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ABSTRACT
Deep neural network models for IMU sensor-based human activity
recognition (HAR) that are trained from controlled, well-curated
datasets suffer from poor generalizability in practical deployments.
However, data collected from naturalistic settings often contains
significant label noise. In this work, we examine two in-the-wild
HAR datasets and DivideMix, a state-of-the-art learning with noise
labels (LNL) method to understand the extent and impacts of noisy
labels in training data. Our empirical analysis reveals that the sub-
stantial domain gaps among diverse subjects cause LNL methods to
violate a key underlying assumption, namely, neural networks tend
to fit simpler (and thus clean) data in early training epochs. Moti-
vated by the insights, we design VALERIAN, an invariant feature
learning method for in-the-wild wearable sensor-based HAR. By
training a multi-task model with separate task-specific layers for
each subject, VALERIAN allows noisy labels to be dealt with indi-
vidually while benefiting from shared feature representation across
subjects. We evaluated VALERIAN on four datasets, two collected
in a controlled environment and two in the wild. Experimental
results show that VALERIAN significantly outperforms baseline
approaches. VALERIAN can correct 75% – 93% of label errors in the
source domains. When only 10-second clean labeled data per class
is available from a new target subject, even with 40% label noise in
training data, it achieves ∼ 83% test accuracy.

Code is available at: https://github.com/YujiaoHao/VALERIAN.git
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1 INTRODUCTION
Inertial measurement unit (IMU) sensor-based human activity recog-
nition (HAR) has gained a lot of interest recently due to its perva-
siveness in smartphones and smartwatch devices [25, 26, 37, 46].
With the increasing adoption of deep neural network models in
HAR tasks, there is a need to acquire a large amount of well-curated
and labeled sensory data to train such models. Unfortunately, the
majority of public HAR datasets are from controlled settings where
subjects are asked to perform prescribed activities in lab environ-
ments. They typically contain a small collection of subjects and ac-
tivity types over a limited period of time. For example, PAMAP2 [28],
a popular dataset for HAR, only includes eight subjects with 59.67
minutes of measurements per subject. Furthermore, data collected
from controlled settings often have very different characteristics
from those of freestyle motions in naturalistic environments [35].

Collecting IMU sensor data in the wild faces its own set of chal-
lenges. Arguably, the biggest difficulty is to label such data accu-
rately [42]. Recalls from one’s memory are known to be notoriously
unreliable [27]. Labeling wearable data by observing signal pat-
terns requires extensive domain knowledge and experience since
sensor readings are impacted by not only activity types but also
subject characteristics, on-body positions and sensor orientations.
A mainstream method to label such data is to resort to another
human-interpretable modality such as visual or audio recordings
and determine the labels manually post hoc. Unfortunately, labels
obtained this way are still error-prone due to mis-synchronization
across different modalities, human errors or missing data (e.g, oc-
clusion in vision data). As the first contribution of the work, we
examine two datasets collected in naturalistic settings to understand
the extent and characteristics of noisy labels.

Learning with noisy labels (LNL) has long been investigated in
the machine learning community with many effective methods be-
ing proposed for computer vision tasks. Due to the lack of reliable
ground truth in real-world noisy data, studies are mainly conducted
by adding artificial noise to clean labeled datasets [32]. Through
an empirical study, we find that DivideMix, one state-of-the-art
LNL method fails to achieve good accuracy and sometimes cannot
converge at all. In-depth analysis reveals that the root cause is the
violation of a key underlying assumption in LNL methods, i.e., mod-
els fit simpler (and thus clean) data in early training epochs. With
substantial subject diversity, it is difficult to distinguish wrongly
labeled data from correct ones from a different subject whose data
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follows a different distribution (also known as domain gaps). There-
fore, the second contribution of the work is to unravel the interplay
between subject domain gaps and LNL for HAR tasks.

The insights from the empirical study motivate our third con-
tribution, namely, the design of VALERIAN, an inVariant feAture
LEarning foR In-the-wild domain AdaptatioNmethod of IMU-based
HAR. Its core component is a one-step domain invariant feature
learner that tackles label noises and learns the shared feature rep-
resentation among multiple subjects simultaneously. VALERIAN
uses self-supervised pretraining to learn robust features that are
independent of label quality. The pretrained parameters are used to
initialize the shared feature encoder of a multi-task learning model,
where each noisy labeled subject in the training set is considered as
a separate task. The network consists of shared feature encoder and
subject-dependent task-specific layers that are trained iteratively
with noisy labeled data. To combat noisy labels, early-learning regu-
larization (ELR) [22] is adopted by introducing a loss term reflecting
the temporal ensemble of past predictions. VALERIAN can be ap-
plied in two ways: 1) label correction, i.e., to clean the labels of noisy
labeled datasets so that accurate HARmodels can be developed, and
2) domain adaption, i.e., to adapt the trained model to an unseen
subject. Specifically, VALERIAN can predict activity labels of each
subject in the training set using a respective task-specific layer. To
achieve higher accuracy, we assume a small number of correctly
labeled data is available from a new subject. The data is used to
update a task-specific layer to allow fast adaption of the trained
model to the subject.

We evaluate the performance of VALERIAN using two controlled
datasets with different levels and distributions of labeling noises,
and two in-the-wild datasets. Noises are introduced to investigate
the impact of the amount of label noise on model performance.
VALERIAN consistently outperforms baseline approaches across
all settings. In label correction, VALERIAN can correct up to 93%
wrongly labeled samples. In domain adaptation, even with 40% label
noise in training data, it achieves an ∼ 83% test accuracy with only
10 seconds of correctly labeled data per class. A similar evaluation
on a true in-the-wild dataset with noisy labels achieves an over 20%
improvement in the F1-Score compared to baseline methods.

The rest of the paper is organized as follows. Section 2 describes
the motivation of this work. In Section 3, we introduce the VALE-
RIAN method and the details of each component. In Section 4, we
present the implementation details and performance evaluation
of VALERIAN. Section 5 describes the related work and how they
differ from ours. Finally, we conclude the paper in Section 6 with a
summary and a discussion of future research directions.

2 MOTIVATION
To understand the characteristics of in-the-wild HAR datasets and
to gain insights into why mainstream LNL methods tend to fail on
such tasks, we inspect two datasets and the behavior of a state-of-
the-art (SOTA) LNL algorithm in this section.

2.1 Characteristics of in-the-wild HAR datasets
In this work, a HAR dataset is considered to be in the wild (or
collected in naturalistic settings) if the activities of subjects are not
precisely scripted. As a result, experimenters do not know exactly

Table 1: The noise transition matrix of ExtraSensory, based
on its curated labels. For walking and standing, only top-4
mislabeling sources are shown due to space limits.

walking strolling cleaning cooking eating
walking 75.28% 3.46% 3.46% 2.35% 1.67%

running exercise go upstairs go downstairs
running 79.92% 19.66% 0.21% 0.21%

standing cooking cleaning shower dressing
standing 56.79% 8.47% 7.51% 5.35% 5.34%

at home at school at work at party at gym
at home 96.71% 1.49% 1.27% 0.27% 0.26%

what activities shall be performed at what time. The ExtraSensory
dataset is one such example [36], where IMU data were collected
from users’ smartphone devices as they went about their daily
activities. Activity labels were initially self-reported. Further cura-
tion was done by researchers who utilized information from other
sensing modalities to automatically correct some labels. A detailed
description of the curation procedure in ExtraSensory can be found
in [35]. As another example, the Realworld dataset [34] contains
data collected from fifteen subjects performing activities such as
climbing stairs down and up, jumping, lying, standing, sitting, run-
ning/jogging and walking. Although in most cases, subjects were
asked to perform a certain activity, during climbing up/downstairs
outside trials, the variations of terrains are not controlled by the
experimenters and thus un-prescribed activities may occur.

Fig. 1 illustrates the percentage of clean and mislabeled data in
both datasets. For RealWorld, we inspect the video recording of
climbing up and climbing down trials, note down the start and end
times, and the type of activities. We find that there are periods when
the subjects actually walk on flat ground (7% of the time) or stand
still (3% of the time), which were mislabeled as climbing up or down
in the dataset. For ExtraSensory, when comparing the self-reported
and curated labels, we find that 34.5% are unchanged, 39.2% are
corrected in the curation process and 26.3% are marked as invalid
since the phones were not with the subjects during data collection.
Moreover, upon closer inspection of curated data in ExtraSensory,
we find the data labels are still noisy. For example, in Fig. 2, the
left plot corresponds to accelerometer measurements labeled as
standing while the right one is labeled as walking. However, one
can easily observe the “signature" periodical pattern associated
with walk cycles in the left plot rather than in the right plot – an
indication of mislabeling even after auto-curation.

From Fig. 1, we conclude ExtraSensory is much noisier than
RealWorld since the former is crowdsourced data. What also distin-
guishes the two datasets is the distribution of label noises. Specif-
ically, for RealWorld, most mislabeling happens in the climbing
up/down trials when the ground labels are “walk on a flat ground"
or standing. In contrast, in ExtraSensory, mislabeling exists almost
between any two activities. To characterize the distribution of noisy
labels, a noise transition matrix 𝑇 is often used, where element 𝑇𝑖 𝑗
corresponds to the probability of mislabeling a data sample with
ground truth label 𝑖 to label 𝑗 [11]. When mislabels occur equally
likely for all classes other than the true class, the associate noise
pattern is called symmetric noise. Otherwise, if there is a dominant
off-diagonal element in each row in 𝑇 , the associate noise pattern
is called asymmetric noise.
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Figure 1: The statistics of two in-the-wild IMU-based HAR
datasets. Left: Realworld, Right: ExtraSensory. A noticeable
portion of the data labels in both datasets are noisy.

Figure 2: Accelerometer data in ExtraSensory with curated
labels. Left: standing (subject id: FDAA70A1-42A3-4E3F-
9AE3-3FDA412E03BF, row id: 4339), Right: walking (sub-
ject id: 2C32C23E-E30C-498A-8DD2-0EFB9150A02E, row id:
5454).

Table 1 shows the noise transition matrix of data in three lo-
comotion classes and one location class in ExtraSensory by com-
paring their curated labels (row headings) and the original ones
(column headings). As ExtraSensory is a multi-label dataset with
many classes, only top-5 mutually exclusive labels are included in
the table. We observe that with the exception of “running", noise
transition probabilities of all classes are best modeled as symmetric
noise.

2.2 LNL can be Harmful to IMU-based HAR
with noisy labels

Learning with noisy labels has long attracted attention with many
deep learning-based methods proposed recently that primarily tar-
get computer vision tasks. According to [32], there are mainly four
categories of LNL methods: robust architecture, robust regulariza-
tion, robust loss design and sample selection. In this section, we use
DivideMix [20], a representative sample selection based method to
illustrate the behavior and deficiency of LNL. In Section 4, results
from a robust regulation method are presented.

The basic idea of DivideMix is to first initialize a model with all
training data for a few epochs (called warm-up phase). A Gauss-
ian mixture with two modes is fitted to divide data samples based
on their normalized losses into two partitions – those with lower
losses (higher confidence) are considered clean labeled samples,
and those with high losses are treated as unlabeled data. Semi-
supervised learning is then applied to the mixed data. Subsequently,
co-refinement of labeled data and co-guessing of the labels of unla-
beled data is performed by two neural networks working together
iteratively, to reduce biases.

To study the behavior of DivideMix for HAR, we add artificial
noise to clean labeled dataset. The USCHAD dataset [50] is selected

as it contains carefully curated ground truth labels. This dataset
consists of accelerometer and gyroscope measurements collected
from fourteen participants performing ten types of locomotions in
a controlled environment (i.e., walking forward, walking left, walk-
ing right, walking upstairs, walking downstairs, running forward,
jumping up, sitting, standing and sleeping). Both symmetric and
asymmetric noise patterns are considered, but due to space limits,
only results from asymmetric noise are included. The transition
matrix of asymmetric noise is defined by flipping pairs of the most
confusing activities (see Fig. 8 for details). We adopt the DeepCon-
vLSTM model architecture proposed in [26] as feature extractor for
HAR tasks. The model contains 4 convolutional neural network
(CNN) layers and 2 long short-termmemory (LSTM) layers totalling
∼296k trainable parameters.

Fig. 3 shows the behavior of DivideMix over training epochs in
presence of 0.2 asymmetric labelling noise. In the experiments, 13
of 14 subjects are included in the training data and the remaining
subject is used in testing. The warm-up phase ends at 30 epochs.
As shown in Fig. 3a, test accuracy increases quickly during the
warm-up phase indicating that the model can learn despite label
noises. However, after the warm-up phase, the test accuracy drops
drastically and fluctuates between 45% and 60% after 60 epochs. A
closer look at the division between labeled and unlabeled data in the
training set is in Fig. 3b. It reveals that despite only 20% of the data
samples being labeled incorrectly, DivideMix gradually converges
to split the data approximately 81-19 or 61-39. As a result, some
clean labeled data is classified as unlabeled and fail to contribute as
much to the training process.

(a) Test accuracy (b) Division of clean and noisy
labeled data

Figure 3: The performance of DivideMix on USCHAD in
leave-one-subject-out experiments.

To shed the light on why DivideMix fails in these experiments,
further analysis is in order. First, we inspect the effect of mem-
orization. Deep neural network models are known to have the
propensity for fitting training data including outliers or mislabeled
data. However, it has been empirically demonstrated that such a
memorization phenomenon tends to happen at a late stage of train-
ing [2, 22]. In early training epochs, the model prioritizes learning
simple patterns. To test if this hypothesis is true for HAR tasks,
we show in Fig. 4 the breakdown of training samples among five
categories. Specifically, a data sample that is correctly labeled can
be either correctly or wrongly predicted by the trained model up
to the associated epoch. For a data sample that is wrongly labeled,
three situations may arise: i) its prediction is the same as the ground
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truth label (correct), ii) its prediction is the same as the wrong la-
bel (memorized) or iii) otherwise, i.e., its prediction is neither the
ground truth label nor the wrong label. From Fig. 4, even after a
few epochs, memorization is non-negligible, especially in the case
of asymmetric noise. When a noisy label is memorized, the model
has high confidence in its wrong prediction.

Figure 4: Results of the DivideMix model on USCHAD with
0.2 asymmetric noise. Left: the fraction of clean labeled
samples that are predicted correctly (green) and incorrectly
(blue). Right: the fraction of samples with wrong labels that
are predicted correctly (green), memorized (red), and incor-
rectly as neither the true nor the labeled class (blue).

(a) Distribution of
normalized losses

(b) Partition of data
predicted as clean

(c) Partition of data
predicted as noisy

Figure 5: Effects of subject diversity on early learning. Plots
are generated on a model trained on Subject 2 – 14 in
USCHAD with 0.2 asymmetric noise and after 30 epochs of
warm-up training in DivideMix.

We believe the root cause of early memorization and the conse-
quent failure of DivideMix in HAR tasks is due to the large vari-
ability across subjects when performing the same activity. Subject
diversity is a well-recognized problem in IMU-based HAR [6]. How-
ever, the problem is exacerbated when noisy labels are present. In
Fig. 5, we show the normalized cross-entropy losses for Subject 2 –
14 in the training data and the division of clean and noisy labels
for each subject in DivideMix after a 30-epoch warm-up period.
Clearly, the normalized losses (Fig. 5(a)) no longer follow a two-
component GMM. Instead, they are better modelled by a mixture
of three or more components. Inspecting the division of labelled
and unlabeled data for each subject by DivideMix, we find that
some data presumed to be clean is in fact noisy (Fig. 5(b)) while a
portion of presumably noisy data is in fact clean for each subject
(false noisy in Fig. 5(c)). Some subject (e.g., Subject 14) appears to be
penalized with a higher percentage of clean data being mislabeled
as unlabeled by DivideMix. More than 10% of Subject 14’s clean
data is misclassified as noisy (due to high normalized losses).

Fig. 6 shows the case when training DivideMix on data from
one subject with 0.2 asymmetric labeling noise. We train the model

(a) Distribution of
normalized losses (b) Test accuracy

(c) Division of clean
and noisy labeled
data

Figure 6: Performance of DivideMix on a single subject (sub-
ject id: 2). (a) is generated after the warm-up phase, while
(b) and (c) are generated on the full training process of a Di-
videMix model.

using data from 4 trials of the subject and test with the remaining
trial. To avoid overfitting, the network size of DeepConvLSTM is
reduced by retaining only two CNN layers and one LSTM layer
with a total of 56k trainable parameters. The distributions in Fig. 6
can indeed be modeled as 2-component GMM following the basic
assumption of DivideMix and thus can be correctly handled by the
method (results omitted for brevity). Comparing the results from
Fig. 6 with Fig. 5(a) and Fig. 3, it is clear that DivideMix works
reasonably well on data from a single subject but failed in the case
of multiple subjects. Therefore, it is reasonable to conclude that the
discrepancy is due to the domain gaps in multi-subject data.

Though our analysis focuses on DivideMix, other categories
of LNL methods such as ELR [22] and CDR [43] make the same
assumptions that high-confidence labels in early training stages
are more trustworthy. Unfortunately, as evident from the empirical
analysis in this section, such assumptions no longer hold in presence
of diverse subject data in HAR tasks.

3 METHOD
Let the input and label spaces beX andY, respectively. Due to high
subject diversity in HAR tasks, each subject in the training set is
treated as a separate source domain in the joint space X×Y. In the
rest of the paper, we use “domain" and “subject" interchangeably.
Let D𝑘 = {(𝑥𝑘𝑛 , 𝑦𝑘𝑛 )}

𝑁𝑘

𝑛=1, where 𝑁𝑘 is the number of data samples
from subject 𝑘 and 𝑦 denotes noisy labels. The source domains
are denoted by D𝑠 = {D1,D2, ...,D𝐾 }, where 𝐾 is the number
of subjects. We further assume that a small collection of clean
labeled samples can be obtained for an unseen subject 𝑡 denoted
by D𝑡 = {(𝑥𝑛, 𝑦𝑛)}𝑀𝑛=1. The goal of HAR from data in-the-wild is to
learn a model from D𝑠 that can either be easily adapted to a new
target domain given D𝑡 , or be used to correct the wrong labels in
D𝑠 .

Motivated by the observations from Section 2, we propose VALE-
RIAN, a one-step method that handles noisy labels and distribution
gaps across multiple source domains simultaneously. Our solution
is based on two key insights: i) unsupervised learning that aims
to learn representations invariant to instance-level variations is
not affected by noisy labels; and ii) within each source domain,
clean data tends to exhibit simpler patterns (than wrongly labelled
data), which can be learned in early training epochs. Moreover, we
assume that in absence of noisy labels, there exist domain-invariant
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Figure 7: An overview of VALERIAN training procedure. Step 1: Data transformation. Step 2: self-supervised training. Step 3
and 4: alternating training.

features across subjects in HAR tasks. This assumption has been
empirically verified in prior work [12]. After model training, VALE-
RIAN can be used in both cleaning noisy labels in the training data
and enabling fast adaptation to a new subject from a small amount
of clean labeled data (Fig. 7).

3.1 Solution overview
VALERIAN takes advantage of known techniques in machine learn-
ing but combines them in innovative ways. It has three key building
blocks: i) self-supervised pre-training, ii) invariant feature learning
from noisy labelled data, and iii) fast adaption to unseen subjects.

Self-supervised pre-training takes unlabeled data and performs
data augmentation to pre-train feature extractor that captures struc-
tures of underlying distributions. Invariant feature learning in VA-
LERIAN has two objectives: 1) to learn shared feature represen-
tations across domains and 2) to combat the memorization effect
introduced by noisy labels. To do so, we adopt a multi-task learn-
ing model for domain invariant feature learning which was first
proposed in [12]. The model consists of a shared feature extractor
across multiple source domains and multiple task-specific output
layers. To counter the effect of noisy labels, we introduce a regu-
larization term similar to ELR in the loss function during training.
Finally, for a new subject with a small amount of clean data, fast
adaption is performed on one of the task-specific layers only.

Algorithm 1 summarizes the training procedure of VALERIAN.
Next, we will provide the details of each building block.

3.2 Self-supervised pre-training
In [14], the authors find that a ResNet pre-trained on ImageNet
datasets appears to work consistently better than random initialized
ones as a feature extraction network for LNL image classification
tasks. Inspired by this, we pre-train a feature extractor network

by removing the labels in HAR datasets. It is thus natural to con-
sider feature learners that require no label information, such as
contrastive learning [7] or self-supervised learning. Self-supervised
learning is a machine learning method that learns semantic fea-
tures from unlabeled data with customized tasks [9]. As there is no
ground truth label, to leverage of this technique, data augmentation
techniques and auxiliary tasks need to be introduced. In [30], Saeed
et al. introduce various data transformations and train a multi-task
model to classify the type of transformation applied. The features
extracted from the IMU data embed information regarding natu-
ral human motion while the transformed ones introduce different
degrees of distortion. Trained to classify the type of transforma-
tion applied, a neural feature extractor learns to represent human
motion more accurately and obtains more meaningful discrimi-
native features. We adopt the same idea and apply the following
transformations:

(1) Noised: it adds random Gaussian noise to the original data
samples.

(2) Scaled: this transformation changes the magnitude of data
samples within a sliding window by multiplying with a ran-
dom scalar.

(3) Rotated: this transformation mimics different sensor orienta-
tions by multiplying the original data with a rotation matrix
of randomly generated axis-angle.

(4) Negated: this transformation negates samples within a time
window, resulting in a vertical or a horizontal flip of the
original input signal.

(5) Reversed: it reverses the data along the time-axis, resulting
in a complete mirror image of the original input.

(6) Permuted: sensor signals are randomly sliced and swapped
within a data window.
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Algorithm 1 Invariant feature learning for in-the-wild domain
adaptation

Require: Source domains D𝑠 = {𝐷𝑘 }𝐾𝑘=1, learning rate 𝛾 , hyper-
parameters 𝛼, 𝛽, 𝜆, 𝜇

Ensure: VALERIAN model with parameter 𝜃 and 𝜙
1: Initialize 𝜃 with self-supervised pretrain
2: Random initialize 𝜙 = {𝜙1, 𝜙2, ..., 𝜙𝐾 }
3: Initialize ensemble predictions 𝑡 ← 0[𝑛×𝐶 ]
4: repeat
5: Sample tasks 𝑇 = {𝑇1,𝑇2, ...,𝑇𝐾 } over D𝑠
6: //Update 𝜙𝑘 with fixed 𝜃
7: for 𝑘 is 1 to 𝐾 do
8: Freeze parameters of 𝜙 except 𝜙𝑘
9: for each minibatch B in 𝑇𝑘 do
10: for (𝑥𝑖 , 𝑦𝑖 ) in B do
11: 𝑝𝑖 ← 𝑆𝜙𝑘 (𝐿𝜃 (𝑥𝑖 ))
12: 𝑡𝑖 ← 𝛽𝑡𝑖 + (1 − 𝛽)𝑝𝑖
13: end for
14: end for
15: L𝑜𝑠𝑠 ← L𝐶𝐸 (𝑇𝑘 , 𝜃 ;𝜙𝑘 ) + 𝜇 |𝜙𝑘 |1 + 𝜆

|𝐵 |
∑
log(1 − ⟨𝑝𝑖 , 𝑡𝑖 ⟩)

16: 𝜙𝑘 ← 𝜙𝑘 − 𝛾∇𝜙𝑘L𝑜𝑠𝑠 (𝑇𝑘 , 𝜃 ;𝜙𝑘 )
17: end for
18: //Update 𝜃 with fixed 𝜙
19: for each minibatch B in 𝑇 do
20: 𝐵′ = 𝑀𝑖𝑥𝑢𝑝 (𝐵, 𝛼)
21: for (𝑥𝑖 , 𝑦𝑖 ) in B’ do
22: 𝑝𝑖 ← 𝑆𝜙 (𝐿𝜃 (𝑥𝑖 ))
23: 𝑡𝑖 ← 𝛽𝑡𝑖 + (1 − 𝛽)𝑝𝑖
24: end for
25: end for
26: L𝑜𝑠𝑠 ← L𝐶𝐸 (𝑇, 𝜙;𝜃 ) + 𝜇 |𝜙 |1 + 𝜆

|𝐵 |
∑
log(1 − ⟨𝑝𝑖 , 𝑡𝑖 ⟩)

27: 𝜃 ← 𝜃 − 𝛾∇𝜃L𝑜𝑠𝑠 (𝑇, 𝜙;𝜃 )
28: until convergence

(7) Time-Warped: it mimics the change of motion frequency by
locally stretching or warping a time series through a smooth
distortion of time intervals.

(8) Channel-Shuffled: it randomly shuffles sensor data in axial
dimensions.

One or several of these transformations (called pretext tasks) are ap-
plied to each data window of each sensor separately (accelerometer
and gyroscope). Each head of the multitask learning model corre-
sponds to a binary classifier. By learning whether a certain type
of transformation has been applied to the original data samples,
the feature extractor portion of the network captures high-level
semantic information that is invariant to these transformations and
thus beneficial to downstream tasks.

3.3 Domain invariant feature learning
Self-supervised learning alone is insufficient to handle domain
gaps among subjects. Moreover, data labels are necessary to fine
tune model parameters for downstream tasks. To generalize well to
unseen subjects, we utilize the invariant feature learning framework

(IFLF) from [12] but modify it to work with LNL. It consists of three
components:

Alternating training An IFLFmodel is amulti-taskmodel trained
with tasks sampled from all source domains. Each subject has its
individual task-specific layer 𝑆𝜙𝑘 but shares a common feature
extractor network 𝐿𝜃 . If the model is trained by simply iterating
among tasks sampled from D1 to D𝐾 , catastrophic forgetting may
occur[17], namely, a model forgets previously learned tasks, and can
only work properly on newly learned tasks. To avoid catastrophic
forgetting, the alternating training strategy is employed from [18],
to update 𝐿𝜃 and 𝑆𝜙𝑘 separately. In each training epoch, we first
freeze the parameters of the feature extractor network, and update
the parameters of each task-specific layer with its respective data;
then, we freeze the parameters of all task-specific layers and update
the invariant feature extractor using all data from the previous step.

Feature extractor By the merit of multi-task learning, 𝐿𝜃 gen-
eralizes well across domains through the shared representations
among related tasks [29]. For HAR tasks, we use DeepConvLSTM
[26] as the backbone network. It includes four CNN layers and two
LSTM layers.

The objective function ℓ𝐿 works on multiple source domains to
learn a domain invariant feature representation that clusters the
features by their labels. It is defined as follows:

ℓ𝐿 =

𝐾∑︁
𝑘=1

L𝐶𝐸 (𝑇𝑘 , 𝜙𝑘 ;𝜃 ), (1)

where L𝐶𝐸 is the categorical cross-entropy loss function calculated
on each 𝑇𝑘 with given 𝜃 and 𝜙 , defined as L𝐶𝐸 = −∑𝐶𝑖=1 𝑦𝑖𝑙𝑜𝑔(𝑝𝑖 )
on data from each task 𝑘 . We call such a multi-task model basic
multi-task learning model (BMTL). To further boost the quality of
extracted features, we use self-supervised pre-train as described in
Section 3.2 to initialize the model parameter 𝜃 .

Task-specific networks Generally, if the shared feature general-
izes well across all source domains, it also works well on the target
domain. 𝐿𝜃 needs to have sufficient capacity to explore the entire
latent spaceZ and extract domain invariant features. In contrast,
a task-specific network 𝑆𝑘

𝜙
should be as simple as possible with

fewer learnable parameters to allow fast adaptation with target
domain data. In the implementation, a lightweight task-specific
layer 𝑆𝜙𝑘 includes a fully connected layer with a softmax activation
function. The task-specific objective function is defined as the sum
of a categorical cross-entropy loss and an ℓ1-norm regularization
term as follows,

ℓ𝑆𝑘 = L𝐶𝐸 (𝑇𝑘 , 𝜃 ;𝜙𝑘 ) + 𝜇 |𝜙𝑘 |1, 𝑘 = 1, 2, . . . , 𝐾, (2)

where 𝜇 is a hyper-parameter to control the sparsity of 𝑆𝑘
𝜙
. The

regularization term imposes sparsity on the task-specific layers and
helps mitigate overfitting.

3.4 Learning with noisy labels
With the multitask learning model introduced previously, we can
get the best of both worlds: shared network parameters for feature
extraction for all subjects and subject-dependent output layers. As
a result, the underlying assumption of dominant LNL methods
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is that in early training epochs, each subject-dependent model
tends to incur low losses (higher confidence) on clean data and
large losses on mislabeled data are likely to hold. To handle noisy
labels, in principle, we can incorporate any existing LNL method
in the invariant feature learning framework. However, we find that
DivideMix has high training costs due to its use of two networks
in co-teaching and co-refinement. When combined with invariant
feature learning, its complexity grows linearly with the number of
source domains. Therefore, in VALERIAN, we use ELR to counter
memorization effects by forcing model predictions to be close to
their temporal ensemble. An ELR loss is defined as :

L𝑒𝑙𝑟 =
1

|𝐵 |

|𝐵 |∑︁
𝑖=1

log (1 − ⟨𝑝𝑖 , 𝑡𝑖 ⟩) , (3)

where 𝑝𝑖 is the model output of input sample 𝑥𝑖 , and 𝑡𝑖 = 𝛽𝑡𝑖 +
(1− 𝛽)𝑝𝑖 is the temporal ensemble controlled by hsyper-parameter
𝛽 . (3) maximizes the inner product of 𝑝𝑖 and 𝑡𝑖 , and the logarithm
in L𝑒𝑙𝑟 inverts the exponential function implicit in the softmax
function in 𝑝𝑖 .

MixUP [49] is a simple yet effective data augmentation tech-
nique in improving model generalization capabilities [44]. In HAR
tasks, we can mix up data samples from the same activity class
but different subjects. To apply Mixup data augmentation, each
data sample of a mini-batch is interpolated with another sample
randomly chosen from a different source domain but belongs to
the same class. Specifically, for a pair of samples (𝑥1, 𝑦) ∈ D𝑖 and
(𝑥2, 𝑦) ∈ D𝑗 , the mixed data sample (𝑥 ′, 𝑦) is computed by:

𝑎 ∼ 𝐵𝑒𝑡𝑎(𝛼, 𝛼), (4)
𝑎′ =𝑚𝑎𝑥 (𝑎, 1 − 𝑎), (5)

𝑥 ′ = 𝑎′𝑥1 + (1 − 𝑎′)𝑥2 (6)
where 𝑎 is the MixUp factor sampled from a 𝐵𝑒𝑡𝑎 distribution con-
trolled by hyper-parameter 𝛼 . Finally, the total losses in (1) and (2)
are updated as:

L𝑜𝑠𝑠𝐿 = ℓ𝐿 + 𝜇 |𝜙 |1 + 𝜆L𝑒𝑙𝑟 , (7)

L𝑜𝑠𝑠𝑆𝑘 = ℓ𝑆𝑘 + 𝜆L𝑒𝑙𝑟 , 𝑘 = 1, 2, . . . , 𝐾, (8)
where 𝜆 is a hyper-parameter to control the importance of ELR. It is
worth noting that the loss is calculated differently in the alternating
training procedure as 𝐿𝜃 includes all source domains while 𝜙𝑘 only
concerns the data of the 𝑘th subject. MixUp augmentation is only
used in updating the feature extraction layers (𝐿𝜃 ).

3.5 Applications of VALERIAN
3.5.1 Label correction. After learning the domain invariant fea-
tures from a noisy training set, VALERIAN is capable of relabeling
the training samples close to their ground truth activities. For a
(noisy labeled) data sample (𝑋,𝑦) from subject 𝑘 , the prediction 𝑦𝑘
of task-specific layer 𝑆𝜙𝑘 is taken as the new label for the sample.

3.5.2 Fast adaptation to new subjects. Since the network param-
eters in task-specific layers are already sparse, for a new subject,
one can either initiate a new task-specific layer from scratch or
randomly select a 𝑆𝜙𝑘 to update its trained parameters. A small
amount of clean data is taken from D𝑡 to train the task-specific
layer.

4 PERFORMANCE EVALUATION
4.1 Datasets
We consider four publicly available datasets to cover a wide vari-
ety of device types, data collection protocols, and activity classes
for recognition. Because the evaluation of machine learning mod-
els requires the availability of clean ground truth labels, the first
two datasets, USCHAD and WISDM [41] were collected under
controlled laboratory environments. To simulate labelling errors,
symmetric or asymmetric noise is injected into the labels with dif-
ferent noise transition matrices. WISDM contains a large number
of subjects. Raw accelerometer and gyroscope data were collected
from a smartphone in each participant’s pants pocket at a rate of
20Hz. There are a total of 51 test subjects performing seven lo-
comotion activities (i.e., walking, jogging, stairs, sitting, standing,
kicking a soccer ball, playing tennis) for three minutes per trial to
achieve equal class distribution.

The third and fourth datasets, ExtraSensory and RealWorld, allow
us to gauge VALERIAN’s ability to handle real in-the-wild data. In
ExtraSensory, crowdsourced mobile phone data are collected from
60 subjects during daily living activities. In the evaluation, we
only consider six locomotion-related activities, namely, walking,
running, cycling, sitting, standing and lying down. In the absence
of ground truth labels, we take instead the curated data labels
as ground truth. However, as discussed in Section 2, the curated
data remains to be noisy. Moreover, ExtraSensory also suffers from
severe class imbalance and missing class issues (only nine out of 60
subjects have data from all six classes in the dataset).

4.2 Baseline methods
Five baseline models have been implemented for comparison.

• Single-task learning model (STL): STL is trained from scratch
solely on the clean data from a target domain (a new subject).
As the number of clean data increases, it is expected STL’s
performance to improve since there is no label noise.
• Basic multi-task learning model (BMTL): Similar to VALE-
RIAN, BMTL is a multi-task learning approach trained with
noisy source domains and adapted to a target domain with a
small number of clean labels. However, unlike VALERIAN,
BMTL does not perform self-supervised pre-training and
treats all training data as if it were clean.
• Subject-independent model with cross-entropy losses (SI): It
pools all but test subjects’ data to train a single subject-
independent model and treats all training data as clean.
• Subject-independent model with ELR (SI-ELR): It is a subject-
independent model trained by pooling all but test subjects’
data together. Unlike SI, it utilizes ELR to combat noisy labels.
Additionally, we denote by SI-ELR-best the best-performing
model (based on clean validation data) saved after the train-
ing epochs. Note, in practice, we cannot decide when to stop
training to obtain SI-ELR-best with truly noisy data, and
thus its results are presented for reference only.
• Butterfly [21]: It is a joint LNL and domain adaptationmethod,
which treats all but test subjects’ data as a single source do-
main. It takes all unlabeled data samples from a target do-
main together with noisy labeled source domain data to train
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a model. Butterfly maintains four deep networks simultane-
ously, two for adaptations (i.e., noisy-to-clean, labeled-to-
unlabeled, and source-to-target domains) and the remaining
two for classification in the target domain.

STL, BMTL and VALERIAN are all supervised domain adaptation
methods and utilize some data from the target domain. In contrast,
SI and SI-ELR do not require any target domain data. Butterfly
on the other hand includes unlabeled target domain data during
training and thus no transfer learning is done at inference time
using labeled target domain data.

4.3 Implementation and evaluation procedure
Data preparation A standard IMU data pre-processing procedure
is implemented for the experiments, including interpolation, low-
pass filtering, normalization, and data segmentation. A Butterworth
low-pass filter [5] with a cut-off frequency of 10Hz is employed to
remove high-frequency noise from interpolated data. After low-pass
filtering, we normalize the data and then segment it into sliding
windows with a fixed length of 2 seconds with an 80% overlap
between adjacent windows.

Implementation The implementation of the feature extractor
follows DeepConvLSTM in all models. It includes four layers of 1D
CNN and two LSTM layers with 128 hidden units and a dropout
rate of 0.25 to prevent over-fitting [33]. The CNN layers have 64
channels with kernel size 5 and stride 1.

For STL, the models are trained with a RMSProp optimizer [3] at
a learning rate of 10−3 and a decay factor of 𝑝 = 0.9. The maximum
iteration number is set to be 500. The SI models are trained with 200
epochs only, as the memorization effect will gradually degrade the
model performance in latter training epochs. Butterfly and ELR are
trained using hyper-parameters as specified in the original papers.
VALERIAN utilizes DeepConvLSTM in 𝐿𝜃 while the number of 𝑆𝜙𝑘

branches is determined by the number of subjects in the training
data. Each 𝑆𝜙𝑘 may have a different output shape depending on
the number of classes in the dataset for the corresponding subject.
VALERIAN is trained with an Adam [16] optimizer at a learning
rate of 10−4, 𝛽1 = 0.9, 𝛽2 = 0.999, with hyper-parameters 𝜇 = 0.4,
𝛼 = 0.2, 𝛽 = 0.7, and 𝜆 = 3. The batch size is set to 64 and the
number of training epochs is 300 without early stopping. The hyper-
parameters and the optimizer used in each model are consistent
across all datasets.

Evaluation process In evaluating the two use cases of VALERIAN,
we present the performance of label correction only on the two
controlled datasets with artificially added noise as their ground
truth labels are available. For domain adaptation to an unseen
subject, results are presented on all four datasets.

Artificially injecting noise to clean labeled data is commonly
used in evaluating LNL methods. For the controlled datasets, we
consider two noise patterns with four levels each, namely, symmet-
ric noise with 𝜏 = {0.1, 0.2, 0.4, 0.6} and asymmetric noise with
𝜏 = {0.1, 0.2, 0.3, 0.4}. The noise transition matrices for asymmet-
ric ones are then defined according to Fig. 8. From Section 2, we
have seen that LNL with asymmetric noises is generally harder
than that with symmetric noises. For example, when 𝜏 = 0.4 and
the number of classes𝐶 = 10 under asymmetric noise, roughly 60%

of data in each class is correctly labeled while the remaining 40% is
labeled to another class. As a result, the percentage difference be-
tween correctly and wrongly labeled data is only 20%. In contrast, in
the symmetric noise cases, the percentage gap is 60 − 40

9 ≈ 55.6%

(since the percentage of the wrongly labeled class is 40
9 ). Therefore,

for asymmetric noise, the maximum 𝜏 is set to 0.4 but in the case of
symmetric noise, the maximum 𝜏 is set to to 0.6. In the experiments,
to better simulate real-world noise patterns, the noise transition
matrices of asymmetric noise are defined by setting the probability
of the most similar class of each activity to 𝜏 , as shown in Fig. 81.

Figure 8: Noise transition matrix 𝑇 with asymmetric noise
for USCHAD (Left) and WISDM (Right), 𝜏 = 0.1.

Leave-one-subject-out evaluation is conducted on all four datasets.
In the experiments, we randomly select one subject as the target
domain at a time, until all subjects are chosen. In Butterfly, we
evaluate it in a way described in the original paper [21] and take
75% of unlabeled target samples for training and the remaining for
testing. Experiments are repeated five times for each parameter
setting, and the average test accuracy and its standard deviation
are reported.

4.4 Results
4.4.1 Label Correction for Source Domain. In this experiment, we
evaluate the label correction accuracy and the overall accuracy of
source domain data using the two controlled datasets with artifi-
cially injected symmetric and asymmetric noise. Here, we consider a
wrongly label sample as a positive sample and thus recall is defined
as the ratio between the number of correctly predicted samples that
were previously wrongly labeled and the total number of wrongly
labeled samples.

Fig. 9 shows the recall rates of different approaches. It can be
observed that VALERIAN outperforms all baseline methods by a
large margin in all cases and can correct as high as 93% of labelling
errors when the noise level is 10%. At high noise levels, e.g., 40%
asymmetric noise, its performance dropped to around 75%. SI and
SI-ELR have similar performance, both upper bounded by BMTL as
they ignore the domain gap among training subjects. Interestingly,
Butterfly performs the worst. This can be attributed to the fact that
Butterfly treats data from different subjects as a single domain.

Fig. 10 shows the training accuracy for different methods. Bene-
fiting from high recall rates of noisy data, VALERIAN achieves the
best training accuracy among all. Note that the prediction errors
in this setting include both mis-prediction of wrongly labeled data
1The most similar class is determined by the confusion matrix of a model trained on
clean data.
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(i.e., memorization) and that of correctly labeled data in the train-
ing data, which can be due to the inherent limitation of the model
architecture and uncorrected noisy labels.

Figure 9: The recall rates of differentmethods onnoisy train-
ing data.

Figure 10: The training accuracy of different methods on
noisy training data.

4.4.2 Domain Adaptation with Clean Labeled Target Domain. First,
we present the evaluation results on controlled datasets where clean
data from unseen subjects is available. As the case of symmetric
noise is simpler, we only present results from asymmetric noise
due to space limit.

Overall performance Fig. 11 and 12 show the results onUSCHAD
and WISDM with asymmetric noise of different levels, respectively.
From these figures, we observe that VALERIAN works well and its
performance is quite stable across different noise levels and types of
noise in both datasets. As STL is trained entirely on clean data from
D𝑡 , its performance is not impacted by noise patterns and levels. As
more clean data become available, the performance of STL serves as
an upper bound of LNL models. From the figures, we see that with
20 shots, VALERIAN has comparable or slightly worse performance

Figure 11: Evaluation on USCHAD with different levels of
asymmetric noise and different numbers of data windows
per activity class from D𝑡 . The test accuracy and standard
deviation are averaged across all subjects in leave-one-out
experiment.

Figure 12: Evaluation on WISDM with different level of
asymmetric noise and different numbers of data windows
per activity class from D𝑡 . The test accuracy and standard
deviation are averaged across all subjects in leave-one-out
experiment.

than STL. However, with a smaller number of target domain data,
VALERIAN learns more efficiently. For example, with five shots,
the average accuracy of VALERIAN for UHSCHAD and WISDM
across all noise levels and patterns are 84.35 and 83.87, respectively,
which are superior than BMTL (78.71 and 78.46) and STL (75.26
and 77.20). As the noise level increases, the accuracy of VALERIAN
degrades slightly as expected. However, even with 40% symmetric
noise, it can achieve an average accuracy of 81.99% for USCHAD
for 5-shot learning, amounting to less than 3% reduction compared
to the case with 10% symmetric noise. Similar observations can be
made for asymmetric noise and WISDM.

Comparison with other LNL methods Table 2 summary the
results of SI-ELR and Butterfly. For comparison, we also include
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Table 2: Results of methods that are not designed for few-
shot learning on UHCHAD and WISDM, when 5 clean la-
beled samples per class are available from the target domain.
Report with test accuracy in (%).

Method/Noise ratio 10% 20% 30% 40%
SI 74.26 ± 16.07 73.44 ± 13.57 68.66 ± 13.56 65.35 ± 14.31
SI-ELR-best 77.84 ± 15.41 70.48 ± 17.38 69.71 ± 20.43 58.49 ± 13.17
Butterfly 65.14 ± 15.25 52.44 ± 25.51 41.96 ± 28.15 37.89 ± 15.06
VALERIAN 85.71 ± 6.65 84.88 ± 8.11 84.81 ± 8.82 83.68 ± 8.18
(a) Results on USCHAD dataset with four levels of artificially added
asymmetric noise patterns in data labels.

Method/Noise ratio 10% 20% 30% 40%
SI 58.66 ± 17.36 56.81 ± 15.29 53.10 ± 13.73 48.38 ± 11.36
SI-ELR-best 66.15 ± 11.46 65.23 ± 8.85 58.59 ± 11.91 55.10 ± 9.66
Butterfly 57.98 ± 14.66 36.75 ± 13.23 24.47 ± 15.36 14.30 ± 1.43
VALERIAN 84.85 ± 8.73 84.41 ± 6.53 83.71 ± 8.01 82.63 ± 7.98
(b) Results on WISDM dataset with four levels of artificially added
asymmetric noise patterns in data labels.

the results of SI to further demonstrate that LNL methods can be
harmful if applied naively. SI, SI-ELR and VALERIAN are tested
with 5-shot learning while Butterfly is a unsupervised domain
adaptation method, which already sees unlabeled target data during
model training.

From Table 2, it is clear that none of the three methods per-
forms well in HAR with noisy labels. The vanilla SI model does
not explicitly handle subject divergence nor label noises. Its per-
formance degrades as the noise ratio 𝜏 increases. In comparison,
SI-ELR ignores subject divergence and deals with noisy labels us-
ing a regularization term. Though designed to handle label noise,
SI-ELR-best has worse performance than SI when the asymmetric
noise level is greater than 10%. The results are consistent with our
observations with DivideMix in Section 2 and reveal that subject
diversity harms ELR’s ability to combat label noises. SI-ELR fares
moderately better for asymmetric noise. However, with 40% noise,
SI-ELR-best is 7% worse than SI and 25% worse than VALERIAN in
USCHAD.

Butterfly on average has worse accuracy than SI and SI-ELR-best
and performs poorly as the noise level increases in both datasets.
This is in part due to the fact that Butterfly uses unlabeled target
domain data at training time while SI and SI-ELR-best benefit from
transfer learning with a few shots of clean labeled data at inference
time. However, the difference in accessing target domain labels
does not justify the large variance in Bufferfly’s test accuracy on
USCHAD as shown in Table 2. As an example, with 0.3 asymmetric
noise, its highest test accuracy is 70.11% when subject 7 is in the
test set, whereas its lowest accuracy is 13.8% for test subject 8. We
believe that the poor performance of Butterfly is because it treats
different subjects in the training set as a single domain.

Ablation Study To see how each component contributes to the fi-
nal performance of VALERIAN, an ablation study was conducted on
the USCHAD dataset with 5-shot learning and 0.4 asymmetric noise.
Similar results could be expected for other noise settings or datasets.
As shown in Table. 3, the domain invariant feature learner plays
the most important role in VALERIAN. Without IFLF, VALERIAN
degrades to an ELR model and fails to deal with subject divergence.

Table 3: Ablation study of VALERIAN on USCHAD with 0.4
asymmetric noise.

Method Test Accuracy
VALERIAN 83.68 ± 8.18
VALERIAN w/o ELR 76.55 ± 6.69
VALERIAN w/o self-supervised pre-train 79.28 ± 7.37
VALERIAN w/o MixUp 77.69 ± 2.34
VALERIAN w/o IFLF 60.18 ± 10.35

Moreover, in absence of a dedicated meta-learning strategy, it is
insufficient to update parameters of the whole model by only a few
clean labeled data samples. As a result, a large standard deviation
in test accuracy is observed. MixUp contributes a ∼ 6% accuracy
to the overall solution, empirically demonstrating its usefulness in
improving model generalization in HAR tasks with noisy labels.
Inclusion of ELR in VALERIAN leads to ∼ 7% improvement. Recall
the poor performance of ELR alone in Table 2. The results speak
unequivocally for the need to combine LNL and meta-learning to
handle subject diversity. Lastly, we find that self-supervised pre-
train contributes ∼ 4% test accuracy.

4.4.3 Domain Adaptation on Noisy Labeled Target. Next, we com-
pare the performance of VALERIAN, BMTL and STL on two noisy
labeled datasets: ExtraSensory and RealWorld, which are in the wild
datasets. Considering the data imbalance and class missing issue,
we take F1-Score rather than accuracy as metrics to evaluate model
performance here. Note that since the ground truth labels from
curated data are noisy, the quantitative results need to be taken
with a grain of salt. To generate t-SNE plots, we randomly selected
one subject from each dataset and cleaned its labels manually.

Fig. 13(a) shows the F1-Score of the three models with gradually
increasing the number of data windows on ExraSensory . Com-
pared to results with the two controlled datasets, all methods show
their worst performance. This can be attributed to the noisy target
domain labels during fast adaption or learning STL model. The
large standard deviation in STL results even with 20-shots indicates
either label noise in target domain data or noise in ground truth or
both. In fact, for many of the subjects, the training and validation
set is not i.i.d due to data noise, resulting in a validation accuracy
jumping back and forth between training epochs. However, VALE-
RIAN still outperforms the other two methods in all cases tested.
To see if VALERIAN can indeed learn good features from noisy
data, we show in Fig. 13(c) the t-distributed stochastic neighbor
embedding (t-SNE) plot of the outputs of its feature extraction net-
work. Clearly, the classes are well separated. This is in contrast
with overlapping among classes in 13(b), which shows the t-SNE
plot of the outputs from the feature extraction network in BMTL.

Similar observations can be made for RealWorld. With BMTL,
the t-SNE plot in Figure 14(b) shows closeness (and thus likely
mislabeling) between running and walking, standing and climbing
up, climbing down and walking activities. In comparison, clusters
generated by VALERIAN are better separated.
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(a) F1-Score.
(b) t-SNE plot of features in BMTL.

(c) t-SNE plot of features in VALERIAN.

Figure 13: Evaluation on ExtraSensory with different the number of data windows per activity class from D𝑡 . The mean and
standard deviation F1-Scores are averages across all subjects in leave-one-out experiment. t-SNE are generated on a random
subject (id:4FC32141-E888-4BFF-8804-12559A491D8C) with data from all six classes.

(a) F1-Score.
(b) t-SNE plot of features in BMTL. (c) t-SNE plot of features in VALERIAN.

Figure 14: Evaluation on RealWorld with different the number of data windows per activity class from D𝑡 . The mean and
standard deviation F1-Scores are averages across all subjects in leave-one-out experiment. t-SNE are generated on a random
subject (id:3) with data from all eight classes.

5 RELATEDWORK
Learning with noisy labels LNL has been investigated in com-
puter vision and audio signal processing for over a decade [10, 32].
Existing methods can be categorized into three groups. First, con-
trastive learning-based LNL methods [45, 47] add regularization
terms to the loss function to obtain a well-clustered feature struc-
ture. Second, curriculum learning [4, 23] or teacher-student net-
works such as MentorNet [15] trains a neural network to guide
a student network by assigning weights to samples. Since the pi-
oneer co-teaching work [11], the use of two networks together
gains popularity in LNL and has been adopted in several recent
papers including DivideMix [20], ELR+ [22], co-regularization [40]).
Instead of training a model that works on the noisy labeled samples,
another line of work aims to select clean labeled samples out of
noisy ones [24, 51]. Despite all the advancements in LNL, none of
the afore-mentioned work considers domain gaps between source
and target domains (also known as domain shifts).

Weakly-supervised learning in sensor-based HAR There are
some works in mobile computing that deal with weakly-supervised
learning problems related to sensor-based HAR [13, 38, 39]. Wang

et al. in [38, 39] define weakly-supervised learning as detecting the
start and end of an activity of interest in a given time-series data
sequence, similar to the sound event detection problem[1, 8, 19].
Unlike our problem, the goal is to crop the data of interest from
a noisy sequence for training so that a machine learning model
can gain a better discriminative power. For instance, consider a
collected climbing up IMU data trial with two activities: climbing
upstairs and walking on the flat ground. Wang et al. treat walking
as a background activity and try to detect the onset and offset
timestamps of climbing upstairs events. In contrast, in this work,
we treat the data within such a trial as a mixture of climbing up
and noisy labeled walking activities. Apart from the different ways
of treating label noises, existing works still require further steps to
handle subject diversity within the training process to generalize
well to new unseen subjects.

Joint LNL and domain adaptation A few works consider LNL
together with domain shifts. Shu et al. in [31] considered noise ei-
ther in data or label of a single source domain and perform weakly-
supervised model training to adapt to a target domain. In [21, 48]
researchers propose one-step solutions to LNL and unsupervised
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domain adaptation. However, these methods have been applied to
image classification tasks, where there is only a single source do-
main. Thus, the authors only consider the domain shift between one
source domain and one target domain. In contrast, in our work, we
need to take into account domain shifts amongst multiple source do-
mains, namely, different human subjects. As discussed in Section 2,
subject diversity in training data prevents conventional LNL meth-
ods from working effectively since early learning can inadvertently
memorize noisy data.

6 CONCLUSION
In this paper, we proposed VALERIAN, a domain invariant feature
learning approach for IMU sensor-based HAR in the wild. An ex-
tensive experimental study demonstrated its superior performance
over baseline methods for different levels of noise and noise pat-
terns, and in two use scenarios. The key takeaway from this work
is two-fold: 1) the effects of subject diversity and label noises in-
tertwine in the learning behaviour of LNL models and can lead to
catastrophic memorization of wrongly labelled data, and 2) it is im-
portant to design domain adaptation strategies to explicitly handle
subject diversity in conjunction with LNL for better generalization
in HAR.

It is plausible to apply VALERIAN to other sensor data modal-
ities as long as there exist significant subject divergence and per-
formance drop due to label noises. Components of VALERIAN (e.g,
self-supervised learning, early loss regularization) can be replaced
by other more advanced approaches though the framework re-
mains applicable. Also orthogonal to the proposed approach are
unsupervised domain adaption methods and domain generaliza-
tion methods. One limitation of VALERIAN is the need of correctly
labeled samples from a target domain for domain adaptation to
achieve a higher inference accuracy. One interesting area of further
investigation is to perform domain adaptation with noisy labeled
target only. Finally, we believe significant efforts should be made
to build in-the-wild datasets and benchmarks for IMU-based HAR.
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