outliers. In particular, this
hybrid approach requires two-step operations to identify solar PV
arrays, including rooftop image object segmentation and contour
level solar PV array detection. SolarFinder’s detection accuracy is
highly limited by the accuracy of the KMeans-based rooftop object
segmentation process. SolarFinder also assumes k = 5 clustering
is working for all the rooftops. As shown in Figure 1 (a) and (b),
some shadow generated by near trees is recognized as solar PV
array by mistake. In addition, Figure 1 (c) and (d) show that both
of shades and ridges are wrongly classified as solar PV arrays in
the “clustering” process. This is mainly due to the fact that the RGB
grayscales and shapes of solar PV arrays, shades, and trees are quite
similar and thus KMeans-based segmentation cannot accurately
and reliably segment the rooftop objects. To make the detection
performance even worse, rooftop object segmentation removes the
relationships between different objects and the rooftop. For exam-
ple, people typically cannot deploy solar PV arrays on the edges
of a rooftop. In contrast, shades generated by trees are more likely
aligning well with the rooftop edges. The final linear regression
model is not able to pick up these critical missing information at
contour level to detect solar PV arrays. Also, as shown in Figure 2,
since this hybrid approach detects solar PV arrays in the separated
contours, it is extremely difficult to accurately report multiple solar
PV arrays on one rooftop.
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(a) original

(d) KMeans

(c) original

Figure 1: Illustration of inaccurate Rooftop segmentation
when applying the most notable approach—SolarFinder [15].
Each color represents one cluster.

Observation: Our results show that the hybrid approach—
SolarFinder [15] yields a MCC of 0.61 as reported in Table 1, which
is ~2 times better than the most recent DL-based approach yield-
ing at a MCC of 0.21. However, this hybrid approach still shows
very low detection accuracy. This is mainly due to the fact that the
separation of rooftop object segmentation and detection processes
in SolarFinder has resulted in the missing of rooftop contextual
information, which is critical when detecting solar PV arrays. In
addition, this hybrid approach cannot accurately report multiple
solar PV arrays cases since its final linear regression detection is
fully performed at image contours.

2.5 Summary

In summary, prior ML-based approaches [18, 20, 21] show high True
Positives which indicate the potentials to identify solar PV arrays,
while, prior DL-based approaches [7, 19, 28] demonstrate high
True Negatives, which illustrate their “promises” in detecting other
rooftop objects rather solar PV arrays. In addition, prior ML-based
and DL-based approaches are usually trained using VHR images
which are costly and not available at every location. Thus, both of
ML-based and DL-based approaches cannot scale up in real practice.
The hybrid approach which aims at combining the benefits from
both ML-based and DL-based approaches yields the highest MCC,
which demonstrates the best solar PV array detection performance.
However, the two-step detection process of the hybrid approach
has limited its detection performance. Specially, the separation of
rooftop object segmentation and detection processes has caused
the missing of rooftop contextual information, which is critical for
final solar PV arrays detection. Thus, this hybrid approach is still
suffering low detection accuracy. Also, since most prior ML-based,
DL-based and hybrid approaches are detecting solar PV arrays at
the image contour level, none of them can accurately and reliably
report multi-panel solar deployments. In addition, all the prior work
are suffering low efficiency in their training and retraining costs. We
also quantify the detection model training time. We find that SVMs
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Figure 2: An example of multiple panels on a rooftop.

require 45.23 seconds per Megabyte (MB) training data to learn a
reasonably accurate detection model. While it takes CNNs-based
approach 45.29 seconds per MB to train a solar PV array detection
model. Hybrid approach requires the longest training time of 90.69
seconds per MB to train a solar PV array detection model due to its
combining nature. These valuable insights will guide our design of
SolarDetector.

3 CHALLENGES

In this section, we describe the major challenges that we met when
designing for our new approach -SolarDetector that can automati-
cally detect and profile distributed solar photovoltaic arrays in a
given region.

Insufficient features learning. Prior work mainly developed
ML/DL/hybrid classifiers using unbalanced and insufficient rooftop
satellite image samples. Thus, these ML-based, DL-based and hybrid
approaches cannot observe and identify all the principal features to
train their models. In particular, as shown in Figure 1, SolarFinder
and other prior approaches that rely on K-Means clustering algo-
rithm to segment rooftop objects cannot reliably distinguish solar
panels from shady roofs and ridges. This is due to the fact that the
extacted features of solar panels and other roof objects are quite
similar at RGB gray-scale levels. Also, the shape and RGB gray-scale
characteristics of rooftop solar PV arrays may vary from different
manufacturers. To address this issue, SolarDetector leverages mul-
tiple data augmentation techniques (including DCGANS) to build
a big balanced rooftop satellite image dataset, which can help to
extract more significant features and learn more accurate classifiers.
Multiple panel detection. Another challenge is to report the multi-
panel solar PV array deployment, as shown in Figure 2. Since recent
approaches performed their solar PV array detection on contours
rather than images, they cannot (accurately) report multi-panel
solar PV array deployments. However, the profiling information
of multi-panel solar PV deployments has become more and more
critical for government agencies and utilities to accurately manage
the solar PV installation cap in a given region. To address this issue,
SolarDetector leverages Mask R-CNN based approaches, which
can report multiple solar PV array instances simultaneously, to
accurately report multi-panel solar PV array deployments. More
details can be found in our evaluation section.

Separation of segmentation and detection. Most recent ML-
based and DL-based approaches rely on rooftop object segmentation
as their first step to detect rooftop solar PV arrays. However, as
shown in Figure 1, this segmentation process is not reliable. The
outputs of this rooftop object segmentation process are contours,
which are the small pieces of rooftop images. The second step of
these approaches are typically examining each contour to see if
its features are similar to the previously learned principal features.
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The final solar PV array detection process is built on top of the
rooftop object segmentation errors. In addition, the separation of
rooftop object segmentation and detection processes has resulted
in the missing of rooftop contextual information (e.g., distance
from an object to roof edges), which is critical when detecting solar
PV arrays. To address this issue, SolarDetector performs rooftop
object segmentation and solar PV array detection at image level
simultaneously to reserve the rooftop contextual information. More
details can be found in our design section.

Non-integrated data processing engines. Recent approaches are
suffering low performance on their machine learning or deep learn-
ing model training and retraining. To address this issue, SolarDe-
tector integrates with large-scale data processing engine—Apache
Spark and leverages graphics processing units(GPUs) to further
improve deep learning and machine learning model training and
retraining costs.

4 DESIGN

In addressing the above-mentioned challenges, we design a new sys-
tem approach—SolarDetector that can accurately detect distributed
solar arrays automatically in a given geospatial region without
any extra cost. SolarDetector first leverages data augmentation
techniques and Generative adversarial networks (GANs) to build a
large rooftop solar PV array satellite images that can enable us to
learn features and parameters of solar PV array detection models
more accurately. Then, SolarDetector employs Mask R-CNN-based
algorithm to accurately identify rooftop solar arrays and also learn
the detailed installation information for each rooftop solar panel de-
ployment simultaneously. SolarDetector will integrate with Spark
and GPUs to improve the training cost of different models. Figure 3
shows the SolarDetector pipeline of operations.

4.1 Extracting Rooftop Satellite Images

As shown in Figure 4, some houses and trees are predicted as solar
arrays. Thus, we may not able to accurately distinguish solar PV
arrays from other objects directly from the unprocessed regional
satellite image using empirically extracted features. This is due
to the fact that the extracted features of solar arrays, trees, and
houses are quite similar at RGB gray-scale levels. Also, the shapes
of houses are similar to the shapes of solar arrays, most of them
are rectangular.

To address this issue, we propose first to segment rooftops in
a given satellite image. We leverage the reversed satellite image
fetching API approach that was presented in [15]. In essence, we
use publicly-available maps APIs, including Google Maps [10] and
OpenStreetMap [22] to fetch and extract the rooftop satellite im-
ages. Similar to [15], the input of the approach is a region satel-
lite and output is the segmented rooftop satellite images. Given
a set of target regions, we first collect all the residential building
rooftop polygon information using OpenStreetMap APIL The return
of OpenStreetMap API is the OSM file that contains the profiling
information for all the objects. Then, we recover the whole rooftop
polygons using those nodes’ information and then feed them into
the Google Maps API that returns satellite imagery. Note that, un-
like prior work in which rooftop segmentation are performed either
per house or per contour levels, SolarFramework could extract all
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Figure 5: Sample of a regional Rooftop Extraction.

the rooftops within the region simultaneously. Figure 5 shows an
example of this whole region rooftop extraction.

4.2 Preprocessing Rooftop Satellite Images

As discussed in the Related Work section, prior approaches are suf-
fering low detection accuracy due to insufficient sample and feature
learning when building their models. To address this challenge, we
leverage data augmentation and Generative Adversarial Networks
(GANs)-based approach to automatically generate more samples
that can enable us to learn features and parameters of solar PV array
detection models more accurately. The key insight for this rooftop
image augmentation is that different homes may have different
solar PV array installation characteristics, including size, orienta-
tion, tilt and shade. To mimic different solar PV array deployments,
we propose to use multiple augmentation approaches to further
process the extracted rooftop images. Figure 6 shows the detailed
multiple data augmentation techniques, including vertical and hor-
izontal flipping, multi-degree (including 5°~90°) rotating, cropping,
adding noise and increasing brightness, which enable SolarDetector
to more efficiently identify principal features for ML/DL models. In
addition, throughout these image data augmentation approaches,
we also exaggerate solar PV array principal features that can better
train our final solar PV array detection models. Note that, the ma-
jor reason that we design DC-GAN model is to generate a larger
dataset which enables us to identify unseen samples and features of
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different solar site configurations (e.g., different tilts, orientations,
sizes). In addition, data augmentation approaches that SolarDetec-
tor uses is orthogonal to the other aspects of the technique and
is thus “pluggable,” such that we could use other computer vision
approaches to perform data augmentation operations here. We will
include new becoming online models in our near future work.

The above-mentioned image augmentation has provided more
solar PV array deployment samples to train solar PV array detec-
tion models. However, these additional samples may still not be
sufficient to train reasonably accurate DL-based approaches that
typically require significant amount of well-balanced image sam-
ples to calibrate their models and optimizations. To address this
issue, we propose to leverage Deep Convolutional Generative Ad-
versarial Networks (DCGANS) to further generate a large solar PV
array training dataset.

To present the rooftop image more effectively, we leverage gener-
ative adversarial networks(GANSs) [9] architecture to build our solar
PV array image generator. However, recent work [32] has shown
that GANs model has some performance limitations. For instance,
GANs might be unstable to train and thus resulting in generators
that produce nonsensical, noisy, and incomprehensible new artifi-
cial images. The recent work [24] presented a new GANs—Deep
Convolutional GANs (DCGANS) that has mitigated these issues by
replacing the deterministic pooling function to strided convolution
and using Rectified Linear Units (ReLU) activation in all generator
layers, and leaky rectified linear unit (Leaky ReLU) activation in all
discriminator layers. DCGANs has become the standard architec-
ture to solve image generation problems. Figure 7 shows the design
of our DCGANs module. The inputs of our module are solar PV
array satellite images after applying those different data augmenta-
tion approaches. The outputs are the generated big artificial satellite
image dataset. More importantly, users cannot reliably distinguish
the generated satellite images and the original satellite images. This
will ensure the model learning accuracy using our generated big
satellite image dataset.

Our DCGANs module has two models—Generator and Discrimi-
nator. The generator output is connected directly to the discrimina-
tor input. The two models almost have the same architecture, but
reflected. Our DCGANS architecture is composed of convolutional
layer without max pooling or fully connected layers. Our DCGANs
model leverages convolutional stride and transposed convolution
for downsampling and upsampling, respectively. The generator
model uses a 1% 100 noise vector, which are followed by five convo-
lutional layers. For the generator activation function, we use Tanh
activation function for the last layer. For the rest of the layers, we
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Figure 7: The pipeline of our DCGANSs system structure.

leverage ReLU activation function. For the discriminator activation
function, we use the Sigmoid activation function for the last layer.
For the rest layers, we leverage Leaky ReLU activation function.
The rooftop satellite image preprocessing enables SolarDetecor
to learn more accurate solar PV array principal features and train
solar PV array detection models using a well-balanced big training
satellite image dataset. In doing so, we can observe substantially
more positive and negative exaggerated samples than we could
have had access to. Figure 8 shows some samples of the generated
rooftop satellite images using our DCGANSs at 4,100 epochs.

4.3 Detecting Rooftop Solar PV Arrays

As we discussed in Section 3, the separation of rooftop object seg-
mentation and detection processes has resulted in the missing of
rooftop contextual information, which is critical when detecting
solar PV arrays. To address this issue, SolarDetector leverages Mask
R-CNN [11] to perform rooftop object segmentation and solar PV
array detection at image level simultaneously to reserve the rooftop
contextual information.

Figure 9 shows the architecture of our Mask R-CNN design. The
input of the Mask R-CNN model is the whole rooftop satellite im-
ages. Our mask R-CNN has two stages. The first stage is to build
region proposal network, which can generate region proposals of
solar PV arrays. The second stage is building the process for solar
PV arrays detection and segmentation. In addition to object classi-
fication, we can also identify bounding box locations and generate
grayscale solar PV array masks. This additional information will
also enable us to profile rooftop objects. Next, we will explain the
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detailed processes that we use Mask R-CNN to detect and profile
solar PV array deployments.

4.3.1 Extracting Feature Maps. Our Mask R-CNN model first ex-
tracts feature maps from rooftop satellite images. In essence, we
leverage ResNet50 Feature Pyramid Networks (FPN) to extract satel-
lite images feature maps. ResNet50 is a 50-layer deep convolutional
neural network (DCNN), it stacks residual blocks on top of each
other to form a network. This ResNet50 FPN architecture can help
us extract accurate solar PV array features at multiple layers and
scales. Meanwhile, ResNet50 FPM may be suffering vanishing or
exploding gradient issues. We address this issue by using residual
blocks that can skip connections. A skip connection is an alternate
shortcut between multiple stacked layers, which can mitigate the
vanishing or exploding gradient problems of ResNet50 FPM.

4.3.2  Extracting Region Proposals. After extracting satellite im-
ages feature maps, SolarDetector then focuses on extracting region
proposals. As shown in Figure 9, SolarDector feeds the extracted fea-
tures into Region Proposal Networks (RPN). The RPN can classify
multiple rooftop objects and probability of the objects classification
simultaneously. More importantly, the RPN can also predict region
proposals for different objects at multiple scales and aspect ratios,
which will ensure rooftop objects of different sizes are accurately
classified. The output of RPN network are the generated candi-
date region proposals for all rooftop objects. In particular, those
high-probability region proposals—Region of Interest(Rols) will be
forwarded to the next stage in SolarDetector’s system pipeline.

4.3.3 Detecting and Segmenting Instances. As shown in Figure 9,
all the ROIs will be fed into the Region of Interest Align (RoIAlign)
layer, which is an operation for extracting a small feature map
from each Rol in detection and segmentation. RoIAlign can align
the extracted features with the input rooftop satellite images. The
RolAlign layer is followed by three additional layers, including
rooftop objects classification layer, bounding box layer, and mask
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prediction layer. Eventually, rooftop object classification and bound-
ing box generation are both achieved by connecting the fully con-
nected layer. The object mask prediction is connected through
convolutional layer and deconvolutional layer.

4.3.4  Multi-thread and multi-process detection models. In addition,
we design the detection models of SolarDetector in a multi-thread
and multi-process manner, which can enable SolarDetector to co-
operate with big data processing engines, including both Apache
Spark and GPUs, to further accelerate the (re)traing process. Note
that, although we have demonstrated that SolarDetector(with Mask
R-CNN) yields a higher MCC and much shorter (re)traing time,
SolarDetectorcan also work with other new detecting models.

4.4 DPost-processing Solar PV Array Detection

In addition to detecting solar PV arrays and other rooftop objects,
SolarDetector can also profile them. The solar PV array profiling
information may include size, orientation, multi-panel status, shade
situation, etc. For instance, to report solar PV array size, SolarDetec-
tor examines the number of pixels that are included in the identified
solar PV arrays. Since each pixel denotes an area with a size of S
km?, where S can be derived from satellite image zoom level (typ-
ically 20) and its location on rooftop. SolarDetector first simply
multiplies the pixel size by the number of pixels in a solar PV array
instance. Then, SolarDetector performs a union operation to add
up all the solar PV array instances on the same rooftop to report
the final solar PV array size. Similarly, SolarDetector can also get
the number of solar PV arrays on a rooftop by using the masks
prediction results from Mask R-CNN model (shown in Figure 9).
Similarly, SolarDetector can also detect and profile other rooftop ob-
jects, such as trees, chimneys, windows, and shadows. Note that the
shadow, tree, or window information can not be learned from the
energy meter data directly. These additional profiling information
will enable the utilities (and their third parties) and the government
agencies to better predict and manage the distributed rooftop solar
generated energy.
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5 IMPLEMENTATION

We implement SolarDetector in python using widely available open-
source frameworks, including OpenCV, Scikit-learn, PyCUDA, Ten-
sorFlow, and PyTorch. SolarDetector leverages OpenStreet Maps
API [22] to fetch the rooftop location and Google Maps API [10] to
fetch satellite rooftop images. We use OpenCV, NumPy and Pan-
das for images processing based data augmentation. We leverage
PyTorch framework to implement DCGAN generator to generate
rooftop images. We implement Mask R-CNN detection and segmen-
tation models on top of PyTorch frameworks. We leverage Opency
and Numpy to further profile rooftop object information. Eventu-
ally, we schedule the batch jobs on our GPU servers to compare
the MCC accuracy of different solar PV array detecting approaches
using CUDA. The server that we use to get all the benchmarking
and evaluation results has resources as follows: 1) CPU: Intel(R)
Xeon(R) CPU E5-2630 v4 @ 2.20GHz GPU: nVidia TITAN V RAM:
128GB, 4) OS: Ubuntu 18.04.4 LTS.

6 EXPERIMENTAL EVALUATION

Below we describe our dataset, experimental setup, metrics used to
evaluate our approach, and evaluation results.

6.1 Datasets

Dataset A. We downloaded ~260,000 publicly available satellite
images from 13 geospatial regions of 9 different states in the
U.S., including Colorado, California, Massachusetts, Minnesota,
Arizona, Maryland, Wisconsin and Washington from SolarFinder
Dataset [30]. The dataset includes 13 regions with a radius ranging
from 5km to 20km. The ratio of solar array rooftop to non-solar
array rooftop is ~ 1:100. The dataset also has groundtruth of each
satellite rooftop image, including whether there is solar arrays on
the rooftop and polygon outlier information for solar PV arrays.
Dataset B. We collected ~3,430 publicly-available solar PV array
rooftop images using Google Maps API The ratio of the solar array
rooftop to non-solar array rooftop is 1:5. Given a rooftop listed
in the datasets, we prepared the groundtruth for rooftop objects,
including windows, shadow, chimneys, trees and solar PV arrays.
Besides the objects class information, we also prepared the polygon
outlier information for each object using OpenStreet Maps API [22].
Then we augmented the training dataset B using image processing
based techniques to 5,725 satellite rooftop images. To collect solar
PV arrays of all orientations, we leverage OpenCV to randomly
rotate satellite rooftop images clockwise.
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6.2 Experimental Setup

We implement and evaluate four different solar PV array detection
approaches in two different manners, including cross validation
and hold-out validation.

Cross Validation. In this case, all of the SVMs, Random Forest, Lo-
gistic Regression, CNNs, SolarFinder and SolarDetector approaches
can access to the satellite rooftop images from their testing sites.
In this way, we are benchmarking the best performance of these 6
different approaches.

Hold-out Validation. In this case, all of the SVMs, Random For-
est, Logistic Regression, CNNs, SolarFinder and SolarDetector ap-
proaches can not access to the satellite rooftop images from their
testing sites. In this way, we are benchmarking the real performance
of the 6 different approaches.

6.3 Evaluating Metrics

Matthews Correlation Coefficient (MCC). To quantify the accu-
racy of different solar PV array detection approaches, we note that
the standard evaluating metrics, e.g, accuracy, F1, would not work
well on our highly imbalanced data. And this observation has been
studied by researchers in work [1]. Most solar PV array dataset
is highly imbalanced, the ratio of solar array rooftop to non-solar
arrays rooftop is 1:100. Based on the recommendation from prior
work [1, 23], we use the Matthews Correlation Coefficient (MCC), a
standard measure of a binary classifier’s performance, where values
are in the range —1.0 to 1.0. With 1.0 being perfect solar PV arrays
detection, 0.0 being random solar PV arrays prediction, and —1.0
indicating solar PV arrays detection is always wrong. The expres-
sion for computing MCC is below, where TP is the fraction of true
positives, FP is the fraction of false positives, TN is the fraction
of true negatives, and FN is the fraction of false negatives, such
that TP+FP+TN+FN= 1. The MCC is a more reliable statistical rate
that produces a high score if the prediction obtained good results
in all of the four confusion matrix categories: true positives, false
negatives, true negatives, and false positives. MCC is preferred over
other scores (e.g., F1 score) as it is a more “balanced” assessment of
classifiers, no matter which class is positive.

TP+« TN — FP « FN
(TP +FP)(TP + FN)(TN + FP)(TN + EN)

Intersection of Union (IoU). To quantify the accuracy of SolarDe-
tector to predict size for solar PV arrays, we use Intersection of
Union (IoU) which is widely used in prior work to measure the
similarity between the detected region and the groundtruth region.
As a measure of similarity for the two sets of pixel data, with a
range from 0% to 100%. The higher the percentage, the more precise
predictions that SolarDetector can do. It can be defined as follows,

1

@

where ry4 denotes the detected region for a solar PV array, and r4
indicates the groundtruth region for a solar array.

Mean Orientation Error (MOE). To quantify the accuracy of So-
larDetector to predict orientations for solar PV arrays, we employ
the mean orientation error (MOE) that is introduced in a recent
work [14]. The MOE captures the per-pixel error between the pre-
dicted and the actual azimuth angle. It is defined as follows,
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Figure 10: The comparison of detection accuracy when em-
ploying SVMs, Logistic Regression, Random forest, CNNs,
SolarFinder, and SolarDetector approaches using Dataset A
and Dataset B.
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where C is the total number of classes (i.e., azimuths), 0; and o;
is the azimuth angles, and p;; indicates the number of pixels of
azimuth j reported as azimuth i, and ¢t; is the total number of
pixels in class i. In addtion, Azimuths_dif fer is a function that
return the difference between two azimuth angles. The MOE should
return a value between 0° (perfect estimation) and 180° (opposite
estimation).

6.4 Experimental Results

6.4.1 Quantifying Solar PV Array Detection Accuracy. We first com-
pare SolarDetector with SVMs, Random Forest, Logistic Regression,
CNNg, SolarFinder, and our SolarDetector approaches using two
satellite images datasets—Dataset A and Dataset B. Unsurprisingly,
as shown in Figure 10, SolarDetector is the best performing solar
PV arrays detection approach on both datasets. For Dataset A, we
can observe that SVMs approach, Logistic Regression approach
and Random Forest approach yields a MCC of 0.42, 0.29, and 0.29,
respectively, this is due to the fact that these ML-based approaches
report very low True Negative percentages as shown in Table 1.
We can also find that CNNs yields MCC of 0.21, this is due to CNNs
report very low True Positive percentages. The hybrid approach—
SolarFinder which combines the benefits of both machine learning
approach and CNNss yields a better MCC of 0.61. Our new SolarDe-
tector yields the best MCC of 0.96. which is ~ 50% higher than
SolarFinder. This is mainly due to the fact that SolarDetector ad-
dresses the three major challenges (in Section 3) that SolarFinder
and other ML/DL approaches are currently suffering.

For Dataset B, we can observe that Logistic Regression approach
reports the worst MCC of 0.17, this is mainly due to that Logistic
Regression approach typically reports very low True Negative per-
centages. While, SVMs approach, Random Forest approach, and
CNNss approach yields a MCC of 0.25, 0.17, and 0.17, respectively.
SolarFinder yields a MCC of 0.31, which is better than ML-based
approaches and CNNs approaches. Unsurprisingly, SolarDetector
yields the best MCC of 0.61, which is constantly ~ 50% better than
the most notable approach—SolarFinder.
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tection when SolarDetector applying cross validation and
hold-out validation.

Results: Comparing with SVMs, Random Forest, Logistic Regres-
sion, CNNs approaches and SolarFinder approaches, SolarDetector
is the always best detecting approach. In particular, SolarDetector
yields an average MCC of 0.76, which is ~ 50% better than the most
notable approach—SolarFinder.

6.4.2 Comparing cross validation and hold-out validation. Next, we
will examine the completeness and robustness of SolarDetector.
Figure 11 shows that SolarDetector with cross validation yields
overall slightly better detection accuracy than SolarDetector with
hold-out validation. This is mainly due to the fact SolarDetector can
access to information from the training satellite imagery dataset
and thus can better calibrate its modeling learning process. For all
the hold-out evaluations, SolarDetector does not have this access
to training data to fine-tune its model weights, and thus reports
slightly lower MCCs for each object. In particular, among all the
rooftop objects, SolarDetector report almost the same MCC—0.96
for cross validation and hold-out validation. This is mainly because
SolarDetector leverages multiple data augmentation approaches
to more comprehensively learn principal features. This will enable
SolarDetector to be trained using existing datasets and then detect
solar PV arrays in new regions.

Results: SolarDetector with cross validation yields overall slightly
better detection accuracy than SolarDetector with hold-out vali-
dation. For solar PV array detection, SolarDetector demonstrates
strong completeness and robustness of its modeling process and
thus reports almost the same MCC for both cross validation and
hold-out validation.

6.4.3 Quantifying Other Rooftop Object Detection Accuracy. Next,
we compare SolarDetector detection accuracy of other rooftop
objects. As shown in Figure 11, similar to solar PV arrays detection,
SolarDetector can also accurately detect other rooftop objects. For
the cross validation evaluations, solar PV array detection yields
the best MCC of 0.956. SolarDetector can also detect other objects
such as shadows, chimney, trees with MCCs of 0.407, 0.352, and
0.512, respectively. Note that, most of prior approaches are not
able to detect or report these objects. SolarDetector reports slightly
worse MCCs when detecting trees, shadows and chimneys. This
is mainly due the fact that the shape of shadows generated by
tall trees or buildings is a function of the solar PV deployment’s
location, Sun’s position in the sky , time of a day, and also local
weather conditions (e.g., wind). And this information currently is
not collected or provided with Dataset A and B. We plan to combine
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Figure 12: The detection accuracy comparison of SolarDe-
tector (with hold-out validation) with and without applying
data augmentation.

Model Objects MCC | IoU | Orientation
SolarDetector | Solar PV arrays | 0.956 | 0.713 1.68
SolarDetector Shadows 0.407 | 0.603 10.72
SolarDetector Trees 0.512 | 0.712 3.94

Fast RCNN | Solar PV arrays | 0.932 | 0.568 2.13

Fast RCNN Shadows 0.442 | 0.463 12.37

Fast RCNN Trees 0.456 | 0.511 4.26
Faster RCNN | Solar PV arrays | 0.935 | 0.572 2.13
Faster RCNN Shadows 0.389 | 0.265 15.42
Faster RCNN Trees 0.459 | 0.513 4.31

SegNet Solar PV arrays | 0.714 | 0.306 3.36

SegNet Shadows 0.103 | 0.174 17.42

SegNet Trees 0.246 | 0.192 7.78

Table 2: The categorized comparison of detection and profil-
ing accuracy of different objects.

this information with our model learning in our future work, which
is out of scope of this work. In addition, another reason for the
slightly worse detection on chimneys is that SolarDetector does not
have sufficient samples to learn the principal features to identify
chimney from rooftop satellite images in Dataset A and B.
Results: In addition to detecting solar PV arrays, SolarDetector is
able to detect other rooftop objects (e.g. chimney, shadow, trees) in
satellite images with reasonable accuracy.

6.4.4 Quantifying Data Augmentation Performance. Figure 12
shows the rooftop object average detection accuracy of SolarDe-
tector with and without applying data augmentation approaches
(discussed in Section 4) over 10 different regions with slightly im-
provements. Unsurprisingly, with applying data augmentation ap-
proaches, SolarDetector reports better MCCs when identifying solar
PV arrays and tress. This is mainly because data augmentations help
SolarDetector to address insufficient training samples and principal
feature learning issues. While, for shadows and chimneys, SolarDe-
tector is reporting worse MCCs when applying data augmentation
approaches. This is mainly because our current data augmentation
approach does not fully consider the rooftop contextual informa-
tion. For instance, chimneys typically is built on either left or right
side of a rooftop. Another example, shadow shapes are changing all
the times and can be aligning well with the edges of roofs. We plan
to explore these improvement opportunities in our future work.

Results: SolarDetector yields better accuracy for detecting solar
PV arrays and trees when applying data augmentation approaches.
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Augmentation | MCC
No 0.701
Yes 0.704

Table 3: The comparison of multi-panels accuracy.

6.4.5 Profiling Rooftop Objects. Next, we will examine SolarDetec-
tor’s ability to profile detected rooftop objects. We use Intersection
of Union (IoU) as the evaluation metric to examine the reported size
of solar PV arrays, shadows, and trees. The shadow from nearby
trees or tall buildings, which is the key parameter of solar perfor-
mance and forecasting models, cannot be directly learned from
the energy meter data. And recent research [3, 5, 6, 16] has shown
that these information could significantly affect solar PV deploy-
ment generation performance and site surveys. Table 2 shows the
MCC and IoU results when detecting solar PV arrays, shadows, and
trees using SolarDetector, Fast RCNN, Faster RCNN, and SegNet,
respectively. SolarDectector yields IoTs as 0.713, 0.602 and 0.712, re-
spectively. Interestingly, although SolarDetector only reports MCCs
as 0.407 and 0.512 for shadows and trees detection, SolarDetetor
yields very high IoUs. This is mainly because grayscale features
of shadows and tress are so significant and have less variance for
SolarDetector to extract them. We also observe that SolarDetector
can yield the MOE as 1.68, which can accurately report orientation
of solar PV arrays. These profiling information is critical input in-
formation for solar energy generation prediction models and solar
generated energy cap managements.

Results: SolarDetect can also accurately profile detected rooftop
objects, such as the size and orientation of solar PV arrays and the
size of trees and shadows.

6.4.6 Quantifying SolarDetection multi-panels detection accuracy.
Eventually, we employ IoU to quantify the accuracy for SolarDetec-
tor to predict the multi-panel rooftop solar PV array deployments.
Since our Mask R-CNN model can generate pixel level solar PV
array masks, SolarDetector can learn the number of panels by the
number of the masks. As shown in table 3, with data augmentation
multi-panel prediction average accuracy gets slightly better than
without augmentation with a IoU of 0.704 over 10 different regions.
Results: SolarDetector can also accurately report multi-panel
rooftop deployments.

6.4.7 Quantifying Solar PV Array Detection Training Cost using
Spark. We first compare the training costs of SVMs, CNNs, and
Hybrid approach (Linear Regression) using Spark. Compared with
the training cost in Table 4, after applying Spark (with 10 cores
CPU server) on each model, we find that SVMs, CNNs and Hybrid
approach yield a training cost as of 1.372, 0.568 and 3.118 (measured
in second per MB training data), respectively.

Results: After using Spark, we find that SolarDetector significantly
cut the training cost (equivalent to ~ 100 times faster) for SVMs,
CNNs, and Hybrid solar PV array detecting approaches.

6.4.8 Quantifying Solar PV Array Training Cost using GPUs. We
next examine the training cost using multiple GPUs acceleration.
We implement different models using multiple threads program-
ming. Note that, SVMs approach can not be schedule on GPUs due
to their model design nature. Unsurprisingly, SolarDetector (with
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Training Time
Model (secondgs/MB)
SVMs (Spark) 1.372
Pure CNNs (Spark) 0.568
Hybrid (Spark) 3.118
CNNs (1 GPU) 12.804
CNNs (2 GPUs) 8.968
Mask R-CNN (CPU) 109.742
Mask R-CNN (GPU) 26.832

Table 4: The performance comparison of different models
using SolarFramework

GPU) accelerates the training time of Mask R-CNN by 5 times as of
SolarDetector (with CPU).

Results: After using GPUs, we find that SolarFramework signifi-
cantly cut the training cost (up to ~ 5 times faster) for CNNs-based
and Mask R-CNN-based detecting approaches.

6.4.9 Quantifying the Cost of using Spark and GPUs. We are plan-
ning to host SolarDetector using our public GPU server using public
APIs in near future. In addition, we also examine the cost if users
would like to run SolarDetector on their own (cloud) servers. We
compare against the cost of hardware resourese we used on SolarDe-
tector on Amazon AWS and Google Colab platform. For Amazon
AWS EC2 market, users can select the size, memory, CPUs, GPUs,
and storage. With 1 GPU, 16 vCPUs, 64G RAM, the cost will be
$1.204 per hour. With 2 GPUs, 32 vCPUs, 128G RAM, the cost will
be $1.734 per hour. In comparison, Google Colab, which is widely
being used by Al researchers community to train machine learning
and deep learning models, is free with K-80 GPU and 12GB of RAM
in total. To access faster GPU like NVIDIA TESLA T4 or P100, users
can subscribe to Google Colab Pro for only $9.99 per month.

Results: SolarDetector is a low-cost and highly effective framework
that can detect and profile rooftop solar PV arrays simultaneously.

6.5 Real-world Applications

Marketing for Solar Installation. The information about solar
panels in an area can be used by solar panel companies (e.g., Sun
Power, Vivint, SunLux Energy, Sungevity) that offer solar panel
systems lease, loan, and purchase options or homes and community
properties to better market their products and offers. Solar panel
installers usually cannot access residential energy meter data in a
community and don’t share information about solar panel installa-
tions. Thus, a prominent solar panel detection system such as our
SolarDetector is highly desired for them.

Solar Panel Performance Diagnostics. Homeowners are increas-
ingly deploying rooftop solar photovoltaic (PV) arrays due to the
rapid decline in solar module prices. However, homeowners may
have to spend up to ~$375 to diagnose their damaged rooftop solar
PV system [16]. The profile information that SolarDetector could
learn from a solar site can be used to assist the solar degradation
diagnostics process. In particular, SolarDetector can help to evalu-
ate inverter performance, which cannot be accurately learned from
only net meter energy traces.

Solar Panel Installation CAP Management. The output of So-
larDetector can be easily integrated with public maps APIs to create
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a detailed visualization system for solar PV array deployments in
an area. The administrative offices of smart cities and the utilities
can use the new solar panel visualization system to better inform
allocation decisions.

7 CONCLUSION AND FUTURE WORK

We design a new approach—SolarDetector that can automatically
detect and profile distributed solar photovoltaic arrays in a given
geospatial region without any extra cost. SolarDetector first lever-
ages data augmentation techniques and Generative adversarial net-
works (GANSs) to automatically learn accurate features for rooftop
objects. Then, SolarDetector employs Mask R-CNN algorithm to
accurately identify rooftop solar arrays and also learn the detailed
installation information for each solar array simultaneously. We
evaluate SolarDetector using 263,430 public satellite images from 11
geospatial regions in the U.S. We find that SolarDetector yields an
average MCC of 0.76 to detect solar PV arrays over two big datasets,
which is ~ 50% better than the most notable approach—SolarFinder.
Unlike prior work, we show that SolarDetector can also accurately
report the profiling information for the detected rooftop objects.
In addition, SolarDetector could also integrate with large-scale
data processing engine—Apache Spark and graphics processing
units(GPUs) to further improve its training cost.

We plan to collect more satellite solar array rooftop images to
improve the accuracy of the detection model. We plan to improve
the DCGANSs model to include rooftop contextual information in
data augmentation process. In addition to conventional data argu-
mentation ways, we also plan to investigate other potentially better
data augmentation approaches (e.g., mixup: Beyond Empirical Risk
Minimization).
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